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Abstract 

Alexey V. Kirilin  

Keywords: platinum, aqueous reforming, sorbitol, xylitol, kinetics, reaction mechanism 

Aqueous-phase reforming of renewables for selective hydrogen production in the presence of 
supported Pt catalysts 

The evolution of our society is impossible without a constant progress in life-important areas such 
as chemical engineering and technology. Innovation, creativity and technology are three main 
components driving the progress of chemistry further towards a sustainable society. Biomass, being 
an attractive renewable feedstock for production of fine chemicals, energy-rich materials and even 
transportation fuels, captures progressively new positions in the area of chemical technology. 
Knowledge of heterogeneous catalysis and chemical technology applied to transformation of 
biomass-derived substances will open doors for a sustainable economy and facilitates the discovery 
of novel environmentally-benign processes which probably will replace existing technologies in the 
era of biorefinary. 

Aqueous-phase reforming (APR) is regarded as a promising technology for production of hydrogen 
and liquids fuels from biomass-derived substances such as C3-C6 polyols. In the present work, 
aqueous-phase reforming of glycerol, xylitol and sorbitol was investigated in the presence of 
supported Pt catalysts. The catalysts were deposited on different support materials, including Al2O3, 
TiO2 and carbons. Catalytic measurements were performed in a laboratory-scale continuous fixed-
bed reactor.  

An advanced analytical approach was developed in order to identify reaction products and reaction 
intermediates in the APR of polyols. The influence of the substrate structure on the product 
formation and selectivity in the APR reaction was also investigated, showing that the yields of the 
desired products varied depending on the substrate chain length. Additionally, the influence of bio-
ethanol additive in the APR of glycerol and sorbitol was studied. A reaction network was advanced 
explaining the formation of products and key intermediates. 

The structure sensitivity in the aqueous-phase reforming reaction was demonstrated using a series of 
platinum catalysts supported on carbon with different Pt cluster sizes in the continuous fixed-bed 
reactor. Furthermore, a correlation between texture physico-chemical properties of the catalysts and 
catalytic data was established.  

The effect of the second metal (Re, Cu) addition to Pt catalysts was investigated in the APR of 
xylitol showing a superior hydrocarbon formation on PtRe bimetallic catalysts compared to 
monometallic Pt.  

On the basis of the experimental data obtained, mathematical modeling of the reaction kinetics was 
performed. The developed model was proven to successfully describe experimental data on APR of 
sorbitol with good accuracy. 
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Referat 

Alexey V. Kirilin 

Nyckelord: platina, vattenfasreformering, sorbitol, xylitol, kinetik, reaktionsmekanism 

Vattenfasreformering av förnyelsebara råvaror för selektiv väteproduktion i närvaro av 
platinakatalysatorer  

Utveckling av vårt samhälle är omöjlig utan framsteg av de vetenskapsgsgrenar som är centrala för 
ett modernt människoliv. Den centrala vetenskapen i detta avseende är kemisk teknologi och 
kemiingenjörsvetenskap. Innovation, kreativitet och teknologi är de tre huvudkomponenter, som 
driver kemin framåt mot ett hållbart samhälle. Biomassa, som är en synnerligen attraktiv, 
förnyelsebar råvara för framställning av finkemikalier, energirika material och bränslekomponenter, 
erövrar ständigt nya positioner inom den kemiska teknologin. Kunskap och färdighet i heterogen 
katalys och kemisk teknologi öppnar dörrar för en hållbar ekonomi och möjliggör nya, miljövänliga 
processer, vilka eventuellt kommer att ersätta existerande teknologier i bioraffinaderiernas tidevarv.  

Vattenfasreformering (APR) anses vara en mycket lovande teknologi för produktion av vätgas och 
vätskeformiga bränslen utgående från komponenter i biomassa, t.ex. C3-C6-polyoler. I detta arbete 
studerades vattenfasreformering av glycerol, xylitol och sorbitol i närvaro av burna 
platinakatalysatorer. Olika katalysatorbärarmaterial användes: aluminiumoxid, titandioxid och 
kolmaterial. Katalytiska experiment genomfördes i en kontinuerlig packad bäddreaktor i 
laboratorieskala. 

