
Turku Centre for Computer Science

TUCS Dissertations
No 177, June 2014

Irum Rauf

Design and Validation of
Stateful Composite RESTful
Web Services

Design and Validation of
Stateful Composite RESTful

Web Services

Irum Rauf

To be presented, with the permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in Auditorium
Gamma, at ICT building, Turku, Finland, on June 16th, 2014, at 12 noon.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3–5 A, 20520 Turku, Finland

2014

Supervisors

Professor Ivan Porres
Department of Information Technologies
Åbo Akademi University
Joukahasenkatu 3–5 A, 20520 Turku
Finland

Reviewers

Professor Gerti Kappel
Institute for Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstrabe 9-11/188-3
1040 Vienna
Austria

Professor Cesare Pautasso
Faculty of Informatics
University of Lugano (USI)
CH-6904 Lugano
Switzerland

Opponent

Professor Gerti Kappel
Institute for Software Technology and Interactive Systems
Vienna University of Technology
Favoritenstrabe 9-11/188-3
1040 Vienna
Austria

ISBN : 978-952-12-3070-7
ISSN : 1239-1883

To my family

i

ITHACA
When you set out on your journey to Ithaca,

pray that the road is long,

full of adventure, full of knowledge.

The Lestrygonians and the Cyclops,

the angry Poseidon - do not fear them-

You will never find such as these on your path

if your thoughts remain lofty, if a fine

emotion touches your spirit and your body.

The Lestrygonians and the Cyclops,

the fierce Poseidon you will never encounter,

if you do not carry them within your soul,

if your heart does not set them up before you.

Pray that the road is long.

That the summer mornings are many, when,

with such pleasure, with such joy

you will enter ports seen for the first time;

stop at Phoenician markets,

and purchase fine merchandise,

mother-of-pearl and coral, amber and ebony,

and sensual perfumes of all kinds,

as many sensual perfumes as you can

visit many Egyptian cities,

to learn and learn from scholars.

Always keep Ithaca in your mind.

To arrive there is your ultimate goal.

But do not hurry the voyage at all.

It is better to let it last for many years;

and to anchor at the island when you are old,

rich with all you have gained on the way,

not expecting that Ithaca will offer you riches.

Ithaca has given you the beautiful voyage.

Without her you would never have set out on the road.

She has nothing more to give you.

And if you find her poor, Ithaca has not deceived you.

Wise as you have become, with so much experience,

you must already have understood what Ithaca mean.

CONSTANTINE CAVAFY (1863-1933)

translated by Rae Dalven

ii

Acknowledgements

When I started with my Ph.D journey, a Ph. D degree to me was what Ithaca was
to Odysses. My journey to PhD degree was however not relatively so long but was
nonetheless a beautiful voyage with lots of splendor and riches. The list of people
that I acknowledge here is by no way complete since every person I have spent
time with, every book that I have read and every travel that I have had has shaped
me into what I am.

First of all, I would like to heartily thank my supervisor Prof. Ivan Porres who
graciously supervised me, encouraged me and trusted me to individually pursue
the challenging paths of research. Ivan is an outstanding supervisor and has been a
constant source of inspiration for me to conduct quality research. His energetic and
stimulating attitude towards research ideas always kept me going. I am especially
thankful to him not only for being an excellent supervisor but also for being a
wonderful, understanding and supportive person.

I would like to sincerely thank Prof. Gerti Kappel and Prof. Cesare Pautasso for
taking the time and effort to review my thesis. Their useful comments and valuable
suggestions are greatly appreciated and they really helped me in refining the final
manuscript of my thesis. I am also very grateful to Prof. Gerti kappel for her kind
acceptance to act as an opponent at my doctoral defence.

Furthermore, I would like to thank all my coauthors for collaborating on this
research. I am grateful to Anna Ruokonen and Tarja Systä from Tampere University
of Technology for their kind cooperation in research and for many useful research
discussions we had. I would also like to thank my co-authors in Åbo Akademi, Ali
H. Khan, Faezeh Siavashi and Dragos Truscan for sharing their domain knowledge
and diverse viewpoints with me. I owe my special gratitude to Dragos for many
fruitful discussions and helping me often in various matters of research and beyond.

I gratefully acknowledge the department and the Graduate School of Software
Engineering (SoSE) for their financial support for my PhD and excellent research
environment. The annual workshops held by SoSE in Lapland were always very
constructive and relaxing at the same time. It was there that I made some good
friends from research community in Finland and learnt how to enjoy research in
a relaxed environment. It was a very warm experience to meet people like Kai
Koskimies, Tarja Systä and Maarit Harsu from whom I learnt a lot at scientific and
personal level. Thankyou for arranging such constructive environments.

iii

I am also very grateful and honored to receive generous scholarships from
Nokia Research Foundation and Ulla Tuominen Foundation.

Thanks also goes to the administrative and technical personnel at the Dept.
of IT for their support in all practical things. I especially wish to thank Christel
Engbolm, Britt-Marie Villstrand, Christel Donner, Nina Rytkönen, Anne-Leena
Gröning and Tove Österroos for their full support in all administrative matters.
Also, Joakim and Magnus for providing excellent technical support.

My stay at the Software Engineering Lab was made enjoyable due to pleasant
and amusing environment in the lab regardless of work-related stress and worries.
In this regard, I would like to thank all my previous and current colleagues in
the lab especially Jeanette, Torbjön, Roman, Dragos, Fredrik, Faezeh, Benjamin,
Marta, Adnan, Ali, Kristian, Max, Espen and Tanvir. I would especially like to
acknowledge efforts of Roman in helping me with the implementation of my
partial code generation tool. I am also very grateful to Fredrik and Mats Neovius
for helping me with the Swedish version of the abstract.

Special thanks goes to to Prof. Zafar I. Malik, Dr. M. Zohaib Iqbal and Dr.
Shaukat Ali for steering me towards the path of research, helping me with the
initial steps of doing quality research and encouraging me to pursue it further.

Last but by no way the least, I would like to thank my family for their incredible
support. I am especially thankful to my parents for instilling the love of education
in me right from the start, for giving me a very strong foundation and on top of
it supporting me against all the odds to travel abroad alone and pursue my own
paths in life. Thank you for your trust and making me who I am. I am especially
indebted to my mother for her countless sacrifices on all the fronts - financial,
physical, emotional - to make me who I am today. I just cannot even comprehend
your devotion and selfless attitude towards my growth in life. I am nothing but a
fruit of your passion. I express my deep gratitude to my father, for going beyond
his resources to support my education, and to both my sisters for their unwavering
love and encouragement to better myself throughout. Their kind suggestions and
supporting hands helped me overcome all the battles of life with ease.

My heartiest thanks goes to my dearest husband, Usman, for his unbelievable
patience, absolute understanding and unwavering support. This thesis in my hand
would not have been possible without your selfless love, support and encourage-
ment to reach my goals. Thankyou for filling my everydays with laughter with
your witty humor and comfort with your thoughtful gestures. You complete me!

Finally, I would like to thank my daughter Zoya, who introduced me to a totally
new research area during my Phd which I totally loved. All things aside, nothing
makes me more proud than calling you my daughter, already! Thanks for filling
my everydays with countless blessings, for showing me the joy of finding things
out with your curiosity and for reminding me to find happiness in little things of
life. May you always be a reason to smile for others, as you already are, and grow
up to be a source of happiness, comfort and knowledge where ever you go. Ameen.

iv

Abstract

A web service is a software system that provides a machine-processable interface
to the other machines over the network using different Internet protocols. They are
being increasingly used in the industry in order to automate different tasks and
offer services to a wider audience. The REST architectural style aims at producing
scalable and extensible web services using technologies that play well with the
existing tools and infrastructure of the web. It provides a uniform set of operation
that can be used to invoke a CRUD interface (create, retrieve, update and delete) of
a web service. The stateless behavior of the service interface requires that every
request to a resource is independent of the previous ones facilitating scalability.
Automated systems, e.g., hotel reservation systems, provide advanced scenarios for
stateful services that require a certain sequence of requests that must be followed
in order to fulfill the service goals. Designing and developing such services for
advanced scenarios with REST constraints require rigorous approaches that are
capable of creating web services that can be trusted for their behavior. Systems that
can be trusted for their behavior can be termed as dependable systems. This thesis
presents an integrated design, analysis and validation approach that facilitates the
service developer to create dependable and stateful REST web services.

The main contribution of this thesis is that we provide a novel model-driven
methodology to design behavioral REST web service interfaces and their com-
positions. The behavioral interfaces provide information on what methods can
be invoked on a service and the pre- and post-conditions of these methods. The
methodology uses Unified Modeling Language (UML), as the modeling language,
which has a wide user base and has mature tools that are continuously evolving.
We have used UML class diagram and UML state machine diagram with additional
design constraints to provide resource and behavioral models, respectively, for
designing REST web service interfaces. These service design models serve as
a specification document and the information presented in them have manifold
applications. The service design models also contain information about the time
and domain requirements of the service that can help in requirement traceability
which is an important part of our approach. Requirement traceability helps in
capturing faults in the design models and other elements of software development
environment by tracing back and forth the unfulfilled requirements of the service.
The information about service actors is also included in the design models which

v

is required for authenticating the service requests by authorized actors since not all
types of users have access to all the resources. In addition, following our design
approach, the service developer can ensure that the designed web service interfaces
will be REST compliant.

The second contribution of this thesis is consistency analysis of the behavioral
REST interfaces. To overcome the inconsistency problem and design errors in our
service models, we have used semantic technologies. The REST interfaces are
represented in web ontology language, OWL2, that can be part of the semantic web.
These interfaces are used with OWL 2 reasoners to check unsatisfiable concepts
which result in implementations that fail. This work is fully automated thanks to
the implemented translation tool and the existing OWL 2 reasoners.

The third contribution of this thesis is the verification and validation of REST
web services. We have used model checking techniques with UPPAAL model
checker for this purpose. The timed automata of UML based service design models
are generated with our transformation tool that are verified for their basic characte-
ristics like deadlock freedom, liveness, reachability and safety. The implementation
of a web service is tested using a black-box testing approach. Test cases are genera-
ted from the UPPAAL timed automata and using the online testing tool, UPPAAL
TRON, the service implementation is validated at runtime against its specifications.
Requirement traceability is also addressed in our validation approach with which
we can see what service goals are met and trace back the unfulfilled service goals
to detect the faults in the design models.

A final contribution of the thesis is an implementation of behavioral REST
interfaces and service monitors from the service design models. The partial code
generation tool creates code skeletons of REST web services with method pre and
post-conditions. The preconditions of methods constrain the user to invoke the
stateful REST service under the right conditions and the post condition constraint
the service developer to implement the right functionality. The details of the
methods can be manually inserted by the developer as required. We do not target
complete automation because we focus only on the interface aspects of the web
service.

The applicability of the approach is demonstrated with a pedagogical example
of a hotel room booking service and a relatively complex worked example of
holiday booking service taken from the industrial context. The former example
presents a simple explanation of the approach and the later worked example shows
how stateful and timed web services offering complex scenarios and involving
other web services can be constructed using our approach.

vi

Sammanfattning

En webbtjänst är ett mjukvarusystem som erbjuder ett maskinlä sbart grä nssnitt
till andra maskiner över ett nä tverk genom att anvä nda olika Internetprotokoll.
De används alltmer inom industrin för att automatisera olika uppgifter och erbju-
da tjänster till en bredare publik. REST-arkitekturen har som syfte att producera
skalbara och utbyggbara webbtjänster med hjälp av teknik som samverkar bra med
de befintliga verktygen och infrastrukturen för webben. Den erbjuder en enhetlig
uppsättning av funktioner som kan användas för att anropa ett CRUD -gränssnitt
(create , retrieve, update, and delete) hos en webbtjänst. De tillståndslösa beteendet
hos ett servicegränssnitt kräver att varje förfrågan av en resurs är oberoende av
en tidigare förfrågan, vilket underlättar skalbarheten. Automatiserade system, till
exempel, hotellbokningssystem, erbjuder avancerade scenarier för tillståndsstyrda
tjänster som kräver en viss sekvens av förfrågningar som måste följas för att uppfyl-
la de mål som är uppsatta för en tjänst. Design och utveckling av sådana tjänster för
avancerade scenarier med REST-begränsningar kräver rigorösa metoder som är kan
skapa webbtjänster vars beteende man kan lita på. System vars beteende man kan
lita på, kan betecknas som pålitliga system. Denna avhandling utgör en integrerad
design, analys, samt valideringsstrategi som underlättar för tjä nsteutvecklare att
skapa pålitliga och tillståndsstyrda REST-webbtjänster.

Avhandlingens primära bidrag är att vi erbjuder en ny modelldriven metod för
att utforma tjänster för REST-webbgränssnitt och dess sammansättning. Gräns-
snitten ger information om vilka metoder som kan anropas hos en tjänst samt pre-
och post-villkor för dessa metoder. Som modelleringsspråk använder metoden
sig av Unified Modeling Language (UML) som har en bred användarbas samt
välutvecklade verktyg som kontinuerligt uppdateras. Vi har använt UML klassdia-
gram och UML tillståndsdiagram med ytterligare designkrav för att kunna erbjuda
resurs- respektive beteendemodeller för att designa REST webbgränssnittstjänster.
Dessa designmodeller för tjänster fungerar som ett specifikationsdokument och
den information som presenteras i dessa har mångfaldiga tillämpningar. Design-
modellerna för tjänster innehåller ocksåinformation om tids- och domänkrav för
tjänsten vilket kan hjälpa till med spårbarheten av specifikationskrav, som är en
viktig del av vår strategi. Spårbarheten av specifikationskraven hjälper till att hitta
fel i designmodellerna och andra delar av mjukvaruutvecklingsmiljön genom att
spåra tillbaka ouppfyllda krav påtjänsten. Information om tjänsteaktörer ingår

vii

ocksåi de designmodeller som krävs för autentisering av tjänsteförfrågningar av
auktoriserade aktörer eftersom inte alla typer av användare har tillgång till alla re-
surser. Dessutom, genom att följa vårt tillvägagångssätt, kan utvecklare av tjänster
försäkra sig om att de utformade gränssnitten för webbtjänster kommer att vara
REST-kompatibla.

Det andra bidraget med denna avhandling är förenlighetsanalys av beteen-
det hos REST-gränssnitt. För att övervinna den förenlighetproblemet samt kon-
struktionsfel i vår tjänstemodeller, har vi använt oss av semantisk teknik. REST-
gränssnitten är representerade med ett webbontologispråk, OWL2, som kan vara
en del av den semantiska webben. Dessa gränssnitt används OWL 2-reasonerare
för att kontrollera icke satisfierbara koncept vilka resulterar i misslyckade imple-
mentationer. Metoden är fullständigt automatiserad tack vare implementation av
översättningsverktyg och de befintliga OWL 2-resonerarna.

Det tredje bidraget med denna avhandling är verifiering och validering av
REST-webbtjänster. För detta ändamål har vi använt metoder för granskning av
modeller med hjälp av UPPAALs modellgranskare. De tidsinställda automaterna
för tjänstedesignmodeller baserade på UML genereras med vårt omvandlings-
verktyg samt verifieras för deras grundläggande egenskaper såsom undvikning av
dödläge, liveness (eng.), nåbarhet och säkerhet. Implementationen av en webb-
tjänst testas med hjälp av svart låda testning (eng., black box testing). Testfall
genereras från UPPAALs tidsinställda automater och genom att använda använda
online-testverktyg, UPPAAL TRON, såvalideras implementationen av tjänsten un-
der körning mot dess specifikation. Spårbarhet av specifikationskraven behandlas
ocksåi vårt valideringstillvägagångssätt med vilket vi kan se vilka servicemål som
är uppfyllda och spåra tillbaka de uppfyllda servicemålen för att upptäcka fel i
designmodellerna.

Avhandlingen sista bidrag är en implementation av ett beteende REST-gränssnitt
och tjänstövervakare från designmodeller för en tjänst. Det ofullständiga kodge-
nereringsverktyget skapar en kodstomme för REST-webbtjänster med pre- och
postvillkor för metoder. Pre-villkoren för metoder tvingar användaren att åberopa
tillståndsstyrda REST-tjänster under rätta förutsättningar och post-villkoren tvingar
tjänsteutvecklare att implementera rätt funktionalitet. Detaljerna i metoder kan
vid behov manuellt fyllas i av utvecklaren. Vi strävar inte efter full automation
eftersom vi bara fokusera pågränssnittsaspekter hos webbtjänsten.

Användbarheten av metoden demonstreras med ett pedagogiskt exempel påen
tjänst för bokning av hotellrum och ett relativt komplext exempel påen tjänst för
semesterbokning tagna från industrin. Det förstnämnda exemplet visar en enkel
förklaring av metoden medan det senare exemplet visar hur tillståndsstyrda och
tidsbestämda webbtjänster som erbjuder komplexa scenarier och involverar andra
webbtjänster kan konstrueras med hjälp av vår strategi.

viii

List of original publications

1. Irum Rauf, Faezeh Siavashi, Dragos Truscan and Ivan Porres, An Integrated
Approach to Design and Validate REST Web Service Compositions, In
Proceedings of WEBIST 2014, 10th International Conference on Web
Information Systems and Technologies, pages 104-115, SCITEPRESS
Digital Library, 2014.

2. Ali Hanzala Khan, Irum Rauf, Ivan Porres, Consistency of UML Class
and Statechart Diagrams with State Invariants, In Proceedings of MOD-
ESLWARD 2013, 1st International Conference on Model-Driven Engineer-
ing and Software Development, 1, pages 1-11, SciTePress Digital Library,
2013.

3. Irum Rauf, Ali Hanzala Khan and Ivan Porres, Analyzing Consistency of
Behavioral REST Web Service Interfaces, In Proceedings of EPTCS 2012,
8th International Workshop on Automated Specification and Verification
of Web Systems, Electronic Proceedings in Theoretical Computer Science,
pages 1-15, 2012

4. Irum Rauf and Ivan Porres, Towards Behaviorally Enriched Semantic REST-
ful Interfaces using OWL2, In Proceedings of ICWE 2011, the 11th Interna-
tional Conference on Web engineering, pages 407-410. Springer-Verlag,
2011.

5. Irum Rauf and Ivan Porres, Beyond CRUD, REST: From Research to
Practice, pages 117-135, Springer, 2011.

6. Irum Rauf and Ivan Porres. Designing Level 3 Behavioral RESTful Web
Service Interfaces. ACM SIGAPP Applied Computing Review 11, no. 3,
pages 19-31, 2011

7. Ivan Porres and Irum Rauf, Modeling behavioral RESTful web service
interfaces in UML, In SAC 2011, Proceedings of 26th Annual ACM Sym-
posium on Applied Computing Track on Service Oriented Architectures
and Programming, pages 1598-1605, 2011.

8. Irum Rauf, Anna Ruokonen, Tarja Systa, and Ivan Porres, Modeling a
Composite RESTful Web Service with UML In ECSA 2010, Proceedings
of the Fourth European Conference on Software Architecture: Companion
Volume, pages 253-260, ACM, 2010.

9. Ivan Porres and Irum Rauf, From Nondeterministic UML Protocol Statema-

ix

chines to Class Contracts, In Proceedings of ICST 2010, Third International
Conference on Software Testing, Verification and Validation, pages 107-116
, IEEE Computer Society Washington, DC, USA , 2010.

10. Ivan Porres and Irum Rauf, Generating Class Contracts from Deterministic
UML Protocol Statemachines, In Models in Software Engineering, pages
172-185, Springer, 2010.

x

Contents

1 Introduction 1
1.1 Types of Web Services . 2

1.1.1 Big Web Services . 2
1.1.2 REST Web Services . 2

1.2 Resource-Oriented Architecture 3
1.3 Properties of REST Web Services 4

1.3.1 Addressability . 4
1.3.2 Connectedness . 4
1.3.3 Uniform Interface . 4
1.3.4 Statelessness . 5

1.4 Stateful Services vs Stateless Protocol 5
1.4.1 Stateful Services as “Big Web Services” 6
1.4.2 Stateful Services as “REST Web Service” 7

1.5 Motivation . 8
1.5.1 Service States . 8
1.5.2 REST Web Service Composition 9
1.5.3 Comprehensible Information 9
1.5.4 Behavioral REST Interface 9

1.6 Overview of the Approach and Contributions 10
1.6.1 Design . 11
1.6.2 Consistency Analysis . 12
1.6.3 Validation . 13
1.6.4 Implementation . 13

1.7 Background . 14
1.7.1 Unified Modeling Language (UML) 14
1.7.2 Web Ontology Language 15
1.7.3 Model Checking . 15

1.8 Research Methodology . 16
1.9 Conclusion . 17

xi

2 Designing RESTful Web Services in UML 19
2.1 Requirements for behavioral REST web service interface 19

2.1.1 REST Interfaces . 20
2.1.2 Richardson Maturity Model 20
2.1.3 Method Contracts . 21
2.1.4 Authorization . 21
2.1.5 Domain Specific Requirements 22
2.1.6 Time Requirements . 22

2.2 Design Approach . 22
2.3 Applications of Behavioral Interfaces 24

2.3.1 Code Generation . 24
2.3.2 Service Monitor . 24
2.3.3 Validation . 24
2.3.4 Specification for Developer 25
2.3.5 Publish Interfaces in the Standard Languages 25

2.4 Related Work . 25
2.4.1 Modeling REST web services 25
2.4.2 Contracts and Web Services 26

2.5 Conclusion . 27

3 Resource Models 29
3.1 Resource Model . 29

3.1.1 Class diagram . 29
3.1.2 Resources . 30
3.1.3 Modeling Resources . 30
3.1.4 Mapping Resources to Class Diagrams 31
3.1.5 Addressability . 32
3.1.6 Methods . 32
3.1.7 Connectedness . 33

3.2 Well-formedness Rules for Resource Model 33
3.3 Conclusion . 33

4 Behavioral Models 35
4.1 Protocol State Machines and Class Contracts 36
4.2 Generating Behavioral Interface 37

4.2.1 Defining the Structure of Protocol State Machines 39
4.2.2 Semantics of Protocol State Machines 40
4.2.3 Generation of Class Contract 42
4.2.4 Example . 44

4.3 Behavioral Model . 49
4.3.1 GET Method . 52
4.3.2 POST Vs. PUT Method 52
4.3.3 DELETE Method . 52

xii

4.3.4 State Invariant . 53
4.3.5 More on Connectedness 54

4.4 Synchronous and Asynchronous Web Services 54
4.5 Authorization and Actors . 55
4.6 Domain-Specific Requirements 56
4.7 Time Constraints . 57
4.8 Stateless State Machines? . 57
4.9 Well-formedness Rules for Behavioral Model 57
4.10 Conclusion . 58

5 From Service Design Models to a REST Interface 59
5.1 Method Pre- and Post Conditions 59

5.1.1 HTTP Method Pre-Condition 60
5.1.2 HTTP Method Post-Condition 62

5.2 Generation of Behavioral WADL Service Descriptions 63
5.2.1 Inserting Pre- and Post Conditions into

WADL Service Descriptions 64
5.3 HTTP Requests and Responses 66

5.3.1 HTTP Authentication . 67
5.4 Conclusion . 67

6 Consistency Analysis of REST Web Service Interface 71
6.1 REST Design Models and their inconsistencies 72

6.1.1 Linking Resource and Behavioral Models and Inconsis-
tency Problems . 73

6.2 Consistency Analysis . 75
6.2.1 Reasoning Tool Chain 76

6.3 Description Logic and OWL 2 76
6.3.1 OWL 2 Functional Syntax 77

6.4 From Resource and Behavioral Diagrams to OWL 2 DL 78
6.4.1 Resource Model in OWL 2 78
6.4.2 Behavioral Model in OWL 2 80
6.4.3 State invariant into OWL 2 DL 81
6.4.4 State Constraints in µ OCL 82

6.5 Consistency Analysis using an OWL 2 Reasoning Tool 83
6.5.1 Reasoning . 85
6.5.2 Performance Test . 86

6.6 Related Work . 86
6.7 Conclusion . 88

xiii

7 Web Service Composition 89
7.1 Background . 90
7.2 Overview . 91
7.3 Resource Model . 93
7.4 Modeling a RESTful process . 93

7.4.1 Scenario Models . 95
7.4.2 Process Model . 96

7.5 Modeling Composite RESTful interface 98
7.6 Related Work . 101
7.7 Conclusion . 104

8 Validation of Services 107
8.1 Validation Approach . 108

8.1.1 Verification . 109
8.1.2 Code generation . 110
8.1.3 Requirements Traceability 110
8.1.4 Model-Based Test Generation 110

8.2 Design Models→ UPTA transformation 111
8.2.1 Resource Model . 112
8.2.2 Domain Model . 112
8.2.3 Behavioral Model . 112
8.2.4 Environment Model . 115
8.2.5 Test Coverage information 115

8.3 Case Study . 115
8.3.1 Design Models . 116
8.3.2 Verification . 116
8.3.3 Requirements Traceability 119

8.4 Validation of Approach . 121
8.5 Testing Classes against their Contracts 126
8.6 Related Work . 129

8.6.1 Use of model checking techniques for validation 129
8.6.2 Use of Contracts for Testing 131

8.7 Conclusion . 132

9 Implementation 135
9.1 Used Technologies . 135

9.1.1 Python . 136
9.1.2 Django Web Framework 136

9.2 Implementation . 137
9.2.1 Service Design Models 137
9.2.2 Python Compiler . 139
9.2.3 Django Files Result . 144

9.3 Implementation of a Service Monitor 145

xiv

9.4 Evaluation . 146
9.4.1 Advantages . 147
9.4.2 Disadvantages . 147

9.5 Conclusion . 148

10 Conclusion 149
10.1 Design . 149
10.2 Consistency Analysis . 150
10.3 Validation . 150
10.4 Implementation . 151

xv

xvi

Chapter 1

Introduction

Web services are autonomous piece of software that have a machine processable
interface and provide their functionality over the network. The users of web
services are other web services or interactive applications like web browsers or
mobile applications that can use this information to do other tasks without much
human intervention. This is in contrast to the behavior of the document web or
interactive web applications that are designed for human users who search for a
particular information, receive it in a format that they understand and then use it
manually as input to another software or machine for further processing. Over
the past decade, development of web services and their compositions has gained
much attention in the software industry and academia and it is evident by the large
number of web services available over the web [9]. More and more companies are
using web services to expose their software functionality to a wider audience and
to automate their existing tasks.

The Representational State Transfer (REST) architectural style has been intro-
duced by Roy Fielding in 2000 [52] and has become a popular approach to design
web services. REST outlines the architectural principles to build Internet-scale
distributed hypermedia systems. This has encouraged a number of users on the
web and big enterprises to use REST web services. Although REST web services
advocate to be simpler to implement [52], when compared with SOAP-based web
services, their use in advanced and complex scenarios may require careful design
and validation practices for developing REST web services that can be trusted
for their functionality. Such web services impose certain restrictions on how the
service should be created and used. These restrictions should be considered during
the development as there may not be necessarily a human developer on the other
end to process and figure out what a service does via trial and error method. Thus,
REST web services need to be designed carefully for such scenarios, keeping in
mind different constraints it imposes.

In this thesis, we have given an integrated approach to design, analyze and
validate web services and their compositions that comply to REST architectural

1

style and are implemented for advanced scenarios. We aim to facilitate the devel-
opment of verifiable RESTful web services through modeling and model-driven
engineering techniques.

In this chapter, we present an overview of this thesis. First, we present the
types of web services on the basis of their architectural styles in section 1.1. This
is followed by details of resource oriented architecture and properties of REST
web services in sections 1.2 and 1.3, respectively. The notion of states of a service
and statelessness of a protocol is explained in section 1.4. The motivation behind
our work is presented in section 1.5. We then provide an overview of our work
along with the research questions and contributions in section 1.6. In section 1.7,
we present a brief overview of the technologies on which our work is built upon.
The adopted research methodology is explained in section 1.8. The chapter is
concluded in section 1.9.

1.1 Types of Web Services

Web services can be classified based on the design principles used to develop them,
i.e., the architectural style they are built upon. Web services are usually classified
based on two main architectural styles: SOAP-based and REST-based. We call
SOAP based web services Big Web Services, following the naming convention first
introduced in [111] and REST-based services as REST web services.

1.1.1 Big Web Services

Big web services are based on WS-* protocol stack (SOAP, WSDL, etc.) and
are operation centric. The service exposes its functionality in the methods that
can be invoked on it. The user of the service understands these methods via
service description or via the descriptive names of the methods that are offered
by the service interface. The interpretation of these messages is left to the service
that receives them. The SOAP messaging protocol that is used to transfer the
messages does not impose any application semantics on them. This means that the
semantics of applications are maintained within the boundaries of the service and
are determined by the message payloads (header and body content) [127].

1.1.2 REST Web Services

REST web services are built on the principles of REST architectural style [52].
REST architectural style outlines the principles and constraints of web architecture
that builds Internet-scale distributed hypermedia systems.

REST advocates stateless interaction between components, i.e., every request is
independent of its previous request with no stored context on the server. This allows
REST web services to cater large number of clients resulting in system scalability
since the provision of not having to store state between request allows the server

2

to free resources rather quickly. This may affect the system as a design trade-off
resulting in decreased network performance due to data repetitions. However,
REST web services play well with existing infrastructure of the web, e.g., caching,
clustering and load balancing that can help in improving efficiency of the network.

REST is centralized around the concept of resources which are pieces of
information that can be navigated through URIs. The main features offered by
REST include identifying resources with names, manipulating resources with a
uniform interface, using hypermedia to link these resources and using stateless
interaction between client and server. With the help of these features, REST
web services can serve a large number of users and integrate well with other
technologies of the web.

1.2 Resource-Oriented Architecture

Resource-Oriented Architecture (ROA) [111] is a structural design that fulfills
design criteria presented by REST architectural style. It aims to clear the ambigui-
ties in REST design principles by presenting a structural design that applies these
principles. ROA is based on the following REST concepts: resources, their names,
their representations, and links between them. Below we give a brief introduction
to these concepts and method semantics in REST.

Resources: A REST web service exposes its functionality as a set of resources. A
resource is any piece of information that can be the target of an interaction and is
defined by Fielding [52] as an intended conceptual target of a hypertext reference.
Every resource must have at least one URI [90], where URI gives the name and
address of the resource.

Representations and HATEOAS: When a URI is invoked on a resource, it returns
a representation of the resource that defines its state. This representation is in the
form of an XML or JSON file that contains information about its attributes and the
links that can be taken further. These links connect resources and communication
can move forward by exchanging the states of the resources. This establishes the
notion of hypermedia as the engine of application states (HATEOAS) commonly
used to define REST architectural style. The service moves forward through differ-
ent states during its lifecycle by exchanging states of the resources as hypermedia
links in resource representations.

Method Semantics: Clients interact with resources over the web. The verbs
that interact with these resources and manipulate the information provided by these
resources and their representations are given by methods. REST architectural
style requires that the same set of methods should be called on different resources.
HTTP is a protocol that forms the basis of web and implements well the principles

3

of REST [52]. Though, technically, it is one of the interaction protocols that can
be used to interact with resources over the web but due to its pervasiveness it is
considered to be the protocol of the web [111].

CRUD (create, retrieve, update and delete) operations can be performed on
resources using standard HTTP methods. These HTTP methods are considered
as application-level constructs that the programs can use to interact with another
program over the network in a standard manner with well-defined semantics [127].
The HTTP request is targeted to a resource via a URI of that resource and is
returned with an HTTP response. HTTP response consists of HTTP response code,
response headers and representation of the resources. Response headers provide
the operating parameters and representation of the resource is the document that
gives information about the resource. The HTTP response code is a numeric code
that tells the clients whether the request went successful or not. HTTP has a list
of status codes that reveal how the request went [27], for example, 200 means the
request was successful, 404 means the resource was not found and 403 implies that
it is forbidden to make this request on this resource. The client machine interpret
these response codes to know how their request went.

1.3 Properties of REST Web Services

REST web services exhibit the following four properties [111]:

1.3.1 Addressability

A REST web services exposes the information it considers servable to its clients
as resources. These resources can be reached only via a URI else a client has
no information about its existence. The addressability feature requires that every
resource should have atleast one URI.

1.3.2 Connectedness

This feature implies that the resource representation not only contain data about
resource attributes but can also contain links to other resources. These links
connect resources to each other and service client gets an experience of connectivity
between resources, i.e., moving from one resource to another.

1.3.3 Uniform Interface

It requires that there should be a same set of methods, with predefined semantics,
that can be invoked on all resources. In REST web services all resources are
manipulated using the standard HTTP methods. The HTTP GET, POST, PUT and
DELETE are used to retrieve information from a resource or change its state.

4

1.3.4 Statelessness

Every request from the client should contain all the information that is required
to process it, i.e. the server is not responsible of keeping any context information
with it. Hence, every request is treated independently.

With these features, REST web services can play well with the existing tools
and infrastructure of the web. The feature of connectivity and uniform interface
allows use of existing tools and infrastructure like web crawlers, curl, caches
etc. The addressability requirement helps us to create extensible web services.
The extensibility feature enables to add a functionality to the system without
impacting the rest of the system [52]. URI addresses can be constructed in an
hierarchical manner, such that they make data structure and relationships. Thus, it
becomes convenient to add-in more functionality into the existing structure without
modifying it. The statelessness requirement simplify the development of systems
that can handle many service requests simultaneously facilitating scalability since
the server does not need to keep any context information and the service requests
can be handled by different servers. Currently, REST web services are widely
adopted in the web and have numerous users, including enterprizes such as Google,
Yahoo, Amazon and Flickr.

1.4 Stateful Services vs Stateless Protocol

Web services can have different service states that a service must go through during
its lifecycle. A stateful service requires a certain sequence of method invocations
that must be followed in order to fulfill the functionality a service promises to
deliver to its users. For example, in a room booking service, the booking cannot be
paid until a booking is made. This requires that a booking must be made first and
then it should be paid. If the user of the service does not follow this protocol, it
cannot expect the desired results. In a stateful service, the result of a (side-effect)
method is dependent on the current state of the web service or resource (in case
of REST web service). A method invoked on a service or a resource , may return
different results depending on the state of the service or resource. For example,
consider the case of a service that allows only canceled bookings to be deleted. In
such a case, the result of invoking a method that deletes a booking, on a booking
instance (or resource) that is canceled, is different from the results of invoking the
same method on a booking instance (or resource) that is not canceled. In the first
case the booking is deleted but in later case the booking is not deleted as it is still
an active booking. A state of the service is thus defined as a specific condition of
the service at a certain time instance.

Web services follow a typical client server architecture that provides a platform-
independent and language-independent mechanism to transmit messages over a
network. A server receives a request from the client. This request could be a
single request followed by a response. For a stateful service, this could be a

5

series of message requests. This message exchange happens via a communication
protocol that can be either stateful or stateless. A stateful protocol requires that
the server can associate a request with the previous requests and knows that they
all come from the same user. On the other hand, a stateless protocol treats each
request independently and unrelated to the previous request. Figure 1.1 represents
graphically the difference of communication between a stateful (left) and a stateless
(right) protocol for opening and reading a file. A stateful protocol requires to keep a
connection of the opened file along with the information on the last position of the
cursor, on the other hand a stateless protocol has all the information in the method
parameters and does not need to maintain any state information from the previous
request. This of course comes with the overhead of opening and closing the file
again and again but offers a scalable architecture since the service does not need to
keep any context information and service requests can be handled simultaneously
by different servers.

File.txt
``This is a

sample file”

Client Server

open(`file.txt’)

OK()

read(10)

OK(`This is a ’)

read(10)

OK(`sample file ’)

close()

OK()

Server

read(`file.txt’,0,10)

OK(`This is a ’)

OK(`sample file ’)

Client

File.txt
``This is a

sample file”read(`file.txt’, 10, 20)

Figure 1.1: (left) Stateful Protocol (right) Stateless Protocol

1.4.1 Stateful Services as “Big Web Services”

Big web services use different specifications built on top of each other to address
different tasks. Since there is no notion of states in web services, WS-Resource
Framework [10] and WS-Transfer [48] are commonly used to model state in big
web services [55]. They are both almost similar technically. The architecture
style they use to store state information consists of storing state of the service as
an XML document and give it an address via a WS-Addressing EPR (End Point
Reference). EPR defines the address for a resource in a SOAP header and is defined
in WS-Addressing specification [30].

The main drawback of using a such an approach is that while processing a
request, the server needs to retrieve any kind of service context or state. Also, such
an approach can make things complicated since the service requires a lot of upfront
consideration to efficiently store and enable session information to maintain states.

6

Stateful services may also facilitate transactions. Transactions have their own
set of well-defined properties and require that a certain sequence of operations
be treated as a unit of work that is either completed fully or canceled altogether.
In order to support transactions big web services use specifications like WS-
Transactions [23] and WS-Coordination [37].

1.4.2 Stateful Services as “REST Web Service”

The REST web service uses HTTP as a stateless protocol for communication
between the server and the client. This constraint leads to the construction of
scalable web services since the server does not need to preserve any session or
state information in between the client requests. All the data needed to fulfill the
service request is part of the request so the intermediary servers may forward, route
and load balance without requiring server to hold any state in between the requests
with an aim to decrease the overall response time of a web service call.

Creating stateful services using a stateless protocol is an interesting design
challenge since there is no provision of passing or maintaining hidden session
information over a sequence of events. Some authors claim that REST supports
totally stateless operations and if an operation needs to be continued, then REST
is not the best approach and SOAP may fit it better [53]. Some authors propose
keeping a transient state (soft state) to temporary keep the state of the service
somewhere that is destroyed or updated once that state is traversed and no longer
useful [132]. Another option could be storing the state of the service in cookies.
Cookies are small pieces of data that can be stored on user’s browser to take the
load off the server of saving user specific information. However, use of cookies
may not be an optimal solution to save service state since they can misrepresent
user information and can be a security and privacy risk [52].

However, inspite of all these discussions, REST web services come with the
property of transfering state of the application (service in our case) from one
resource to another. REST does that by providing links in the representation of the
resources [127]. These links contain information on what further links should be
addressed so that the sequence of method invocations is maintained and also the
state of the service is preserved. Thus using a stateless HTTP protocol, services
that give stateful behavior can be constructed in this manner. The objective behind
this is to create stateful scalable REST web services.

The support for transactional interactions with REST web services has also
started gaining interest in the research community. Marinos et al. [88] provides
a transaction model that satisfies the contraints of the transactions and also of
REST architectural style. Razavi et al. [110] uses isolation theorems to propose
an approach for RESTful transactions. Kochman et al. [74] describe a system
architecture and algorithms for batched transactions for REST web services. To
support distributed atomic transactions over REST services, Pardon and Pautasso
[98] present a light-weight protocol, based on Try-Cancel/Confirm (TCC) pattern

7

which assumes that reserved resources are either confirmed or canceled within a
given time.

1.5 Motivation

The features offered by REST web services simplify the overall architecture of the
system offering many non-functional properties. However, this also opens new
research questions when REST web services are used in advanced scenarios that
require more than just simply retrieving and manipulating information from the
database.

1.5.1 Service States

Stateful services require the service users to follow a protocol as a set of sequence
of events that should be followed in order to fulfill service functionality. These
services can be called stateful services as explained in Section 1.4. All REST web
services are stateful by nature since CRUD (create, retrieve, update and delete)
methods can be called on every resource to change or retrieve its state. However,
from the developer’s perspective, when REST web services are used in advanced
scenarios, it may become a challenge to design them in a consistent and verifiable
manner, since more advanced the scenarios, the more careful design efforts are
needed to communicate the right information to the right users.

In RESTful web services, the state of resource determines the result of an
invocation and the resource representation contains information on what further
links (representing state transfer) can be followed by the service user. However,
when designing such services, developers need to carefully design what links can
be part of the resource representation, since a resource can give a different repre-
sentation as response to a method invocation depending on the current situation of
the service. For example, the response of invoking a PUT on cancel resource for an
unpaid booking is different from the response received by invoking PUT on cancel
resource of a paid booking. The former will cancel the booking and give links to
rebook the room, and in the latter case, the response would provide links to get
the payment refunded or autonomously initiate a payment refund service giving
links to either browse elsewhere while waiting for the payment confirmation or
give a confirmation response (depending on the design of the service). In both the
cases, and other similar scenarios, the resource representations need to be carefully
designed so that they transfer the right state of the service, i.e., service state. We
define service state as a predicate over resources. This work complements the work
done on transactional services. However, we are not using the word transactional
services as the focus of our study is not to specifically address all the transaction
principles, i.e., Atomicity, Consistency, Isolation and Durability, but to facilitate
the designing and development of REST services for advanced stateful scenarios,
from the developer’s perspective. Our work on designing stateful services should

8

be considered complementary to transactional services. Similarly, the usage of
Try-Cancel/ Confirm protocol [98] for transactional REST web services can be
used in conjunction with our approach and vice versa.

1.5.2 REST Web Service Composition

Web service compositions may also offer complex scenarios. A web service
composition is a process in which new web services are composed with specific
business goals from existing web services that are already published over the
Internet. The functionality of newly composed web services is dependent upon the
functionality of existing web services. Composite web services have their own set
of unique requirements that must be fulfilled in order to fulfill the functionality it
advertises, such as:
• Timing Constraints: Composite web services may impose timing constraints

on partner web services as in the case of transactional compositions that
assume that the sequence of events, that make changes to information that a
web service holds, either succeed as a complete unit or fail. This information
is important to be taken into account when designing and developing such
web services.

• Service Actors: Web service composition may also involve different actors,
machines or human, who can invoke methods on different web services. Not
every actor may be allowed to invoke every method on every service. A web
service developer needs this information in order to implement web services
that do what they are required to do and not do what they should not do.

We are interested in creating web service compositions that provide REST interface
features alongwith their own set of requirements.

1.5.3 Comprehensible Information

In addition, the more advanced or complex the scenario would be, the greater
number of resources and the relationships between them will arise. In such a
case, keeping a track of how resources are connected, how they contribute towards
services states and what are the allowed and not allowed methods on different re-
sources can be difficult to manage. Thus, keeping a track of these relationships and
understanding them in a way that is comprehensible and communicable becomes
important.

1.5.4 Behavioral REST Interface

Another aspect of web services that motivates our approach is the provision of a
behavioral REST web service interface. Web service interfaces provide methods
that can be invoked on it. However, as in the case of stateful services, a web
service may constrain its users to invoke these methods in a certain order to obtain

9

functionality that is expected from it. This information is usually not present in
a service interface that only provides information about the methods that can be
invoked on it along with details of how to use it in text format in some cases. We
are interested in providing a behavioral interface for REST web services that can
constrain the service user to invoke the service under right condition and also
constraints the service developer to implement the right functionality.

All these constraints and requirements open new research dimensions when
combined with REST constraints on web services. For the service developers,
designing and implementing such services for advanced scenarios, that deliver
the advertised functionality, can become an uphill task since there can be lots of
information that needs to be handled in a meaningful way.

1.6 Overview of the Approach and Contributions

Developing REST web services that are dependable in the sense that they can
be trusted with greater confidence in their functionality is the goal of this thesis.
We are interested in exploring this research area and give an integrated approach
that facilitates the service developer to design, analyze and validate REST web
services and their compositions that require the service user to follow a protocol.
The created web services should be dependable such that they can be trusted with
higher confidence in their advertised functionality.

Our research thesis is based on four main research areas: Design, Consistency
Analysis, Validation and Implementation. We address different research questions
in each of these areas. Our study of the current literature show that many efforts
have been made for the development, design and validation of REST web services.
These works are detailed in different chapters of this thesis. However, we feel
the need for the development approaches that can facilitate the task of developing
REST services for advanced scenarios and in doing so we have contributed not
only in the overall domain of REST web services but also individually in different
areas of design, verification and validation of web services, as mentioned in their
individual chapters. The created services should be dependable in the sense that
the service developer can design such services in a manner that they can be trusted
to provide RESTful behavior and the advertised functionality.

Below, we present the different research questions posed in each area, our
contribution and an overview of how and in which chapter/ chapters of this thesis
we elaborate them in detail. An overview of our integrated design and validation
approach for stateful REST web services is given in Figure 1.2. In Table 1.1 we
show to which area our research papers belong to and they answer which research
questions.

10

Figure 1.2: An Approach to Design, Analyze and Validate Stateful REST Web
Services and their Compositions

1.6.1 Design

To start with, we are interested in providing a design approach using models that
include all the information required to build stateful REST web services, as moti-
vated above. The models provide a graphical representation of the specifications
of the system under development that can be comprehended and communicated
with relative ease among different stakeholders. They can provide representation
of service specification from different perspectives that can lead to better under-
standing of the system. Our aim is to use UML (Unified Modeling Language)
which is well accepted in the industry and academia and has many well-known
and mature tools with a wide user base. Also, it can target design requirements
independently of the implementation details. In our approach, a service can invoke
other services and exhibit stateful and timed behavior while still complying with
the REST architectural style.

RQ 1: How to describe and automate the generation of a behavioral interface?

RQ 2: How to design behavioral interface specifications of REST web services
with stateful behavior?

11

RQ 3: How to design composite REST web services?

Contribution: We design behavioral interfaces for web services with advanced
and complex scenarios that are REST compliant using UML. These behavioral
interfaces are modeled with UML class diagrams as resource models and UML
state machine diagrams as behavioral models. These models have direct mapping
to the machine-processable REST interfaces. We have also modeled information
about different service actors who are authorized to access different resources.
This information facilitates the authentication mechanism of the service. In addi-
tion, service goals are labeled as service requirements on the behavioral model
specifying when, during service lifecycle, a certain service requirement is fulfilled.
The time constraints imposed on services are also modeled with time events in
UML state machine. We have also extended our design approach to support the
composition process of the REST web services and provided behavioral interface
specifications for a REST web services.

Elaboration: The design approach for creating behavioral REST interfaces is
detailed in Chapter 2 to 5. The design models for composite REST web services
are presented in Chapter 7.

1.6.2 Consistency Analysis

The service design models represent the system from different perspectives and due
to human error they may contain contradicting specifications of different models
of the same system or they may have specifications that cannot be satisfied in any
implementation. Thus, the service models should be analyzed for their consistency
to ensure that the designed models do not have unintended errors. We aim to
analyze the consistency of service design models using semantic concepts and
OWL 2 reasoners. We address the following research questions in this area:

RQ 4: How to represent service design models as a web ontology?

RQ 5: How to analyze the service design models of REST web services for
their consistency?

Contribution: We represent the structure of resource and behavioral models in
ontology language OWL2 and provide tool support for UML to OWL2 translation.
The OWL 2 ontology of service design models is passed to an OWL2 reasoner that
provides report of unsatisfiable and satisfiable concepts. Unsatisfiable concepts
will reveal the resource definitions that cannot be instantiated or behavioral states
that cannot be entered. The reasoning of OWL 2 ontologies is supported by the the
OWL 2 reasoning tools already available in the industry.

12

Elaboration: Chapter 6 presents our work on consistency analysis of service
design models.

1.6.3 Validation

Validating service design models and service implementations for their correct
behavior builds confidence of the developer that the services are designed correctly
and the implementation is delivering the right functionality. Since we are interested
in creating web services that can be trusted to provide correct functionality, so
validation becomes an important part of our approach. The design models should
be verified for their basic properties like deadlock freedom, liveness, reachability
and safety. The service implementation should also be tested for its functional and
temporal properties.

RQ 6: How to verify that the service design models of stateful and timed REST
web services are built correctly?

RQ 7: How to validate the implementation of REST web services against their
specifications?

Contribution: In order to validate the dynamic and timed behavior of the service
design models, we have used the model checking approach. Models are translated
into UPPAAL timed automata (UPTA) in order to make them comprehensible for
UPPAAL model checker [81]. UPTA are verified with UPPAAL for their basic
properties like deadlock freedom, reachability, liveness and safety. Performing the
verification of the web service composition in a model-checking tool allows us to
increase the quality of the specifications before proceeding to the implementation.
We have also validated the implementation of a REST web service against its
specifications using UPPAAL TRON tool [81] which is a black-box conformance
testing tool for the timed systems. In addition, our validation approach also pro-
vides requirement traceability by checking which of the service design goals are
met and which are missed by the service implementation.

Elaboration: The verification and validation mechanism of a composite REST
web service is presented in Chapter 8.

1.6.4 Implementation

Model driven engineering [99] advocates generation of code from the models to
reduce time and efforts needed during the development phase. An automated
process that can create behavioral interface skeletons of REST web services can
facilitate the service developer in the creation of REST web services in an auto-

13

Table 1.1: Research Questions and Publications
Research Area Research Question Publication
Design RQ: 1 9, 10

RQ: 2 6, 7
RQ: 3 1, 8

Consistency Analysis RQ: 4 4
RQ: 5 2, 3

Verification & RQ: 6 1
Validation RQ: 7 1
Implementation RQ: 8 5

mated manner. We require to generate code skeletons for the behavioral REST
web service interfaces directly from the models.

RQ 8: How to generate code skeletons for a behavioral REST web service interface
from the design models?

Contribution: The partial code generation tool is implemented in Django web
framework [66]. It generates code skeletons with the pre- and postconditions for
the service methods. The tool takes service design models as input.

Elaboration: The details of our service implementation and partial code gen-
eration tool are presented in Chapter 9.

In the next section, we give background of approaches and technologies we
build our work upon.

1.7 Background

1.7.1 Unified Modeling Language (UML)

A model represents a system under development in a simplified manner focusing
more on relevant design decisions and ignoring the unimportant details that are
not considered part of the problem. UML has emerged as a standard modeling
notation that provides model representation of the system in an abstract manner
from different perspectives [125]. The importance of a standard modeling notation
cannot be ignored since it provides many benefits to the system developers. The
communication between different development teams is simplified since a common
language can be used for communication and also due to a large user base mature
and sophisticated tools are available that constantly improve with time. In addition,
these models can serve as a part of the specification document.

The UML standard provides different types of diagrams that can be used
to document a software system such as class, state, sequence and deployment

14

diagrams [125]. These diagrams model a system from different viewpoints. For
instance, sequence diagrams model object interactions and class diagrams represent
the static structure of a system.

1.7.2 Web Ontology Language

Semantic web aims to enable machines to process, combine and infer information
in a meaningful way from the data. Technologies like ontologies, inference etc.
attempt to standardize this information sharing mechanism so that they can be
more easily supported by a software. Ontologies provide representation of a set of
concepts in a domain, their properties and the relationships between those concepts.
Web Ontology Language 2 (OWL 2) [93] is one of the languages commonly used
to define ontologies.

OWL2 provides mechanism to define classes, properties, relationships, con-
straints and axioms that are stored as semantic web documents defining a particular
domain of interest [93]. OWL2 has its formal underpinning in description logic
which makes it possible for applications to reason over the facts expressed as
axioms in the ontology. There are several reasoning tools available for OWL 2 like
Pellet [118], Hermit[108], etc. These reasoning tools can generate new information
by processing facts captured in OWL 2 ontology [127].

1.7.3 Model Checking

Model checking is a way to exhaustively and automatically check if a finite-state
model of a program satisfies its specifications [46]. The goal is to see whether the
models contain safety requirements like deadlock and other critical properties that
can cause a system to crash.

UPPAAL is a commonly used model checking tool for verifying real time
systems through modeling and simulation [82]. It is designed based on timed
automata and includes other features like integer variables, structured data types,
user defined functions, and channel synchronization [16]. A real-time system
can be modeled by one or several timed automata that work in parallel. Each
automaton is composed of nodes (location), edges (transition), clocks and variables
representing different properties of the system. At a time, the system is in one
state, which is defined by all the current locations of the automata, all variable
values and the clock values. System updates the state by executing a transition
from the current location to another location. The transition can be fired separately
or parallel with another automaton.

A channel is a synchronization feature in UPPAAL. Two edges in different
automata can synchronize if one is emitting and the other is receiving on the same
channel. Synchronization between automata can also be provided by a clock. The
clock is a type of variable with non-negative real numbers and it can be defined as
a local variable in each automaton transition or as a global variable. The global

15

clock can be updated by all automata in the model, while the local clock can be
updated only by the corresponding automaton.

1.8 Research Methodology

A research methodology defines a systematic approach undertaken in conducting a
research. Design science is one such research methodology that answers questions
like whether it is possible to build a certain innovation and how useful that innova-
tion can be [73]. Our work provides a novel approach to build web services for
complex and advanced scenarios that offer RESTful features. We use UML models
at the design phase and compliment them with validation approaches and different
tools to provide a model-driven engineering solution for the problems faced by the
service developers in creation of RESTful services for advanced scenarios. In this
context, the research presented in this thesis follows a design science approach.

Figure 1.3 shows the design science philosophy with a sequential process for
an artifact (i.e., a construct, a model method or an instantiation) [73] given by
March and Smith [87]. In the first phase, an artifact is built to perform a specific
task. We, then, evaluate the artifact by using it to see if it works. The final stage of
demolishing the artifact means that either the use of the artifact is finished or there
is a transition from the use of an old artifact to the new one.

In our research thesis, we give a new design strategy to build models that
are RESTful and have not been designed with such characteristics before in the
literature. This maps to the first stage of Figure 1.3. Thus, according to our
knowledge and literature survey, our work presents a novel engineering solution to
the research problems we have highlighted earlier.

To build construct,
model, method on

instantiation

To use construct,
model, method on

instantiation

To demolish construct,
model, method on

instantiation

time

Figure 1.3: Sequential processes for Design Science [73]

The design and validation approaches were used on a relatively complex
worked example to see the applicability of the approach and see if it works for
real life problems. This maps to the second stage of the design science approach
according to the Figure 1.3. The last stage of the design science research method-
ology talks about demolishing of the artifact. Demolishing may mean that either
there is a transition from the use of an old artifact to the use of a new one or it
may mean that the use of an old artifact is finished [73]. In software development
paradigm, sometimes software artifacts can also be reused [56]. Similarly, in our
case, either the use of the designed artifacts will be finished, replaced by new ones

16

as the design evolves or they can become part of the specification document and
saved in the repository for future reuse.

1.9 Conclusion

In this chapter, we present an overview of our thesis and present the concepts on
which our thesis is based upon. We briefly explained different types of web services
based on their architectural style and presented the conceptual underpinnings of
stateful services and stateless protocol along with their differences. The technolog-
ical background of our work is also presented in this chapter, that includes UML,
OWL 2 and the model checking paradigm. The motivation behind our work is
to provide service developers with a holistic approach that spans multiple phases
of the development cycle in order to create dependable REST web services. The
research questions formulated based on these research goals are also presented
along with the research methodology that was adopted to conduct this research.

17

18

Chapter 2

Designing RESTful Web Services
in UML

A web service interface should have the properties of any software interface, i.e.,
it should define the services offered by a software system without revealing its
implementation details. In the context of a RESTful web service, the interface
should include information about the available resources, their addresses and their
representations. It should show how the resources are connected, what methods
are supported in each resource and what is the outcome of invoking a method in a
specific resource. These and other requirements (motivated earlier) for creating
behavioral interface of REST web service need specific design decisions.

In this chapter we give a detailed overview of our design strategy in order to
create REST compliant web services. In the Section 2,1, we present the design
requirements that should be addressed in the behavioral interface specifications of
a REST web service. This is followed by a brief overview of our design approach,
in Section 2.2. Applications of behavioral interfaces are discussed in Section 2.3
and the related work is presented in section 2.4. We conclude our chapter in section
2.5

2.1 Requirements for behavioral REST web service inter-
face

We require that the REST interfaces that we design should exhibit REST features
and should be fully compliant with the REST hypermedia principle. The designed
models should also provide behavioral information about interface methods and
their usage. In addition, the designed interfaces should provide information about
the users who are authorized to invoke service methods, the service goals and
should also address timed behavior of web services.

19

2.1.1 REST Interfaces

The REST architectural style is defined by four attributes. In the context of a web
service these attributes are:
• Addressability: The REST style requires that any important piece of in-

formation related to a service should be exposed as a resource and each
resource should be addressable via a URI.

• Connectedness: This requires that the resource representation contains links
to other resources.

• Uniform Interface: All resources are manipulated using the standard HTTP
methods. The HTTP GET, POST, PUT and DELETE are used to retrieve
information from a resource or change its state.

• Statelessness: There is no hidden session or state information. Besides, the
effects of the POST, PUT and DELETE operations should be observable in
the affected resources.

Any RESTful web service should comply with these four attributes. We impose
these attributes as requirements over the design of our web service interface.

2.1.2 Richardson Maturity Model

HTTP is a stateless protocol and each HTTP request is treated independent of any
previous request. However, interactive web services often require that the state of
the service is preserved such that a new request is in relation to the previous request.
Such services take the client through a sequence of HTTP requests in a particular
order to fulfill a task. RESTful web services take HTTP as an application protocol
and requires that the same set of methods (HTTP verbs) is invoked on each resource
offering uniform interface. However, in order to create RESTful web services with
stateful behavior, there should be a provision to carry the state of the service from
one independent HTTP request to another. The best way to do this is to provide
links in the representations of resources [127]. These links can contain information
from the server on what further links should be addressed so that the sequence of
method invocation is maintained and also state of the service is preserved. Thus,
using stateless HTTP protocol, stateful services can be constructed in this manner.
The objective behind this is to create web services that are REST compliant and
offer advanced scenarios.

However, not all web services are created in a manner that fully employ the
potential of web, not even many services that claim to be RESTful. In order to
identify maturity of REST web services, Richardson Maturity Model (RMM) [127]
presents a classification of web services to quantify the maturity of web services.
• Level 0 services are the basic level services that use a single URI and a

single HTTP method.
• Level 1 services have many addressable resources but use only single HTTP

verb for all the resources.

20

• Level 2 services use several URI addressable resources and support several
HTTP verbs on the exposed resources.

• Level 3 services, in addition to the URI addressable resources and sup-
port of several HTTP verbs, contain URI links to other resources in their
representations that might be of interest to the consumer of the service.

In this classification of web services, the level 3 services are said to be most
web-aware since they take hypermedia as the engine of application states. We
require that web services created using our design approach are fully compliant
with REST having maturity of level 3 according to RMM.

2.1.3 Method Contracts

The interface of a web service advertises the operations that can be invoked on it.
A web service developer looking for a particular service finds the service over the
web and integrates it with other services by invoking the advertised operations and
providing it the required parameters. These operations may require a certain order
of invocation or there may be special conditions under which they can be invoked.
These conditions, i.e., pre- and post-conditions of a method are called contracts.
This information, together with the expected effect of an operation forms part of
the behavioral interface of a service. The role of contracts as behavioral interfaces
has been investigated for software classes [91, 45, 35] and also in the domain of
web services [63, 47].

We require a design approach that preserves the sequence of method invocations
and contains behavioral information specifying the conditions under which the
methods can be invoked and their expected results. This information can be
extracted from the models and asserted in the interface description language. These
assertions constraint the service user to invoke the methods under right conditions
and also constraint the service implementation to provide the functionality that is
expected from it.

The behavioral interface can also be used to test a service implementation
and for service discovery. More advanced scenarios, such as automatic service
discovery and service repositories rely on formal descriptions of services.

2.1.4 Authorization

The web services need to secure information in order to provide its users data
integrity and confidentiality. A secure web service depends on many different
techniques and technologies that work together to provide security. In the case
of big web services, different higher-order protocols address issues like identity
and trust. Identity refers to the ability of the system to authenticate the parties
involved in the transaction and trust concerns authorizing the party to interact with
the system in a prescribed way [127]. REST web services use HTTP protocol and
can provide authentication mechanism using HTTP basic authentication, HTTPS,

21

or HTTP Digest authentication. The stateful REST web service may involve
different parties that may or may not be authorized to invoke specific resources.
The users need to be authenticated to access different resources. This authorization
information can be sent in the authorization header of the request.

Our fourth requirement is to provide enough information in the models for the
developer to give correct access rights to the right users. This also requires a direct
mapping to HTTP requests and responses.

2.1.5 Domain Specific Requirements

A web service is designed with some specific service goals in mind. These service
goals or requirements should be met by the service. The service requirements
should be taken into consideration at the design phase to analyze at which point
of service life cycle a particular requirement is fulfilled and allows for require-
ment traceability. Requirement traceability refers to the ability of the system to
define, capture and follow the traces left by requirements on other elements of
the software development environment [105]. We are interested in capturing the
service requirements on the design models in order to design and develop REST
web services with specific requirements in mind. This would also help us check
which requirements are met by the service implementation and which not at the
later stage of the service life cycle.

2.1.6 Time Requirements

Web services may have time critical behavior that must be taken into account
when designing a web service. A web service cannot be trusted if it fulfills its
service functionality but does not fulfill the time constraints imposed on it. This is
because a web service is offered over the network and it may be used in another
web service composition process. In such cases, if a service does not respond
within a pre-defined time period, it can be assumed that the web service is not
responding and may result in termination of the service. Thus, we require that
timing constraints for the service should be modeled at the design phase such that
the service can be validated in the later stages for its timed behavior as well.

2.2 Design Approach

Our design approach creates web services that are REST compliant. This means
that the web services that are developed using our design methodology lead to web
services that exhibit REST interface features and also address the requirements
detailed in section 2.1.

The starting point of our approach is an informal web service specification in
natural language that is used to build the resource and behavioral model of the web
service. We use UML class diagram to represent the resource model and UML

22

protocol state machine with state invariants to represent the behavioral model of
a REST web service. The resource model represents the resources of the service
along with their data attributes, links between them and the different properties of
these links.

The behavioral model of the service, represented by a UML protocol state
machine with state invariant, define different states of the service and show how
these service states change when its interface methods are invoked. The trigger
methods in the behavioral model are restricted to HTTP methods PUT, POST
and DELETE since these methods can make a change in the resource and GET
method is used only to retrieve the state of the resource with no side-effects. We
are able to define states of the service without compromising the requirements
of stateless protocol by defining states as predicates over states of the resources.
The representation of the resource, returned as a result of method invocation, is
given by the attributes of resource defined in the resource model and the links
that can be navigated further. These links are defined by observing the outgoing
transitions from the target service state of the transition invoked by the interface
method. The service requirements are also added in the behavioral model as labels
and information of users with access rights to a method are added as actors with
the transitions.

All these different types of information have mapping to HTTP request and
response pairs. The Web Application Description Language (WADL) service
descriptions can also be generated directly from the service design models. WADL
is a machine readable format of REST web service interface [121].

The behavioral model also provides information about interface method con-
tracts. A contract binds user of the service to pose a valid request and constrains
its provider to provide the correct behavior. In our approach, we show how the
pre conditions and the post-conditions of each service request can be generated
from the proposed UML models and how these pre- and post conditions can lead
to behavioral WADL interfaces.

We use as example an imaginary hotel room booking (HRB) service. The user
of the service books a room and pays for it. While a third party service processes
the payment, the service waits for the processing and marks the booking as paid
once the confirmation is received. The booking can be canceled anytime if it is not
waiting for the payment processing. The standard HTTP methods are called on
the service to navigate through the different states of hotel booking service. Every
piece of information that user can use, e.g., cancelation, payment and booking
etc. is accessible via independent URIs. Also, information about when a method
should or should not be invoked, e.g., making a booking cancel request, can also be
inferred from the models. It is a simplified pedagogical example, but it shows how
to design a REST interface for a service with a complex service state. In the next
few chapters, we present in detail how the models containing all these informations
are constructed.

23

2.3 Applications of Behavioral Interfaces

We have created behavioral interfaces of REST web services that provide pre and
post conditions of the interface methods along with information on sequence of
method invocations. A service description containing behavioral contracts has
many applications that we describe below.

2.3.1 Code Generation

Service descriptions are often used to automatically generate code stubs to invoke
the service from a particular programming language. The UML protocol state
machines do not contain executable actions, unlike behavioral state machines, and
hence are not executable. On the other hand, they provide behavioral informa-
tion of an interface. Developers implementing a web service have to manually
implement the interface specified in protocol state machine. This require efforts to
ensure that implementation conforms to its behavioral specification. Our approach
generates implementation stubs from the design models in an automated manner.
In addition, behavioral specifications are automatically generated from the models
and asserted as contracts into programmatic interface of the web service in Django
web framework [66]. The service implementation can use the asserted contracts to
validate a request from the client. The preconditions of a method provide a check
on the incoming request. Thus, ensuring whether the conditions to invoke a service
method are met before invoking the method can be an efficient activity in terms of
cost and bandwidth. Similarly, a client can benefit from the asserted postconditions
to validate a response from the server, constraining the provider of the service to
ensure the functionality that is expected from it. Our approach to automatically
generate code stubs in Django web framework from the design models is presented
in Chapter 9.

2.3.2 Service Monitor

We can use the behavioral interface of a web service to provide a monitoring
mechanism. The behavioral specifications can be added as a proxy interface to
already developed and deployed web services to monitor their functioning. This
helps in locating the fault in a service by observing the conditions that are not
being met by the service methods. It can also check for any failure caused by a
network fault and late delivery. Our work on implementing a service monitor in
Django web framework [66] is also presented in Chapter 9.

2.3.3 Validation

The behavioral interface can be used to test a service implementation. In order to
validate a service, test cases can be generated from the behavioral interfaces which
can then be used to test the service implementation. The method contracts can

24

also be used for the generation of test oracles. Test oracles are used to determine
whether a test has passed or failed. In the context of test case generation and test
oracle generation, we can take advantage of several efforts done previously to
validate the behavior of classes and web services using contracts [47] [45]. In
Chapter 8, we present our model based validation approach for REST web service.

2.3.4 Specification for Developer

A web service developer can use the behavioral REST interface as a specification
to implement the web service. Similarly, the users of a web service can use the
models and contracts as detailed documentation on how to use a service correctly.

2.3.5 Publish Interfaces in the Standard Languages

The behavioral interface can be used to generate machine-processable syntactic
interface. This facilitates in automatic service discovery and building of service
repositories. Our approach provides direct mapping to WADL (Web Application
Description Language) along with extensions to include method pre and post
conditions. This is detailed in Chapter 5.

2.4 Related Work

In relation to our design approach to model RESTful behavioral interfaces, we find
the work in the following two areas related to our work: role of contracts for web
services and modeling REST web services.

2.4.1 Modeling REST web services

Many authors have investigated modeling of REST web services from different
perspectives. We discuss these works in this section.

Schreier [115] presents a REST metamodel which is divided in structural and
behavioral modeling. The resource types, their attributes, relations, interfaces and
their representations are described for the structural modeling and the possibility of
describing the behavior with state machine is also give. Compared to this work, our
work uses standard UML metamodel to model REST web services. This allows us
to use different developed tools and techniques that are already well adopted in the
industry and are constantly improving due to large user base.

The work of Strauch and Schreier [120] presents a procedural model to trans-
form a SOAP design to a RESTful HTTP design. The model uses a WSDL
document of an existing SOAP service and refines it in three iterations into a REST-
ful interface. Kuuskeri et al. [76] present a detailed investigation on relationship
between an actor computation model and the principles of REST. They provide
a notation to apply the actor model to a RESTful web service and present it as

25

a network of actors. The aim of the paper is to provide better understanding of
RESTful services. With the same aim of better understanding of RESTful services,
Zuzak et al. [135] also present a generic model of RESTful systems based on
nondeterministic finite-state machines with epsilon transitions. The model provides
formalization of REST design principles including uniform interface, stateless
client-server operation and code-on demand execution. Using these formal models,
Zuzak and Shreier [136] give practical guidelines to design REST frameworks. In
this work, they describe decomposition of client and server processing flows into
generic modules which enabled better separation of concerns and improved system
modifiability.

Ormeno et al. [97] present a proposal for modeling RESTful controllers using
extended UML elements. Their work aims to focus on bridging the gap between
RESTful modeling and implementation frameworks. To address this, they present
a metamodeling process that facilitates an advanced designer to stereotype Java
code and artifacts generated by Spring Roo. In comparison to their work, our work
is not tied to any specific implementation framework and web services can be
generated in different implementation technologies from models.

In [104], Perez et al. extend the OOh4RIA model-driven development process
for Rich Internet Applications (RIAs) with a new model based on UML class
diagrams. The class diagram maps the underlying server-side services to a RESTful
interface consisting of resources, protocol actions and links. Their work focuses
on static descriptions of resources and does not take into account the concept of
application states and their tranformations.

Modeling of RESTful web services has also been addressed in the work of
Markku et al. In [77, 78], Markku et al. present an approach that provides
a step wise design transition from operation-centric view to data-centric view
and provide model transformations in developing RESTful services and service
APIs. They provide an approach that migrates legacy APIs to RESTful web
services. This approach is further explored in [117]. They provide an iterative and
incremental process for the development of model transformations by focusing on
transforming information model to resource model. While their work talks about
systematically transforming functional specifications into RESTful web services,
our work addresses modeling of REST web services with a different perspective,
i.e., developing REST web service for advanced scenarios.

2.4.2 Contracts and Web Services

The role of contracts in the domain of web services has also been investigated
previously, e.g., [41] [34], etc. In [41], Castagna et al. present theory of contracts
which formalizes the compatibility of a client to a service. They introduce a
subcontract relation for behavioral typing of web services promoting service reuse
or redefinition. In [33] and [34], a theory of contract is presented that addresses
the problem of composition of multiple services. The correctness for service

26

compositions is modeled using process calculi and the notions of strong service
compliance and strong subcontract pre-order are investigated. Contracts are also
used in the work of Milanovic [92] for web service compositions. The work
presents a contract-based approach to specify non-functional properties of a service
with contract-based framework for service descriptions. The work is supported
with enhanced directory capabilities, web service design patterns and verification
of service compositions. In the context of modeling behavioral specifications and
using contracts with UML, Lohmann et al. [86, 63] use visual contracts to specify
the dynamic behavior and class diagrams to specify the static aspect of a web
service. Graph transformations are annotated on to the class diagram with object
diagrams specifying pre- and post-conditions of the operations.

In comparison to these works our work on generating contracts from the
behavioral model does not require any additional design efforts. We extract pre-
and post-conditions for service methods in an automated manner from models and
instrument them in the code. The contract information is part of the behavioral
interface developed to model stateful services.

2.5 Conclusion

REST web service interfaces have specific design requirements that must be taken
into consideration during the design phase of web service development. A REST
interface must provide the features of connectivity, addressability, statelessness
and uniform interface. In addition, it should expose its functionality in its resources.
In this chapter, we have identified and presented our design requirements in detail
and have given an overview of our design approach create RESTful web services
for advanced scenarios. The objective of our design approach is twofold. First, to
provide a modeling approach that ensure that the designed interface follows the
REST style. Second, to provide a way to describe behavioral services interface
that specifies how to use a web service correctly and the expected results.

A behavioral REST interface has many applications. For example, a behavioral
REST interface can be used to implement service monitor and can also facilitate
the validation of service implementations. We can also directly generate code stubs
or syntactic interfaces from the design models of the interface and these design
models can also serve as the specification documents that can be referred to for
understanding the service.

27

28

Chapter 3

Resource Models

The static structure of a service describes the basic entities that constitute it and
the relationships among them. This static structure serves as a foundation for
structuring and analyzing rest of the design of the service.

In this chapter we show how the static structure of a REST web service is
defined using a UML class diagram. We show how the resources, their properties
and the links among them are defined by imposing some additional constraints on
the UML class diagram. This UML class diagram with additional constraints is
called resource model. The resource model is built in accordance to the design
requirements discussed in the previous chapter and it represents the properties of
a REST web service interface. In section 3.1, we present resource model by first
briefly explaining a UML class diagram, the concepts and properties of resources
and how these concepts are mapped on a class diagram. The well-formedness rules
for the resource model are inferred from these design decisions and presented in
section 3.2. Section 3.3 concludes the chapter.

3.1 Resource Model

3.1.1 Class diagram

A UML class diagram represents the classes of a software and the associations
between them. An association defines a relationship between two classes by which
one class knows about the other class [125]. OMG specification defines class as
a set of objects that share the same features, constraints and semantics [125]. An
instance of class is called an object. An association specifies a semantic relationship
between two classes or typed instances. It is usually represented with an arrow
between two classes in the class diagram. The two ends can have role names. These
roles are owned by the end class and specify the role that the class has to play in that
association. The arrow may also have arrow head, i.e., a navigable end. The arrow
head specifies that the association is navigable from the opposite end otherwise,
the association is not navigable from the opposite end [125]. Association ends may

29

also be marked with multiplicity that specifies the number of class instances that
can be associated in that association.

3.1.2 Resources

The concept of a resource is central to Resource Oriented Architecture (ROA).
ROA is a structural design that fulfills design criteria presented by REST [111].
A resource is something that can be referred to and can have an address. Any
important information in a service interface is exposed as a resource.