En avancerad analytisk metod utvecklades för att identifiera reaktionsprodukter och intermediärer, 
som uppstår vid vattenfasreformering av polyoler.  Inverkan av reaktantmolekylens struktur på 
produktbildningen varierade, beroende av reaktantmolekylens kedjelängd. Dessutom undersöktes, 
hur tillsats av bioetanol inverkade vattenfasreformeringen av glycerol och sorbitol. 
Reaktionsschemat som syntetiserades förklarar bildningen av reaktionsprodukter och -intermediärer.   

Strukturkänsligheten för vattenfasreformeringsprocessen demonstrerades genom att använda flera 
kolburna platinakatalysatorer med olika platinaklusterstorlekar i den kontinuerliga packad 
bäddreaktorn. En korrelation mellan katalysatorernas strukturella fysikalisk-kemiska egenskaper 
och experimentella data utvecklades. 

Tillsats av en annan metall (renium, koppar) på platinakatalysatorn undersöktes för 
vattenfasreformering av xylitol.  Bildning av kolväten ökade kraftigt på bimetalliska platina-
reniumkatalysatorer.  

Reaktionskinetiken, d.v.s. reaktionshastigheter modellerades matematiskt på basis av experimentella 
katalytiska data. Modellen beskrev framgängsrikt, med en god noggrannhet vattenfasreformeringen 
av xylitol. 
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Реферат 

Ключевые слова: платина, водяной риформнг, сорбитол, ксилитол, кинетика, механизм 
реакции 

В настоящей работе был изучен водяной риформинг компонентов биомассы с целью 
селективного получения водорода в присутствии нанесенных платиновых катализаторов. 
Развитие современного общества невозможно без постоянного прогресса в таких жизненно 
важных областях, как химическая технология и катализ. Инновации, изобретения и новые 
технологии, являющиеся ключевыми компонентами в обеспечении развития химической 
науки для производства препаратов тонкой химии, энергоемких веществ и топлив, занимают 
все большие позиции в химической технологии. Достижения в области гетерогенного 
катализа и химической технологии, применяемые к превращениям веществ, получаемых из 
биомассы, в скором будущем откроют двери для устойчивой экономики и новых 
экологически безопасных производств, которые однажды придут на смену существующим 
процессам. 
Водяной риформинг (ВР) считается одним из наиболее перспективных процессов 
производства водорода (водород-содержащего газа) и компонентов топлив из веществ, 
получаемых в результате переработки биомассы, таких как, например, полиолы С3-С6. В 
настоящей работе изучался водяной риформинг глицерина, ксилитола и сорбитола в 
присутствии нанесенных платиновых катализаторов. Катализаторы приготовлены путем 
нанесения платины на различные носители, такие как оксид алюминия, титана, а также 
различные углеродные материалы. Каталитические испытания проводили на установке 
проточного типа с неподвижным слоем катализатора в интервале температур 210-225°С при 
давлении 29,3 атм. 
В рамках работы разработан аналитический метод, позволяющий количественно определять 
сложный состав реакционной смеси в процессе водяного риформинга полиолов. Изучено 
влияние структуры субстрата на образование продуктов реакции. Установлено, что длина 
углеродной цепи субстрата влияет на выход целевых продуктов реакции. Кроме того, 
изучено влияние добавления био-этанола как второго компонента реакции ВР сорбитола и 
глицерина. На основании полученных данных предложена схема образования продуктов и 
промежуточных соединений.  
В работе исследована структурная чувствительность реакции на примере серии 
катализаторов Pt/C. Установлена корреляция каталитической активности и физико-
химических свойств катализаторов.  
Установлено влияние второго металлического компонента (Re, Cu) на образование целевых 
продуктов реакции ВР полиолов. Показано, что биметаллический нанесенный PtRe 
катализатор проявляет более высокую активность в образовании углеводородов по 
сравнению с монометаллическим платиновым образцом. 
В рамках исследования разработана кинетическая модель на основе экспериментальных 
данных и представлений о механизме. Предложенная модель успешно применена для 
описания экспериментальных данных ВР сорбитола.  
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1. Introduction 
The evolution of our society is impossible without constant progress in the life-important areas such 

as chemical engineering and technology. Innovation, creativity and technology are three main 

components driving the progress of chemistry further towards a sustainable society.  

Global energy consumption, especially in the developing countries, leads to a huge demand for 

fossil fuels. Uneven distribution of natural resources such as oil, gas and coal encourages scientists 

all over the world to search alternative ways for the production of energy-rich materials from 

renewable resources. Undoubtedly, biomass is one of the most attractive renewable sources 

available on our planet. The importance of the utilization of biomass-derived components to 

produce fuels, energy-rich materials and commodities is justified not only by the limited amount of 

fossil fuel resources, but also by a fundamental interest and unique opportunities to discover novel 

processes and technologies which will replace the existing ones in the future. The utilization of 

renewables in chemical processes is an environmentally benign and important in terms of preserving 

the nature for future generations. Another significant reason to perform research in the area of 

biomass valorization is to educate the population of the planet to avoid unnecessary wasting of 

energy and to consume it in a more deliberate way. Therefore, biomass and biomass-derived 

products in the form of ready-to-use chemicals attract nowadays much attention all over the world1. 

The main components of wood biomass are cellulose (40-50%), hemicelluloses (15-30%) and lignin 

(15-33%)2. There are several pathways of biomass transformation into valuable products and fuels, 

i.e. valorization of biomass. The pathways include combustion, gasification, pyrolysis and 

hydrolysis after delignification which is followed by transformation and/or the upgrading of 

components derived into hydrogen, fuels and chemicals1. Gasification of biomass is mainly used for 

the production of syn-gas (CO and H2) which can be further used in Fischer-Tropsch synthesis, gas-

to-liquids processes and water-gas shift reaction to produce alkanes, alcohols3 and hydrogen. Bio-

oils, being a mixture of oxygenates resulted from catalytic or non-catalytic pyrolysis of wood 

biomass can also be considered for hydrogen production3, however, the yields of desired products 

are still to be improved4. It is important to note that gasification and production of bio-oils are 

extremely energy-consuming processes. Typically, the reactions result in non-selective product 

formation, low yields of the desired products and severe catalyst deactivation. 

A much more attractive way to utilize biomass sources for production of chemicals and fuels 

includes aqueous-phase processing technologies. Thereby, oxygenates which are obtained from 
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lignocellulosic biomass can be catalytically converted to hydrogen3, transportationary fuels5,67 and 

chemicals via aqueous-phase processing8.  

Looking deeper into the chemical composition of wood biomass it can be noticed that 

polysaccharides, i.e. cellulose, hemicelluloses and pectins along with lignin, are the main 

constituents of wood9. Cellulose can be used for production of glucose, which can be hydrogenated 

to sorbitol. The high content of hemicelluloses, xylans, in hardwood species renders this source 

attractive for xylose and further, xylitol production10. In some species of hardwood, the content of 

xylose in the heartwood part can reach 26 wt. %, or even more (dry mass)11. The corresponding 

sugar alcohol obtained by hydrogenation of xylose is xylitol.  

Fig. 1. Production of sorbitol and xylitol from biomass. 

Thus, the two most abundant polyols are sorbitol and xylitol. According to the National Institute of 

Starch, the annual production of sorbitol and xylitol is 800 000 Mt and 200 000 Mt, respectively12. 

Therefore, the availability of natural and renewable sources for sorbitol and xylitol production as 

well as scientific endeavor to investigate this substrate in the aqueous phase reforming process 

encouraged our studies. 

Aqueous-phase reforming, first introduced 

in 2002 by Dumesic and co-workers13, is a 

catalytic transformation of biomass-derived 

oxygenates which allows production of both 

hydrogen14 and hydrocarbons15. 

Oxygenated compounds such as sugars 

(glucose), sugar alcohols (sorbitol) and 

polyols (ethylene glycol (EG) and glycerol) can be converted into H2, CO2 and a mixture of alkanes 
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via the APR process as shown in Fig. 2. In the first step, the oxygenated substrate is transformed 

into H2 and CO. Carbon monoxide reacts further with water presented in excess in the system via 

water-gas shift (WGS) reaction to produce more hydrogen and CO2 as shown in Fig. 2. 

Typically, the reaction is carried out over metal supported catalysts at elevated temperatures (210-

250°C) and pressures (30-50 bar) in the absence13,16 or presence of hydrogen17,18. In a case of 

hydrogen co-feeding together with the substrate solution, the process is called aqueous-phase 

dehydration-hydrogenation (APD/H). Different metal supported catalysts can be utilized for APR13. 