In REST, a resource is exposed via a URI and can be manipulated with standard
HTTP methods. A resource can be either a collection resource or a normal resource.
Collection resource does not have any attributes of its own and contains a list of
other resources. A normal resource has its own attributes and represents a piece
of information. The complexity of a service can be reduced by increasing the
number of resources. This results in decoupling of information. The current state
of the resource is given by the representation of the resource which is typically
a document, e.g., an XML document or a JSON serialized object that contains
information about the resource.

3.1.3 Modeling Resources

We are using UML class diagram with additional design constraints to represent
resources, their properties and relation with each other. We have used the term
resource definition to define resource entity such that its instances are called
resources. This is analogous to the relationship between a class and its objects in
object oriented paradigm.

In our resource model, we represent resource definitions as classes. A collection
resource definition is represented by a class with no attributes and a normal resource
definition has one or more attributes. Each association has a name and minimum
and maximum cardinalities. These cardinalities define the minimum and maximum
number of resources that can be part of the association.

We also define a root resource definition in the resource model which is typ-
ically a collection resource with no incoming associations. The root resource
definition provides the starting point for the navigation path to all the other re-
sources. A resource model can have more than one root resource definition. In
such a case, the resources can have more than one addressable path. However, one
addressable path should belong to only one resource.

We use the example of an imaginary hotel room booking (HRB) service to
describe our resource model. The hotel room booking service, explained in the
previous chapter, allows the user of the service to book a room, pay for the
reservation, and cancel it. Figure 9.1 shows the resource model of the hotel
room booking RESTful service. The hotel room booking service is composed of

30

/{booking_id}/
/{booking_id}/cancel/
/{booking_id}/payment/
/{booking_id}/room/
/{booking_id}/payment/processing/
/{booking_id}/payment/confirmation/

Figure 3.1: (Top) Resource Model for HRB RESTful Web Service. (Bottom)
Resource paths

one collection resource definition (collection_bookings) and six normal resource
definition (Booking, Room, Payment, Processing, Confirmation, and Cancel).

3.1.4 Mapping Resources to Class Diagrams

A direct mapping between elements of a class diagram and the concepts of ROA is
as under.
� A resource definition is represented by a class.
� A resource is an instance of a resource definition, analogous to the object of

a class.
� A collection resource definition is represented by classes that have no at-

tributes and their name starts with collection_. It has one outgoing transition
with multiplicity of 0...* for the contained resource definition indicating that
a collection resource can have none or many resources.

31

• A root resource definition is a collection resource definition with no incom-
ing edges.

• The data of resource representation is mapped to the attributes of a class.
• The connectivity between the resource definitions is represented by the

associations.
• The role names on the association ends give the relative URI addressees of

the resources.
• The number of resources that can be take part in an association is defined by

the multiplicity constraints on the association.
We require that every association must have a role name in order to form

URI addresses. The attributes of classes must be public since the representation
of a resource is available for manipulation and they must have a type since they
represent a document containing information of the resource.

Some pieces of information can be attributes of classes representing resource
definitions. In such cases, if the attribute value is False/NULL they return no
information and if the attribute has some value or it is True, they return its repre-
sentation. In our resource model, we have separated model attributes into resource
definitions in order to allow manipulation of their values separately and create their
URI addresses.

3.1.5 Addressability

Addressability requires that every piece of information is addressable via a URI.
In a resource model, the URI of a resource definition, r, is obtained by traversing

the path formed by the successive associations from the root resource definition to
r. The role names on the association ends constitute the URI address. In Figure 9.1,
collection_bookings is a root resource definition and the paths on the bottom of
Figure 9.1 are valid. A GET method on a collection resource definition returns
a list of all the resources it contains, if any. Similarly, a GET on a resource
definition will return the resource representation if it exists or no information if
it does not exist. For example, if a Payment resource exists then a GET method
on booking_id/payment/ will give the representation of Payment containing its
details in a JSON or XML document.

The REST style requires that all the resource definitions should be addressable.
In our context this requirement is fulfilled if each resource definition can be reached
from the root resource definition with at least one path by navigating one or more
associations. The paths visiting the same association more than once are not valid.

3.1.6 Methods

A UML class diagram allows us to define a number of operations for each class.
However, in a RESTful interface, resources do not have different access methods,
instead the standard HTTP methods are used. This property leads to a uniform

32

interface since all classes would have only from one to four method names, i.e.,
GET, POST, PUT and DELETE. A GET method can be invoked on every resource
to retrieve the current state of the resource. The information on the allowed side-
effect methods on a resource, i.e., PUT, POST and DELETE is inferred from the
behavioral model, hence we do not consider necessary to add this information in
the resource model.

3.1.7 Connectedness

The links between resources connect the resource definitions and provide connec-
tivity to the resource model. These links are represented as association between
classes. For the service to be fully compliant with REST architectural style, the re-
source representations should also contain the list of links that can be taken further
in order to emulate the stateful behavior of REST web service. This information is
obtained by traversing the outgoing transitions of the target state in the behavioral
model. This is explained further in Chapter 4.

3.2 Well-formedness Rules for Resource Model

We have imposed some design requirements on a UML class diagram that must be
taken into consideration by the developer when constructing models for the REST
web service. These design decisions are explained in the last section. Below, we
present a list of these design decisions as well-formedness rules for resource model
• The class name representing collection resource definition should start with

collection_
• The resource model should have atleast one class representing collection

resource definition that is considered as a root.
• The graph formed by classes and associations should be connected.
• Associations should have role names on the association ends.
• Each class should have a navigable path association from the root.
• Classes should not contain methods.
• Class attributes should have a type.
• Class attributes should be public.

3.3 Conclusion

In this chapter, we present the static structure of a REST web service as a resource
model. The resource model is a UML class diagram with additional constraints to
represent different types of resources, their properties and links with each other.
It is designed with the intention to cover the REST interface requirements. The
resource model provides addressability feature by constraining the associations
to have role names. Resources are navigated through these associations, thus,

33

providing addressability. The resource graph is required to be connected and
does not contain information on methods since a REST web service provides a
uniform interface. With the help of an example of a hotel room booking service,
we demonstrate how the REST interface requirements are met by our resource
model. We also present a list of well-formedness rules for a resource model that
should be followed by the developer in order to create REST interfaces.

34

Chapter 4

Behavioral Models

The purpose of the behavioral model is to describe the dynamic structure of
behavioral interface of a RESTful web service. A behavioral interface specifies
the order of method invocations and method contracts in order to obtain the
desired goals of the service. These method contracts give the preconditions and
postconditions of method calls.

We propose to use a UML protocol state machine with state invariants to
describe the allowed operations in a web service. We consider that a UML protocol
state machine is suitable for representing the behavior of a web service interface
as it provides interface specifications without actions or execution details and
contains information on conditions under which the methods can be invoked and
the expected output from them.

In this chapter, we show how the dynamic structure of behavioral interface of a
REST web service is modeled with UML protocol state machine. We start with
a detailed introduction of UML protocol state machine and motivate the need to
generate behavioral information from it. In section 4.2 we use formal definitions
and small examples to show how a behavioral interface can be generated for a
class. We apply this approach first on a class and its protocol state machine in
order to focus on the conceptual underpinnings of the contract generation approach
without the design constraints introduced for the REST models. The REST be-
havioral model is then presented in Section 4.3. The concept of synchronous and
asynchronous web services is presented in Section 4.4. The representation for
authorized actors and domain-specific requirements in behavioral model is shown
in Section 4.5 and 4.6, respectively. The time constraints are discussed in Section
4.7.. The notion of supporting stateful behavior of REST services with a stateless
protocol in our model is discussed in Section 4.8. Based on the design decisions,
we give the well-formedness rules for our behavioral model in Section 4.9. The
chapter is concluded in section 4.10.

35

4.1 Protocol State Machines and Class Contracts

State charts are one of the UML behavioral diagrams. They represent behavior
of model elements with finite state transition systems. State charts were initially
adopted in UML 1.3 as a variant of David Harel’s state charts [62]. In UML 2.2,
state charts are adopted as state machines as an effort to separate the semantics of
activity diagrams from state machines [125].

There are two types of state machines in the current version of the UML
standard: behavioral state machines and protocol state machines[51]. Behavioral
state machines specify how an object reacts to a sequence of events. The effect of
a transition is specified in an action, usually defined as an executable statement in a
programming language. On the other hand, a protocol state machine describes (part
of) an interface specification. In protocol state machine transitions are triggered
by call events (invoking an operation), and the behavior is specified by using
transition pre- and post-conditions. We consider behavioral state machines to be
more suitable to describe reactive behavior while protocol state machines are more
suitable to describe classes that combine data and stateful behavior.

It is possible to generate executable code from behavioral state machines, since
the transitions include executable actions. The implementation of behavioral state
machines has been discussed often in the literature [95, 26, 28] and there are
commercial tools that provide automatic code generation from behavioral state
charts such as Telelogic Rhapsody [60].

In contrast, protocol state machine does not include executable actions, but
only a specification of these actions in the form of preconditions and postconditions.
This approach is useful to describe the interface and intended behavior of a class,
while omitting its implementation details. In this case, the protocol state machine
serves as a visual representation of a behavioral interface of a class. A programmer
who plans to use a class can inspect its protocol state machine to know what
methods are available, when these methods can be invoked and what the expected
results are.

Since a protocol state machine does not include executable actions, the actual
implementation of a protocol state machine into a class in a programming language
such as Java has to be performed manually. This requires efforts to ensure that a
class implementing a protocol state machine behaves as described in its interface.
We address this requirement by inferring information from protocol state machine
and asserting it as contract in the class implementation.

The use of class contract to specify the behavior of a software class has been
advocated by Meyer [91] and implemented first in the Eiffel programming lan-
guage. More recently, the Java Modeling Language (JML) [83] provides a contract
language to annotate Java classes. Also, the LIME specification language [80] is
an approach that allows us to annotate Java program with pre- and post-conditions
as well as with propositional linear temporal logic.

Thus, we can generate class contracts from UML protocol state machine and

36

instrument them in the code. This information can then be used to validate the
behavior of the class in later stage of the development cycle.

4.2 Generating Behavioral Interface

In this section, we demonstrate how class contracts can be generated from protocol
state machine. In order to generate a class contract we require two UML diagrams:
a UML class diagram and a UML protocol state machine. The UML class diagram
provides a syntactic interface of a class by naming the public methods of a class
and the type of their input and output parameters. The protocol state machine
describes the behavioral interface of a class.

The protocol state machine should define a state invariant for each simple and
composite state. A state invariant is a boolean expression that is true when the
given state is active. This expression should be pure or free of side effects. State
invariants link the current state of an object, defined using object attributes and the
current state of its protocol, defined using a protocol state machine. We require
that a state invariant is defined using public features of the class interface. That is,
the state invariant should be observable by other objects.

As an example, Figure 4.1 shows a syntactic interface for a bounded stack class
and a simple protocol state machine with three simple states (Empty,notEmpty
and Full), four query methods (isEmpty(), isFull(),getMax() and size()) and two
operations (push() and pop()). The state invariants isEmpty(), not isEmpty()
and not isFull() and isFull() must be true for the states Empty, notEmpty and
Full, respectively. Transitions are triggered by the push(o) and pop() operations
with associated guard conditions.

Our objective is to extract a class contract for the class Stack so that it can
be expressed in a contract language such as JML or LIME. This contract should
follow the protocol defined in the state machine. That is, the observable behavior
of a class that implements the protocol state machine and a class that implements
the contract should be equivalent. The contract constrains the users of a class. For
example, the method push() cannot be invoked if isFull() evaluates to true. It also
constrains the implementation of a class. For example, after invoking push(), the
expression not isEmpty() should evaluate to true.

We should note that while there are three different transitions triggered by the
push() method, the actual implementation should combine the behavior of the
three transitions into one method. Therefore, in order to generate the class contract
we need to combine the information stated in all the transitions triggered by a
method into a precondition and postcondition for that method. We describe this
task in the following sections.

37

Commercial Development is strictly Prohibited

package stackData[]

+isEmpty() : boolean
+push(Obj o) : void
+pop()
+isFull() : boolean
+size() : int
+getMax() : int

Stack

StackPSM{protocol}state machine StackPSM[]

notEmpty

[not isEmpty() and not isFull()]

Full

[isFull()]

Empty

[isEmpty()]

t1: push(o) /

t2:[size()=1] pop(o) /

t5: [size()=getMax()-1]push(o) /

t6: pop() /

t3:[size()<getMax()-1] push(o) /

t4:[size()>1] pop(o) /

Figure 4.1: (Top) Stack Class. (Bottom) Protocol State machine of Stack Class

38

4.2.1 Defining the Structure of Protocol State Machines

In this section we study the structure of a protocol state machine as described in
the UML standard [125].

There are three kinds of states i.e., simple, composite and submachine state [125].
We do not define a submachine state since it is considered semantically equivalent
to a composite state [125].

Each state has a state invariant which is a boolean function. The substates of
a composite state cannot have invariants that would weaken the invariant of the
parent state. As an example consider a composite state with the invariant x > 0.
A substate with an invariant stating x = 0 would cause an error as it is not in the
scope of x > 0. Instead, a substate with the invariant x > 1 is appropriate as it is in
the scope of x > 0 and would further restrict the parent state invariant.

A transition is a directed relationship between the two states represented by
an arrow from a source state to a target state [125]. The trigger that fires a
transition is annotated on the arrow alongwith the pre- and post-conditions as
[precondition]trigger/[postcondition].

Based on this, we can now define the structure of a protocol state machine.

Definition 1 A protocol state machine is defined as a set such that: pSM = {
SF , ι ,Ss,Sc,T, source, target, trigger, issubstate,g, inv,reg, post}, where SF is a
set of final states, ι is the initial state, Ss is a set of simple states, Sc is a set of
composite states and T is a set of transitions. The following functions describe the
relations between the elements of the protocol state machine:

• issubstate(s1,s2) is true if state s1 is a substate of s2. We require that the
graph created by the set of states S and the binary relation issubstate is
connected and acyclic.

• trigger(t) provides the operation that triggers the transition t.
• source(t) is the set of source states for a transition t. This is the set of all

states that should be active in order to trigger the transition t. If a transition
starts from a substate, then this set will also include all the containing
states. If a transition is a join transition, then this set will include all the
states participating in the join (and their containers). We call the direct
source of a transition to the set of source states without their containers:
dsource(t) = {s ∈ source(t) : ¬∃s′ ∈ source(t) : issubstate(s′,s)}.

• target(t) provides the set of all the target states for a transition t.
• post(t,σ) evaluates the postcondition of the operation associated to a transi-

tion t in an object in state σ .
• g(t,σ) evaluates the guard associated with the transition t in an object in

state σ .
• reg(s,σ) returns the region to which a state s belongs to in an object in state

σ .
• inv(s,σ) evaluates the invariant of the state s in an object in state σ

39

The set of states in a protocol state machine is the union of initial state, final
states, simple states and composite states, i.e., S = ι ∪ SF ∪ Ss ∪ Sc. The sets Ss

and Sc are mutually disjoint. Elements in the set of final states can never be the
source of a transition, i.e., SF = {s : ∀t ∈ T,s < source(t)}. An initial state cannot
belong to the set of final states and is not the target state of any transition, i.e.,
ι = ι ∈ S∧ ι < SF ∧∀t ∈ T : ι < target(t)

The structure of a protocol state machine ensures that if a state is not contained
in any other state, i.e., it is at the highest level of state hierarchy then only one
state can be active at the same time. If the active state is a substate then no other
state can be active in the same region. We can formalize this with the following
condition:

well f ormed(σ) = ∃s ∈ S : inv(s,σ) = ∀s′ ∈ S : ¬issubstate(s,s′) =⇒ ¬∃s′′ ∈
S : inv(s′′,σ)∧ (∃s′ ∈ S : issubstate(s,s′) =⇒ ¬∃s′′ ∈ S : inv(s′′,σ)∧ reg(s,σ) =
reg(s′′,σ))

4.2.2 Semantics of Protocol State Machines

The structure of protocol state machine described above provides a concrete basis
to describe the semantics of protocol state machine as a state transition system.
The behavior of invoking a method will be equivalent to triggering one or more
transitions that have that method as a trigger. The set of transitions triggered
simultaneously is called a step. To define the semantics of a protocol state machine
we need to define what transitions are triggered in a step and what the effect of
triggering each transition is.

A state invariant can be used to define a pre- or post-condition of a transition.
When a transition points to a state, this specifies that the transition must not fire if
the state invariant of the target state does not hold afterwards. With this in mind
we can think of the state invariant as a postcondition. Analogous to this, the state
invariant of the source state of a source state can act as a precondition. If that
invariant does not hold, it means we are not in the source state and the transition
can not be fired.

In order to trigger a transition it should be enabled. A transition is enabled
when all its source states are active, the guard of the transition is true and the
trigger of the transition matches the method invoked. If no guard is given for a
transition, then we assume it is true. Similarly, if the postcondition of the transition
is not specified, it is assumed to be true.

Definition 2 A transition t is enabled if enabled(t,m,σ) = g(t,σ)∧(trigger(t) =
m)∧∀s ∈ source(t) : inv(s,σ)

It is possible that invoking a method triggers more than one enabled transitions.

40

In some cases we can trigger only one of the enabled transitions. This is when
two enabled transitions, with the same trigger, try to exit one or more common
states and target different states. This situation results in a conflict between the two
transitions that are enabled.

Definition 3 Two transitions t1 and t2 are in conflict when:
con f lict(t1, t2) = (trigger(t1) = trigger(t2))∧ enabled(t1, trigger(t1),σ)
∧ enabled(t2, trigger(t2),σ)∧ (source(t1)∩ source(t2) , /0)

When two transitions are in conflict we need to choose one transition to fire.
The UML standard defines a priority scheme based on the state hierarchy. Transi-
tions originating from a deeper substate has priority over transitions originating
from a composite state.

Definition 4 Transition t1 has priority over transition t2 when priority(t1, t2) =
con f lict(t1, t2)∧∃s1 ∈ dsource(t1),s2 ∈ dsource(t2) : issubstate(s1,s2)

When a method is invoked in an object whose behavior is represented as
a protocol state machine, the behavior of the method should be equivalent to
triggering all the transitions in a step of the protocol state machine.

The set of transitions triggered simultaneously is called a step. We can now
define what a step in a protocol state machine is.

Definition 5 Given a protocol state machine, an object in state σ and a method m,
we define a step as the set of all enabled prioritized transitions:
step(m,σ) = {t ∈ T : enabled(t,m,σ)∧ (¬∃t ′ ∈ T : enabled(t ′,m,σ)
∧priority(t ′, t))}.

In some cases, transitions may be in conflict but none of them may have priority
over the other. This is when more than one transitions are triggered by the same
method call, originate from same direct source state and target different states. In
this case, the behavior of a protocol state machine is non-deterministic. The UML
standard specifies that in case of non-determinism between two or more transitions,
any of the transitions can be triggered.

The set of transitions that are in conflict with each other in a step set in state σ

is given as follows.

Definition 6 A conflict set is a set of all the conflicting transitions in the step set
with transition t in state σ :
SCon f lict(t,σ) = {t ′ ∈ step(trigger(t),σ) : con f lict(t, t ′)}

We deal with the case of non-determinism in the next section while generating
the postcondition of such transitions.

The effect of firing a transition is such that invariants of all the target states
should be true and the transition postcondition should be also true.

41

Definition 7 The effect of triggering a transition t is defined as:
e f f ect(t,σ ′) = post(t,σ ′)∧∀s ∈ target(t) : inv(s,σ ′)

This also caters to the case of a fork transition by ensuring that invariants of all
the target states are true.

4.2.3 Generation of Class Contract

The precondition of a method states under which conditions we can invoke a
method. We allow a method to be invoked in a state σ when it can trigger at least
one transition in the equivalent protocol state machine. This is the case when there
is at least one transition enabled.

Definition 8 The precondition for a method m is defined as:
precondition(m,σ) = ∃t ∈ T : enabled(t,m,σ)

Since the structure of a protocol state machine is finite (there is a finite number
of states, transitions, triggers) and static (it does not change at runtime), we can
replace the existential quantification in the previous definition with a disjunction.
In our example of Stack, we can calculate the precondition for the operation push():

precondition(push,σ) = enabled(t1, push,σ)∨ enabled(t3, push,σ)∨
enabled(t5, push,σ)

By replacing the definition of enabled for each transition we obtain the follow-
ing precondition for push():

precondition(push,σ)= isEmpty(σ)∨(size(σ)< getMax(σ)−1∧¬isEmpty(σ)
∧¬isFull(σ))∨ (size(σ) = getMax(σ)−1 ∧¬isEmpty(σ)∧¬isFull(σ))

We should note that this expanded precondition does not refer anymore to the
structure of protocol state machine. It uses transition guards and state invariants,
but as we stated in Section 4.3, we require that the guards and invariants are defined
in terms of public features of the class. Thus, we have extracted a method precon-
dition using information from the protocol state machine that can be represented in
existing class contract languages such as Eiffel or JML, or even as assertions in
languages such as Java or C++.

In a language such as JML, the previous precondition can be represented as:
/*@ requires (isEmpty()) ||
@ (!isEmpty() && !isFull() && size()<getMax()-1) ||
@ (!isEmpty() && !isFull() && size()==getMax()-1) */

void push(Object o) { ...

The postcondition of a method states the outcome of invoking the method.
If the transitions in the step set are in conflict i.e., causing a nondeterministic

42

behavior, then any one of the transitions can be fired such that the structure of
protocol state machine is not violated. If there is no conflict between the enabled
transitions then all the transitions of the step set are triggered and the effect of each
triggered transition should be observable after executing the method. We represent
as σ the state of an object before executing the method and as σ ′ the state of the
object after executing the method.

Definition 9 The postcondition for a method m is defined as:
postcondition(m,σ ,σ ′) = ∀t ∈ step(m,σ) : (SCon f lict(t,σ) , /0 =⇒
∃t ′ ∈ SCon f lict(t,σ) : ¬e f f ect(t,σ) =⇒ e f f ect(t ′,σ))∧ (SCon f lict(t,σ) = /0
=⇒ e f f ect(t,σ ′))

This implies that if the set of conflicting transitions is not empty, then any of
the enabled transitions can be triggered. The definition ensures the well formedness
property of protocol state machine by allowing the effect of any other transition to
be true only if the effect of transition under check is false.

In addition, our definition of post-condition also caters to the case of self-
transition, i.e., a transition that has the same source and target states. A definition
that negates the invariant of the source state of a transition would be too strong to
address the case of self-transition.

The universal quantification over the step set can be replaced by the conjunc-
tion of three implications, in our Stack example, as the structure of protocol state
machine is finite and static.

postcondition(push,σ ,σ ′) = (enabled(t1, push,σ) =⇒ e f f ect(t1,σ ′))∧
(enabled(t3, push,σ) =⇒ e f f ect(t3,σ ′))∧ (enabled(t5, push,σ) =⇒
e f f ect(t5,σ ′))

When we replace the definitions of enabled and e f f ect, we obtain:

postcondition(push,σ ,σ ′) = (isEmpty(σ) =⇒ ¬isEmpty(σ ′)∧¬isFull(σ ′))∧
(size(σ) < getMax(σ)−1∧¬isEmpty(σ)∧¬isFull(σ) =⇒ ¬isEmpty(σ ′) ∧
¬isFull(σ ′)) ∧ (size(σ) = getMax(σ)− 1 ∧ ¬isEmpty(σ)∧ ¬isFull(σ) =⇒
isFull(σ ′))

In the JML contract language the previous value of an expression (before a method
is executed) can be obtained by using the \old clause. As an example, this is the
postcondition of the push operation:

/*@ requires(isEmpty()) ||
@ (!isEmpty() && !isFull() && size()<getMax()-1) || (!

isEmpty() && !isFull() && size()==getMax()-1) */
@ ensures (\old(isEmpty()) ==> !isEmpty() && !isFull()) &&
@ (\old(!isEmpty() && !isFull() && size()<getMax()-1) ==> !

isEmpty() && !isFull()) &&

43

Commercial Development is strictly Prohibited

package StudentData[]

+enroll() : void
+fail(Obj o) : boolean
+quit() : void
+pass() : boolean
+leave() : int
+reRegister() : void

Student

Figure 4.2: Student Class

@ (\old(!isEmpty() && !isFull() && size()=getMax()-1) ==>
isFull()) */

void push(Object o) { ...

The generation of the precondition and postcondition of the pop operation
follows a similar pattern.

Usually the main drawback of using postconditions in testing and runtime
checking is that it needs to refer to the previous state of the object before executing
the method. This can be achieved at runtime by storing a snapshot of the object,
but this step can be computationally expensive and it is only partially supported
in contract languages such as Eiffel and JML. However, a closer inspection of
Definition 2 of enabled reveals that we do not need to store the complete state of
an object but only the guards and invariants that are enabled. Usually, that only
requires few bits of storage per method.

4.2.4 Example

In order to see the effectiveness of our approach, we use a Student class and extract
contracts from its protocol state machine. The Student class and its protocol
state machine is shown in Figure 4.2 and Figure 4.3, respectively. According to
Figure 4.3, a registered student can enroll in a course and start studying. During
the course, he has to attend labs and give exams. If he fails in the midterm, he has
the option to withdraw the course and wait for the next course. A student also has
the option to quit school anytime he wants to while studying. If he clears his labs
and exams, he is passed, else he can register either in the current semester or wait
for another semester.

We use different types of transitions in our example to show the applicability
of our approach. These include fork transition, join transition, high-level transition
and self transition. We also deal with the case of conflicting transitions where

44

Figure 4.3: Protocol State machine of Student Class

either one transition has priority over the other or they cause a non-deterministic
behavior of the protocol state machine. Below, we explain these cases separately.

Fork Transition

Transition t1, in Figure 4.3, is a fork transition with one source state and more than
one target states. These target states are triggered simultaneously by the method
enroll() in state gettingRegistered. The precondition for the method enroll()
involves those transitions that are enabled in state � .

precondition(enroll , �) = enabled(t1 , enroll , �)
precondition(enroll , �) = isregister(�)

The step set will contain all the transitions that are enabled in the state � . As t1
has no conflicting transitions, so the post-condition for SCon f lict = /0 is the effect
of all the transitions that are enabled in the step set.

postcondition(enroll , � , � �) = enabled(t1, enroll , �) =� e f f ect(t1, � �)
postcondition(enroll , � , � �)= isregister(�) =� (isStudying(� �)�isattLab1(� �))
�(isStudying(� �)�ismidTerm(� �))

Definition 7 ensures that all the target states of the fork transition t1 are true
as a postcondition.

45

Join Transition

Figure 4.3 shows that invoking method pass() triggers either transition t3, t10 or t6
in states attendingLab1, givingMidTerm or in the orthogonal states attendingLab2
and givingFinal. Transition t6 is a join transition with one target state and more
than one source states in orthogonal regions. According to Definition 2, the invari-
ants of all the source states of t6 should be true before firing t6. The precondition
for method pass() is given as:

precondition(pass,σ) = (isStudying(σ)∧ isattLab1(σ))∨ (isStudying(σ)∧
ismidTerm(σ)) ∨ (isStudying(σ)∧ isattLab2(σ)∧ isFinal(σ))

All the three enabled transitions in state σ i.e., t3, t10 and t6 do not have conflict
with any other transition, so according to Definition 9 the postcondition of pass()
is extracted as their e f f ect.

postcondition(pass,σ ,σ ′) =
((isStudying(σ)∧ isattLab1(σ)) =⇒ (isattLab2(σ ′)∧ isStudying(σ)))∨
((isStudying(σ)∧ ismidTerm(σ)) =⇒ (isFinal(σ)∧ isStudying(σ ′)))∨
((isStudying(σ)∧ isattLab2(σ)∧ (isStudying(σ)∧ isFinal(σ))) =⇒
isPass(σ ′))

High Level Transition

The high level transition t5 originates from a composite state and results in exiting
all the substates of Studying whenever quit() method is invoked. The pre-condition
for quit() method is given as:

precondition(quit,σ) = isStudying(σ)

This transition is triggered whenever the method quit() is called and invariant
of the composite state Studying is true i.e., protocol state machine is in any of the
substate of Studying.
The postcondition for quit() is given as the e f f ect of t5 since:
SCon f lict(t5,σ) = /0,

Thus,
postcondition(quit,σ ,σ ′) = isStudying(σ) =⇒ isquit(σ ′)

Self Transition

Transition t8, triggered by leave(), is a self transition as it has the same source and
target states. It is triggered whenever composite state Studying is active and leave
method is called.

46

precondition(leave,σ) = isStudying(σ)

Since, t8 is a self-transition on a composite state Studying, so it can be fired
from any of its sub states. With an empty conflict set of t8, we get:

postcondition(leave,σ ,σ ′) = enabled(t8, leave,σ) =⇒ e f f ect(t8,σ ′) =
isStudying(σ) =⇒ isStudying(σ ′)

A self transition on a composite state implies that same sub-state should be active
after the transition that was active before firing the transition. We consider our
definition as a weak case of self transition since it does not cater to the case of
sub-states currently. A stronger definition of post-condition would ensure that the
same substate is active after the self transition that was active before it was fired.

Conflicting Transitions

As defined in Definition 4, two transitions are in a conflict when they are both
enabled, triggered by the same method and have at least one common source state.
In Figure 4.3, transitions t2 and t4 are in conflict since they both have the same
trigger method f ail(), they are both enabled in state ismidTerm and they both have
a common source state i.e., Studying. Similarly, t7 and t9 are invoked by the same
operation i.e. reRegister() and they leave the same source state i.e., f ailed. t11
also has the same operation as t7 and t9 ,i.e. reRegister() but it is not in conflict
since it has no common source state with them.

In both the cases, only one of these conflicting transitions can be fired. This
problem can be resolved by using UML 2.0 well-formedness rules. The conflicting
transitions can be such that one transition has priority over the other or they can
cause a non-deterministic behavior of the protocol state machine. We explain both
these cases with this example below.

Case of Priority Transition

According to UML standards, a conflicting transition may have priority over the
other if the direct source of one of the transitions is a deeper state compared to the
direct source of other transition which is a composite state. The precondition of
f ail() in state σ requires that either t2 is enabled or t4 is enabled.

precondition(f ail,σ) = (isStudying(σ)∧ ismidTerm(σ))∨ isStudying(σ)

As the direct source of transition t2 is a substate of the direct source of tran-
sition t4 in Figure 4.3, so according to Definition 4 t2 has priority over t4 in state
givingMidTerm. Therefore, only t2 is defined as an enabled prioritized transition

47

in step set in state σ and its effect is calculated as a post-condition.

postcondition(f ail,σ ,σ ′) = ismidTerm(σ)∧ isStudying(σ) =⇒
iswithdraw(σ ′) ∧isStudying(σ ′)

For all the other sub-states of composite state Studying, t4 is fired as a high-
level transition with no conflicting transitions.

postcondition(f ail,σ ,σ ′) = isStudying(σ) =⇒ is f ailed(σ ′)

Taking the conjunction of both the implications, the postcondition of method
f ail() is given as follows:

postcondition(f ail,σ ,σ ′) = ((ismidTerm(σ)∧ isStudying(σ)) =⇒
iswithdraw(σ ′)∧ isStudying(σ ′)) ∧((isStudying(σ)) =⇒ is f ailed(σ ′))

Case of Non-Deterministic Behavior

When the operation reRegister() is invoked both t7 and t9 are enabled in state
f ailed. This causes a non-deterministic behavior of the protocol state machine
since none of the transitions has priority over the other.

precondition(reRegister,σ) = is f ailed(σ)∨ is f ailed(σ)

Both the enabled transitions result in a non-empty conflict set in state f ailed
of object of class Student.

SCon f lict(t7,σ) = {t9}
SCon f lict(t9,σ) = {t7}

The well-formedness rule of UML 2.0 for non-deterministic behavior is given
in Definition 9. It implies that in the case of conflicting enabled transitions, any
of the conflicting transitions can be fired such that the structure of protocol state
machine is not violated. Thus,

postcondition(reRegister,σ ,σ ′) = (is f ailed(σ) =⇒ (¬isWait(σ ′) =⇒
isregister(σ ′)))∧ (is f ailed(σ) =⇒ (¬isregister(σ ′) =⇒ isWait(σ ′)))

Listing 4.1 shows the interface of Student class annotated with JML contracts
as explained in this section.

48

Listing 4.1: JML specifications for Student Protocol state machine
/*@ requires (isregister()) */

@ ensures (\old(isregister()) ==> ((isStudying() && isattLab1()) &&
@ (isStudying() && ismidTerm()))

*/
void enroll(Object o) { ...

/*@ requires ((isStudying() && isattLab1()) || (isStudying() &&
ismidTerm())

@ || ((isStudying() && isattLab2()) && (isStudying() &&
isFinal())) */

@ ensures ((\old(isStudying() && isattLab1())) ==> (isStudying() &&
isattLab2())) ||

@ (\old(isStudying() && ismidTerm()) ==> (isStudying() &&
isFinal())) ||

@ (\old((isStudying() && isattLab2()) && (isStudying() &&
isFinal()))

@ ==> (isPass())) */
void pass(Object o) { ...

/*@ requires (isStudying()) */
@ ensures (\old(isStudying()) ==> isquit()) */

void quit(Object o) { ...

/*@ requires (isStudying()) */
@ ensures (\old(isStudying()) ==> isStudying()) */

void leave(Object o) { ...

/*@ requires (isStudying() && ismidTerm()) || (isStudying()) */
@ ensures (\old(isStudying() && ismidTerm()) ==> iswithdraw() &&

isStudying()) && (\old(isStudying()) ==> isfailed()) */

void fail(Object o) { ...

/*@ requires (isfailed() || isfailed() || (isStudying && iswithdraw())
) */

@ ensures (\old(isfailed()) ==> ((isWait() && !isregister()) || (!
isWait() && isregister()))) && (\old(isfailed()) ==> ((
isregister() && !isWait()) || (!isregister() && isWait()))) &&
(\old(isStudying && iswithdraw()) ==> (isWait() && !isregister()
))*/

void reRegister(Object o) { ...

We have applied this approach to generate contract from UML protocol state
machine on our behavioral REST model. It is addressed in detail in the next chapter
in section 5.1. However, before understanding how contract information is inferred
from the REST behavioral model, we need to understand its structure. This is
explained in the next section.

4.3 Behavioral Model

The behavioral model of a REST web service defines its dynamic structure. It
explains the different service states of a REST service during its life cycle and how
those states are traversed. We use UML protocol state machine with state invariants
and additional design constraints to represent the REST behavioral model.

49

In chapter 3, we showed how the static structure of a hotel room booking REST
web service is defined with a resource model, shown in Figure 3.1. Resource model
defined resource definitions of the service and their properties. The behavioral
model defines the life cycle of a service using resources of the service, i.e. instances
of resource definitions.

We use the resource structure information presented in the resource model to
build REST behavioral model. Figure 4.4 shows the behavioral model of hotel
room booking web service. The service can take a booking from its user and waits
for the payment. If a booking is not paid within 24 hours, it is canceled by the
system. When the user pays for his booking, it is processed by another web service
that can either confirm or unconfirm the payment. If the third party service does
not respond with the payment information within 2 hours of payment, the booking
service cancels the payment. A confirmed and unpaid booking can be canceled and
a canceled booking is deleted by the system after 6 months.

The atomicity of such transactions for complex scenarios and with time con-
straints can also be addressed using the Try-Cancel/ Confirm pattern proposed by
Pardon and Pautasso [98]. Our work can take advantage of this protocol to cater the
atomicity of the transactions, however, in current work we focus on how to design
services with complex interactions such that the states of services are reflected in
the states of the resources.

The behavioral model in Figure 4.4 has one composite state, activeBooking,
and one simple state, canceled at the top level of state hierarchy. activeBooking
is composed of composite state notConfirmed and simple state confirmed. The
simple states notpaid and processingpayment are contained in notConfirmed.

The booking resource can be retrieved (GET) and deleted (DELETE) and the
cancel resource can only be updated (PUT) and retrieved (GET). Similarly, one of
the operations of the service is to pay a booking. This is achieved by a HTTP PUT
request over a payment resource. However, a payment can only be accepted if it is
connected to a room and a booking can only be paid once. Also, a booking can
be canceled, but not while the payment is being processed. We need to define all
these conditions in the behavioral interface of the service.