Various metals (Pt, Ni, Pd, Rh, Ru, Ir as well as alloys PtRe, PtNi, NiPd, etc) and support materials, 

have been screened and so far Pt is the most used and studied metal possessing the highest values of 

catalytic activity and selectivity towards desired products. Depending on support or reaction 

conditions (pH, acid additives), the reaction can be driven towards enhanced hydrogen or 

hydrocarbon formation. Different metal oxides (Al2O3, MgO, TiO2, ZrO2 etc.) can be used as a 

support for Pt particles in the APR process13 along with zeolites19 and carbons20. The number of 

publications available in literature devoted to aqueous-phase reforming of ethanol, ethylene glycol, 

glycerol, sorbitol over various catalysts has been growing significantly since 2002. Industrial 

feasibility of the aqueous-phase reforming process is supported by a successful process startup for 

APR by Virent Energy Systems21 and developing of BioReforming Platform combining APR and 

conventional chemical methods for production of diesel, gasoline, jet-fuel and chemicals22. 

The aqueous-phase reforming process which might seem to be a relatively simple system as 
represented by Fig. 2 is in fact a very complicated process. By 2009, there were only a few 
contributions related to the investigation of the mechanistic aspects of this reaction13. In the case of 
C3 substrate (glycerol), the number of products becomes ten. The detailed information on APR of 
higher polyols as well as experimental data on reaction products and intermediates, involved in the 
formation of main products was missing.  It is important to note that development of novel catalytic 
systems and improvement of existing technologies is not possible without understanding the main 
reaction pathways and an understanding of kinetics aspects and optimization of the process 
conditions. Therefore, the main goal of the present doctoral research was a systematic investigation 
of aqueous-phase reforming of C5-C6 sugar alcohols originating from wood biomass. It was 
important to develop an analytical approach allowing investigating reaction products and 
intermediate compounds in the APR of sugar alcohols, to elucidate the main pathways of sugar 
alcohol transformation, to study the effect of the substrate, to optimize the catalytic system, to 
establish a correlation between the catalytic results and physico-chemical properties. 
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2. Experimental part 

2.1 Chemicals 
The following chemicals were purchased from commercial suppliers (Sigma-Aldrich) and utilized 

without further purification. The gases (H2, mixture of 1vol. % He in N2) were supplied by AGA Oy 

(purity >99.999%). Substrates: sorbitol (99.9%), xylitol (99.9%), glycerol (99%), ethanol (99.5%), 

chemicals for the catalyst preparation (H2PtCl6, Pt(NH3)4(HCO3)2; Pt(NO3)2 (assay 15.14%) and 

perrhenic acid (assay 39.4%) solutions were supplied by Johnson Matthey. Titania P90 was used as 

a support from Nippon Aerosil. Titanium carbide (TiC) was purchased from Goodfellow with a 

purity >99.8% and a mean particle size of 75 µm. Platinum precursor, [Pt(NH3)4]Cl 2 was purchased 

from Alfa Aesar with a purity of 99.9%; 65 wt.% HNO3 was purchased from AppliChem as pure 

acid. Deionized water (18 MΩ) was used for the preparation of the catalysts as well as for APR 

reaction.  

2.2 Catalysts 
The Pt catalysts investigated in the present work were supported on different metal oxides, such as 

Al2O3 [I-III], TiO2 [IV], MgAl mixed oxides23 and different carbon supports [V].  

The PtAl2O3 (F 214 XSP) and Pt/C (F 1525 XKT/W) catalysts were supplied by Degussa. The Pt 

catalyst supported on a carbide-derived carbon obtained by chlorination of TiC is denoted as 

Pt/TiC-CDC. The platinum catalysts supported on birch-active carbon Pt/BAC. Platinum was 

deposited on carbon support Sibunit and prepared from H2PtCl6 and Pt(NH3)4(HCO3)2 as a source of 

Pt denoted as Pt/Sibunit (1) and Pt/Sibunit (2), respectively. Detailed descriptions of the catalyst 

preparation supported on titania and carboneous materials can be found in the publication [IV,V].  

2.3 Catalyst characterization  
The catalysts were characterized by manifold techniques in order to investigate the physico-

chemical properties and to establish correlations with catalytic data.  

Thus, impulse CO chemisorption was applied to determine the average Pt cluster size as well as 

metal dispersion [I] (Micromeritics, Autochem 2900). The catalysts were reduced prior to the 

measurement according to the following program: 25–50°C at 5°С×min-1 in He, dwell for 30 min, 

gas-switch to H2, 5°C×min-1 to 250°C, dwell for 2 h, followed by flushing for 60 min in He at 

250°C to remove surface hydrogen. Thereafter the catalyst was cooled to ambient temperature and 
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CO pulses were introduced utilizing 10 vol. % CO in He. In the interpretation of the data, a Pt/CO 

stoichiometry of 1:1 is assumed. 

Surface area measurements were performed by low-temperature N2 physisorption [IV,V]. For 

determination of the specific surface area, BET equation (Pt/Al2O3, Pt-, Re-, Pt-Re/TiO2, Pt/TiC-

CDC, Pt/Sibunit  1 and 2) and Dubinin equation for microporous carbons were applied (Pt/BAC, 

Pt/C (Degussa)).  

Temperature-programmed reduction [I,IV,V] was used to determine the corresponding reduction 

temperature for the catalysts by the AutoChem 2900 instrument. The following program was 

applied: 5°C×min-1 → 400°C. The TPR was measured by placing approximately 0.1 g of catalyst in 

a U-shaped tube which was cooled to 25°C in Ar.  The catalyst was reduced using 5% H2 in Ar with 

the temperature being ramped from 25°C to 400°C (or 800°C for Pt-Re and Re samples) at a rate of 

5°C×min-1 and the hydrogen uptake monitored by a thermal conductivity detector (TCD) 

Temperature-programmed desorption of NH3 [IV,V] was performed using Micromeritics Autochem 

2910 apparatus to determine the acid properties of the catalysts. Prior to the NH3 treatment, the 

catalyst sample (0.1 g) was dried in an oven at 100°C overnight. The sample was then placed in a U-

shape quartz tube and reduced under hydrogen flow (20 ml×min-1) using the following procedure: 

5°C×min-1 to 250°C, dwell for 2 h. The catalyst was then flushed in a flow of He (20 ml×min-1) for 

30 min to remove hydrogen from the catalyst surface. The sample was cooled down to ambient 

temperature and saturated with NH3 (gas mixture 5% of NH3 in He) for 1 h. The gas mixture was 

then switched back to He and the catalyst was flushed for 30 min to remove physically adsorbed 

ammonia. Temperature-programmed desorption was performed in the temperature interval of 25-

225°C at various heating rates (3, 5, 10, 15, 20°C×min-1). After each cycle, the catalyst was treated 

by a mixture of ammonia in helium prior to the TPD measurements as described above. Ammonia 

desorption was monitored by the changes in the TCD signal. Heat of desorption was calculated with 

a standard approach which includes plotting Tp (temperature at maximum of desorption in K) versus 

ln (Tp
2/β) (where β corresponds to a heating rate) followed by calculation of the slope, and then Edes 

[kJ×mol-1]. The number of acid sites for each catalyst was counted as the amount of ammonia 

desorbed upon heating at 3°C×min-1. The values are reported as the amount of NH3 desorbed per 

catalyst weight. The TPD graphs are presented in K. 
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High-resolution transmission electron microscopy (TEM) [V] was performed with LEO 912 

Omega, voltage 120 kV. The samples for TEM were prepared as a suspension in ethanol and for 

calculating the diameter of particles; ca. 500 particles for each sample were taken. 

In situ liquid phase XANES (X-ray absorption near edge spectroscopy) [IV] was performed (for Pt, 

Re and Pt-Re samples24) of the CenTACat School of Chemistry at Queen’s University of Belfast 

(UK) in a homemade cell comprised of a stainless steel autoclave reactor with an opening (cut 

window) and a PEEK (polyether ether ketone) inlet. The detailed experimental procedure is 

described by Hardacre and co-workers24. 

2.4 Reaction procedure 
For the APR studies reported in the present study, a continuous fixed-bed reactor setup (stainless 

steel reactor, d = 4.8 mm, l = 18 cm) equipped with a furnace was used. The reactor setup is shown 

in Fig. 3. In a standard experiment, the catalyst (0.5 g) was mixed with ca. 3 g of quartz sand and 

loaded to the reactor. The catalyst was reduced prior to the measurements with H2 using the 

following program: 25→ 250°C at 5°C×min-1 in H2 for 2 hours, at a H2 flow rate of 30 ml×min-1. 

The reaction was carried out at 225°C and 29.3 bar, at a range of space velocities of 0.9 – 6.0 h–1. 