A REST interface mostly uses an HTTP protocol, so our first design require-
ment is that the only allowed methods that can be invoked on resources are GET,
PUT, POST and DELETE and a state change can be triggered only by POST, PUT
and DELETE. This provides a uniform interface. The methods are represented as:
METHOD_NAME (path, p1, p2, ..), where path is the relative path of the resource
on which the HTTP method is invoked, and p1, p2, ... represent the HTTP request
parameters, if any, passed with the method.

In our behavioral model, the transition triggers can only be defined as POST,
PUT or DELETE operations over resources described in the resource model. The
guards on the transitions and the state invariants that define the service state can be
defined only using information from the resources and request parameters.

50

Figure 4.4: Behavioral Model for HRB RESTful Web Service

51

4.3.1 GET Method

The GET method retrieves the representation of the resource and it should not have
side effects. For example, GET(/bookings/{booking_id}/payment) is HTTP GET
method on the resource payment. Whenever a GET method is called on a resource,
it gives the representation of resource as a response. In practice, the access to
resources may be restricted by an authentication and access control mechanism.

4.3.2 POST Vs. PUT Method

Both POST and PUT methods can be used to create a new resource. However,
these methods are invoked based on certain criteria defined for REST.

A clear difference between POST and PUT given in [111] is that the client
uses POST when server is incharge of deciding what URI the new resource should
have and the client uses PUT when it is incharge of deciding what URI the new
resource should have. Alternatively, we can say, when a POST method is invoked
on an existing URI, a new resource is created and if PUT is invoked on an existing
URI, it just modifies the existing resource. A PUT creates a new resource only
when it is invoked on an new URI.

POST Method: POST is generally used to create subordinate resources, i.e.,
resources that exist in relation to another parent resource [111]. and it is not
idempotent. This means that invoking a POST on the same resource multiple times
will always create a new resource with new address with same properties.

In our model, a POST method is used create a new resource by invoking it on
a collection resource. For example, in Figure 4.4 a POST is invoked on collection
resource bookings to create new resources. This URI of the new booking resource
is returned as a part of the response.

PUT Method: PUT method is idempotent, i.e., it has the same effect if you
invoke it once or more than once. If PUT is invoked multiple times on a resource, it
will create a new resource the first time and would keep updating the same resource
with the same address for subsequent invocations. For example, in Figure 4.4
PUT is invoked on cancel resource with PUT(/bookings/{booking_id}/cancel). It
creates a new cancel resource when it is invoked the first time. If the client needs
to modify it, it invokes PUT on cancel resource with the same URI with different
parameter values.

4.3.3 DELETE Method

DELETE method deletes a resource. This method is also idempotent. This means
that invoking a DELETE on a resource will have the same effect even if it is
invoked multiple times. We delete booking resource by invoking DELETE on it,
i.e., DELETE(/bookings/{booking_id}/). However, only a canceled booking can

52

be deleted by the system and if it has been canceled for more than 6 months. This
is shown by allowing DELETE to trigger a transition on booking, only when it is
in the canceled state and time constraints are added as a guard on the transition.

4.3.4 State Invariant

We retrieve the resource of a state by invoking GET on it. When we invoke an
HTTP GET method on a resource, it returns its representation along with the HTTP
response code. This response code tells whether the request went well or bad. If
the HTTP response code is 200, this means that the request was successful and the
invoked resource exists. Otherwise, if the response code is 404, this implies that
URI could not be mapped to any resource and the invoked resource does not exist.

We use the information inferred from the response codes and representation of
resources to define our service state invariants in behavioral model. We have used
OCL to define state invariants in behavioral models of REST web services that are
represented by UML state machine diagrams. The UML specification proposes the
use of OCL to define constraints in UML models, including state invariants. OCL
is well supported by many modeling tools [49, 58]. We consider OCL constructs
using mainly multiplicity, attributes value and boolean operators.

Attribute Constraints

The value of the attribute is accessed in OCL by using a keyword sel f or by using
a class (resource) reference ([96],p.15), the value constraint of the attribute Att
is written in OCL as self.Att=Value, meaning {x|(x,Value) ∈ Att}, where
Value represents the attribute value. For example, the state invariant for the state
notConfirmed in Figure 4.4 contains the boolean expression payment.confirmation
-> size() = 0, where confirmation refers to attribute value confirmation on resource
payment (represented by association relationship in the resource model)

Multiplicity Constraints

The multiplicity of an association is accessed by using size() operation in OCL
([96],p.144). The multiplicity constraint on the association A in OCL is written as
self.A->size()=Value, where Value is a positive integer and represents the
number of allowable resources of the range resource definition of the association
A. We can use a number of value restriction infix operators with size() operation
such as =, >=, <=, < and >. The multiplicity constraint on an association A
is defined as {x|#{y|(x,y) ∈ A}OP Value}, where OP is the infix operator and
Value is a positive integer. For example, consider the state invariant for the state
activeBooking in Figure 4.4. self.room -> size() >= 1 checks the response code for
the HTTP GET methods on the resource room. It evaluates to true if response code
of the invocation, i.e., GET on room for a particular booking ID ({booking_id}) is

53

200. Similarly, self.cancel -> size() = 0 is true if response code of the invocation,
i.e., GET on cancel for a particular booking ID({booking_id}), is 404. For the
hotel room booking service to be in state cancel, the state invariant of this state
should be true.

Boolean Operators

The constraints in a state invariant are written in form of a boolean expression,
and joined by using the boolean operators, such as "and" and "or" ([96],p.144).
For example, consider the state invariant for the state activeBooking in Figure 4.4.
The boolean expressions self.room -> size() = 1 and self.cancel -> size() = 0 are
combined with boolean operator and.

We must note that to evaluate the state invariant of a substate, its state invariant
should be conjuncted with state invariant of all the super states that contain it.

4.3.5 More on Connectedness

A stateful service may impose a certain sequence of method invocations that must
be respected in order to achieve service goals. This sequence of method invocation
is evident by looking at the behavioral model.

Also, since the method invocations are dependent on states of the service that
cannot be maintained via sessions in a stateless protocol, the service representations
should contain a list of links that can be further invoked providing connectivity
feature to REST interface. This feature allows the client to follow the right sequence
of method calls. We require that this information should be formulated from the
behavioral model.

When a POST or a PUT method is invoked on a resource, it returns the resource
representation along with the status code. In addition to resource attributes, the
resource representation also contains list of links that can be invoked further. When
an HTTP method invokes a transition in behavioral model, we observe the outgoing
transitions from its target state. The trigger of these outgoing transitions become
part of the resource representation and returned along with with HTTP response
codes to the client. This information allows the service client to follow a trail of
method invocations and informs the client about the allowed HTTP methods that
can be invoked on a resource. Thus, the service carries forward its operation in a
stateful manner treating hypermedia as the engine of service states.

4.4 Synchronous and Asynchronous Web Services

Interaction between web services can be either synchronous or asynchronous.
This interaction is distinguished in the manner request and response are handled.
When a client invokes a synchronous services, it suspends further processing until
it gets a response from the service. On the other hand, when a client invokes

54

Client CC Service

POST(ccService)

OK

Client CC Service

POST(ccService)

OK

PUT(confirmation)

Figure 4.5: (Left) Interaction with Synchronous CC Service. (Right) Interaction
with Asynchronous CC Service

an asynchronous service it does not wait for the response and continues with its
processing. The asynchronous service can respond later in time. The client receives
this response and continues with its processing.

We have modeled the scenario for asynchronous third party service in Fig-
ure 4.4 by creating a processing state in our state machine. A third party credit
card payment service is invoked when a PUT is invoked on the payment resource.
This would invoke the credit card service as an internal action that is not shown
here since it is not part of interface operations of web service. The credit card
payment service is an asynchronous service so it may take a long time to process
the credit card and confirm the payment back to the client. Thus, the system goes
into a processing state for that particular booking with booking ID {booking_Id}
and resumes processing of other transactions. When the confirmation response is
received from the third party service, the processing for this booking is resumed.

It may be worth pointing out that the agent POSTing the payment (the client)
must also be able to act as a server in order to receive a PUT payment confirmation.
As an alternative, the credit card service might return 202 (Accepted) response
with location. This would require the client to poll for confirmation.

4.5 Authorization and Actors

In a secure web, the requests must be authenticated to ensure that the request is
coming from the right party and if the consumer of the service is authorized to
access the privileged resource. In this context, our behavioral model uses the notion
of actor to specify which party invokes a certain method.

An actor of the service is the participant that invokes different methods on
different resources of the service resulting in different service states. In Figure 4.4,
the involved parties are annotated as actors on the transitions along with the
methods they trigger, guards and request parameters. The user can invoke POST

55

Table 4.1: Requirements Table of Hotel Room Booking REST Web Service
Req Sub-Requirements
1- Payment 1.1 - A booking should be paid by the user

1.2 - If a booking is not paid within 24 hours, then it is automatically
canceled by the system (HRB Service)

1.3 - If payment processing does not confirm payment within 2 hours,
then it is automatically canceled by the system.

1.4 - If the payment is successful then the booking must be confirmed.
2- Cancel 2.1 - A booking is canceled by the system (HRB service) if it is not

paid for 24 hours
2.2 - A booking can be canceled by the user only if it is not waiting

for payment processing, i.e., a booking can be canceled only if it
is unpaid or confirmed.

3- Delete 3.1 - A canceled booking is deleted automatically by the system
(HRB service) after 6 months

and DELETE on bookings and PUT on payment resource, where as the partner
web service invokes the confirmation resource with True or False information. A
booking can be canceled by the user and the system, i.e., HRB Service.

The service developer can use the information of actors provided in the behav-
ioral model to implement the access rights on resources during implementation.
When the service user makes an HTTP request on a privileged resource, it provides
its credentials in the authorization header. If the credentials are wrong, consumer
is denied access to the resource.

4.6 Domain-Specific Requirements

Requirements can be decomposed in different categories like functional, architec-
tural, temporal, data etc and are generally domain specific since they are inferred
from the specification document. We infer functional and temporal requirements
from the specification document into a table and number them. These requirements
are attached to the behavioral model as comments on the transitions or states.
When a state or transition with the requirement annotation is traversed, it indicates
which service goal is met.

Table 4.1 shows the requirements for hotel room booking REST web service
that are added as comments on Figure 4.4. All these requirements must be met by
the service implementation in order to satisfy all service goals.

56

4.7 Time Constraints

Service specifications may impose certain time restrictions on service implementa-
tions to ensure timely delivery of service operations. This allows the service not
to wait uselessly for a service that does not respond. We require that these time
constraints should be captured at the design time in order to carry them forward in
all the other phases of service development. This makes design models amenable
for verification of their timed behavior before implementing them.

In our behavioral model, the time requirements are added using UML time
events for state machines. In our example of hotel room booking service, we
require that a booking is canceled if it is not paid for 24 hours. Similarly, if the
payment processing service does not confirm the payment within 2 hours, it is
marked as unpaid and a canceled booking is automatically deleted by the system
after 6 months. We model these properties in behavioral model in Figure 4.4 by
adding after time event as guards on the respective transitions.

4.8 Stateless State Machines?

REST web services offer a stateless interface. Using a state machines to model
a stateless interface may seem like an oxymoron. In the context of a RESTful
service, statelessness is interpreted as the absence of hidden information kept by
the service between different service requests. In that sense, a RESTful web service
should exhibit a stateless protocol. Also, there is no sense of session or sequence
of request in a RESTful service.

On the other hand, state machines have a notion of active state configuration,
that is, what states are active at a certain point of time. If an implementation of
an interface described using a state machine would have to keep the active state
configuration between different requests, then this would break the statelessness
requirement of the RESTful service.

However, our approach does not actually require that a service implementation
keeps any additional protocol state. In our approach a state is active if its invariant
evaluates to true and the invariants are defined using addressable resources. There-
fore an implementation of a service can determine the active state configuration by
querying the service state. There is no need to keep any additional protocol state.

4.9 Well-formedness Rules for Behavioral Model

Our behavioral model is represented by UML protocol state machine with certain
design restrictions. These restrictions must be taken into consideration by the devel-
oper when constructing models for REST web service. A list of well-formedness
rules for behavioral model, inferred from the discussions above, is given below:
• Every state should have a state invariant.

57

• Method calls should be either PUT, POST and DELETE.
• The state invariants of each state should be mutually exclusive .
• Each requirement should be attached to a transition.

4.10 Conclusion

A behavioral model captures the dynamic structure of a REST web service using
UML protocol state machine. In this chapter, we have shown how the different
properties of REST behavioral interface are modeled. We show how different REST
features are modeled by introducing different design constraints on protocol state
machine. We covered method calls, connectivity, synchronous and asynchronous
services, authorization, timed behavior along with other REST features. Our
approach advocates creation of REST interfaces if the well formedness rules of
service design models are followed by the service developer. We also presented our
approach to generate behavioral interfaces from UML protocol state machine. In
the next chapter we discuss how the behavioral interfaces for REST web services
are generated from behavioral models.

58

Chapter 5

From Service Design Models to a
REST Interface

Service designs models contain behavioral information such that every transition
provides manyfold information. This information contributes to the creation of
web service interfaces that exhibit RESTFul behavior. In this chapter, we show
how the service design models lead to a REST interface.

In the previous chapter, we had studied how the method contract information
can be generated from UML protocol state machines and asserted into code. Our
understanding of behavioral model of REST web service interface is much clearer
now so, in section 5.1, we explain how the contract generation approach is applied
on behavioral model to create behavioral interfaces of a REST web service.

Web Application Description Language (WADL) [121] provide service de-
scriptions for REST web services. In section 5.2 we discuss the generation of
behavioral WADL service descriptions.

Each HTTP request on a service is followed by an HTTP response that contains
resource representation. In section, 5.3 we show the pairs of HTTP requests and
their responses containing information inferred from the service design model.
Section 5.4 concludes the chapter.

5.1 Method Pre- and Post Conditions

Method contracts specify conditions under which a method should be invoked
and the expected result of method invocation. This constraint the user to invoke
the service under the right conditions and the developer to rightly implement the
expected functionality.

However, determining what is the active state configuration of the interface
state machine every time that a service implementation has to fulfill a request may
be a slow task in the case of complex interfaces with many states. However, in
practice it is not necessary to explore all states in the state machine but only the

59

source states of the transitions that can be triggered based on the current request.
We have discussed in Section 4.3 about how we can do that by computing the
precondition (and postcondition) of each method request. We are now interested in
discussing detail how this behavioral interface is computed and implemented for
REST web services.

When the state invariant of a state is true, we say that this service state is active
otherwise false. In doing so for a REST service we take advantage of the fact that
the service states can be defined as predicates over resources. This means that
GET methods are invoked on different resources of the service and combined as a
boolean expression to form a state invariant. HTTP GET methods are free of any
side-effects.

Our aim is to generate pre conditions and post conditions of side-effect methods.
The precondition of a method tells under what conditions a method can be triggered.
We say that the precondition of a method m is satisfied when the state invariants of
all the source states of transition t are true along with its guard condition.

In a similar manner, if a method m triggers a transition t in a behavioral model,
then its post-condition is satisfied when the state invariants of all the target states
of transition t are true along with the postcondition on the transition t.

For the details and formal definitions of generating preconditions and postcon-
ditions for different elements in a UML protocol state machine of a class readers
are referred to section 4.2.

We apply the same definition of contract generation on our behavioral model,
reproduced in Figure 5.1 for different cases. These cases are simple transitions,
join and fork transitions, high level transitions, conflicting transitions and cases of
priority transition and non-deterministic behaviors.

5.1.1 HTTP Method Pre-Condition

The precondition of a method is given by creating a boolean expression of state
invariants of all the source states of transitions, to which that method is a trig-
ger, and its guard conditions. We express GET method invocations on resources
as OK(r) and NOT_FOUND(r) functions for a concise representation in the list-
ing. Here, OK(r) represents self.r -> size() = 1 and True value of an attribute.
NOT_FOUND(r) represents self.r -> size() = 0 and False value of an attribute.
To recall, self.r -> size() = 1 represents a GET method call on resource r with
response code of 200 and self.r -> size() = 0 represents a GET method invocation
on resource r with response code of 404.

According to Definition 8 (in section 4.3.3), a precondition for a method m is
defined as:

precondition(m,σ) = ∃t ∈ T : enabled(t,m,σ)

60

Figure 5.1: Behavioral Model for HRB RESTful Web Service

61

We apply this definition to calculate precondition for our HTTP methods in behav-
ioral model. The precondition for PUT on cancel, in Figure 5.1, is given as:

precondition(put_cancel,σ) = enabled(t7, put_cancel,σ)∨
enabled(t8, put_cancel,σ)∨ enabled(t6, put_cancel,σ)

By replacing Definition 2 (from section 4.3.3) of enabled for each transition,
we obtain the following expansions for transitions t7, t8 and t6:

enabled(t7, put_cancel,σ) = (OK(room) and NOT _FOUND(cancel)) and
(NOT _FOUND(processing.waiting) and (NOT _FOUND(payment) or
OK(payment)) and NOT _FOUND(con f irmation.con f irm))

enabled(t8, put_cancel,σ) = (OK(room) and NOT _FOUND(cancel)) and
(NOT _FOUND(processing.waiting) and (NOT _FOUND(payment) or
OK(payment)) and NOT _FOUND(con f irmation.con f irm)) and time > 24

enabled(t6, put_cancel,σ) = (OK(payment) and
NOT _FOUND(processing.waiting) and OK(con f irmation.con f irm))

After replacing definitions of enabled, for all the transitions, into precondition
equation, we get the precondition for PUT on cancel as shown in Listing 5.1.

5.1.2 HTTP Method Post-Condition

The postcondition of a transition will be evaluated only if the precondition for
that transition is true. We define as pre_OK(r) the function that gives boolean
value of self.r -> size() = 1 before invoking the trigger method. Similarly,
pre_confirmation.confirm and pre_NOT_FOUND(r) give the representation of
attribute confirm and boolean value of self.r -> size() = 0 before invoking the
trigger method, respectively.

The postcondition for a method m is given in Definition 9 in section 4.3.3. We
refine this definition for PUT on cancel as follows:

postcondition(put_cancel,σ ,σ ′) = enabled(t7, put_cancel,σ) =⇒
e f f ect(t7,σ ′))∧ enabled(t8, put_cancel,σ) =⇒ e f f ect(t8,σ ′))∧
enabled(t6, put_cancel,σ) =⇒ e f f ect(t6,σ ′))

The effect of all the transitions are same since they all go to the same target
state. Hence:

62

e f f ect(t6,σ ′) = OK(booking) and OK(cancel)
e f f ect(t7,σ ′) = OK(booking) and OK(cancel)
e f f ect(t8,σ ′) = OK(booking) and OK(cancel)

Listing 5.1 also shows the postcondition for PUT on cancel resource, generated
from Figure 5.1 , after replacing the definitions of enabled and effect in the equation
of postcondition.

Listing 5.1: High Level Contract for PUT on cancel
PATH
booking: bookings/{booking_id}/
room: bookings/{booking_id}/room/
confirmation: bookings/{booking_id}/payment/confirmation/
cancel: bookings/{booking_id}/cancel/

PUT bookings/{booking_id}/cancel/
precondition
((OK(room) and NOT_FOUND(cancel)) and
(NOT_FOUND(processing.waiting) and
(NOT_FOUND(payment) or OK (payment)) and NOT_FOUND(confirmation.

confirm))
or ((NOT_FOUND(processing.waiting) and (NOT_FOUND(payment) or OK (

payment))
and NOT_FOUND(confirmation.confirm) and time > 24)))
or (OK(payment) and NOT_FOUND(processing.waiting) and OK(

confirmation.confirm))))

postcondition
(((pre_OK(room) and pre_NOT_FOUND(cancel)) and
(pre_NOT_FOUND(processing.waiting) and (pre_NOT_FOUND(payment) or

pre_OK (payment)) and pre_NOT_FOUND(confirmation.confirm))
or ((pre_NOT_FOUND(processing.waiting) and (pre_NOT_FOUND(payment)

or pre_OK (payment)) and pre_NOT_FOUND(confirmation.confirm)
and time > 24))) ==> OK (booking) and OK(cancel)) and

(pre_OK(payment) and pre_NOT_FOUND(processing.waiting) and pre_OK(
confirmation.confirm)) ==> OK (booking) && OK(cancel)))

Previously, we had shown how the contracts can be asserted as JML specifi-
cations in a Java class. We can assert JML specifications in a similar manner in
a java based web service. For web services implemented in other programming
languages such as python, this is just a simple exercise of mapping pre and post
conditions in that language. In chapter 9, we have shown how the method contracts
are asserted in an automated manner in python based web services developed using
Django web framework.

5.2 Generation of Behavioral WADL Service Descriptions

Web Application Description Language (WADL) is used for publishing RESTful
web service interfaces and provides a machine-processable description of the

63

interface [121]. Currently, RESTful architectural style and WADL are being
widely adopted in the web and have numerous users, including enterprizes such as
Google, Yahoo, Amazon and Flicker.

The information about the interface of a web service in WADL is syntactic and
does not say anything about its semantics, i.e., how a service should be invoked
and behave.

We extend WADL to include information about the behavior of the methods
in a service. Our objective is to generate this information automatically from the
resource and behavioral models described above.

WADL defines the operations that can be invoked on an interface and describes
the input and output parameters for each operation. It defines the resources that a
service contains and methods that can be called on them. Each method has two
attributes name and id, where name is the name of the HTTP method and id is the
ID of the method that is associated with the HTTP method.

Representing information in the resource model as part of a WADL service
description is a rather straight forward task. However, the behavioral model does
not map directly to a WADL description since the behavioral model allows different
transitions to be triggered by the same method. In our example, a cancel request
can be invoked when the service is in different states. That is the information
about when a method can be invoked (precondition) and what is its expected result
(postcondition) needs to be computed from the different states in the behavioral
model as explained in section 5.1.

5.2.1 Inserting Pre- and Post Conditions into
WADL Service Descriptions

We refine the high-level contracts presented in section 5.1 with details of the
relative navigation paths, the invoked HTTP methods and the expected response
codes. These refined contracts are asserted into WADL interface. The function
pre_OK(r) is mapped to a pre_GET function and its response code is compared to
200. The pre_GET(r) function gives the stored results of invoking a GET method
on resource r before invoking the method. In similar manner, a pre_NOT_FOUND
is mapped to a pre_GET function and its response code is compared to 404.

To support the behavioral information in interface descriptions, we extended
the XML schema of WADL with two elements precondition and postcondition,
with an attribute id for each of these elements. These tags, i.e., < precondition >
and < postcondition > are asserted above and under the method tag, respectively.
Similarly, we have added an element clock that is of type xs:time to represent time.

An excerpt of a behavioral RESTful interface is shown below for method PUT
on cancel resource.

< r e s o u r c e s base = " h t t p : / / www. example . com / b o o k i n g s ">
. . .
< r e s o u r c e p a t h = "{ b o o k i n g _ i d }" >

64

. . .
< r e s o u r c e p a t h = " c a n c e l ">

< p r e c o n d i t i o n i d = " p r e _ p u t _ c a n c e l " >
(GET (/ b o o k i n g s / { b i d } / room /) == s t a t u s (2 0 0) &&
GET (/ b o o k i n g s / { b i d } / c a n c e l /) == s t a t u s (4 0 4))

&&
((GET (/ b o o k in g s / { b i d } / payment / p r o c e s s i n g == s t a t u s

(4 0 4)) &&
(GET (/ b o o k i n g s / { b i d } / payment /) == s t a t u s (2 0 0) | | (

GET (/ b o o k in g s / { b i d } / payment /) == s t a t u s (4 0 4)))
&& GET (/ b oo k i n g s / { b i d } / payment / c o n f i r m a t i o n) ==

s t a t u s (4 0 4))
| |
(GET (/ b o o k i n g s / { b i d } / payment / p r o c e s s i n g == s t a t u s

(4 0 4)) &&
(GET (/ b o o k i n g s / { b i d } / payment /) == s t a t u s (2 0 0) | | (

GET (/ b o o k in g s / { b i d } / payment /) == s t a t u s (4 0 4)))
&& GET (/ b oo k i n g s / { b i d } / payment / c o n f i r m a t i o n) ==

s t a t u s (4 0 4) and c l o c k > 24))
| |
(GET (/ b o o k i n g s / { b i d } / payment /) == s t a t u s (2 0 0) && GET

(/ bo o k i n g s / { b i d } / payment / c o n f i r m a t i o n) == s t a t u s
(2 0 0) && GET (/ b o o k in g s / { b i d } / payment / p r o c e s s i n g)
== s t a t u s (4 0 4))

</ p r e c o n d i t i o n >
<method name = "PUT" i d = " c a n c e l "> </ method >
< p o s t c o n d i t i o n i d =" p o s t _ p u t _ c a n c e l " >

(pre_GET (/ b o o k i n g s / { b i d } / room /) == s t a t u s (2 0 0) &&
pre_GET (/ b o o k i ng s / { b i d } / c a n c e l /) == s t a t u s (4 0 4))

&&
((pre_GET (/ b o o k in g s / { b i d } / payment / p r o c e s s i n g ==

s t a t u s (4 0 4)) &&
(pre_GET (/ b o o k i n g s / { b i d } / payment /) == s t a t u s (2 0 0) | |

(pre_GET (/ b o o k i n g s / { b i d } / payment /) == s t a t u s
(4 0 4)))

&& pre_GET (/ b oo k i n g s / { b i d } / payment / c o n f i r m a t i o n) ==
s t a t u s (4 0 4))

| |
(pre_GET (/ b o o k i n g s / { b i d } / payment / p r o c e s s i n g ==

s t a t u s (4 0 4)) &&
(pre_GET (/ b o o k i n g s / { b i d } / payment /) == s t a t u s (2 0 0) | |

(pre_GET (/ b o o k i n g s / { b i d } / payment /) == s t a t u s
(4 0 4)))

&& pre_GET (/ b oo k i n g s / { b i d } / payment / c o n f i r m a t i o n) ==
s t a t u s (4 0 4) and c l o c k > 24)) ==> (GET (/ b o o k i n g s / {
b i d } /) == s t a t u s (2 0 0) && GET (/ booking / { b i d } /
c a n c e l) == 200))

&&

65

((pre_GET (/ bo o k i n g s / { b i d } / payment /) == s t a t u s (2 0 0)
&& pre_GET (/ b oo k i n g s / { b i d } / payment / c o n f i r m a t i o n

) == s t a t u s (2 0 0) && pre_GET (/ bo o k i n g s / { b i d } /
payment / p r o c e s s i n g) == s t a t u s (4 0 4)) ==>

(GET (/ b o o k i n g s / { b i d } /) == s t a t u s (2 0 0) && GET (/
b o o k in g s / { b i d } / c a n c e l) == 200))

</ p o s t c o n d i t i o n >
</ r e s o u r c e >

. . . .
</ r e s o u r c e >

</ r e s o u r c e s >

5.3 HTTP Requests and Responses

HTTP requests are invoked on different resource of REST web services. When
a user invokes an HTTP method on a service, it is returned an HTTP response
containing status code and other information (if any). When an allowed HTTP
request is made on a resource, its HTTP response is sent with entity headers, status
code and the representation of the resource in that state (if content exists). The
representation of a resource consists of attributes of the resource and hyperlinks
that can be navigated further.

In Figure 5.1, we have modeled the different HTTP methods that can be
invoked on our example service. Table 5.1 shows the possible HTTP requests
and their expected responses on the hotel room booking REST web service. The
request parameters with HTTP requests map to the parameters of HTTP methods
in Figure 5.1. HTTP responses contain the expected HTTP response code and the
representation of the invoked resource including the attributes that are defined in
its resource model.

The link array has the relative paths of the transitions that can be taken from
the target state to which the invoked HTTP request is a trigger. These links are
created by following the outgoing transitions from the target state of the transition
in question. We represent link element in JSON by two attributes href and rel
as defined in [14]. href has the URI and rel gives name of the resource to
which the hyperlink points. It is considered a good practice to provide HTML
documentation at the URI containing information about purpose of the link and its
valid HTTP methods alongwith the expected media types [14].

As an example, lets take a POST request on bookings resource in Table 5.1. The
POST request is invoked on bookings resource with request parameter guestName.
Its HTTP response contains response code 201 (created), JSON representation of
the created resource and the links information for payment and cancel resources.
This array of links contains links to resources that can be navigated further to get
the desired functionality from the stateful web service. The array does not contain

66

links to confirmation resource since invoking a confirmation resource at this point
of service cycle will provide no results.

5.3.1 HTTP Authentication

The information of actors available in the behavioral model facilitates the developer
to implement the access rights on resources and helps service users to understand
and write correct authorization headers. Different authentication mechanisms can
be implemented to control access to resources [5]. In case Basic authentication
mechanism is implemented, client sends the user name and password to the server
in authorization header. The authentication information is in base-64 encoding.
It should only be used with HTTPS, as the password can be easily captured and
reused over HTTP.

The authorization header is constructed by first combining username and
password into a string "username:password" and then encoded in based64. A
typical authorization header in Basic authentication is shown below:

GET /bookings/1/cancel/ HTTP/1.1
Host:http://www.example.com/bookings/
Authorization: Basic aHR0cHdhdGNoOmY=

In case an anonymous requests for a protected resource, HTTP can enforce
basic authentication by rejecting the request with a 401 (Access Denied) status
code.

HTTP/1.1 401 Access Denied
WWW-Authenticate: Basic realm="Hotel Room Booking Server"
Content-Length: 0

5.4 Conclusion

In our design approach, we have presented resource and behavioral models that we
claim can create behavioral interface of a REST web service. A REST interface
should exhibit these four attributes: addressability, connectivity, statelessness and
uniform interface. Our service design models lead to web services that exhibit
these attributes and make our interfaces REST compliant.

We constrain our resource model to be a connected graph such that no resource
is isolated. Each resource can be addressed independently using the navigation
directions of associations and their role names. The role names give the relative
navigation path between the resources. Thus, each resource has a URI address
providing addressability feature to our resource model. Our resource model does
not contain any method information. The methods that can be invoked on a resource
are inferred from the behavioral model. We restrict the behavioral model so that
transitions can only be triggered using the standard HTTP methods, providing the
uniform interface feature.

67

Table 5.1: HTTP Request and Response pairs for Hotel Booking
Request Response
POST /bookings/ HTTP/1.1 Http/1.1 201 Created
Host: www.example.org Location: http://www.example.org/
Content-Type: application/json bookings/021
{‘guestName’: ‘Mary’ } Content-Type: application/json

{‘bid’: ’021’, ‘bdate’: ‘20-11-2009’,
, ‘guestName’: ‘Mary’,
‘link’:[{ ‘rel’: ‘payment’,
‘href’: ‘/bookings/021/payment/’},
{‘rel’: ‘cancel’,
‘href’: ‘/bookings/021/cancel/’}]}

PUT /bookings/021/ Http/1.1 200 OK
payment/ HTTP/1.1 Location: http://www.example.org/
Host: www.ex... bookings/021/payment/
Content-Type: application/json Content-Type: application/json
{ ‘ccName’: ‘Richard’, {‘pid’: ‘10’, ‘bookingid’: ‘021’
‘amount’: ‘142’} , ‘amount’: ‘350’,‘pDate’: ‘11-10-2010’,

‘ccName’: ‘Richard’,
‘link’:[{‘rel’: ‘confirmation’,
‘href’: ‘/bookings/021/payment/confirmation/’},
{‘rel’: ‘cancel’,
‘href’: ‘/bookings/021/cancel/’}]}

PUT /bookings/021/payment/ Http/1.1 200 OK
confirmation/ Location: http://www.ex.../
HTTP/1.1 bookings/021/payment/confirmation/
Host: www.example.org Content-Type: application/json
Content-Type: application/json {‘confirm’: ‘True’,
{‘confirm’: ‘True’ } ‘link’:[{‘rel’: ‘cancel’,

‘href’: ‘/bookings/021/payment/cancel}́]}
PUT /bookings/021/cancel/ HTTP/1.1 Http/1.1 200 OK
Host: www.example.org Location: http://www.ex...//bookings/021
Content-Type: application/json /cancel/
{‘note’: ‘not traveling’ } Content-Type: application/json

{‘cdate’: ‘11-11-2010’, ‘note’: ‘not traveling’}
‘link’:[{‘rel’: ‘booking’,
‘href’: ‘/bookings/021/’},

DELETE /bookings/021/ HTTP/1.1 Http/1.1 204 No Content
Host: www.example.org

68

In addition, we have created stateful service using stateless service interface
thanks to the fact that the service states are defined using state invariants defined in
terms of exposed resources. This information is captured in the behavioral model
of the REST interface, providing the statelessness feature in our behavioral model.

The behavioral model also specifies the transitions that can be taken from
a give service state. This is inferred from the trigger methods on the outgoing
transitions of a service state and specified as links in the representation of resource
in response to the HTTP request. This leads consumers through trail of resources
resulting in service state transitions providing connectivity feature to our REST
interfaces.

We also provide clear mapping to HTTP requests and responses for the REST
behavioral interface. Transitions are labeled with request parameters, that are part
of HTTP request, and also with the service actor who is allowed to invoke the
method. This information can then be used to authorize users by authenticating the
requests on the privileged resources and generate appropriate HTTP responses.

The models can be also used to generate a contract in the form of preconditions
and postconditions of interface methods. These contracts can be included in a
WADL interface specification.

The behavioral RESTful interfaces have many applications. They can serve
as a documentation for existing services or as a blue print to develop new ones.
The models can be used to generate implementation stubs in commonly used web
frameworks like Django and Ruby on Rails. They can also be used to monitor the
interaction between a service and its clients and report if any of the parties breaches
the interface contract. The generation of test cases from interface contracts is also
a promising application of behavioral interfaces that we address in the later part of
this thesis.

69

70

Chapter 6

Consistency Analysis of REST
Web Service Interface

The design phase of a software development lifecycle is crucial in the development
of a dependable software, since the design models developed in this phase are
carried forward to all the other phases. It is therefore important that these design
models are constructed correctly. The design models are created from different
viewpoints to capture different features of the system under development, since
all the features are difficult to capture in a single model and can make a single
model complex. Capturing the system under development in different models from
different viewpoints gives a better and simpler understanding of the system, but
raises the issue of models inconsistency. Models can become inconsistent, if they
define the same system but have contradicting specifications in different models
or have specifications that cannot be satisfied resulting in implementation that
can have unwanted results. The design models thus need to be analyzed for their
inconsistency. The need for consistency analysis of models can rise even if the
models themselves have no errors. Designers may specify certain requirements in
different models that contradict each other and thus, cannot exist together leading
to inconsistent diagrams. These mistakes can lead to implementations that do not
provide correct functionality as expected from them.

As the software shifts from software as a product to software as a service,
the need for consistency analysis of design models rises even further since web
services are offered from remote locations that consumers use via Internet using
standard Internet protocols. They can be expensive in terms of bandwidth and
other costs. It is, therefore, important to deliver services that are dependable and
do not contain unintended design mistakes to avoid undesired results.

Designing and publishing a REST web service interface with stateful behavior
may involve many resources and different service states that are dependent on
these resources. The service state represents a certain condition that is true when
the state is active. The condition can be defined explicitly in the form of state

71

invariant. The state invariants for stateful REST web services are defined as
predicates over resources. If these state invariants are inconsistent, they can lead
to implementations with unwanted results. The inconsistent state invariants are
design errors and, in order to reduce development costs and time, they must be
detected and corrected as early in the software development process as possible.

In this chapter, we discuss a consistency checking approach for the service
design models to detect such inconsistencies based on the use of the automatic
reasoning tools developed initially in the context of the semantic web. We first
translate the resource and behavioral diagrams with state invariants to the Web
Ontology Language version 2 for Description Logic (OWL 2 DL) [93], and then
use an OWL 2 DL reasoning tool [118, 108, 124] to determine the consistency
of the design models represented as UML diagrams. Our consistency checking
approach analyzes the REST design models to detect inconsistent behavior and
as such advises the developer to correct the detected design mistakes and create
consistent behavioral REST web service interfaces. A behavioral interface is said
to be consistent if it does not contain any contradicting specifications and there
exists a service that can satisfy it.

The motivation for consistency analysis is motivated in Section 6.1. The
problem of determining the consistency of service design models is defined in
Section 6.2 along with an overview of reasoning tool chain. An overview of
description logic and OWL2 functional syntax is given in Section 6.3. Section 6.4
presents the translation from resource and behavioral models to OWL2 DL which
is then analyzed in Section 6.5 using OWL 2 reasoning tool. The related work is
presented in Section 6.6 and Section 6.7 concludes the chapter.

6.1 REST Design Models and their inconsistencies

The resource and behavioral models of REST web service interface are represented
using UML class and protocol state machine diagrams with design constraints. In
this chapter, we use the same example of hotel room booking service that we have
used earlier, with small refinements. Its resource model and behavioral models are
shown in Figure 6.1 and Figure 6.2, respectively. The service takes payment from
the customer and books a room in the hotel. It reserves a room for the customer and
uses a third party payment service for confirmation. The service can be canceled
when it is not processing payment and can be deleted only if it is canceled.The
example is simple to understand and helps in demonstrating complex service states.

However, we do not cater information about timing constraints, authorized
actors and domain specific requirements in our consistency approach. We mainly
focus on analyzing the consistency of service design models with REST constraints.

72

Figure 6.1: Resource Model for HRB RESTful Web Service

6.1.1 Linking Resource and Behavioral Models and Inconsistency
Problems

Each service state has a state invariant. We define invariants of states as predicates
over resources defined in the resource model and that can have either true or a
false value. For a state to be active, its state invariant should be true, otherwise
it should be false. When the client makes a service request, it is mapped to a
transition in the behavioral model that has that method as a trigger. The transition
is fired from a source state to a target state. If the state invariant of source state is
inconsistent, a service can never exist in this state and it would be impossible for
the implementation of the interface to decide which transition to take as a result of
a service request.

We consider the state invariants which let the behavioral model behave against
the UML superstructure specifications for statechart diagrams [125] as inconsis-
tent state invariants, and they may cause whole system become unsatisfiable or
inconsistent. The examples of inconsistent state invariants are as follows:

Inconsistent State Invariant Example 1: According to the UML superstructure
specification, invariants of non-orthogonal states must be mutually exclusive ([125],
p.564). For example in Figure 6.2, the state invariant of state processingpayment
is sel f . payment�> size() = 1 and payment . processing �> size() = 1. If we
change its invariant to have sel f . payment�> size() = 1 and payment . processing
�> size() = 0, then it could conflict with the state invariant of not paid, i.e., both

73

Figure 6.2: Behavioral Model for HRB RESTful Web Service

74

the states can be true at the same time. This would make states processingpayment,
notpaid and activeBooking inconsistent. In this case, if PUT is invoked on payment
resource, the implementation would not know which transition to take.

Inconsistent State Invariant Example 2: According to the UML superstructure
specification, whenever a state is active, all its superstates are active ([125], p.565),
means all invariants of an active state and its superstates directly or transitively
are true. For example in Figure 6.2, if the state processingpayment is active then
its superstate activeBooking should be also active. If we introduce an error by
adding the condition self.cancel->size()=1 in the invariant of the state
processingpayment, this means that a canceled booking can also be processed for
payment. The introduced error causes the contradiction between the invariants
of the state processingpayment and its superstate activeBooking, and violates the
UML superstructure specification of the behavioral diagram, and consequently
makes the invariant of the states processingpayment, activeBooking and canceled
inconsistent. Such inconsistency problems can lead to service implementations
with undesirable behavior.

6.2 Consistency Analysis

In this section we define the problem of determining the consistency of our REST
web service design models. Our view of model consistency is inspired by the work
of Broy et al. [36]. This work considers the semantics of a UML diagram as their
denotation in terms of a so-called system model and defines a set of diagrams as
consistent when the intersection of their semantic interpretation is nonempty.

In our work, we assume that there is a nonempty set ∆I called the domain
containing all the possible resources and resource configurations in our domain.
We propose that a design model depicting a number of resource and behavioral
diagrams is interpreted as a number of subsets of ∆I representing each resource
definition and each state in the model and as a number of conditions that need to
be satisfied by these sets.

A resource definition is represented by a set R, such that R⊆ ∆I . A resource
r belongs to a resource definition R iff r ∈ R. We also represent each state S in a
statechart as a subset of our domain S ⊆ ∆I . In this interpretation, the state set
S represents all the resources in the domain that have such state active, that is,
resource r is in state S iff r ∈ S.

Since resource and behavioral models are represented with class and state
machine diagrams respectively, other elements that can appear in a UML model
such as generalization of classes, association of classes, state hierarchy and state in-
variants are interpreted as additional conditions over the sets representing resources
and states. For example specialization is interpreted as a condition stating that the
set representing a subresource is a subset of the set representing its superresource.
These conditions are described in detail in the next section.

75

In this interpretation, the problem of design model consistency is then reduced
to the problem of satisfiability of the conjunction of all the conditions derived
from the model. If such conditions cannot be satisfied, then a design model will
describe one or more resource definitions that cannot be instantiated into resources
or resources that cannot ever enter a state in the behavioral model. This can be
considered a design error, except in the rare occasion that a designer is purposely
describing a system that cannot be realized.

6.2.1 Reasoning Tool Chain

In order to determine the satisfiability of the concepts represented in our design
model, we propose to represent the resource and behavioral models using a De-
scription Logic, and analyze the satisfiability of the concepts using an automated
reasoning tool. We have chosen OWL 2 DL to represent our UML models since we
consider it is well supported and adopted, and there exist several OWL 2 reasoners
for checking concept satisfiability.

A number of resource models, behavioral models and state invariants are taken
as an input. All the inputs are translated to the OWL 2 DL, a web ontology
language [93]. The OWL 2 translation of design models are passed to a reasoner.
The reasoner provides report of unsatisfiable and satisfiable concepts. Unsatisfiable
concepts will reveal resource definitions that cannot be instantiated or behavioral
states that cannot be entered.

We have also implemented tool that generates a) skeleton of REST web services
from design models, b) OWL 2 DL from design models. The generation of REST
web service skeleton is implemented using python in Django web framework [66]
which is explained in Chapter 9. The tool that generates OWL 2 DL from design
models is discussed later in Section 6.5.

6.3 Description Logic and OWL 2

The Description Logic used in our approach is classified as SROIQ [69]. Descrip-
tion Logic is made up of concepts, denoted here by C,D, and roles, denoted here
by R,Q. A concept or role can be named, also called atomic, or it can be composed
from other concepts and roles.

An interpretation I consists of a non-empty set ∆I and an interpretation
function which assigns a set CI ⊆ ∆I to every named concept C and a binary
relation RI ⊆ ∆I ×∆I to every named role R.

The constructors of Description Logic are as follows:

76

Everything >I = ∆
I

Nothing ⊥I = /0

Complement (¬C)I = ∆
I \CI

Inverse (R−)I = {(y,x) | (x,y) ∈ RI }
Intersection (CuD)I =CI ∩DI

Union (CtD)I =CI ∪DI

Restriction

Universal (∀R.C)I = {x | ∀y.(x,y) ∈ RI → y ∈CI }
Existential (∃R.C)I = {x | ∃y.(x,y) ∈ RI ∧ y ∈CI }
Cardinality (≥ nR)I = {x | #{y | (x,y) ∈ RI } ≥ n}

(≤ nR)I = {x | #{y | (x,y) ∈ RI } ≤ n}

where #X is the cardinality of X . Axioms in DL can be either inclusions
C v D,Rv Q or equalities C ≡ D, R≡ Q.

An interpretation satisfies an inclusion C v D if CI ⊆ DI and an inclusion
R v Q if RI ⊆ QI . An interpretation satisfies an equality C ≡ D if CI = DI

and an equality R≡ Q if RI = QI . I satisfies a set of axioms if it satisfies each
axiom individually – I is then said to be a model of the set of axioms. Given a set
of axioms K , a named concept C is said to be satisfiable if there exists at least one
model I of K in which CI , /0. A set of axioms is said to be satisfiable if all of
the named concepts that appear in the set are satisfiable. If a set of axioms K is
satisfiable, we say that an axiom φ is satisfiable (with respect to K) if K ∪{φ}
is satisfiable. Similarly, we say that φ is unsatisfiable (w.r.t. K) if K ∪{φ} is
unsatisfiable.

The decidability of SROIQ is demonstrated by Horrocks et al. [69] and there
exist several reasoners that can process answer satisfiability problems automati-
cally [118, 108, 124].

6.3.1 OWL 2 Functional Syntax

For practical reasons, we use the OWL 2 functional syntax (OWL2fs) [93] as the
language used as an input for the reasoners and in the text of this article. The
interpretation of the main OWL 2 expressions used in this article is presented in
the following table. A complete description of the semantics OWL 2, including
support for data types can be found in [29].

77

SubClassOf(C1 C2) C1 vC2
EquivalentClasses(C1 C2) C1 ≡C2
DisjointClasses(C1 C2) C1uC2 = /0
ObjectPropertyDomain(P C) ∀R−1.C
ObjectPropertyRange(P C) ∀R.C
ObjectMinCardinality(n P) ≥ nR
ObjectMaxCardinality(n P) ≤ nR
ObjectExactCardinality(n P) (≥ nR)u (≤ nR)

In the next section, we discuss and translate the structure of a resource and
behavioral model with state invariants over the sets representing resource definitions
and states into OWL 2 DL.

6.4 From Resource and Behavioral Diagrams to OWL 2
DL

In order to check the satisfiability of resource definitions in a resource model
and state invariants in behavioral model, we need to first translate all resource
definitions and their associations into OWL 2 ontology, and then validate the OWL 2
ontology using an OWL 2 reasoner. In this section we present the translation of
concepts of resource model and behavioral model to OWL 2.

6.4.1 Resource Model in OWL 2

Each resource in a resource model is shown as a class in an ontology and an
association as an object property. A class in OWL 2 is a set of individuals and
ObjectProperty connect pair of individuals[93]. According to the definition of a
resource model given in Definition 1, we need to map these concepts in OWL 2
DL: resource definitions and their specializations, attributes, associations and
association multiplicities.

Resource Specification and Hierarchy

A resource definition in a resource model represents a collection of resources which
share same features, constraints and definition. For each resource definition in re-
source model, we define an OWL 2 axiom: Declaration(Class(R_def))

Resource model can have resource hierarchy in which subresources of a re-
source inherit the properties and attributes of its parent resource. We explicitly
define the hierarchy of resources in OWL 2 between resources. The specialization
of resources represented as classes is reduced to the set inclusion. We represent
the fact that a resource definition R1 is a specialization of resource definition R2
with the condition R1 ⊆ R2. In this case we say that R2 is a super resource of
R1, analogous to superclass in UML class diagram. If two resource definitions

78

R1 and R2 have a common super resource, or R2 is the super resource of R1 we
say that they are in a specialization relation. The specialization relation R1 ⊆ R2 is
translated in OWL 2 as:

SubClassOf(R1 R2)

Each resource definition at the same hierarchical level in resource model
represents a different piece of information. We assume that a resource cannot
belong to two resource definitions, except when these two resource definitions are
in a specialization relation. In our semantic interpretation of a resource diagram, it
is equally important to denote the facts that two resource definitions are not in a
specialization relation. We represent the fact that two resources R1 and R2 are not
in a specialization relation with the condition R1∩R2 = /0. With this condition, a
resource cannot belong to these two resource definitions simultaneously. Due to
the open-world assumption used in Description Logic, we need to explicitly state
this fact in OWL 2, i.e., for resource definitions R1...Rn at same hierarchical level
we define disjointness in OWL 2 as:

DisjointClasses(R1..Rn)

Attributes

In our resource model, a collection resource does not have any attribute and a
normal resource should have at least one attribute. So we define attribute att of
a normal resource r of type D as DataProperty(att) with domain as r and range
as D. We do not need to give any attribute definition for collection resources
because OWL 2 has open world assumption and that which is not mentioned is not
considered. So by simply not mentioning collection resources with any attributes
is sufficient. However, for every normal resource, each of its attributes is defined
in OWL 2. Attributes usually have a multiplicity restriction to one value. Hence,
the attribute definition att in OWL 2 is given as:

Declaration(DataProperty(att))
SubClassOf(C DataExactCardinality(1 att))
DataPropertyDomain(att r)
DataPropertyRange(att D)

Association

An association a is a relation between two resource definitions, r1 and r2 and name
of association is its label l, i.e., l(a). For each association a in the resource model,
we define ObjectProperty axiom with label l and r1 as its domain and r2 as
its range,i.e., for a(r1,r2) with l(a), we give OWL 2 definition as:
• l maps to OWL 2 axiom Declaration(ObjectProperty(l))
• r1 maps to OWL 2 axiom ObjectPropertyDomain(l r1)

79

• r2 maps to OWL 2 axiom ObjectPropertyRange(l r2)

We define min(a) and max(a) as minimum and maximum cardinality of as-
sociation a. It defines the number of allowed resources that can be part of the
association. We represent a directed binary association A from resource definition
R1 to R2 as a relation A : R1xR2. The multiplicity of the association defines addi-
tional conditions over this relation #{y|(x,y) ∈ A} ≥ min, #{y|(x,y) ∈ A} ≤ max.
If an association a has minimum cardinality min and maximum cardinality max
for resource r, we define it in OWL 2 as:

SubClassOf(r ObjectMinCardinality(min a))
SubClassOf(r ObjectMaxCardinality(max a))

6.4.2 Behavioral Model in OWL 2

A behavioral model provides the behavioral interface of a web service and defines
the sequence of method invocations, the conditions under which they can be
invoked and their expected results. To check the satisfiability of state invariants
in a behavioral model, we need to translate the states and their invariants into
OWL 2. The translation of the state and the state invariant includes the reference
of resources and their attributes so we translate a behavioral model in the same
ontology that contains the OWL 2 translation of a resource model.

We need to cover following concepts of our behavioral model in OWL 2: state,
state hierarchy, state disjointness and state invariant.

State and State Hierarchy

A state in the behavioral model is a concept that defines the state of the service.
The behavioral model results in emergence of many new concepts in our ontology.
Each state represents a piece of information and can be exposed as an ontology
class.

Declaration(Class(S))

State hierarchy is also represented using set inclusion. Whenever a substate is
active, its containing state is also active. This implies that if a resource belongs to
a set representing the substate, it will also belong to the set representing the super
state, sub⊆ S. We define each substate relationship explicitly in OWL 2. For each
state sub that is a substate of composite state s, we define OWL 2 axiom as:

SubClassOf(sub s)

The states at same hierarchical level represent different resource configurations
such that only one state can be active at same time. The composite states with
non-orthogonal regions also follow the same principle, i.e., only one state can be
active at same hierarchical level. This means that a resource cannot be at the same

80

time in the two sets representing two exclusive states, i.e., if S1 and S2 represent
substates of an active and not orthogonal composite state then S1∩S2 = /0. When
representing a state machine in OWL 2, the non-orthogonal exclusive states are
declared as disjoint, so that they may not able to share any resource.

DisjointClasses(S1..Sn)

In a composite state with orthogonal regions, two or more states can be active at
the same time if they belong to two or more different regions of composite state,
i.e, if R1 and R2 are the regions of an active and orthogonal composite state S
then R1∪R2 = S. We should note that if region(s1) , region(s2) then they are not
exclusive and S1∩S2 , /0. Due to the open-word assumption of DL we do not need
to define this non-exclusiveness since classes may represent same set of instances
unless they are explicitly declared as disjoint.

6.4.3 State invariant into OWL 2 DL

The invariant condition characterizes the state, i.e., if the invariant condition holds,
then the state is active and if the invariant condition does not hold, then the state is
not active.

In our approach we represent an invariant as a set of resources that makes that
invariant evaluate to true. Since the invariant holds iff the associated state is active,
the set representing a state will be the same as the set representing an invariant.
This is represented in OWL 2 as an equivalent class relation between the state and
its invariant:

EquivalentClasses(S Invariant)

Due to the equivalent relationship between state and its invariant, all resources that
fulfill the condition of its state invariant will also be in that specific state.

State Constraints

Our behavioral model is represented by a UML protocol state machine with
additional constraints. The UML allows us to define additional constraints to
a state, and names these constraints as state invariants. However, the semantics
of a state constraint is more relaxed since it “specifies conditions that are always
true when this state is the current state” ([125], p.562). In this sense, the state
constraints define necessary conditions for a state to be active, but not sufficient.
This means that, the actual state invariant may remain implicit. However, we
consider a state invariant as a predicate characterizing a state. That is, a state will
be active if and only if its state invariant holds.

The UML Superstructure specification requires that whenever a state is active
its state invariant evaluates to true ([125],p.562). A consequence of this is that state
invariants should be satisfiable. That is, every state invariant in a state machine must

81

〈OCL-expression〉 ::= 〈cond-expr〉 (〈logic-op〉〈cond-expr〉)∗
〈logic-op〉 ::= and | or
〈cond-expr〉 ::= 〈ref〉 →size()〈relational-operator〉〈integer-literal〉

| 〈ref〉 →isEmpty() | 〈ref〉 → notEmpty()
| 〈ref〉〈relational-operator〉〈primitive-literal〉

〈ref〉 ::= self.〈identifier〉
〈identifier〉 ::= ′{〈characters〉} | 0..9 {0..9}′

〈relational-operator〉 ::= < |<= |> |>= |<> |=
〈primitive-literal〉 ::= 〈boolean-literal〉 | 〈integer-literal〉

| 〈string-literal〉 | null
〈boolean-literal〉 ::= true | false
〈integer-literal〉 ::= 0..9 {0..9}
〈string-literal〉 ::= ′{〈characters〉}′

Figure 6.3: The grammar of the supported OCL fragment.

hold in at least one resource configuration. Otherwise there cannot be resources that
have such state active. Since invariants should be satisfiable, the set of resources S
representing a state should not be empty S , /0.

6.4.4 State Constraints in µ OCL

A state invariant is a runtime constraint on the state ([125],p.514). It is used to
express a number of constraints, such as the restriction on the values of resource
attributes or the restriction on the existence of resources by using the multiplicity
constraint of the associations. These constraints are combined by using boolean
operators.

We have used a subset of OCL to define state invariants in behavioral models
of REST web services that are represented by UML state machine diagrams. Un-
fortunately, in general OCL is not decidable. However, we can avoid undecidability
by restricting our approach to a reduced fragment of the full OCL [106]. The use
of a limited fragment of OCL to avoid undecidability has been proposed in the past
also by other authors [106, 107].

In this work, we consider OCL constructs using mainly multiplicity, attributes
value and boolean operators. The grammar of OCL, supported in our approach is
shown in Figure 6.3.

Attribute Constraints

The OCL attribute value constraint sel f .Att =Value is mapped to OWL 2 axiom
DataHasValue as follows:

DataHasValue(Att "Value"^^datatype)

82

where Att is the name of the attribute, Value is the value of the attribute, and
datatype is the datatype of the attribute Value.

Multiplicity Constraints

The translation of size() operation in OWL 2 is based on the infix operator used
with the size() operation, such as:
• "size()>=" or "size()>" is mapped to OWL 2 axiom: Ob jectMinCardinality
• "size()<=" or "size()<" is mapped to OWL 2 axiom: Ob jectMaxCardinality
• "size() =" is mapped to OWL 2 axiom: Ob jectExactCardinality

For example, the OCL constraint sel f .A− > size() = Value, in which A is the
name of an association and Value is a positive integer, is written in OWL 2 as:

ObjectExactCardinality(Value A)

Boolean Operators

The constraints in a state invariant are written in form of a boolean expression, and
joined by using the boolean operators, such as "and" and "or" ([96],p.144).
• The binary "and" operator evaluates to true when both boolean expressions

Ex1 and Ex2 are true. In our translation this is represented by the intersection
of the sets that represent both expressions Ex1∩Ex2. This is represented
OWL 2 as ObjectIntersectionOf(Ex1 Ex2).

• The binary "or" operator evaluates to true when at least one of the boolean
expression Ex1 or Ex2 is true. In our translation this is represented by
the union of the sets that represent both expressions Ex1 ∪Ex2. This is
represented OWL 2 as ObjectUniounOf(Ex1 Ex2)

6.5 Consistency Analysis using an OWL 2 Reasoning Tool

We have defined earlier the satisfiability of our design models in Sect. 6.2. The
consistency analysis of resource and behavioral models is reduced to the satisfia-
bility of the conjunction of all the conditions derived from the model. In order to
determine the satisfiability of the conditions represented in design models, we first
translate the resource and behavioral models into an OWL 2 ontology, then use an
OWL 2 reasoner to analyze the satisfiability of translated concepts.

To translate the resource and behavioral models into OWL 2 ontology, we
have implemented the translations of resource and behavioral diagrams in OWL 2,
discussed in Sect. 6.4, in form of a translation tool. We have used Python program-
ming language for the implementation of the prototype of the translation tool. The
implemented translation tool allows us to automatically transform a resource and
behavioral model into OWL 2 DL. The translator takes these models and µOCL
state invariant as an input in the form of XMI. The XMI is generated by using

83

// Resource Model into OWL 2 DL
Declaration(Class(collectionbookings)
Declaration(Class(Booking))
Declaration(Class(Room))
...
DisjointClasses(collectionbookings Room Cancel ...)
Declaration(ObjectProperty(cancel))
ObjectPropertyDomain(cancel Booking)
ObjectPropertyRange(cancel Cancel)
...
SubClassOf(Booking
ObjectMaxCardinality(1 cancel))
....
Declaration(DataProperty(guestName))
SubClassOf(Booking
DataExactCardinality(1 guestName))
...
DataPropertyDomain(guestName Booking)
..
DataPropertyRange(guestName xsd:string)
..

//Behavioral Model into OWL 2 DL
Declaration(Class(activeBooking))
Declaration(Class(canceled))
SubClassOf(activeBooking HotelRoomBooking)
SubClassOf(canceled HotelRoomBooking)
...
DisjointClasses(activeBooking canceled)
Declaration(Class(notConfirmed))
SubClassOf(notConfirmed activeBooking)
Declaration(Class(notpaid))
Declaration(Class(processingpayment))
SubClassOf(notpaid notConfirmed)
SubClassOf(processingpayment notConfirmed)
DisjointClasses(notpaid processingpayment)
...
//Invariant of state confirmed Start
EquivalentClasses (confirmed
ObjectIntersectionOf(
ObjectExactCardinality(1 payment)
ObjectExactCardinality(1 confirmation)
ObjectExactCardinality(0 processing))
//Invariant of state confirm End

Figure 6.4: The excerpt of the output ontology generated by the translation tool.

84

a modeling tool, Magicdraw. The XMI generated by the modeling tool contains
the source code of both resource and behavioral model in form of XML. While
modeling in a modeling tool we have used µOCL to express the state invariants in
a behavioral model. The state invariant written in µOCL is also part of a XMI gen-
erated by the modeling tool. Moreover, the output of the implemented translation
tool is an ontology file, which contains the transformed resource model, behavioral
model and state invariants in form of OWL 2 functional syntax. This output file is
ready to be processed by an OWL 2 reasoner.

As an example, we have translated the resource model, behavioral model
and OCL state invariants shown in Figure 6.1 and Figure 6.2, into OWL 2 DL
ontology using the implemented translation tool. An excerpt of the output ontology
generated by the translation tool is shown in Figure 6.4.

6.5.1 Reasoning

After translating the resource model, behavioral model and state invariants into
OWL 2 ontology by using the implemented translation tool, we validate the output
ontology by using an OWL 2 reasoner. The OWL 2 reasoner analyzes different facts
presented as axioms in the ontology and infers logical consequences from them.
When we give the generated ontology to the reasoner, it generates satisfiability
report indicating which concepts are satisfiable and which not. If the ontology has
one or more unsatisfiable concepts, this means that the instance of any unsatisfiable
concept will make the whole ontology inconsistent, consequently, an instance of
the resource describing an unsatisfiable concept in a resource model will not exist,
or resources will not enter in a state describing an unsatisfiable condition.

In order to analyze the satisfiability of the invalid invariants, the ontology
of an example model with invalid invariants, listed in Section 6.1.1, is validated
by using an OWL 2 reasoner name Pellet [118]. The satisfiability report of the
ontology of service design models with invalid state invariants is shown in Fig-
ure 6.5. As explained in Section 6.1.1, the introduced errors in the state invariants
of state processingpayment resulted in 4 unsatisfiable concepts. This is because
invariants of non-orthogonal states should be mutually exclusive. By changing
the invariant clause payment.processing − > size() = 1 of processingpayment
to payment.processing −> size() = 0, the non-orthogonal states processingpay-
ment and notpaid became inconsistent, making the super state activeBooking also
inconsistent. Similarly, whenever a state is active, all its superstates should be
active. When invariant clause self.cancel->size()=1 is introduced in the
invariant of the state processingpayment, it contradicted with invariant of its super-
state activeBooking resulting in conflict with the invariant of state canceled. Thus,
making state canceled inconsistent as well.

As explained in Section 6.4.3, a state invariant characterizes the state ([125],
p.559-560). Therefore, the presence of unsatisfiable states in the satisfiability
report indicates the existence of invalid state invariants in identified states.

85

Found 4 unsatisfiable concept(s):
a:processingpayment
a:notpaid
a:activeBooking
a:canceled

Figure 6.5: The satisfiability report of the ontology shown in Figure 6.4 generated
by the OWL 2 reasoner Pellet.

6.5.2 Performance Test

In order to determine the performance of the translation tool and reasoning engines,
we conduct a number of tests by using UML class and statechart diagrams consist-
ing of 10 to 2000 model elements. The performance tests are conducted for both
valid and mutated models. These tests are evaluated on the bases of UML to OWL
2 translation time, and the reasoning time taken by OWL 2 reasoners Pellet [118]
and HermiT [108]. The performance test results are shown in Table 6.1, and the
total time (Translation time + Reasoning time) to process UML models is shown
in Figure 6.6.

Table 6.1: Time taken by the translation tool and reasoning engines to process
UML models.

Model El-
ements 10 100 500 1000 1500 2000

Translation
Time 0.08s 0.11s 0.19s 0.30s 0.44s 0.53s

Pellet
Valid 2.2s 2.3s 2.6s 3.2s 3.6s 3.8s
Mutated 2.2s 2.4s 2.7s 3.2s 3.6s 3.9s

HermiT
Valid 0.6s 0.7s 1.2s 1.7s 2.2s 2.6s
Mutated 0.7s 0.7s 1.3s 1.8s 2.3s 2.6s

The complexity of OWL 2 DL with respect to the reasoning problems of ontol-
ogy consistency and instance analyzing is NEXPTIME complete [70]. However,
the graph (Figure 6.6) of the performance test shows the linear curve, because in
our approach we analyze the consistency of class and statechart diagrams without
individuals.

6.6 Related Work

Consistency analysis and checking of design models has been studied by number
of researchers in the past but in the area of web services it has not been researched
very extensively, especially in the area of REST web services, we were unable to

86

Figure 6.6: The graph of the total time (Translation time + Reasoning time) to
process valid and mutated models.

find any consistency checking approaches. However, in the area of consistency
checking for web services following works are noteworthy.

Yin et al. [129] use type theory to verify consistency of web services behavior.
The paper addresses web services choreography. It analyzes structure of service
behavior and uses extended MTT, which is a constructive type theory, to formally
describe service behavior. The procedures of deductions are then given that verify
the suitability between services along with discussion on type rules for subtype,
duality and consistency of web services behavior.

Tsai et al. [123] [122] present a specification based robust testing framework
for web services. The approach first uses an event driven modeling and specification
language to specify web services and then uses a completeness and consistency (C
& C) approach to analyze them. Based on these positive and negative test cases
are generated for robustness testing. The approach assumes that web services are
specified in OWL-S. The approach aims towards testing of web services but C&C
analysis is performed on OWL-S specification that was point of interest for us. The
approach identifies missing conditions and events, whereas, our approach checks
the structure of web services and validates implementation of service requests.
Xiaoxia [40] verify the service oriented requirements using model checking. The
service-oriented computer independent model is used to structure the requirements
and then automated model checking is done to do completeness and consistency
checking of requirements. It provides formal definition of completeness checking
as a check that all the required service are included in model and does not give any
specific consistency checking constraint except the requirement relation applied on
an example.

Nentwich et al. [94] present a static consistency checking approach for dis-
tributed specifications by describing xlinkit framework. This provides a distribution-
transparent language for expressing constraints between web service specifications.
The implementation of xlinkit is done on light-weight web service using XML.

Heckel et al. [64] present a model-based consistency management approach

87

for web service architectures. They advocate use of UML class and activity
diagrams for modeling web services. The consistency problems are then identified
in UML based development process. For each consistency problem a partial
formalization into a suitable semantic domain is done and a consistency check is
defined. The consistency problems identified include syntactic correctness and
deadlock freedom. Based on these, those activity diagrams are identified that are
relevant to consistency checks. These are partially translated to CSP which are then
assembled in a single file and handed over directly to model checker. The paper
outlines a good consistency management approach for web services architecture
that needs concrete development of different steps defined in the paper.

6.7 Conclusion

A REST interface can do more than simply creating, retrieving, updating and
deleting data from a database. Designing behavioral interface for such web services
that provide different states of the service and offer REST interface features is
an interesting design challenge since it can involve many resources and resource
configurations that define different states of the service. In this chapter, we address
how to analyze the consistency of design models that create behavioral REST
interfaces. We check the consistency of resource and behavioral diagrams with
state invariants using OWL 2 reasoners. The structure of both the diagrams are
translated to OWL 2 ontology and ontology reasoners are used to check any
unsatisfiable concepts in the ontologies. The unsatisfiable concepts indicate the
design errors that can cause undesirable behavior in the implementation of the
service. The approach is automated as we provide prototype tools that generate
web service skeletons and OWL 2 ontology from the design models. Also, thanks
to the existing OWL 2 reasoners the generation of satisfiability report for our
OWL 2 ontology is also automated that is analyzed to check the consistency of
design models.

88

Chapter 7

Web Service Composition

A web service composition uses existing web services to provide new functionality
built on top of them. It facilitates reusability of already published web services
and combines them into a whole to serve different purposes. These different
services may be developed by different vendors in different locations. Service
orchestration is a common approach for developing a composite web service. In
services orchestration, the involved services are unaware of their participation
in the composition process and a central process controls and coordinates the
execution of these services.

For big web services, different flow composition languages exist like BPEL4WS
[19] and WSCL [22]. These languages define the control and data flow which
determines when a certain operation should execute. Business Process Execution
Language for Web Services (BPEL4WS) [19] is one of the composition specifica-
tion languages that is widely adopted to implement a web service composition. In
addition, many modeling approaches have also been proposed for composition of
SOAP based web services [116] [109].

However, REST web services follow a different architectural style and thus
require different design philosophy and techniques. A web service composition in
RESTful style differs from traditional web service composition techniques since
instead of composing web services from the perspective of operations, RESTful
composition focuses on resources [132]. A RESTful web service takes resource as
a building block and in a typical REST development environment, new resources
are exposed to keep the design simple and to allow maximum decoupling. In
addition to offering REST interface features, i.e., addressability, connectivity,
statelessness and uniform interface, designing a REST composite web service must
take the method invocations on partner services in account and vice versa. Web
service compositions may also offer time critical behavior that should be taken into
account.

In this chapter, we show how the composition of web services is done in
RESTful manner. The background of composition technologies is given in section

89

7.2. An overview of our composition approach is given in section 7.3. The static
structure of composite REST web service is presented as resource model in section
7.4. Section 7.5 details the construction of process modeling for REST composite
service and section 7.6 shows how its REST interface is constructed. The related
work and conclusion are given in sections 7.7 and section 7.8.

7.1 Background

Web service compositions are often assumed to be driven by a business goal [119]
and are described separately in a flow specification language. These composite
web services are like a black box to the end user and only advertise the operations
that can be invoked on them through the interface. The specification of an interface
only contain the syntactic information about the operations that can be invoked on
them and the flow in which messages can be exchanged between the services is
described separately in a flow specification language [119].

Web Service Description Language (WSDL) [44] is often used for the interface
specifications of big web services. WSDL provides information on the operations
that a service allows and defines the data that is transmitted as messages between
service operations. The information on the order of method invocation is defined
in a flow specification language like BPEL4WS[19]. However, we cannot use the
existing tools and techniques to compose REST web services since REST web ser-
vice APIs do not use standard WSDL [102]. Also, the uniform interface principle
of REST does not fit well with the message oriented constructs of BPEL4WS.

The following listing presents three possible mechanisms for defining RESTful
BPEL4WS processes:

1. WSDL 2.0 for HTTP binding: Using normal BPEL4WS [19] descriptions
(e.g. invoke operation1) and funneling invocation through a synthetic
WSDL 2.0 description. In WSDL binding, operations are mapped to URIs
and HTTP methods (e.g operation1 maps to resource1 and PUT method).

2. REST through adapter: Using RESTful services from a normal BPEL4WS
process by generating an artificial WSDL which describes the REST in-
terface and then creating an adapter for communicating with the RESTful
service. Some BPEL4WS engines also support interaction through WADL
description.

3. BPEL extension for REST: Extending BPEL4WS (and a BPEL engine)
for directly supporting RESTful activities (e.g. GET, PUT, POST, and
DELETE activities in a scope of a certain resource).

Approaches 1 and 2 have advantage of not requiring any modification to
BPEL4WS language and current implementations of BPEL4WS engines. On the
other hand, WSDL is a description language for operation-oriented web services
and it does not fully comply with the semantics of resource-oriented RESTful
services. In [102, 100], Pautasso uses the third approach and proposes extensions

90

to BPEL for REST. This approach has several advantages, such as, supporting a late
binding and dynamic resources. In traditional BPEL4WS [19] processes, dynamic
binding of services is not supported, as service endpoints are predetermined and any
changes requires clients to change or update their WSDLs. Thus, this is a significant
advantage of the third approach. Here we summarize the main differences in
BPEL4WS and BPEL-REST, as proposed by C. Pautasso in [102, 100].
• In BPEL4WS only one invoke type of activity is declared, where as in

BPEL-REST for each HTTP operation a distinct invoke activity is defined.
• BPEL-REST introduces a resource concept, which allows defining and pub-

lishing resources. It defines allowed message handlers, which are available
in the scope of the resource.

• The internal behavior of a request handler can be specified using the normal
BPEL4WS constructs (i.e.,
< sequence >, < i f >, < f low >, < while >, etc.).
However, control-flow links across activities that belong to different handlers
are not allowed.

We use the information presented in this section about RESTful web service
composition to model the composition of REST web services. In the next section,
we provide an overview of our modeling approach using UML for designing
composite RESTful web services.

7.2 Overview

Our approach takes as input the behavioral interface specifications of the partner
REST web services and the business requirements. The composite REST web
service interface is modeled with a resource model, behavioral model and a class
diagram representing the domain model. The process of composition is elaborated
with the sequence and activity diagrams. The sequence diagrams can be created
from the specification document or alternatively from the service requirements.
The service requirements are derived from the specification document and can also
be labeled as comments on the behavioral model as shown in Chapter 4 or they
can be modeled as different scenarios using sequence diagrams. We have used
scenario modeling to model different requirements in this chapter to provide a
step-wise approach to construct process model as proposed in [113]. On the other
hand, labeling of requirements on the behavioral model can facilitate requirement
coverage during validation phase. Users can use either of these two approaches to
capture requirements alternatively or simultaneously, depending on their need.

The resource and behavioral models follow the same design principles detailed
in the previous chapters. For composite web service, we extend our behavioral
models with effects on transitions for invoking the partner services and also in-
troduce the class diagram as domain model to show the provided and required
interfaces between the composite service and its partner services.

91

Resource
Model

Activity Model
(REST composition

process)

Domain
Model

Behavioral
Model

Mapping Rules

E.g., BPEL-REST,
WADL, Django,

UPTA, etc.

refinement refinement refinement

Figure 7.1: Approach for Model-based RESTful composition

We start with the resource model of a composite RESTful web service. The
composite behavior of the service is then sketched as a sequence diagram and
the process flow is modeled as an activity diagram. The process information is
refined to behavioral models that give information on how the REST composite
web service interface is defined. This constraints the implementation and usage
of composition to provide RESTful behavior. Our modeling approach is shown in
Figure 7.1 and provides mapping rules for translation to different implementation
and specification languages.

We assume that the partner services are RESTful and their design models
are available or they can be constructed before using them in the composition
process. This assumption helps us in providing RESTful interface for composite
web service. We consider that this is not a strong assumption since partner services
need to be understood first in order to know the functionality they offer and make
them a part of the composition process. These models are considered part of the
specification document of web services and do not require any extra effort from the
Composite RESTful Web Service (CRWS) developer. Alternatively, the developer
can also design the REST service composition models based on the specification
document even if the partner web services are not specified with our approach.

In order to exemplify our approach, we take a Holiday Booking (HB) REST
composite web service (CWS) that is built on inspiration from the housetrip.com
service. It is a holiday rental online booking site, where you can search and book an
apartment in the country of your destination. We have built it as a REST composite
web service.

The user of the service searches for a room in a hotel from the list of available
hotels at holiday booking service before travel. He books the room (if it is available)
and that booking is reserved by holiday booking service with the hotel for 24 hours.
The user must pay for the booking within 24 hours. If the user does not pay within
this time then the booking is canceled. If the user pays, then the holiday booking
service invokes a payment service and waits for the payment confirmation. When
the payment is confirmed by the payment service, holiday booking service invokes

92

the hotel service to confirm the booking of the room. If the hotel does not respond
within one day or it does not confirm at all, the booking is canceled and the user
is refunded. If the hotel service confirms, then a booking is made with the hotel.
The payment is not released to the hotel until the user checks in. When the user
checks in and is satisfied, holiday booking service releases the money to the hotel
and booking is marked as paid by the hotel.

7.3 Resource Model

A resource model of a composite RESTful web service follows the design principles
highlighted in Chapter 3. To summarize, a resource model is represented by a
UML class diagram where each class represents a resource definition. The resource
definitions are instantiated as resources, analogous to the relationship between
class and its objects in object oriented paradigm. The direction of association
between resource definitions gives the navigability direction between them and the
role name gives its URI (addressability). The collection resource definitions with
no incoming transitions are considered root resource definitions for the resource
model since every other resource definition should be reachable via root. The
resource model should make a connected graph.

Figure 8.4 shows resource model of our holiday booking composite REST web
service. The model has one collection resource definition, i.e,. bookings, and 13
normal resource definitions, i.e., booking, Pay, Paid, pRelease, ConfirmHPRelease,
WaitingPRelease, hotelCheck, hotelConfirm, WaitinCheckIn, CheckInConfirm, can-
cel, WaitingRefund and Refund. A GET method can be invoked on each resource.
The root resource definition in the model is bookings. This resource can contain
many booking resources. A booking resource definition is associated to different
resource definitions that specify the addressable information (via URI) for that
resource. For example, a GET on /bookings/{booking_id}/paid/ returns either a
response code of 404 if the booking is not paid or a response code of 200 if the
booking is paid along with the resource representation. Table 7.1 gives a clear
description of the information represented by each resource definition.

Resource model provides structural layout of composite REST web service.
We use this structural model to present our behavioral models in Section 5 and 6.
The next section, presents modeling of the RESTful process.

7.4 Modeling a RESTful process

The UML activity diagram and BPMN [128] are the common notations used for
BPEL4WS process modeling. A proposal for UML Profile for BPEL4WS [18]
uses old BPEL 1.0 specification and UML 1.4, but provides guidelines on how to
map BPEL4WS processes to UML activity diagrams. Also, a UML 2.0 profile
for BPEL4WS have been proposed [17]. Ruokonen et al., in [113], presents a

93

Table 7.1: Information represented by resources of Holiday Booking REST CWS
Resource Information
1- collection_bookings Gives a list of all the bookings
2- booking Gives detail of a specific booking
3- Pay Tells whether the booking payment is being processed

by the payment service or not
4- Paid Tells if a booking is paid or not
5- pRelease Tells if the payment of the booking is

released to the hotel or not
6- WaitingPRelease Tells whether a payment release is being

processed by the payment service or not
7- ConfirmHPRelease Tells if the payment release is confirmed

to the hotel
8- hotelCheck Tells if the booking is being processed by

the hotel for its confirmation
9- hotelConfirm Tells if the booking is confirmed by the hotel
10- WaitingCheckIn Tells if the booking is waiting

for user check in
11- CheckInConfirm Tells if the user has checked in or not
12- cancel Tells if the booking is canceled
13- WaitingRefund Tells if the booking is being processed

by the payment service for refund
14- Refund Tells if the booking is refunded or not

94

Figure 7.2: Resource Model for HF Composite RESTful Web Service

UML-based approach for creating BPEL4WS flavored activity models, which
enable generation of executable BPEL4WS descriptions. By combining existing
works, we aim at proposing modeling constructs, given as UML activity diagram,
for BPEL-REST processes.

7.4.1 Scenario Models

Our target is to model a RESTful process for Holiday Booking composite REST
web service using the static structure of the service defined in the resource model
shown in Figure 7.2. We start with a set of sequence diagrams that show a
number of interactions with the composite service. A sequence diagram shows
the object interactions using time-oriented visualization [103]. We call these
scenario models. We require that the modeler sketches simple example scenarios
illustrating required behavior of the process. This set of scenario may not (but
can) contain all the possible execution scenarios. For the details of this approach
presented by Ruokonen et al. readers are referred to [113]. Some exemplary process
scenarios for our approach are presented in Figure 7.3. Here, BookingH is a process,
which is to be implemented as a RESTful composite service. BookingH uses two
external RESTful services: PaymentService and hotelService. In Figure 7.3 (top),
a customer invokes the composite service BookingH and pays for it. When the
customer pays, BookingH invokes the partner service, PaymentService. The service

95

returns a payment confirmation by invoking the PUT method on paid resource of
BookingH. In the scenario shown in the bottom of Figure 7.3, BookingH composite
service invokes the partner hotel service, hotelService, for booking confirmation.
In case, the hotel service confirms the room booking, BookingH service waits for
user check in. When the user checks in, BookingH invokes the payment service
to release the payment to the hotel that was withheld. When the payment service
confirms the release of the payment, BookingH marks that payment for the booking
has been released. It, then, also invokes a POST on confirm resource of the hotel
service to mark it as paid.

7.4.2 Process Model

From the scenario models, we want to create a process description, which im-
plements these scenarios. We aim at a process model, which is compatible with
BPEL-REST process language. For process modeling, we chose UML activity
diagram that are used to model the flows in a process [125]. To construct the pro-
cess model, we model BookingH service’s view on the conversation. This means
messages sent and received by the BookingH service. Send message events in a
sequence diagram present invocations in an activity diagram and receive message
events means that the process receives an operation call.

In Figure 7.4, a workflow-oriented model for Holiday Booking process is shown
as an activity diagram. The following listing presents how UML activity model
constructs are used to model BPEL-REST processes. Pautasso [102] proposes four
activities to invoke a REST web service from the process, i.e., HTTP invocations
get, put, post, and delete. Thus,

• Method invocations are modeled as a call behavior action (stereotype <<
get >>, << put >>, << post >>, << delete >> respectively). A call
behavior action in UML activity diagram invokes an activity or a state
machine [125].

Request handlers receive the request invoked on the composite service and
perform the corresponding tasks. The request handlers in BPEL-REST are defined
for each resource and stem from the REST uniform interface principle. Thus,
onPut,onGet,onPost, and onDelete request handlers are mapped to activities as
follows:

• onPut is modelled as a call behavior action (stereotype << onPut >>)
• onGet is modelled as a call behavior action (stereotype << onGet >>)
• onPost is modelled as a call behavior action (stereotype << onPost >>)
• onDelete is modelled as a call behavior action (stereotype << onDelete>>)
• respond is modelled as a call behavior action (stereotype << respond >>)
• sequence is modelled as a control flow

Unlike onMessage activities in BPEL4WS, RESTful message handlers can
have internal structure and thus they could be also modeled as structured activities,

96

Figure 7.3: Examples of Holiday Booking Scenarios

97

which contain a respond activity and possibly some other if-else structures. On
the other hand, onPut and respond could be modeled as a pair of simple activities,
which has a potential sequence of activities between them. The same applies of
course to other message handlers. As a modeling restriction, links across activities,
which belong to different message handlers are not allowed. A resource in an
activity model, would be modeled as a structured activity, which contains all the
message handlers it supports. However, our target is to simply model the workflow,
which models the desired behavior, in the activity diagram.

The process model defines the workflow of the composition process. In order to
look at the web service composition from the viewpoint of how different resource
attributes change and the conditions of method invocations, we model the web
service composition with UML state machine in the next section.

7.5 Modeling Composite RESTful interface

In this section, we refine the activity diagram that gives flow of activities to a
protocol state machine that defines our behavioral model. In the refinement step, a
send message (the process makes an invocation) is mapped to an effect of transition
in a state machine. A receive message in an activity diagram (the process receives
a message) is mapped to a state transition in a state machine.

In behavioral model each state represents a state of the service and trigger
methods are restricted to the side-effect methods of HTTP, i.e., PUT, POST and
DELETE (uniform interface). Although REST offers a stateless interface but we
are able to represent stateful services built in RESTful manner by defining state
invariants as predicates over resources using HTTP GET method on resources
(statelessness). The construction of behavioral model is detailed in Chapter 4,
however, for modeling a service composition, the models are required to represent
method invocations on the partner services. These service invocations to partner
services are modeled as effects on the transitions.

Figure 7.5 shows the behavioral model for our holiday booking composite
REST service and Figure 7.6 shows its domain model. The domain model shows the
required and provided interface methods between REST composite web service and
its partner services. The behavioral model of partner web services, PaymentService
and HotelService, are shown in Figure 7.7.

The behavioral model of holiday booking service shown in Figure 7.5 is
initiated with POST on bookings with days and guestname as parameters. When
the user makes a PUT on pay, third party payment service is invoked by the
composite service to process users payment. This is shown as an effect on the
transition that invokes the PaymentService shown in 7.7 (top). While the payment is
being processed, the service goes in to a wait state. The payment service responds
either by invoking a PUT on paid resource in case of confirmation or by invoking a
DELETE method for pay resource, in case the payment is not confirmed. An unpaid

98

Figure 7.4: Process Model for Holiday Booking REST Composite Service

99

Figure 7.5: Behavioral Diagram of Holiday Booking Composite REST Web Service

100

Figure 7.6: Domain Model for Holiday Booking Composite REST Web Service

booking is canceled by the system if it is not paid for 24 hours. A paid booking is
checked with the hotel for re-confirmation by invoking a POST on Hotel Service
(Figure 7.7 (bottom)). The Hotel Service responds either by invoking a PUT on
HotelConfirm or DELETE on HotelCheck making it unconfirmed. An unconfirmed
paid booking is then processed for refund by the system in collaboration with the
payment service. When a user checks in for a paid confirmed booking, the system
invokes the payment service for the release of the payment to the hotel. Once the
payment release is confirmed by the payment service, the hotel is notified about it.

The examples provides different interaction scenarios between the composite
and partner services while maintaining the state of the composite REST web
service. This shows how a stateful REST web service offering a complex behavior
can be modeled using our design approach.

7.6 Related Work

In this section, we discuss important related works done by other researchers in the
area of specifying and modeling web service compositions. A lot of work has also
been done in using UML for web service compositions. Some of these works are
also reported in our previous work [109]. Most of the works use or propose a UML
profile to support web service composition. Those who do not use UML profile,
do not fit our needs since we were interested in defining state of the service using
stateless protocol. In the area of RESTful web service compositions, we found the
following works noteworthy.

Zhao and Doshi present a formal model for RESTful web services in [132] to

101

Figure 7.7: Behavioral Model for (Up) Payment REST Web Service (Down) Hotel
REST Web Service

102

automate composition of RESTful web services. Authors define a classification
of RESTful web services as Resource Set Service, Individual Resource Service
and Transitional Service. These are modeled with ontology concepts and SWRL
rules. These models are then used to define state transition system for automating
the composition of RESTful web services based on situation calculus. Their work
addresses modeling of uniform interface and state transferring between resources.
We are however of the view that by defining meaningful URI of the services, the
third type ’Transitional Services’ may not be necessary.

Pautasso [102] [100] give REST extensions for BPEL that are based on the
set of requirements identified for RESTful composition. These extensions aim
to support the process of REST composition using the same process-oriented
service composition language that supports traditional web services. The work
also demonstrates how a RESTful API can be implemented using BPEL with
the proposed declarative constructs by exposing selected parts of its execution
state. In another work [101], Pautasso identifies set of requirements that should
be satisfied by languages for RESTful service composition. A detailed example
is presented to understand this set of requirements and implemented with JOpera.
While these works complement our work, our focus is on modeling the web service
compositions from static and dynamic perspectives. In terms of modeling, Pautasso
propose extensions for Business Process Modeling Notation (BPMN) to support
REST. The work aims to provide simple extensions for applying BPMN notation
to model RESTful business processes. While this works makes good use of BPMN
for modeling RESTful business processes by resusing existing graphical elements
of BPMN as much as possible, our research aimed to use a modeling notation that
is not specific to any domain in particular. BPMN supports concepts of modeling
that are applicable to business processes. We are interested in using models that
can be used at other phases of developing composite web services and that can
facilitate the service developer to verify and validate their designs by using existing
mature tools as much as possible.

Rosenberg et al. [112] introduce Bite, that is a lightweight workflow-based
composition model for web applications. It aims at simplicity and short develop-
ment cycle. The basic Bite process is a flat graph having atomic actions and links
between them. The flow uses external services in its flow logic and the composition
workflow is published as a composed resource. Bite, however, does not support
PUT method.

Zhao et al. [133] propose a method for RESTful web service composition
based on linear logic. The method finds composition services at both resource and
service invocation method levels. The linear logic sequent represent composition
requirements and related inference rules are applied to determine if the composition
requirements can be achieved.

Yu et al.[130] emphasize on the importance of role in the service description
and composition. They present role-centric service descriptions and composition
mechanism by proposing a resource meta-model. The RESTful service descriptions

103

are generated based on the roles that are formally defined on the metamodel.
Adopting the BPEL extension for REST approach, authors extend BPEL with
the concept of role to have control over the access of resources. Alarcon et al.
[13] present a RESTful service composition approach based on Resource Linking
Language (ReLL) and Petri Nets. ReLL is presented in [12] as an XML-based
description language for REST services with focus on hypermedia characteristics
of the model. The work uses a petri net model to illustrate composition model. The
approach provides a mechanism that allows to implement a machine client that can
perform dynamic discovery of resources. In comparison to this work, our work
addresses construction of stateful services with complex scenarios offering all the
REST features using models.

More recent work by Bellido [25], analyzes fundamental control-flow patterns
in the context of stateless compositions of REST web services. They discuss the
challenges of state handling for composed RESTful services in detail and propose
means to implement the control flows through callbacks and redirections. The
decentralized approach they propose breaks the business process into fragments
that represent different intermediary states of the business process and the control
logic is centralized in composed resource. The composed resource delegates the
control flow to different services and itself becomes available to respond to new
messages. When the response is received, services will wake up the composed
state at the corresponding state of the execution flow. Compared to their work, our
approach targets the state of the services from a different perspective. We define
states as predicates over resources. This state information relies on simply invoking
GET methods on different resources and formulate the state of the service as a
boolean expression based on the response codes of invoked GET methods. In this
way, we do not compromise the statelessness feature of REST. This information,
however, needs to be stored somewhere. This can either be saved as pre- and
post-conditions of methods when implementing the service functionality by the
service developer of the composite service or can be implemented as a proxy to
provide service monitoring. These service contracts can monitor that the protocol
of the service composition is not being violated by any of the parties, i.e. users
and service providers. Besides this, our approach provides modeling of the stateful
behavior of the REST web service that facilitates the design process of the service.
These design models have manyfold applications as discussed earlier and can also
be used in verification and validation phases.

7.7 Conclusion

Web services can be composed together to create a new web composite web service.
This composite web service combines functionality of its partner services with
a business goal in mind such that the functionality of new composite service is
an aggregate of its partner services. In this chapter we showed how REST web

104

services can be composed to create a composite web service with REST features.
In doing so, we have extended our modeling approach to support RESTful web
service compositions. The static structure of the composition is modeled as a
resource model and the behavior of composite REST web service is modeled with
the sequence diagram, activity diagram and state machine diagrams. The sequence
diagram models the process scenarios, the activity diagram shows the process
flow and the behavioral model represents the behavioral interface of composite
REST web service. We also show mapping mechanism from activity diagram
to BPEL-REST. In addition, the service design models can be directly mapped
to implementation languages like Django web framework, Ruby on Rails and
UPPAAL timed automata etc.

We have applied our approach on a relatively complex worked example of a
holiday booking web service available on the Internet. The example shows how a
REST composite web service with complex behavior can be constructed following
our design approach.

105

106

Chapter 8

Validation of Services

The use of REST web services in businesses and critical applications motivates the
need for validation approaches that would effectively and efficiently detect faults
in their specifications and implementations.

We have earlier explained our design methodology to create behavioral inter-
faces for simple and composite web services (CWS) that are REST compliant and
offer complex scenarios and timed behavior. These service design models and their
implementations should be validated for their correct behavior in order to build
trust on the service functionality. In this chapter we present the validation approach
that facilitates the service developer in creating dependable REST web services.
We have used model checking approach for this purpose. Model checking is a
way to exhaustively and automatically check if a finite-state model of a program
satisfies its specifications [46]. The goal is to see whether the models have basic
properties like deadlock freedom and other critical properties the absence of which
can cause a system to crash.

In our approach, a service can invoke other services and exhibit complex and
timed behavior while still complying with the REST architectural style. We need
to check if the service implementation is functioning correctly alongwith partner
services and if the service goals and timed constraints are being fulfilled. We, thus,
show how we validate the implementation of the RESTful web service composition
with model-based testing approach. By using model-based testing (MBT) approach,
automatic test cases can be generated with an increased probability of test coverage
and with an ease of test case maintenance.

In section 8.1, we present our validation approach explaining different steps
of validation approach in detail. The transformation steps from UML to UPPAAL
Timed Automata (UPTA) are presented in section 8.2. The approach is applied on
a Holiday Booking RESTful web service in section 8.3 and the validation of the
approach is given ins secion 8.4. In section 8.5, we present our work on contract
based testing to validate classes and web services. The related work from literature
is presented in section 8.6 and section 8.7 concludes the chapter.

107

8.1 Validation Approach

Our validation approach takes as input the behavioral interface specifications
(design models) of the composite REST web service, its partner REST web services
and the business requirements. We then provide verification of the design models
by reasoning on the basic properties of models like deadlock, liveness, reachability
and safety with UPPAAL model checker. UPPAAL is a commonly used model
checking tool for verifying real time systems through modeling and simulation [82].
However, the UML-based service design models represent the system graphically
and are comprehensible for a human user. In order to make the models amenable for
model checking tools we suggest a set of reversible mechanized steps for translating
UML-based service specifications into UPPAAL timed automata (UPTA) [81].
UPTA are then simulated and verified with UPPAAL model checker. UPTA are
updated (if needed) based on the verification results and transformed back to UML.

From the UML models, a skeleton of the composite service is generated
automatically in Django web development framework [66] using our partial code
generation tool presented in Chapter 9. Performing the verification of the web
service composition in a model-checking tool allows us the increase the quality of
the specifications before proceeding to the implementation of the service.

The transformation step from UML to UPTA consist of generation of two
types of automaton from service design models. One automaton corresponds to
our service design models and the other represents the environment model. The
environment model simulate the behavior of service user to invoke the interface
service methods in order to facilitate test generation automatically.

For model based testing of the service implementation, we have used online
conformance testing tool UPPAl-TRON that validates the service implementation
against its UPTA specification models at runtime. For this purpose, we have
customized and modified the Tron test adapter to establish connection between
UPTA models and implementation under test. In the end, we have evaluated the
validation approach for its efficiency using mutation testing and other different
coverage and benchmarking tools.

Requirements traceability is also an important component of our integrated
approach. The requirements of the composition are included in the UML spec-
ifications and then propagated to UPTA specifications. They are used for both
verifying the reachability of those model elements implementing them and for
reasoning about their coverage after the tests are executed. Upon detecting failures,
traced requirements can be used to localize the errors in either models or in the
specifications.

More details of the approach are given in the following:

108

8.1.1 Verification

Model verification is a process of determining whether the models are designed
correctly and represent the developer’s conceptual descriptions and specifications.
Model checking is one of the ways to exhaustively check the models automatically.
The service design models of composite REST web service should be verified for
their basic properties in order to build confidence of the service designer on the
models before implementing them. This allows one to eliminate design errors that
can be expensive to detect and correct at later stage of the development cycle.

UPPAAL model-checker is used for modeling, simulation and verification of
real-time systems [82]. It consists of set of timed automata (TA), clocks, channels
that synchronize the systems (automata), variables and additional elements. A real-
time system is modeled as a closed network of TA. Each automaton in the network
is specified via a template, which can be instantiated as process. A template
in UPTA is composed of locations, edges, clocks and variables representing all
properties of the system. Synchronization between different processes can be
provided using channels. Two edges in different automata can synchronize if one
is emitting (denoted as channel_name!) and the other is receiving (denoted as
channel_name?) on the same channel. Guards are the conditions that enable a
transition when they are satisfied. Similarly, the conditions associated to locations,
called invariant, specify that the system can stay in the location if and only if the
invariant is satisfiable.

The query language used in UPPAAL is a simplified version of TCTL [15] that
consists of state formulae and path formulae. State formulae (ϕ) is an expression
that describes an individual state, while path formulae can be classified into reach-
ability, safety and liveness properties. Deadlock is expressed using state formulae.
The syntax of TCTL path formulae that are used in UPPAAL is defined as follows:
• A � ϕ - for all paths, the property ϕ is always satisfiable.
• A ^ ϕ- for all paths, the property ϕ is eventually satisfiable.
• E � ϕ - there is at least a path in the automata such that property ϕ is always

satisfiable.
• E^ ϕ - there is at least a path in the automata such that property ϕ is

eventually satisfiable.
• ϕ φ - when ϕ holds, φ must hold.
If there is a location in the model that has no outgoing transition, then the model

is said to be in a deadlock. Reachability properties validate the basic behavior of
the model by checking whether a certain property is possible in the model with the
given paths. The safety property checks that something bad will never happen and
the liveness property determines that something will eventually happen.

However, before using UPPAAL model-checker to verify these properties, we
need to give service design models formal foundations that are understandable by
the verification tool. This has to be done in an automated manner to avoid extra
efforts from the service developer. In section 8.2, we present our tool support for
UML to UPTA transformation.

109

8.1.2 Code generation

We can generate the code-skeleton of service design models using our tool pre-
sented in Chapter 9. The tool generates code skeleton for design models in Django
that is a high level Python web framework [66]. The generated code also has
behavioral information, i.e., the pre- and post-conditions for each method and the
developer has to only write the implementations of the operations.

8.1.3 Requirements Traceability

Service requirements can be inferred from the specification document and they
serve as service goals. A service should be checked for its service goals in order to
validate that the service does what it is required to do. By catering to the service
requirements at the design phase and propagating them to the validation stage,
we provide a mechanism by which a service requirement can be validated for
its goals and the unfulfilled requirements can be traced back to the design phase
to find faults in the design. Service requirements are generally domain-specific
since they are inferred from the specifications. We infer functional and temporal
requirements from the specification document into a table and number them. These
requirements are attached to the behavioral model as comments on the transitions
and are propagated to UPTA such that the links between requirements and the
model elements are preserved. These requirements are included in all the models
and traced throughout the process, i.e., at UML, UPTA and test level, respectively.

The requirements are formulated as reachability properties in UPTA with the
purpose of verifying them during simulation. Each requirement label is translated
into a boolean variable (initialized to False) and attached to the corresponding edge
in the UPTA. This mapping is explained in more detail in the Section 8.2 on the
UML to UPTA transformation.

We require that our testing approach must validate that these requirements
are met by IUT, in order to build confidence of the developer that the system is
doing what it is required to do. Thus, their coverage level is monitored during test
generation and execution. Once the test report is available, we can check which
requirements have been validated and which have failed.

8.1.4 Model-Based Test Generation

Model-based testing (MBT) is a method that provides an abstract model of a
system under test (SUT) and preforms automatic test case generation based on the
specifications of the SUT [126]. In MBT, modeling the environment of a system
is important since the environment generates test cases from whole or some parts
of the model to satisfy the test criteria. Environment models help in automation
of testing in three ways: the automation of test case generation from a simulated
environment, the selection of test cases, and the evaluation of their test results. Our

110

UML to UPTA transformation tool generates both the behavioral model of SUT
and the environment model.

We provide automatic test generation using UPPAAL TRON, which is an
extension of UPPAAL for online model-based black-box conformance testing [81].
During test generation, the environment model randomly selects test cases and
communicates to the test adapter.

A test adapter is used by UPPAAL TRON to expose the observable I/O com-
munication between the test environment model and the SUT model, as shown in
Figure 8.1. Our adapter implements the communication with the SUT by convert-
ing abstract test inputs into HTTP request messages and HTTP response messages
into abstract test outputs. The TRON tool generates tests via symbolic execution
of the specifications using randomized choice of inputs. Based on the timed se-
quence of input actions from the simulation, the adapter preforms input actions to
Implementation Under Test (IUT) and waits for the response. Output from IUT is
monitored and generated as output actions for the simulation. The conformance
testing is achieved by comparing outputs of IUT to the behavior of the simulation.

Figure 8.1: UPPAAL TRON test setup

8.2 Design Models→ UPTA transformation

The transformation from service design models to UPTA consist of series of steps
presented in this section. We require to generate two UPTA for our behavioral
model: one UPTA corresponding to the behavioral model of the service and one
environment model that simulates the user behavior and triggers the UPTA of the
service.

A real-time system is modeled as a closed network of timed automata, i.e,
UPTA. Each UPTA in the network is specified via a template. These template can
be instantiated as processes. UPTA is composed of locations, edges, clocks and
variables representing different properties of the system. We translate our resource,
behavioral and domain models to UPPAAL in order to verify them with UPPAAL
model-checker.

111

8.2.1 Resource Model

In UPTA the resource model is represented as a template. The resource definitions
in the resource model are specified as variables with 1 or 0 value, specifying if
a resource exists or not, respectively. The attributes of resource definitions are
inspected and for each integer attribute, an integer variable is declared in the
UPPAAL model. Similarly, the boolean attributes are declared as integer arrays of
0 and 1.

8.2.2 Domain Model

The domain model shows set of operations offered and required by the composite
web service and its partner web services. The corresponding communication
between templates in UPPAAL is represented by channel synchronizations. Two
edges in different automata in UPPAAL can synchronize if one is emitting and
the other is receiving on the same channel. The operations in an interface are thus
translated into a binary synchronization channel in UPPAAL. The template of the
service that realizes the interfaces acts as the receiving automaton and the sending
automaton is specified by the template of the service that uses the interface.

8.2.3 Behavioral Model

The behavioral model of REST web service is encoded by timed automaton that
are represented by templates, which are instantiated as processes. Figure 8.2 shows
an example of transformation from the behavioral model to UPTA.

States

A state is mapped to a location in UPTA, and a state invariant is mapped to
corresponding location invariant. The subclauses of the state invariant are translated
to variables corresponding to the respective resource definition. For example, in
Figure 8.2, sel f .a−> size() = 1 is translated as a = 1 and sel f .b−> size() = 0
as b = 0. The initial state corresponds to the initial location. The final states are
translated by having an edge from the corresponding location to initial location
and updating all the variables to their initial values, as shown in Figure 8.2. The
choice state in the behavioral model is replaced by two edges in the TA model that
are originating from the same source location to different target locations.

State Hierarchy

The behavioral model may contain composite states for better representation of
specifications. UPTA, however, does not support the notion of location hierarchy.
We flatten the composite states to several simple states by including the state in-
variant of super states in the contained states that are then mapped to the respective

112

Academic Version for Teaching Only
Commercial Development is strictly Prohibited

state machine smachine smachine[]

B

[self.b -> size() =1 and self.c -> size() = 0
 and self.d -> size() = 0]

D

[self.b -> size() =0 and
self.c -> size() = 0 and

self.d -> size() = 1]

C

[self.b -> size() =0 and
self.c -> size() = 1 and

self.d -> size() = 0]

A

[self.a -> size() =1]

POST(d)

POST(c)

POST(a)

Figure 8.2: (Top) Composite State in Behavioral Model. (Bottom) Flattened
locations in UPTA

locations in UPTA. For example, in Figure 8.2, the top figure contains a behavioral
model with a composite state that is flattened to UPTA model shown at the bottom.
States B, C and D in the behavioral model correspond to the locations B, C and
D of UPTA, respectively. Note that all the locations contain the state invariant of
superstate A in the behavioral model.

Transitions

A transition in the behavioral model is mapped to an edge in UPTA and guards
on the transition are mapped to guards on the corresponding edge in UPTA. In
Figure 8.3, we show how the transitions in behavioral model (top) are translated
to UPTA (bottom right). The locations L1 and L5 correspond to states S1 and S2,
respectively, and locations L0, L2, L3, and L4 are the extra locations created during
the transformation process as explained below. The state invariants are translated to
location invariants and represented as boolean functions for the purpose of diagram
clarity. The transition between states S1 and S2 is triggered by POST(b) after 10
minutes. In UPTA, this is represented as guard over the clock variable cl.

113

Trigger Methods

The trigger methods from the behavioral model are translated in to receiving
channels in UPTA. This receiving channel is in sync either with the automaton of
the partner service or with the environment model.

Time Events

The time events in behavioral diagram are replaced by clocks in UPTA. The clock
is reset in the incoming edge to the location (L1) and is also included in the location
invariant. Thus, the guard after(10m) is translated to cl > 10 on the corresponding
UPTA edge.

Effects

The effect on the transition, i.e., POST (c) shows invocation to the partner service.
The communication between two web services is established by using a unique
channel synchronization. For instance, emitting a request from a web service to the
other one can be replaced by synchronizing a channel in an UPPAAL process, and
the other process is the receiver of the synchronization. The effect of the transition
that invokes a remote service is represented with two edges and an urgent location
(marked with U in the circle) in between, i.e., edges e2 and e3 and urgent location
L3. An urgent location in UPTA does not allow any delays [82]. Thus, the first
edge (e1) is synchronized with the environment model and the second edge (e2)
synchronizes with the partner automaton. The third edge (e3) is synchronized to
receive acknowledgment response from the partner (as we model asynchronous
service) and the sending channel on the fourth edge (e4) is synchronized with the
environment to indicate the completion of transition.

Figure 8.3: Example of behavioral model (top) Corresponding Environment Model
(bottom left) and Flattened UPTA (bottom right)

114

Requirements

The requirement on the transitions are translated into a boolean variable (initialized
to False) and attached to the corresponding edge which updates it to True. This
is shown in Figure 8.3 with Req1= True on edge e4. This implies that whenever
this edge would be traversed, this requirement will be met. This can be formulated
as reachability properties to attain requirement coverage and tracked during test
generation and execution.

8.2.4 Environment Model

The environment model in UPTA has sending channels that are received by the
composite web service automaton as inputs to trigger the process. This is similar to
interface method calls in the SM. All the interface methods of the service specified
in the state machine are mapped to the sending channels in the environment model
and the response of successful transition is received from the composite web service
via receiving channels. This is also shown in Figure 8.3: the environment model
initiates the automaton (bottom right) by sending channel post_b! and the process
completes when the channel resp_b? is received.

A Python script is currently used to create the environment model, from a given
UPTA model by analyzing the channels observable from the environment. The
original idea has been discussed in [65]. This will be merged in the final version of
the UML→UPTA transformation script.

8.2.5 Test Coverage information

In order to enable rigorous test coverage in UPPAAL TRON, a second Python script
(discussed in more detail in [75]) is used to automatically add counter variables for
each edge of a given automaton in a UPTA model and a corresponding update of
the given variable on the corresponding edge. Whenever the edge is visited during
the simulation or execution, the variable is incremented, allowing thus to track
which edges have been visited and how many times. This enables one to track
coverage level wrt. e.g., edge coverage or edge pair coverage. This script will also
be integrated in the final version of the UML→UPTA transformation script.

8.3 Case Study

We have demonstrated our approach with a worked example of a Holiday Booking
(HB) REST composite web service (CWS) that is built on inspiration from the
housetrip.com service. It is a holiday rental online booking site, where you can
search and book an apartment in the country of your destination. The modeling
of this example service is explained in the previous chapter. In this chapter, we
are interested in validating the service design models and its implementation. The

115

example provides a good demonstration of how a composite REST service with
complex stateful behavior is designed and validated using our approach.

8.3.1 Design Models

The design models are modeled using MagicDraw [6]. Static validation of models
is done via OCL using the validation engine of Magic Draw. We rely on predefined
validation suites for UML contained in MagicDraw for the basic validation of the
model. These validation suites contain rules that check that the designed UML
model conforms to UML metamodel specifications and prevent the developer from
creating incorrect models.

The composite REST web service and its partner services are modeled with
resource, behavioral and domain models. These models for holiday booking
REST composite web service are shown in Figure 8.4, Figure 8.5 and Figure 8.6,
respectively. Figure 8.7 and Figure 8.8 show the behavioral model of partner
services, i.e., payment Service and hotel service, respectively. The construction of
these models has been explained in the previous chapter.

8.3.2 Verification

The design models of holiday booking composite REST web service are translated
to UPTA with the help of tranformation tool. Figure 8.11 shows UPTA of holiday
booking composite REST web service. Figure 8.9 and Figure 8.10 show the UPTA
of partner services, i.e., payment Service and hotel service, respectively.

The verification properties are specialized for our case study and some of them
are mentioned below.

Deadlock Freeness. The holiday booking service, the hotel service and the payment
service models are all deadlock free. This means that the composite service is
never reach to a state that cannot preform a transition (i.e., A[]not deadlock).

Reachability. All the locations in the HB service are reachable. This means
that the model receives and sends messages to the partner services smoothly and
the model is validated for its basic behavior (i.e., E ^CompService.r), where r
is the last location in the TA model and indicates that all processes for certain
booking is completed.

Safety. Some of the safety properties in our model are: a) Payment should be re-
leased iff the user has checked in, i.e., (E�CompService.h2 imply CardService.c2),
where c2 is the location after check-in and h2 is the location after payment release,
b) If the payment is released by the HB service then the Hotel service is paid, i.e.,
(E � CompService.h2 imply HotelService.p), where p is the location in Hotel
service model for hotel payment.

116

Figure 8.4: Resource Diagram of Holiday Booking Composite REST Web Service

117

Figure 8.5: Behavioral Diagram of Holiday Booking Composite REST Web Service

118

Figure 8.6: Domain Model for Holiday Booking REST composite web service

Liveness. Some of the liveness properties in the model are: a) When the pay-
ment is not paid within 24 hours, the booking is canceled (i.e., CompService. c
and compService. cl > 24 � CompService. b1), where c indicates waiting for the
payment, cl indicates clock of the model and b1 indicates the booking request is
going to cancel due to the delay, b) If the Hotel Service does not confirm within
3 days then the booking is considered not confirmed (i.e., CompService. o and
CompService. cl > 3 � CompService. n), where o is the location for waiting for
the hotel response and n is the location for canceling.

8.3.3 Requirements Traceability

We have inferred functional and temporal requirements from the specification doc-
ument. Table 8.1 shows the requirements for holiday booking RESTful composite
web service. These requirements should be fulfilled by the IUT in order to satisfy
the service goals. These requirements are added as comments on Figure 8.5 and
translated to a boolean variable (initialized to False). These variables are attached
to the corresponding edges in the UPTA assigning a True value. When the corre-
sponding edge is traversed, its value becomes True. We attain requirement coverage
by encoding them as guards to edges in the environment model. Whenever all the
requirements evaluate to TRUE, the environment model can go to the final location.
These values are encoded as boolean function verdict() in Figure 8.12.
Test setup. The testing process includes the TRON engine, an adapter, the IUT
and the model of system. The TRON engine establishes TCP/IP connection on
a local port and via that the adapter starts communications. The adapter works

119

Table 8.1: Requirements Table of Holiday Booking REST CWS
Req Sub-Requirements
1- Booking 1.1 - A booking should be paid

1.1.1 - A booking should be paid within 24 hours of the booking.
1.1.2 - If a booking is not paid within 24 hours of the booking,

then it is canceled by the system
1.1.3 - A confirmed paid booking, waits for user check in

2- Payment 2.1 - When user pays for the booking, partner service should be
invoked to process the payment.

2.2 - The HB CWS should wait for response from the payment service
2.2.1 -If the payment service does not respond in 10 minutes, it is

considered not working and the booking is marked unpaid
2.3 - If the partner service confirms the payment, the booking

should be marked paid
2.4 - If the partner service unconfirms the payment, then the booking

should be considered unpaid.
3- Cancel 3.1 - A booking is canceled if it is not paid for 24 hours

3.2 - A paid booking that is not confirmed by the hotel is
marked unconfirmed

3.3 - A paid booking that is unconfirmed by the hotel is
canceled after 12 hours.

3.4 - A paid booking can be canceled by the user
3.4.1 - A paid booking can be canceled by the user if it is not waiting
for payment confirmation or hotel confirmation.

3.4.2 - User can cancel paid booking only before 7 days of checkin.
3.5 . A canceled booking must be refunded.

4- Payment 4.1 - If the user checks in then the payment must be released
Release to the hotel.

4.2 - When the payment is released to the hotel, HB CWS must notify
the hotel about release of the payment

120

Figure 8.7: Behavioral Model for Payment Service

as an interface, which translates the inputs and outputs of the model to proper
HTTP requests to/from the IUT. The UML to UPTA transformation also generates
(optionally) a skeleton of the test adapter, depicting what interfaces should be
implemented between TRON and IUT. Once the adapter is fully implemented,
it can be reused for different versions of the models as long as there is no new
I/O messaging being done. The IUT is a web service composition of three web
services: HolidayBooking, Hotel and Payment Services.
Composition Model. We specified a TRON adapter which communicates between
IUT and the composition model an excerpt of which is shown in Figure 8.11.
The adapter identifies the emitting and receiving channels as well as defines the
corresponding HTTP request functions. During test execution, the composition
model waits until a channel call comes from the environment model, then the
adapter translates the incoming channel to a specific HTTP request and sends it to
IUT. The response from IUT will be checked in the adapter and forwarded to the
composition model as a response channel.

8.4 Validation of Approach

Our holiday booking composite REST web service had 14 states and 25 transitions.
These were translated into a UPTA model with 34 locations and 46 edges. Simi-
larly, the state machines of Payment service had 3 states and 4 transitions which
transformed in to a UPTA model with 5 locations and 6 edges. The Hotel service
had 4 states and 5 transitions that were translated into 7 locations and 9 edges. In
addition, the environment model created had 4 locations and 13 edges.

One issue with using formal tools like UPPAAL for verification and test
generation is the scalability of the approach due to the state space explosion. In

121

Figure 8.8: Behavioral Model for Hotel Service

contrast to offline test generation, where the entire state space has to be computed,
in online test generation only the symbolic states following the current symbolic
states have to be computed. This reduces drastically the number of symbolic states
making the test generation less prone to space explosion and thus more scalable.
For instance, the number of explored symbolic states when generating with the
verifyta tool, the traces satisfying complete edge coverage (i.e., &e1 . . . &&em,
where e j are tracking variables corresponding to all m edges of the models) was
974. In the contrast, the maximum number of symbolic states reported by TRON
during a test session achieving complete edge coverage was 12 (see Figure 8.13).

Figure 8.13 plots the evolution of the number of symbolic states for 10000
model time units (10 seconds). The number of states in specific testing time
depends on the behavior of the model on that time. For example, from the time
100 to 160, the payment process is running. Due to the timing constraints of the
model, it is not obvious that which response will return and hence the next location
in the model is not determined. Therefore, the number of the symbolic states are
more. At time 190, the booking web service communicates with other web services
(Hotel-service and Card service), and the total number of symbolic states is the
highest (12 states).

122

Figure 8.9: UPTA for Payment Service

Figure 8.10: UPTA for Hotel Service

For benchmarking the verification process, we have used the verifyta
command line utility of UPPAAL for verification of the specified 5 properties.
We have used the memtime tool to measure the time and memory needed for
verification. The result showed in average 0.20 seconds and 54996 KB of memory
being used. Although the memory utilization depends heavily on the symbolic
state space, it shows that the current size models leave room for scalability of the
approach. A known limitation of UPPAAL is that the maximum memory size it
can use is close to 4GB due to its 32-bit architecture.

In order to evaluate the efficiency of our approach, we compared the specifica-
tion coverage with the code coverage yielded by a given test run. Since we had
access to the source code of the IUT, we used the coverage tool for Python [1] to
report the code coverage for each test session. The Table 8.2 lists results of several
measurements.

The complexity of the models resulted for the holiday booking service in Figure
8.11, allowed us to verify all specified properties in UPPAAL and to generate tests

123

Figure 8.11: UPPAAL automata of Holiday Booking Composite REST Web
Service

124

Figure 8.12: Environment model

Figure 8.13: Evolution of symbolic states

using TRON. To overcome the state explosion problem, the models would either
be optimized at UPPAAL level, or they can be split into several parts, via slicing or
aspect-oriented approaches, each focusing on a different concern of the system.

Table 8.2: Correspondence between code coverage and edge coverage
Run Edge Coverage Code Coverage
1 64 % 55%
2 80% 67%
3 100% 78%

Although many of the errors were caused by modeling mistakes, testing re-
vealed some errors in the implementation as well. For instance, in the holiday
booking service, there was an error in sending cancel request and another error
was found in the POST header in refund request. In the hotel service, confirmation
was sent by a wrong method, so it was rejected by holiday booking service.

In order to evaluate the fault detection capabilities of our approach, we have
manually created 30 mutated versions of the original holiday booking service
program code. Each mutation had one fault seeded in the code, for instance
replacing POST with DELETE, removing one line of the source code, change of

125

logical conditions, etc. The faults were always seeded in those parts of the code
that is covered when achieving 100% edge coverage of the model. We assumed
that the original version of the program is the correct one. We assumed that the
original version of the composite web service is the correct one, as we were able
to run the 100 test sessions in TRON against it. For each mutated version of the
composite web service, we set the TRON to execute 100 test sessions against it.
When a fault was discovered, down and the mutant was considered as killed. If the
mutated statement has been covered by the test runs but no failure was detected,
we mark it as alive. Out of the 30 mutated programs, 28 mutants were killed and 2
are alive mutants. It resulted into a mutation score of 93.3%.

Out of the 30 mutated programs, 28 mutants were killed and 2 are alive mutants.
The mutation score calculated based on the following formula:

Ms =
Nk

NG
∗100%

where Ms, NG and Nk are the mutation score, the number of generated mutants and
the number of killed mutants respectively. Mutation score in this approach was
93.3%. One of the alive mutants was for the time variable that should be set from
client side, but since we did not implement client side, the mutant from the time
variable does not have effect on the behavior of the IUT. The other alive mutant
could be found by the IUT but since it did not change the expected behavior of
IUT, the test adopter did not discover it. Overall, the mutation score indicates that
the model based testing approach was quite accurate and could cover all expected
behavior of the IUT.

8.5 Testing Classes against their Contracts

Service implementations contain information about method contracts derived from
the models. We can also take advantage of contract-based testing approaches using
service method contracts asserted in the code. The derivation of contracts from a
UML protocol state machine has been discussed earlier in section 3.1. By using
UML protocol SM to define behavioral interfaces of REST web service and the
approach described below to generate class contracts, we can benefit from previous
and future efforts in test case generation from behavioral contracts while using a
familiar and standardized visual notation.

Class contracts can be used to generate run-time assertions that reveal if a
particular execution of the system breaks the precondition or postcondition of a
method and to generate test cases to exercise the method’s assertions [91, 85, 35].
In this section, we present the research tool that we have developed to automatically
extract class contracts from UML protocol state machines according to definitions
presented in section 3.1. We then use the asserted class contracts with different
testing tools to validate a class.

126

For java based web services, contract is based in JML [83]. The tool accepts as
input a UML 2.0 model serialized as XMI and a Java file containing an interface or
a class. Then it automatically updates the Java file by inserting a contract derived
from the UML protocol state machine. The tool can be used either as a stand-alone
command line python program [7] or as a plugin for MagicDraw UML.

To represent the UML protocol state machine, XML Metadata Interchange is
used and the specification is saved into a file with source code corresponding to the
specification. The XMI data for this version can be generated from different tools
e.g., Papyrus UML, Borland Together and MagicDraw UML. We have created our
examples with MagicDraw UML, since this software seems more suitable for this
purpose compared to other UML editors.

The generated contracts can be used with other tools to test and validate a Java
class that implements the protocol described in the UML protocol state machine.
Examples of such tools are the JML JUnit [43] tool that simplifies the development
of white-box unit tests, JET [42] i.e., an automatic random test generator for JML,
and ESC/Java2 [54] i.e., a static analysis tool.

A typical development task involves the use of a source code editor, a UML
modeling tool, the contract generation tool and different testing tools like JML-
JUnit, ESC/Java2 and LIME tools. To increase the usability, we integrated most
of these tools behind a single user interface. These tools were integrated as a
MagicDraw plugin as it was being used primarily for UML modeling. Figure 8.14
shows a screenshot of MagicDraw tool plugin.

We also added a validation feature to the plugin to check the UML protocol
state machine before the generation of specifications. It has a built-in component
that parses the model and reports the short-comings in the model. The short-
comings are the lack of elements or use of unsupported features that results in
an incorrect specification. In case the validation is not successful, a user friendly
information on faulty elements is displayed to the user in a diagram window. This
feature further adds to the usability of the tool. Figure 8.14 shows an example of
validation feature.

Statement coverage for JML-JUnit can be calculated during execution of the
tests. This is done using JVMDI Code Coverage Analyzer which is an open
source shared library loaded into a Java virtual machine (Java 1.4 or 1.5). The
program reads covered lines and reports them as an XML document. In the
MagicDraw plugin, this XML data is processed and displayed to the user as a
coverage percentage and covered lines.

The tool is extended to support generation of contracts for python based web
services, presented in Chapter 10. Different python testing tools can then be used
to validate the web service implementation.

127

Figure 8.14: (Top) Screenshot of the MagicDraw plugin (Bottom) Validation
example

128

8.6 Related Work

Our related work on validation is mainly divided in two areas: 1) Use of model
checking techniques for validation of web service compositions 2) Use of contracts
for testing.

8.6.1 Use of model checking techniques for validation

There is already a large body of work on using model checking techniques for
validation and verification of web service compositions. Overviews of such works
can be found in [114] and [31]. Mostly authors have used web service specific
specification languages as their starting point and converted the specifications
to an intermediate language that is accepted by model checking tools. Then, by
taking advantage of the model checking tool capabilities they performed simulation,
verification or test generation via model-checking. Most of these works use the
selected model-checking tool only for simulation and verification; only a handful
generate abstract tests from the verification conditions, and in most cases it is not
clear how the abstract test cases (i.e., the counterexample traces) are transformed
into executable ones and executed. In the following, we will revisit those works
which are most similar to ours.

We can distinguish roughly two approach categories: those that target the
PROMELA language [68] which is the input language for the SPIN model-checker
[67], and those that target the UPPAAL timed automata which is the input language
for the UPPAAL model-checker [24].

In the first category, the vast majority of approaches have used BPEL or OWL-
S[89] for the specification of the web service composition. For instance, Garcia
[59] generates test cases using test case specifications created from counterexam-
ples that are obtained from model checking. The transition coverage criterion is
used to identify transitions in BPEL specification that define the test requirements
for producing test cases. These transitions are mapped to the model and expressed
in terms of LTL property expressions. Test cases are generated using the test case
specifications created from counter examples obtained from model-checking. Tran-
sition coverage is obtained by repeatedly executing the tool with each previously
identified transition.

Fu. et al. [57] provide both bottom-up and top-down approaches to analyze the
interaction between web services. In top-down approach, the desired conversation
of a web service is specified as guarded automaton where guards of the automaton
are XPath queries with LTL properties. The guarded automata are converted to
PROMELA and used as input to SPIN model checker. The bottom-approach
translates BPEL to guarded automaton and is used in similar fashion with SPIN
model checker after translating guarded automaton to PROMELA. The web service
conversation are analyzed for synchronization to verify their compatibility.

One distinct approach is given by Huang et al. [71]. They automatically

129

translate OWL-S specification of composite web service into a C-like specification
language and Planning Domain Definition Language (PDDL) through a proposed
integrated process. These can be processed with the BLAST model checker which
can generate positive and negative test cases during model checking of a particular
formula and test the web service using the test cases. They propose an extension
to the OWL-S specifications and the PDDL to support their approach and use a
modified version of the BLAST tool. Abstract, both positive and negative test
cases are generated by formulating verification conditions for manually specified
properties.

These works focus on BPEL4WS processes and OWL-S, this makes them
dependent on specific execution languages for SOAP based services whereas our
work is not dependent on implementation and supports REST architectural style. In
addition, their work does not support requirement traceability and is not clear how
tests are generated and executed. Furthermore, the works that use the PROMELA
language for specification do not address real-time properties, due to the limited
support for time in PROMELA.

In the second category, researchers have targeted timed automata specifications.
In [39], Cambronero et al. verify and validate web services choreography by trans-
lating a subset of WS-CDL (Web Services Choreography Description Language)
into a network of timed automata and then use UPPAAL tool for validation and
verification of the described system. They also capture requirements by extending
KAOS goal model and implement them. The work is supported by WST tool that
provides model transformation of timed composite web services [38]. It takes UML
sequence diagram and translates it to WS-CDL and then to UPPAAL for simulation
and verification. In [50], Diaz et al. also provide a translation from BPEL4WS
to UPPAAL timed automata. Time properties are specified in BPEL4WS and
translated to UPPAAL. However, requirements are not traced explicitly, while
verification and testing are not discussed.

Ibrahim and Al-Ani [72] transform BPEL specification to UPPAAL. The
specification includes safety and security non-functional properties which are
later formulated into guards in the UPPAAL model which could be similar to our
verification of requirements. They do not consider neither real-time properties nor
test generation.

Nawal and Godart [61] check the compatibility of web service choreography
using model checking based approach that supports asynchronous timed communi-
cations. They use UPPAAL and provide full compatibility, partial compatibility and
full incompatibility of web services. They propose a set of required abstractions for
timed asynchronous communicating services that allow the use of model checker
UPPAAL. Our work is somewhat similar to their work as we support time critical
stateful REST webs service compositions using UPPAAL, however, in addition to
verification we use UPPAAL with TRON to validate the implementation of web
services.

Zhang [131] suggest the use of the temporal logic XYZ/ADL language [134]

130

for specifying web server compositions. They transform the specifications into a
timed asynchronous communication model (TACM) and verify it using UPPAAL
model checker.

In [79], uses BPEL specifications as a reference specification and transform
them to an Intermediate Format(IF) based on timed automata and then propose
an algorithm to generate test cases. Similar to our approach, tests are generated
via simulation in a custom tool, where the exploration is guided by test purposes.
One noticeable difference is that time properties are added manually to the IF
specification, while we specify them at UML level.

These works provide approaches to verify and validate the service specifications
by checking the properties of interest using UPPAAL tool, however our work, in
addition to model checking the properties also performs conformance testing of
the service composition via online model-based testing with the TRON tool and
provides requirement traceability for non-deterministic systems.

8.6.2 Use of Contracts for Testing

A lot of work has been done on using contracts for testing. In [91], Meyer estab-
lishes the use of contracts to build reliable software components. Briand et al. [35]
use and instrument contracts in code to ease the process of testing. Araujo et al.
[20] further explore the use of contract for concurrent programs in the context of
Java programs by extending JML specification language.

Ciupa and Leitner [45] have made use of Design by Contract assertions in their
proposed solution of automatic testing and implemented as the Cdd Tool. The work
of Leitner et al. in [84] expands on this work by merging the benefits of manual and
automated testing in one technique i.e., AutoTest Experience. In [85], Leitner et al.
introduces Contract Driven Development (CDD) as a new development method
for testing. Contracts present in the code are used as test oracles and test cases are
extracted from failure traces of program and failure runs.

The role of contracts for validating a composite web service is also less ex-
plored. In terms of using contracts for web service composition, we found the
work of Milanovic [92]. In [92], Milanovic present a contract-based web service
composition approach. In this work, he presents contract-based description lan-
guage that is XML based and includes non-functional properties such as security,
dependability, timeliness. The composition correctness is verified by modeling
services as abstract machines.

[32] presents an approach for multi-party service composition based on contract
using process calculi. They introduce the notion of subcontract relation that allow
service composition in a manner that is deadlock and livelock free. Also, they
relate their theory of contracts with theory of testing that can formally verify the
composed service and also permits replacement of one service with another one
without affecting the correctness of overall system.

In [47], provide automatic test case generation using contracts in web service

131

descriptions. They extend contracts with process control and other information
and express them as OWL-S process specifications. These are then translated
to Petri-Net models and test processes are generated using Petri-net behavior
analysis. A decentralized framework for contract-based collaborative verification
and validation of web services is presented in [21]. They propose a test-broker
architecture in which all stakeholders of web service can contribute in improving
the testing of the service. They explore the concept of design by contract and
identify two categories of testing contracts including testing service contracts and
test collaboration contracts.

All the works mentioned above take advantage of contracts present in the
contract to perform different analysis and testing activities. In terms of exploring
the idea of contracts at model level, work of [86] is noteworthy. They present a
visual contract workbench tool that uses visual contracts for graphically specifying
pre and post conditions of an operation. From these visual contracts JML assertions
are generated for java classes to facilitate automatic monitoring of correctness of
programs. Their model consists of class diagram and both pre and post conditions
of visual contract are typed over it. The behavior of operations is given in terms of
data state changes. Our work also addresses the concept of pre and post conditions
of methods at model level. However, compared to their work, our approach does
not only considers data state changes but also provide information on the sequence
of method invocation and other dynamic behavior involving generation of pre and
post conditions in different scenarios. Also, in case of REST web services, our
resource model represented by a class diagram does not have method information.
The information on allowed methods is generated from behavioral model that
also provides information about pre and post conditions of methods, sequence of
method invocations and other valuable information to create behavioral interfaces
of REST web services.

8.7 Conclusion

In this chapter, we present our approach to verify the service design models and
validate the service implementation. In our approach, a service can invoke other
services and exhibit complex and timed behavior, while still complying with the
REST architectural style. We have used UPPAAL model checker to verify the
dynamic properties of our models. The service design models of the composite
web service and its partner services are translated into UPPAAL timed automata
which are verified for different dynamic properties with UPPAAL. To validate the
service implementation, we generate tests using an online model-based testing
tool, UPPAAL-TRON. The use of online model based testing proved beneficial as
our system under test exhibits non-deterministic behavior due to concurrency and
real-time domain.

Requirement traceability is also provided by tracing service requirements from

132

behavioral model to timed automata and their reachability is verified in UPPAAL.
They are also used as test goals during test generation. Linking requirements to
generated tests allowed us to quickly see which requirements have been validated
and which not. In addition, our approach also provides edge and edge-pair coverage.
The work is exemplified with a relatively complex worked example of a holiday
booking web service and we provided preliminary evaluation results. The approach
is validated using different benchmarking tools for UPPAAL and its efficiency is
evaluated using code coverage tool and mutation testing.

In order to take advantage of contract-based testing approaches using contracts
asserted in the code, we built a tool that automatically updates the Java file by in-
serting a contract derived from the UML protocol state machine. We used different
testing tools like JML-JUnit and ESC/Java2 to show how contracts asserted in the
code can be used to validate the behavior of the service.

133

134

Chapter 9

Implementation

The service design models of REST web services serve as specifications for a
service developer. A service developer can study the design models and implement
the service using them as reference document. However, lot of time and efforts
can be saved by automatically generating code from the models as advocated by
Model Driven Development (MDD) [99]. MDD advocates full code generation
in bidirectional manner such that a change in one artifact reflects in the other
making both the model and the code always consistent. We, however, provide
a partial code generation tool in order to not clutter the design models with too
much implementation details and at the same time facilitate the service developer
to construct dependable web services using models. We generate code skeletons
from the models that contain interface method contracts. The implementation of
the interface methods can be done by the service developer.

In this chapter we demonstrate how web services are implemented as RESTful
web services using our service design models. We also show the implementation
of a service monitor that checks the interaction between a service and its clients
and report if any of the parties breaches the interface contract. First we give a
brief overview of the technologies we are using in our work. The implementation
approach is discussed in section 9.2 and the implementation of service monitor
is discussed in section 9.3. The implementation of service models is evaluated in
section 9.4 and the chapter is concluded in section 9.5

9.1 Used Technologies

In this section, we present the languages and technologies that we used for the
service implementation. Our service design models are in UML and our compiler
is implemented in Python programming language [7]. We have chose python based
Django web framework [66] to code and run our modeled web services.

135

9.1.1 Python

Python is a general-purpose, high-level programming language [7] created by
Guido van Rossum in the early 90’s. It is a language similar to Perl, but with a
very clean syntax that offers a readable code.

Here we present some the most important characteristics:
• Scripting language: An interpreted language or scripting is one that is

run using an intermediate program called interpreter rather than compiled
program in machine language code that you can understand and run in
a computer directly (compiled languages). The advantage of compiled
languages is that their execution is faster. However, interpreted languages
are more flexible and more portable.

• Duck typing: We say that a language supports duck typing if an object
of particular type is compatible with a function when it provides all the
methods or method signatures that are requested from it by the method at
runtime [3]. Duck typing is heavily supported in Python.

• Strongly typed: It is not allowed to treat a variable as being of a different
type from what it has. It is necessary to convert the variable to a new type
before using it as such. For example, if we have a variable containing a
string, it cannot be treated as a number ("9"). In other language the type of
the variable change to accommodate the expected behavior, although this is
more prone to errors.

• Cross-platform : The Python interpreter is available on many platforms
(UNIX, Linux, DOS, Windows, Solaris, OS/2, MacOS). So if you do not use
specific platform libraries, you can run your program in all these systems
without major changes.

• Object-oriented (OOP): This is a programming paradigm in which real-
world concepts of a problem could be represented in classes and objects
in our program. The execution of the program is a series of interactions
between objects.

9.1.2 Django Web Framework

Django [66] is an open source web application framework, written in Python,
which follows the model-view-controller architectural pattern (MVC). Django is
developed with the intention of easing the creation of complex, database-driven
websites. It emphasizes reusability and "pluggability" of components, rapid de-
velopment, and the principle of DRY (Don’t Repeat Yourself). Python is used
throughout, even for settings, files, and data models. Django also provides an
optional administrative CRUD (create, read, update and delete) interface that is
generated dynamically through introspection and configured via admin models.

Here are some of the important features of Django [66]:
• Object-relational mapper: Data models can be defined entirely in python.

136

You can either use dynamic database-access API that comes with it or write
SQL if needed.

• Automatic admin interface: Django provides a production ready admin
interface that can let you add and update content.

• Elegant URL design: It lets you design crud-free URLs with no framework-
specific limitations.

• Template system: With Django template system, you can separate design,
content and python code.

• Cache system: The cache system helps you save the result of some expensive
computation for future reference so that you don’t have to perform it again.
The feature optimizes the performance. Django provides a robust cache
system offering different levels of cache granularity.

• Internationalization: Django has full support for multi-language applications,
letting you specify translation strings, and providing hooks for language-
specific functionality. Django has full support for translation texts and allows
developers to specify which parts of their application would be translated or
formatted for local languages using translation strings.

9.2 Implementation

The implementation of service design models consist of three important parts, i.e.,
1) Developing the service design models that are input to the compiler, 2) Writing
the python compiler that processes the information in the models and 3) the Django
file results that are the output of the compiler.

9.2.1 Service Design Models

We have represented the static and dynamic structure of REST web service using
UML class and state machine diagram. We have explained in detail the construction
of our resource and behavioral models in Chapter 3 and Chapter 4, respectively,
with the help of hotel room booking service example. The user of the service
books a room and pays for it. While a third party service processes the payment,
the service waits for the processing and marks the booking as paid once the
confirmation is received. The booking can be canceled anytime if it is not waiting
for the payment processing.

We reproduce the same example in this chapter to demonstrate how the service
is implemented in Django web framework. Figure 9.1 and Figure 9.2 show the
resource and behavioral models for hotel room booking RESTful service. The
standard HTTP methods are called on the service to navigate through the different
states of hotel booking service. Every piece of information that user can use, e.g.,
cancelation, payment and booking etc. is accessible via independent URIs. Also,
information about when a method should or should not be invoked, e.g., making a
booking cancel request, can also be inferred from the models.

137

/bookings/{bid}/
/bookings/{bid}/cancel/
/bookings/{bid}/payment/
/bookings/{bid}/room/
/bookings/{bid}/payment/processing/
/bookings/{bid}/payment/confirmation/

Figure 9.1: (Top) Resource Model for HRB RESTful Web Service. (Bottom)
Resource paths

The well-formedness rules for the models have been explained earlier. We
have imposed the following restrictions as well to facilitate the implementation.

� The root resource definitions must always be collection resources and their
name starts with collection_. In our example we have one collection re-
source definition, collection_bookings. We can access all system resource
definitions through this collection resource definition.

� The primary key of resource definitions, if modeled, must be written as
follows: resource_name + "_id ". This decision is taken by an agreement to
facilitate the implementation and understanding.

� The association that goes from the root resource definition to its contained
resource definition must be marked with the name of the primary key of that
resource definition, i.e., resource_name + "_id ".

From the diagram we can see the paths in which each resource definition can

138

be accessed. At the bottom of Figure 9.1 we can see the paths for this example. We
can see that every path starts from root resource definition.

We have used MagicDraw UML as a modeling tool to model our example. We
generate XML Metadata Interchange (XMI) of the behavioral model from this tool
which is saved into a file.

9.2.2 Python Compiler

This section details how a semi-automatic translator is created. The tool takes as
input XMI of the models. All the required information is retrieved from the XMI
of models and processed. Compiler collects relevant information from resource
and behavioral models, treats it and creates internal data structures, in order to
supplement the information between diagrams. We can divide the process into
three phases:

1. Gather the necessary information from the input models.
2. Analyze information, create appropriate data structures and supplement

this information with both the diagrams.
3. Export all the information to code, creating the file structure needed to run

the system for Django Framework.

In the final result, we obtain the necessary Django project files. The three main
required files are models.py, urls.py and views.py. Below we explain what steps
we follow to obtain them.

Phase 1:
In the first phase we take as input the XML [4] files of the diagrams. We are

interested in gathering information for three main files of Django application, i.e,
model.py, urls.py and views.py files. These files provide different information:

• models.py: Contains the information about the system database.
• urls.py: Contains the URL information that can be called on the service and

their mapping to associated views.
• views.py: Provides functional details. Each view is responsible for doing

one of the two things: returning an HttpResponse object containing the
content for the requested page, or raising an exception such as Http 404.

First we will obtain the information necessary to create the models.py file. This
file contains the information of the system database. To do this we look for the
resources in the resource model. For each resource in the resource model, we create
a table in the database and analyze its associations to complete its relationships
with the right foreign keys. We do not merge tables since we consider it a job
without reward.

We then move forward to collect information for the next file, urls.py. This
maps the relative URLs of each resource to their respective views. We find the
information of URL paths from the resource model. We use the rolenames of

139

Figure 9.2: Behavioral Model for HRB RESTful Web Service

140

associations to compose the paths of each resource, always starting from the root,
and particularly if we are referencing an item in the collection.

Finally we started looking for information for the views.py file which one
of the most important file for Django. This file contains all the functionality of
the system and the code we will run when accessing a resource through its URL
based the allowed requests (GET, PUT, POST, and DELETE). This information is
inferred from the behavioral model. It provides the necessary information about
each resource, what methods can be executed on it and when to trigger it, i.e,
whether certain preconditions and postconditions are true. For the extraction of
method contracts from behavioral model, we relied on our work on generating
contract from protocol state machine that we have presented in section 8.1.

Phase 2: Once we have our tree data structure, we must complete it and cre-
ate the necessary files correctly. Specifically we need to complete the information
in urls.py with the information in views.py. Moreover we should take care of some
special situations, i.e., how to handle and implement the logic of the views for each
resource and transition. These special situations include cases like transitions with
the same method from two different source states to the same target state, two or
more transitions from the same source state to different target states with distinct
preconditions and postconditions and two or more transitions from different source
states to different target states.
Phase 3:

In the final phase, we have all the information properly code structured to
create the desired language or platform. In this project we are exporting a Django
project and creating the corresponding files.

The first files we create are those needed to run the project. We simply put
the name of the project, which URLs it is going to use, and indicate where our
application is. After this we complete the models.py file that contains the tables of
the database. In this file we place a table for each resource, indicating each time
the corresponding primary and foreign keys, and the attributes that are specified in
the model.

The models.py file for our hotel room booking service is:

Listing 9.1: Implementation of Database Models for HRB Service
from django.db import models

class Booking(models.Model):
bDate = models.DateTimeField()
guestName = models.CharField(max_length=200)

class cancel(models.Model):
booking = models.ForeignKey(booking)
note = models.CharField(max_length=200)
cdate = models.DateTimeField()

class Payment(models.Model):
booking = models.ForeignKey(booking)

141

amount = models.IntegerField()
pDate = models.DateTimeField()
ccName = models.CharField(max_length=200)

class Processing(models.Model):
booking = models.ForeignKey(booking)
waiting = models.BooleanField(default=False)

class Confirmation(models.Model):
booking = models.ForeignKey(booking)
confirm = models.BooleanField(default=False)

class Room(models.Model):
booking = models.ForeignKey(booking)
rType = models.CharField(max_length=200)
floor = models.IntegerField()

After that we create the urls.py file with all the relative URLs of the views
in the project. In this way we can access the service resources. The urls.py file
generated for hotel room booking REST service is give below:

Listing 9.2: Implementation of URLS for HRB Service
from django.conf.urls.defaults import *
from myApp.views import *

urlpatterns = patterns(’’,
(r’^collection_bookings/$’ , bookings_collection),
(r’^collection_bookings/(\d{1,3})/$’ , bookings_booking_detail),
(r’^collection_bookings/(\d{1,3})/room/$’ , bookings_rooms_detail),
(r’^collection_bookings/(\d{1,3})/cancel/$’ , bookings_cancellation

),
(r’^collection_bookings/(\d{1,3})/payment/$’ , bookings_payment),
(r’^collection_bookings/(\d{1,3})/payment/processing/$’ ,

bookings_pwaiting),
(r’^collection_bookings/(\d{1,3})/payment/confirmation/$’ ,

bookings_pconfirmation),
)

The last file we create is views.py. This file contains view for each allowed
method on resource with the correct logic. These views consist of preconditions
and postconditions, the main action of the method, and returns the proper HTTP
code. As we do not know from the model what to do in some cases, we have written
the action as an skeleton. Here is the user interacts to complete such functions.

As an example, lets look at the functionality implemented as views for payment
resource. The first view booking_payment(request,booking_id) in Listing 9.3
shows implementation of payment resource. The behavioral model in Figure 9.2
shows that the allowed methods for this resource are GET and PUT. These two
methods are listed in the list of allowed methods in booking_payment view and
each incoming request to this view is first verified to be one of these methods,
otherwise an HTTP response of method not allowed is given. The request is
redirected to the view that corresponds to the invoked method. If the invoked

142

method is GET, it goes to booking_payment_get view and if it is a PUT method
then the request is redirected to booking_payment_put. These views contain the
code that implements the logic and interacts with the database to perform the
required task.

Listing 9.3: Payment View
def booking_payment(request, booking_id):

if not request.method in ["GET", "PUT"]:
return HttpResponseNotAllowed(["GET", "PUT"])

if request.method == "GET":
bid = bid
return booking_payment_get(request, booking_id)

if request.method == "PUT":
bid = booking_id
amnt = request.POST.get(’amnt’)
ccName = request.POST.get(’ccName’)
return booking_payment_post(request, bid, amnt, ccName)

def booking_payment_get(request, bid):
p = payment.objects.filter(booking=bid)
if p:

json = serializers.serialize("json", p)
return HttpResponse(json, mimetype="application/json")

else:
return None

def booking_payment_put(request, bid, amnt, ccName):
p = bookings_payment_get_local(booking_id)
conf = bookings_confirmation_get_local(booking_id)
proc = bookings_processing_get_local(booking_id)
b = bookings_booking_detail_get_local(booking_id)
c = bookings_cancel_get_local(booking_id)
r = bookings_room_get_local(booking_id)
if not p:

pre_p = False
else:

pre_p = True
deserialized = serializers.deserialize("json", b)
b_detail = list(deserialized)[0].object
a = []
for field in ["bDate", "cancel", "cancel_note", "room", "gName"

]:
new_val = getattr(b_detail, field, None)
a.append(new_val)

if b and r and not p and not proc and not conf and not c and a
[4]==ccName:
now = datetime.datetime.now()
cc = ccName
a = amnt
p = payment(confirm=False, pDate=now, waiting=False, amount

=a, p_try=0, ccName = cc, booking_id=bid)
p.save()

b = booking_detail_get_local(bid)
r = room_detail_get_local(bid)
c = booking_cancel_get_local(bid)
pc = booking_pconfirmation_get_local(bid)
post_p = booking_payment_get_local(bid)
if b and r and not pre_p and post_p and not conf and not proc

and not c:

143

response = HttpResponse("created")
response.status_code = 201
return response

else:
response = HttpResponse("not created")
response.status_code = 406
return response

At the end we obtain a complete Django Web Framework project that imple-
ments our RESTful Web Service.

Some of the main features of the compiler are:
• It is written in Python 2.7
• We use XML 2.1 and UML 2.0
• Requirement of lxml [11] module
Using the compiler is very simple:

uml2django ProjectName DiagramsFileinXML

where ProjectName denotes the name of our project in Django and Diagrams-
FileinXML will contain the diagrams required in XML format.

9.2.3 Django Files Result

The result of the compiler is a project in Django web framework with all files
necessary for execution. In order to do so, we first we find the files necessary for
running the program, i.e.:
• __init__.py: Tells Python that the directory is a python module and can be

imported (and imported from).
• settings.py: Django settings file contains all the configuration of the Django

installation.
• manage.py: It is the first file to be executed. It calls settings.py file to start.
• urls.py: This specifies all the URLs of the different applications in the

project.
A Django project could contain many several applications. Each one of them

represent a different service. Each application has main three files: models.py,
urls.py, views.py.

Once seen how the Django project is, we continue with fine tuning the project.
As mentioned above, we need the intervention of the user in some parts of the
views.py file. The user must modify the skeleton methods with the desired code.

At the end of completing the code, we run our project. To do this we boot the
server and create the database to store our resources properly. When finished, we
are ready to test the web service implementation and make sure it works properly.

Users can use cURL to invoke URIs if they want to use the service. cURL is
a command line tool that is a capable HTTP client and supports most of HTTP
methods, authentication mechanisms, headers etc. [2]. For invoking a PUT method

144

on payment resource with amnt value, on local server, the following command can
be used on cURL:

curl−X PUT − d amount = 115 −d ccName =′′ T homas′′ htt p : //127.0.0.1 :
8000/ bookings/3/payment/

Alternatively, users can also use REST Client available as a plugin for differ-
ent browsers like Mozilla Firefox and Chrome.

9.3 Implementation of a Service Monitor

A service monitor can be used to continuously verify the functionality of an
implemented web service. This monitoring mechanism can keep a check on the
behavior of both the client and the provider. The client is checked for invocation to
the service under right conditions and the provider of the service is constraint to
provide the implementation as specified.

The monitoring mechanism can be implemented in Django by using the be-
havioral information present in our behavioral model. The service monitor is
implemented as a service proxy. It listens for requests from the client, verifies
the conditions to invoke the method and then forward it to the actual service
implementation.

The behavioral model provides a behavioral interface that can be published
with the service as a specification. This gives information about the conditions
in which a method should be invoked on its interface and also about its expected
conditions. The specification of a service interface can be used to build a proxy
interface to test the functionality of that service and to invoke the service in right
conditions.

In this section we show how we have implemented a proxy interface for holiday
room booking service detailed above. In proxy interface, a method is implemented
for each of the methods that are invoked on the REST web service interface using
urllib2. urllib2 is a python module that is used to fetch URLs [8]. In a proxy
interface for holiday room booking service, a GET method on payment resource,
for example, is implemented as:

Listing 9.4: Excerpt of GET view in Proxy Interface
def booking_payment_get(request, bid):

req = urllib2.Request(’http://127.0.0.1:8000/bookings/\%s/payment/
’ \% bid)

try:
response = urllib2.urlopen(req)
the_page = response.read()
return HttpResponse(the_page)

except:
return HttpResponse(status=404)

145

Each GET view returns an HTTP response object. When a POST, PUT or
DELETE method is implemented in the proxy interface, it manipulates the status
codes of the HTTP response objects and asserts them as method pre and post
conditions. An excerpt of holiday room booking service proxy interface that shows
a PUT method on the payment resource is given as follows:

Listing 9.5: PUT method on Payment in the Proxy Interface
def booking_payment_put(request, bid, amnt, ccName):

b = booking_detail_get(request, bid)
r = room_detail_get(request, bid)
c = booking_cancel_get(request,bid)
p = booking_payment_get(request, bid)
pc = booking_confirmation_get(request, bid)
pr = booking_processing_get(request, bid)
if not p.status_code == 200:

pre_p = False
else:

pre_p = True
if b.status_code = 200 and r.status_code == 200 and p.status_code

== 404 and pc.status_code == 404 and pr.status_code == 404
and c.status_code == 404:
values ={’amnt’: 33, ’ccName’: ’Thomas’}
mydata = urllib.urlencode(values)
opener = urllib2.build_opener(urllib2.HTTPHandler)
request = urllib2.Request(’http://127.0.0.1:8000/bookings/%s/

payment/’ % bid, data=mydata)
response = urllib2.urlopen(req)
the_page = response.read()

else:
return = HttpResponse(status=404)

post_p = booking_payment_get(request, bid)
if b.status_code = 200 and r.status_code == 200 and pc.

status_code == 404 and pr.status_code == 404 and c.status_code
== 404 and not pre_p and post_p.status_code == 200:

return HttpResponse(the_page,status=201)
else:

return HttpResponse("not created",status=406)

9.4 Evaluation

In this section we reflect on the decisions taken, see the results and analyze positive
and negative aspects of it. To do this we must define the parameters of how to
study the solution of our compiler. For example:
• Did we get a translation which fully reflects the model?
• How good are the restrictions we have assumed in the models?
• Is creating a python compiler the best solution for this process? Why not

others?
In Model Driven Development (MDD) [99], we try to achieve reliable and

accurate results for a given platform or language from the models. This process
may not always be a fully automated and there may not be a full equivalence

146

between the model and the code obtained, as in our case. This is because the
lack of properties or expressiveness in the model entails the results with lack of
information. We require user intervention to fill in the missing lines of code in
code skeleton that we have generated automatically in order to avoid cluttering of
too much information in the models that may make the models complex.

Some of the restrictions that we have introduced on the models are due to the
fact that the developers need some mechanism to detect relationships or dependen-
cies between resources and other elements. In our design restrictions, the user has
to use certain names to detect certain information. This can be bad as it can lead to
error if we do not take into account the modeling guidelines. It is a compromise
solution, which should be studied for future improvements.

For the code generation from the models, we can find different ways to tackle
the challenge. Transformation languages like ATL or QVT can facilitate this
process. These languages are very useful if we desire an equivalence between the
model and the code, and also if the result is automatic requiring no extra processing
or analysis. Instead in our implementation, we chose to create a python compiler
with greater capacity for compilation and processing of data structures so that we
can analyze different parts of the code.

9.4.1 Advantages

The purpose of these tools is to make life easier for the developer. You can generate
code for a particular language or platform through simply modeling a problem or
system without writing any code. This is the main advantage in developing such
tools.

Another very important point to develop such tools would be to obtain code
without inconsistencies between the model and the code since it is an automated
process which does not involve manual interventions.

Time is another important factor for a programmer. To implement applications
in an agile way, changing just one part of the code allow the developer to devote
more time to testing and different trials. This is another good reason and motivation
for the creation of such tools.

9.4.2 Disadvantages

Not all of this is the panacea of software development. To begin implementing the
compiler, there are always new problems and issues to discuss. Some of them force
you to make wrong decisions, and not always choose the best solution. It may be
the lack of time to develop the application or because the timing of the decision
not occurred to us in time. One decision that could enter into a disadvantage is
that we implemented the interface as skeleton code, and the user has to complete it
afterwards because our primary focus was the implementation of REST interface.
One of the major difficulties that we faced was to determine which views are

147

needed for Django project in addition to the diagrams. We must make complete
pairs of intermediate process information through the views and the URLs.

9.5 Conclusion

In this chapter, we have demonstrated how our service design models are imple-
mented in Django web framework. We have provided a semi automatic code
generation approach. The developers of the systems can fill in the missing code
as required. The tool is implemented using Python and Django web framework.
The resource and URL information is extracted from the resource models and
implemented in models.py and urls.py files, respectively. The information on
methods and their contracts is extracted from the behavioral model and asserted
in views.py. The URL information from urls.py and function information from
views.py are mapped together to redirect URLs to appropriate functionality. We
also show the implementation of a service monitor via a proxy interface that can
continuously verify the functionality of an already implemented service. We also
evaluated the implementation approach for its merits and demerits.

148

Chapter 10

Conclusion

In this thesis, we have presented a model-driven approach to design and validate
web services with stateful and timed behavior that exhibit REST interface features.
The goal of the thesis is to facilitate the service developer in the creation of REST
web services for advance scenarios by providing a holistic approach that spans
through different phases of service development. The conclusion we discuss here
is categorized according to the different research areas that we have worked in and
answers the research questions that we have posed in these areas.

10.1 Design

We have given an approach to design REST web services and their compositions
for advanced scenarios offering stateful behavior. The created web services are
REST compliant such that they exhibit REST interface features of addressability,
connectedness, statelessness and uniform interface. The interfaces of REST web
services and their compositions are modeled using UML class and state machine
diagrams. The composition process is modeled with activity diagram and scenario
models. The design models also provide information about the domain specific
requirements, time restrictions and authorized users that facilitate the service
developer to implement the right functionality.

The service design models provide behavioral REST interfaces that also pro-
vide information on how to use the service correctly. The approach to generate
behavioral interfaces is first applied to a class with the help of UML class and
protocol state machine diagrams. The behavioral information is inferred from
them for all possible cases of UML protocol state machines. A prototype tool is
developed to generate code skeletons with method contracts from UML protocol
state machines. The approach is then applied to the service design models to create
and implement behavioral interfaces for a RESTful web service.

The design approach is first demonstrated with a pedagogical example of hotel
room booking service to explain the concepts of our design approach. It is then

149

applied on a relatively complex worked example of holiday booking composite
RESTful web service from industrial context that shows how timed web services
with stateful behavior in complex scenarios can be built using our design approach.
To the best of our knowledge, our model-driven approach to design behavioral
REST web service interfaces for advanced scenarios has not been addressed before.

10.2 Consistency Analysis

The problem of checking the consistency of models is addressed using seman-
tic web technologies. By using semantic web technologies for the consistency
checking of our design models we not only take advantage of several efforts done
previously to reason ontologies, i.e., to derive facts from them, but also provide a
mechanism for the semantic representation of REST interfaces that can be part of
the semantic web. Our work provides a way to represent the service design models
of a REST web service as an OWL 2 ontology and use ontology reasoners to check
it for any unsatisfiable concepts resulting in service implementations with faulty
behavior. The approach is fully automated thanks to the implemented translation
tool and the existing OWL 2 reasoners. We have also evaluated the performance
of this approach using both valid and mutated models consisting of 10 to 2000
model elements. They are evaluated on the basis of UML to OWL 2 translation
time, and the reasoning time taken by OWL 2 reasoners. The result showed that
the translation and reasoning time on all the models was less than 4.5 seconds in
all cases. This shows that the approach can process relatively large UML models
in few seconds.

10.3 Validation

The validation of service design models and their implementation is done using
UPPAAL model checker. We have implemented a translation tool that translates
design models to UPTA. The service design models are verified for their basic
properties of the models like deadlock freedom, liveness, reachability and safety
using UPPAAL model checker. The service implementation is validated with
a model-based black-box conformance testing tool, i.e., UPPAAL-TRON. The
approach also provides requirement traceability, which is an important part of our
work. By using requirement traceability, whenever a test fails, we can trace-back
the parts of the models from which the failure originated based on the requirements
covered by that test. We have applied our validation approach on a relatively
complex holiday booking composite RESTful web service.

For benchmarking the verification process, we have used the verifyta
command line utility of UPPAAL for verification of the specified 5 properties.
We have used the memtime tool to measure the time and memory needed for
verification. The result showed on average 0.20 seconds and 54996 KB of memory

150

being used. This shows that the current size models leave room for scalability of
the approach. In order to evaluate the efficiency of our approach, we compared
the specification coverage with the code coverage yielded by a given test run
and the results showed 100% edge coverage with 78% code coverage that was
quite promising since we did not model the negative cases. To evaluate the fault
detection capabilities of our approach, we manually created 30 mutated versions
of the original program code of our worked example. The faults are seeded in
those parts of the code that are covered with 100% edge coverage of the model.
Assuming that the original version of the composite web service is the correct
one, we ran 100 test sessions in TRON against it. For each mutated version of the
composite web service, we set the TRON to execute 100 test sessions against it.
Out of the 30 mutated programs, 28 mutants were killed and 2 were alive.

By benchmarking of various features of our testing approach and analyzing the
verification and validation results of our worked example, we have demonstrated the
applicability of our validation approach and its practicality in real world situations.

10.4 Implementation

We have implemented a partial code generation tool in Python that generates
code skeletons from the service design models in Django web framework. The
generated code contains pre-conditions and post- conditions for each method and
the developer only needs to manually input the functionality of the methods. We
have not developed a full code generation tool since we focused primarily on the
interface concerns of the web service. All our worked examples are implemented
using our implementation tool.

We advocate that the web service created using our approach is REST compliant
and can be trusted for the functionality it advertises. The created web services offer
the properties of REST architectural styles that make them scalable, extensible
and allow them to play well with the existing tools and infrastructure of the
web. The uniform interface requirement (use of standard HTTP methods) and the
connectedness requirement (creation of connected resource graph and hyperlinks)
in our approach allows the use of existing web tools and infrastructure like web
crawlers, curl, proxies and caches. The addressability requirement (especially
when using hierarchical addresses) would lead to extensible web services and the
statelessness requirement allows the development of systems that can handle many
service requests simultaneously.

Our approach to design and validate REST web services is novel. The approach
is also fully automated thanks to the tools that we have implemented and those
already available in the industry. The service developer can model the system
graphically using our approach and be positive about the fact that the services
created using them will exhibit REST interface features. Consequently, the devel-
oper is supported with different tools in various stages of the development cycle to

151

create dependable REST web services.
The next step of our work is to integrate different translation tools behind one

interface. One limitation of our approach is to keep the models up to date with
the running system during its life cycle and evolution. We plan to address this
limitation in our future work and study how to quantify the efforts needed to keep
the models updated as the system evolves. In the future, we also plan to address
the complexity of models. For that we plan to split the models into several parts,
via slicing or aspect oriented approaches, each focusing on a different concern of
the system. Nonetheless, the approach provides a promising approach to develop
REST web services for complex scenarios that can be trusted for their functionality.

152

Bibliography

[1] Code coverage measurement for Python – coverage, v. 3.6. https://
pypi.python.org/pypi/coverage. Accessed: 20.08.2013.

[2] cURL. http://curl.haxx.se/. Accessed: 20.08.2013.

[3] Duck Typing. http://c2.com/cgi/wiki?DuckTyping. Accessed:
12.12.2013.

[4] Extensible Markup Language (XML). http://www.w3.org/XML/.
Accessed: 01.12.2013.

[5] HTTP Authentication. http://www.httpwatch.com/
httpgallery/authentication/. Accessed: 20.08.2013.

[6] Nomagic MagicDraw webpage at http://www.nomagic.com/products/magicdraw/.
http://www.nomagic.com/products/magicdraw/. Accessed:
18.11.2012.

[7] Python programming language. http://python.org/. Accessed:
18.06.2013.

[8] urllib2 - extensible library for opening URLs. Python Documentation.
Accessed: 18.10.2012.

[9] Web Services Directory. http://www.programmableweb.com/
apis/directory. Accessed: 2014-05-02.

[10] Web services resources framework (wsrf 1.2). https://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=
wsrf. Accessed: 2013-11-01.

[11] xml, XML and HTML with Python. http://lxml.de/. Accessed:
20.08.2013.

[12] Rosa Alarcon and Erik Wilde. Linking Data from RESTful Services. In
Third Workshop on Linked Data on the Web, Raleigh, North Carolina, 2010.

153

[13] Rosa Alarcon, Erik Wilde, and Jesus Bellido. Hypermedia-driven REST-
ful service composition. In Service-Oriented Computing, pages 111–120.
Springer, 2011.

[14] Subbu Allamaraju. RESTful Web Services Cookbook. O’Reilly, 2010.

[15] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for
real-time systems. In Proceeding of Fifth Annual IEEE Symposium on Logic
in Computer Science, LICS,, pages 414–425. IEEE, 1990.

[16] Rajeev Alur and David Dill. Automata for modeling real-time systems. In
Automata, languages and programming, pages 322–335. Springer, 1990.

[17] Thomas Ambuhler. UML 2.0 Profile for WS-BPEL with Mapping to WS-
BPEL. Universitat Stuttgart, 2005.

[18] Jim Amsden, Tracy Gardner, Catherine Griffin, and Sridhar Iyengar. Draft
UML 1.4 Profile for Automated Business Processes with a mapping to BPEL
1.0. Draft, IBM UK Laboratories, Hursley Park, 1, 2003.

[19] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana.
Business Process Execution Language for Web Services Version 1.1. May
2003. http://www.ibm.com/developerworks/.

[20] Wladimir Araujo, Lionel Briand, and Yvan Labiche. Concurrent contracts
for Java in JML. In 19th International Symposium on Software Reliability
Engineering (ISSRE), pages 37–46. IEEE, 2008.

[21] Xiaoying Bai, Yongbo Wang, Guilan Dai, Wei-Tek Tsai, and Yinong Chen.
A framework for contract-based collaborative verification and validation of
web services. In Component-Based Software Engineering, pages 258–273.
Springer, 2007.

[22] Arindam Banerji, Claudio Bartolini, Dorothea Beringer, Venkatesh Chopella,
Kannan Govindarajan, Alan Karp, Harumi Kuno, Mike Lemon, Gregory
Pogossiants, Shamik Sharma, et al. Web services conversation language
(wscl) 1.0. W3C Note, 14, 2002.

[23] IBM BEA. Microsoft: Web services transactions (ws-transactions), 2002.

[24] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Hakans-
son, Paul Petterson, Wang Yi, and Martijn Hendriks. UPPAAL 4.0. In
Quantitative Evaluation of Systems, 2006. QEST 2006. Third International
Conference on, pages 125–126. IEEE, 2006.

154

[25] Jesus Bellido, Rosa Alarcón, and Cesare Pautasso. Control-Flow Patterns
for Decentralized RESTful Service Composition. ACM Transactions on the
Web (TWEB), 8(1):5, 2013.

[26] Ed Benowitz, Ken Clark, and Garth Watney. Auto-coding UML statecharts
for flight software. In Second IEEE International Conference on Space
Mission Challenges for Information Technology, pages 5–pp. IEEE, 2006.

[27] Tim Berners-Lee, Roy Fielding, and Henrik Frystyk. Hypertext transfer
protocol–HTTP/1.0, 1996.

[28] Dag Björklund, Johan Lilius, and Ivan Porres. Towards Efficient Code
Synthesis from Statecharts. In Workshop of the pUML-Group held together
with the «UML» 2001 on Practical UML-Based Rigorous Development
Methods-Countering or Integrating the eXtremists, pages 29–41. GI, 2001.

[29] Motick Boris, Patel-Schneider Peter F, and Cuenca Grau Bernardo. OWL 2
Web Ontology Language Direct Semantics.

[30] Don Box, Erik Christensen, Francisco Curbera, Donald Ferguson, Jeffrey
Frey, Marc Hadley, Chris Kaler, David Langworthy, Frank Leymann, Brad
Lovering, et al. Web services addressing (WS-Addressing), 2004.

[31] Mustafa Bozkurt and other. Testing web services: A survey. Department of
Computer Science, King’s College London, Tech. Rep. TR-10-01, 2010.

[32] Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service
composition. In International Symposium on Fundamentals of Software
Engineering, pages 207–222. Springer, 2007.

[33] Mario Bravetti and Gianluigi Zavattaro. A theory for strong service com-
pliance. In Coordination Models and Languages, pages 96–112. Springer,
2007.

[34] Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts
for multi-party service composition. Fundamenta Informaticae, 89(4):451–
478, 2008.

[35] Lionel C Briand, Yvan Labiche, and Hong Sun. Investigating the use of
analysis contracts to support fault isolation in object oriented code. In ACM
SIGSOFT Software Engineering Notes, volume 27, pages 70–80. ACM,
2002.

[36] Manfred Broy, María Victoria Cengarle, Hans Grönniger, and Bernhard
Rumpe. Considerations and Rationale for a UML System Model. UML 2
Semantics and Applications, pages 43–60.

155

[37] Felipe Cabrera, George Copeland, Tom Freund, Johannes Klein, David
Langworthy, David Orchard, John Shewchuk, and Tony Storey. Web ser-
vices coordination (ws-coordination). joint specification by BEA, IBM, and
Microsoft, 2002.

[38] M Emilia Cambronero, Gregorio Díaz, Enrique Martínez, Valentín Valero,
and Llanos Tobarra. WST: a tool supporting timed composite Web Services
Model transformation. Simulation, 88(3):349–364, 2012.

[39] M Emilia Cambronero, Gregorio Díaz, Valentín Valero, and Enrique
Martínez. Validation and verification of Web services choreographies
by using timed automata. Journal of Logic and Algebraic Programming,
80(1):25–49, 2011.

[40] Xiaoxia Cao, Huaikou Miao, and Qingguo Xu. Verifying Service-Oriented
Requirements Using Model Checking. In Proceedings of the 2008 IEEE
International Conference on e-Business Engineering, ICEBE ’08, pages
643–648, Washington, DC, USA, 2008. IEEE Computer Society.

[41] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts
for web services. In ACM SIGPLAN Notices, volume 43, pages 261–272.
ACM, 2008.

[42] Yoonsik Cheon. Automated random testing to detect specification-code
inconsistencies. Departmental Technical Reports(CS)Paper 101, 2007.

[43] Yoonsik Cheon and Gary T Leavens. The JML and JUnit way of unit testing
and its implementation. Rap. tech, 2004.

[44] R. Chinnici, J.J. Moreau, A. Ryman, and S. Weerawarana. Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language. June
2007. www.w3.org/TR/wsdl20/.

[45] Ilinca Ciupa and Andreas Leitner. Automatic testing based on design by
contract. In Proceedings of Net. ObjectDays, volume 2005, pages 545–557.
Citeseer, 2005.

[46] Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and
abstraction. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(5):1512–1542, 1994.

[47] Guilan Dai, Xiaoying Bai, Yongbo Wang, and Fengjun Dai. Contract-based
testing for web services. In 31st Annual International Computer Software
and Applications Conference, COMPSAC, volume 1, pages 517–526. IEEE,
2007.

156

[48] Doug Davis, Ashok Malhotra, Oracle Katy Warr, and Wu Chou. Web
Services Transfer (WS-Transfer). World Wide Web Consortium, Recommen-
dation REC-ws-transfer-20111213, 2011.

[49] Birgit Demuth and Claas Wilke. Model and Object Verification by Using
Dresden OCL. In Proceedings of the Russian-German Workshop Innovation
Information Technologies: Theory and Practice,, pages 81–89, 2009.

[50] Gregorio Dıaz et al. Model Checking Techniques applied to the design of
Web Services. CLEI Electronic Journal, 10(2), 2007.

[51] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. Developing
the UML as a formal modelling notation. In Proc. UML’ 98, LNCS, volume
1618, 1998.

[52] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, 2000.

[53] Michael Findling. REST and SOAP: When Should I Use Each (or
Both)? http://edn.embarcadero.com/article/40558. Ac-
cessed: 2013-11-01.

[54] Cormac Flanagan, K Rustan M Leino, Mark Lillibridge, Greg Nelson,
James B Saxe, and Raymie Stata. Extended static checking for Java. In
ACM Sigplan Notices, volume 37, pages 234–245. ACM, 2002.

[55] Ian Foster, Savas Parastatidis, Paul Watson, and Mark Mckeown. How
do I model state?: Let me count the ways. Communications of the ACM,
51(9):34–41, 2008.

[56] William Frakes and Carol Terry. Software Reuse: Metrics and Models.
ACM Computing Surveys (CSUR), 28(2):415–435, 1996.

[57] Xiang Fu, Tevfik Bultan, and Jianwen Su. Synchronizability of conversa-
tions among web services. IEEE Transactions on Software Engineering,
31(12):1042–1055, 2005.

[58] Miguel Garcia and A Jibran Shidqie. OCL Compiler for EMF. In Eclipse
Modeling Symposium at Eclipse Summit Europe, 2007.

[59] José García-Fanjul, Javier Tuya, and Claudio De La Riva. Generating test
cases specifications for BPEL compositions of web services using SPIN. In
International Workshop on Web Services–Modeling and Testing (WS-MaTe),
page 83, 2006.

[60] Eran Gery, David Harel, and Eldad Palachi. Rhapsody: A complete life-
cycle model-based development system. In Integrated Formal Methods,
pages 1–10. Springer, 2002.

157

[61] Nawal Guermouche and Claude Godart. Timed model checking based
approach for web services analysis. In IEEE International Conference on
Web Services (ICWS), pages 213–221. IEEE, 2009.

[62] David Harel. Statecharts: A visual formalism for complex systems. Science
of computer programming, 8(3):231–274, 1987.

[63] Jan Hendrik Hausmann, Reiko Heckel, and Marc Lohmann. Model-based
development of web services descriptions enabling a precise matching
concept. International Journal of Web Services Research (IJWSR), 2(2):67–
84, 2005.

[64] Reiko Heckel, Hendrik Voigt, Jochen Kuster, and Sebastian Thone. Towards
Consistency of Web Service Architectures. In Proceedings of the 7th World
Multiconference on Systemics, Cybernetics, and Informatics, 2003.

[65] Anders Hessel, Kim Larsen, Marius Mikucionis, Brian Nielsen, Paul Pet-
tersson, and Arne Skou. Testing Real-Time systems using UPPAAL. In
Formal Methods and Testing, pages 77–117. Springer-Verlag, 2008.

[66] Adrian Holovaty and Jacob Kaplan-Moss. The definitive guide to Django:
Web development done right. Apress, 2009.

[67] Gerard J Holzmann. The model checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[68] GJ Holzmann. Promela language reference. Bell Labs, 1997.

[69] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irresistible
SROIQ. KR, 6:57–67, 2006.

[70] Ian Horrocks, F. Peter, Patel Schneider, and Frank Van Harmelen. From
S H I Q and RDF to OWL: The making of a web ontology language. J.
of Web Semantics, 1(1):7–26, 2003.

[71] Hai Huang, W-T Tsai, and Raymond Paul. Automated model checking
and testing for composite web services. In Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC),
pages 300–307. IEEE, 2005.

[72] Naseem Ibrahim and Ismail Al Ani. Beyond Functional Verification of Web
Services Compositions. Journal of Emerging Trends in Computing and
Information Sciences, 4, Special Issue:25–30, 2013.

[73] Pertti Järvinen. On research methods. Opinpajan kirja, 2001.

158

[74] Sebastian Kochman, Paweł T Wojciechowski, and Miłosz Kmieciak.
Batched transactions for RESTful web services. In Current Trends in
Web Engineering, pages 86–98. Springer, 2012.

[75] Martin Koskinen, Dragos Truscan, Tanwir Ahmad, and Niklas Grönblom.
Combining Model-based Testing and Continuous Integration. In ICSEA
2013, The Eighth International Conference on Software Engineering Ad-
vances, pages 65–71, 2013.

[76] Janne Kuuskeri and Tuomas Turto. On Actors and the REST. In Web
Engineering, pages 144–157. Springer, 2010.

[77] Markku Laitkorpi, Johannes Koskinen, and Tarja Systa. A UML-based
approach for abstracting application interfaces to ReST-like services. In
13th Working Conference on Reverse Engineering (WCRE), pages 134–146.
IEEE, 2006.

[78] Markku Laitkorpi, Petri Selonen, and Tarja Systa. Towards a model-driven
process for designing restful web services. In IEEE International Conference
on Web Services(ICWS), pages 173–180. IEEE, 2009.

[79] Mounir Lallali, Fatiha Zaidi, Ana Cavalli, and Iksoon Hwang. Automatic
timed test case generation for web services composition. In IEEE Sixth
European Conference on Web Services (ECOWS), pages 53–62. IEEE, 2008.

[80] Jani Lampinen. Interface specification methods for software components.
TKK Reports in Information and Computer Science, 2008.

[81] Kim G Larsen, Marius Mikucionis, and Brian Nielsen. UPPAAL TRON
user manual. CISS, BRICS, Aalborg University, Aalborg, Denmark, 2009.

[82] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer (STTT),
1(1):134–152, 1997.

[83] Gary T Leavens, Albert L Baker, and Clyde Ruby. JML: a Java modeling
language. In Formal Underpinnings of Java Workshop (OOPSLA), 1998.

[84] Andreas Leitner, Ilinca Ciupa, Bertrand Meyer, and Mark Howard. Recon-
ciling manual and automated testing: The autotest experience. In System
Sciences, 2007. HICSS 2007. 40th Annual Hawaii International Conference
on, pages 261a–261a. IEEE, 2007.

[85] Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and Arno
Fiva. Contract driven development= test driven development-writing test
cases. In Proceedings of the the 6th joint meeting of the European soft-
ware engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 425–434. ACM, 2007.

159

[86] Marc Lohmann, Leonardo Mariani, and Reiko Heckel. A model-driven
approach to discovery, testing and monitoring of web services. In Test and
Analysis of Web Services, pages 173–204. Springer, 2007.

[87] Salvatore T March and Gerald F Smith. Design and natural science research
on information technology. Decision support systems, 15(4):251–266, 1995.

[88] Alexandros Marinos, Amir Razavi, Sotiris Moschoyiannis, and Paul Krause.
RETRO: A consistent and recoverable RESTful transaction model. In
Web Services, 2009. ICWS 2009. IEEE International Conference on, pages
181–188. IEEE, 2009.

[89] David Martin et al. OWL-S: Semantic markup for web services. W3C
member submission, 22:2007–04, 2004.

[90] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. Uniform resource
identifier (URI): Generic syntax. 2005.

[91] Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51,
1992.

[92] Nikola Milanovic. Contract-based web service composition. PhD the-
sis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät II, 2006.

[93] Boris Motik, Peter F Patel-Schneider, Bijan Parsia, Conrad Bock, Achille
Fokoue, Peter Haase, Rinke Hoekstra, Ian Horrocks, Alan Ruttenberg, Uli
Sattler, et al. OWL 2 web ontology language: Structural specification and
functional-style syntax. W3C recommendation, 27:17, 2009.

[94] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. Static
consistency checking for distributed specifications. In Proceedings of 16th
Annual International Conference on Automated Software Engineering, pages
115–124. IEEE, 2001.

[95] Iftikhar Azim Niaz and Jiro Tanaka. Mapping UML statecharts to Java Code.
In IASTED Conference on Software Engineering, pages 111–116, 2004.

[96] OMG. OCL, OMG Available Specification, Version 2.0, 2006.

[97] Emilio Ormeno, Marıa Lund, Laura Aballay, and Silvana Aciar. An UML
profile for modeling RESTful services. 13th Argentine Symposium on
Software Engineering (ASSE), pages 119–133, 2012.

[98] Guy Pardon and Cesare Pautasso. Atomic distributed transactions: a REST-
ful design. In Proceedings of the companion publication of the 23rd In-
ternational Conference on World Wide Web companion, pages 943–948.
International World Wide Web Conferences Steering Committee, 2014.

160

[99] Oscar Pastor, Sergio España, José Ignacio Panach, and Nathalie Aquino.
Model-driven development. Informatik-Spektrum, 31(5):394–407, 2008.

[100] Cesare Pautasso. BPEL for REST. Business Process Management, pages
278–293, 2008.

[101] Cesare Pautasso. Composing RESTful services with Jopera. Software
Composition, pages 142–159, 2009.

[102] Cesare Pautasso. RESTful Web service composition with BPEL for REST.
Data & Knowledge Engineering, 68(9):851–866, 2009.

[103] Tom Pender, Eugene McSheffrey, and Lou Varveris. UML bible. Wiley
Chichester, 2003.

[104] Sandy Pérez, Frederico Durao, Santiago Meliá, Peter Dolog, and Oscar Díaz.
RESTful, Resource-Oriented Architectures:A Model-Driven Approach. In
Web Information Systems Engineering–WISE 2010 Workshops, pages 282–
294. Springer, 2011.

[105] Francisco AC Pinheiro and Joseph A Goguen. An object-oriented tool for
tracing requirements. IEEE Software, 13(2):52–64, 1996.

[106] Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente.
OCL-Lite: A Decidable (Yet Expressive) Fragment of OCL. In Proceedings
of the 25th Int. Workshop on Description Logics, volume 846 of CEUR Elec-
tronic Workshop Proceedings, http://ceur-ws.org/, pages 312–322, 2012.

[107] Anna Queralt, Alessandro Artale, Diego Calvanese, and Ernest Teniente.
OCL-Lite: Finite Reasoning on UML/OCL Conceptual Schemas. Data and
Knowledge Engineering, 73:1–22, 2012.

[108] Shearer R, Motik B, and Horrocks I. HermiT: A highly-efficient OWL rea-
soner. Proceedings of the 5th International Workshop on OWL: Experiences
and Directions (OWLED 2008), 2008.

[109] Irum Rauf, M Iqbal, and Zafar I Malik. UML based modeling of web
service composition-a survey. Sixth International Conference on Software
Engineering Research, Management and Applications (SERA), pages 301–
307, 2008.

[110] Amir Razavi, Alexandros Marinos, Sotiris Moschoyiannis, and Paul Krause.
RESTful transactions supported by the isolation theorems. In Web Engineer-
ing, pages 394–409. Springer, 2009.

[111] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly, 2008.

161

[112] Florian Rosenberg, Francisco Curbera, Matthew J Duftler, and Rania Khalaf.
Composing Restful services and collaborative workflows: A lightweight
approach. IEEE Internet Computing, 12(5):24–31, 2008.

[113] Anna Ruokonen, Lasse Pajunen, and Tarja Systa. Scenario-driven approach
for business process modeling. IEEE International Conference on Web
Services (ICWS), pages 123–130, 2009.

[114] Hazlifah Mohd Rusli, Suhaimi Ibrahim, and Mazidah Puteh. Testing Web
services composition: a mapping study. Communications of the IBIMA,
2007:34–48, 2011.

[115] Silvia Schreier. Modeling RESTful applications. In Proceedings of the
Second International Workshop on RESTful Design, pages 15–21. ACM,
2011.

[116] Q.Z. Sheng, B. Benatallah, M. Dumas, and E.O.Y. Mak. SELF-SERV: a
platform for rapid composition of web services in a peer-to-peer environ-
ment. Proceedings of the 28th International Conference on Very Large Data
Bases, pages 1051–1054, 2002.

[117] Mika Siikarla, Markku Laitkorpi, Petri Selonen, and Tarja Systä. Trans-
formations have to be developed ReST assured. In Theory and Practice of
Model Transformations, pages 1–15. Springer, 2008.

[118] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: science,
services and agents on the World Wide Web, 5(2):51–53, 2007.

[119] B. Srivastava and J. Koehler. Web service composition-current solutions
and open problems. Proceedings of ICAPS 2003 Workshop on Planning for
Web Services, pages 28–35, 2003.

[120] Jakob Strauch and Silvia Schreier. RESTify: from RPCs to RESTful HTTP
design. In Proceedings of the Third International Workshop on RESTful
Design, pages 11–18. ACM, 2012.

[121] Toshiro Takase, Satoshi Makino, Shinya Kawanaka, Ken Ueno, Christopher
Ferris, and Arthur Ryman. Definition languages for RESTful Web services:
WADL vs. WSDL 2.0. IBM Reasearch, 2008.

[122] Wei-Tek Tsai, Xiao Wei, Yinong Chen, Bingnan Xiao, R Paul, and Hai
Huang. Developing and assuring trustworthy Web services. pages 43–50,
2005.

[123] WT Tsai, X Wei, Y Chen, and R Paul. A Robust Testing Framework for
Verifying Web Services by Completeness and Consistency Analysis. In

162

IEEE International Workshop Service-Oriented System Engineering, pages
151–158. IEEE, 2005.

[124] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: sys-
tem description. In Proceedings of the Third International Joint Conference
on Automated Reasoning, IJCAR’06, pages 292–297, Berlin, Heidelberg,
2006. Springer-Verlag.

[125] OMG UML. 2.4. 1 superstructure specification. Technical report, document
formal/2011-08-06. Technical report, OMG, 2011.

[126] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

[127] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice:
Hypermedia and Systems Architecture. O’Reilly Media, Inc., 2010.

[128] Stephen A White. BPMN modeling and reference guide: understanding and
using BPMN. Future Strategies Inc., 2008.

[129] Yu Yu Yin, JianWei Yin, Ying Li, and ShuiGuang Deng. Verifying Con-
sistency of Web Services Behavior Using Type Theory. In Asia-Pacific
Services Computing Conference, 2008. APSCC’08. IEEE, pages 1560–1567.
IEEE, 2008.

[130] Hao Yu, Cheng Zhu, Hongming Cai, and Boyi Xu. Role-centric RESTful
services description and composition for e-business applications. In IEEE
International Conference on e-Business Engineering (ICEBE), pages 103–
110. IEEE, 2009.

[131] Guangquan Zhang, Huijuan Shi, Mei Rong, and Haojun Di. Model checking
for asynchronous web service composition based on XYZ/ADL. In Web
Information Systems and Mining, pages 428–435. Springer, 2011.

[132] Haibo Zhao and Prashant Doshi. Towards Automated RESTful Web Service
Composition. pages 189–196, 2009.

[133] Xia Zhao, Enjie Liu, and Gordon J Clapworthy. A Two-Stage RESTful
Web Service Composition Method Based on Linear Logic. In Ninth IEEE
European Conference onWeb Services (ECOWS), pages 39–46. IEEE, 2011.

[134] Xue-Yang Zhu and Zhi-Song Tang. A temporal logic-based software archi-
tecture description language XYZ/ADL. Journal of Software, 14(4):713–
720, 2003.

163

[135] Ivan Zuzak, Ivan Budiselic, and Goran Delac. A finite-state machine ap-
proach for modeling and analyzing restful systems. Journal of Web Engi-
neering, 10(4):353–390, 2011.

[136] Ivan Zuzak and Silvia Schreier. ArRESTed Development: Guidelines for
Designing REST Frameworks. IEEE Internet Computing, 16(4), 2012.

164

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems
157. Muhammad Mohsin Saleemi, Towards Combining Interactive Mobile TV and

Smart Spaces: Architectures, Tools and Application Development
158. Tommi J. M. Lehtinen, Numbers and Languages
159. Peter Sarlin, Mapping Financial Stability
160. Alexander Wei Yin, On Energy Efficient Computing Platforms
161. Mikołaj Olszewski, Scaling Up Stepwise Feature Introduction to Construction of

Large Software Systems
162. Maryam Kamali, Reusable Formal Architectures for Networked Systems
163. Zhiyuan Yao, Visual Customer Segmentation and Behavior Analysis – A SOM-

Based Approach
164. Timo Jolivet, Combinatorics of Pisot Substitutions
165. Rajeev Kumar Kanth, Analysis and Life Cycle Assessment of Printed Antennas for

Sustainable Wireless Systems
166. Khalid Latif, Design Space Exploration for MPSoC Architectures

167. Bo Yang, Towards Optimal Application Mapping for Energy-Efficient Many-Core
Platforms

168. Ali Hanzala Khan, Consistency of UML Based Designs Using Ontology Reasoners
169. Sonja Leskinen, m-Equine: IS Support for the Horse Industry
170. Fareed Ahmed Jokhio, Video Transcoding in a Distributed Cloud Computing

Environment
171. Moazzam Fareed Niazi, A Model-Based Development and Verification Framework

for Distributed System-on-Chip Architecture
172. Mari Huova, Combinatorics on Words: New Aspects on Avoidability, Defect Effect,

Equations and Palindromes
173. Ville Timonen, Scalable Algorithms for Height Field Illumination
174. Henri Korvela, Virtual Communities – A Virtual Treasure Trove for End-User

Developers
175. Kameswar Rao Vaddina, Thermal-Aware Networked Many-Core Systems
176. Janne Lahtiranta, New and Emerging Challenges of the ICT-Mediated Health and

Well-Being Services
177. Irum Rauf, Design and Validation of Stateful Composite RESTful Web Services

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-3070-7
ISSN 1239-1883

Irum
 R

auf
D

esign and Validation of S
tateful C

om
posite R

ES
Tful W

eb S
ervices