Weight hour space velocity (WHSV) is defined as mass of substrate fed per mass of the catalyst per 

hour [gsub·gcat
-1·h-1]. An aqueous solution (10 wt. %) of substrate (sorbitol, xylitol, glycerol or 

ethanol) was fed continuously via an HPLC pump.  

Regeneration procedure for Pt/Al2O3 catalyst: PtAl2O3 was regenerated to recover the catalytic 

activity after approximately 120 h time-on-stream. The procedure comprised washing the catalyst 

with acetone followed by reduction in hydrogen flow under conditions described above. 
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Fig. 3. Scheme of the reactor setup for aqueous-phase reforming of sugar alcohols. 

2.5 Analysis of reaction products 
Liquid samples were taken periodically and analyzed by means of high-performance liquid 

chromatography (HPLC), applying an injection volume 2 µl, Aminex HPX-87H column,  eluent 

5mM H2SO4, flow rate 0.6 ml×min-1, 45°C, 70 min) applying a refractive index (RI) detector to 

determine the xylitol conversion. 

Gaseous products were analyzed periodically by means of a micro-GC (Agilent Micro GC 3000A). 

The instrument was equipped with four columns: Plot U, OV-1, Alumina and Molsieve. The micro-

GC was calibrated to perform quantitative analysis for the following gases: H2, CO2, CO, CH4, 

linear hydrocarbons C1-C4 and 1 wt.% of He in N2 was used as an internal standard. Moreover, the 

carbon balance was monitored by means of total organic carbon analysis (TOC-5050 analyzer 

(Shimadzu)) and was confirmed to a degree of 95-100% for all the measurements. 
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2.6 Calculation of yields, selectivities and catalyst activity  
The turnover frequencies (TOF) for Pt and Pt-Re supported catalysts were calculated using the 

following equation for hydrogen: 

.].[][)(
]min)[(][min

1
21

uaDmolМ
molHrTOF

⋅
⋅=

−
−

ν
         (1) 

where r(H2) denotes the rate of H2 formation, υ(M) –moles of Pt and D – dispersion (determined by 

CO chemisorption), and for alkanes 

.].[][)(
]min)[(][min

1
1

uaDmolМ
molalkrTOF

⋅
⋅=

−
−

ν
 (2)  

where r(alk) denotes the rate of the total alkane formation in the gas phase, υ(M) –moles of Pt and D 

– dispersion (determined by CO chemisorption). 

The yield and selectivity to H2 for the APR process were calculated as follows13: 

Yield of H2 (%) = %100
/1.0)(

)( 2 ×
⋅⋅ RMsubstV

Hr         (3) 

where r(H2) – rate of hydrogen production (mol×min-1), V(subst) – solution feed rate (ml×min-1), M – 

substrate molar mass, R – stoichiometric coefficient of H2 formation (11 - for xylitol, 13 – for 

sorbitol). 

The selectivity to hydrogen is SH2 (%)= %100/1
)(

)( 2 ×× RR
Cv

Hv

gasin

      (4) 

where )( 2Hv – moles of H2 formed, )( gasinCv  – moles of carbon in gas, RR – H2/CO2 reforming 

ratio (13/6 for sorbitol, 11/5 for xylitol, 7/3 for glycerol). 

The selectivity to alkanes is Salk (%)= %100
)(
)(

×
gasin

alkanes

Cv
Cv

       (5) 

where )( alkanesCv  – moles of carbon in alkanes and )( gasinCv  – total moles of carbon in gas. 

The hydrogen yield and selectivity to hydrogen and alkanes were calculated in non-conventional 

manner per amount of carbon in gas Cin gas in order to compare the results with data reported in 

literature. 
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3. Results and discussion 

3.1 Catalyst characterization  
The following Pt supported catalysts were selected and examined in APR of polyols within the 

framework of this doctoral research: Pt/Al2O3, Pt/TiO2, Pt-Re/TiO2, Re/TiO2, Pt/TiC-CDC, Pt/AC 

(Degussa), Pt/BAC, Pt/Sibunit. 

The textural properties of the catalysts are summarized in Table 1. 

Table 1. Texture and surface properties of the Pt catalysts 

Catalyst Metal, 
content, % 

Surface area, 
m2×g-1 

Pore 
volume, 
cm3×g-1 

Pore 
diameter, 
nm 

CO 
uptake, 
µmol×g-1 

CO/(total M)  
atomic ratio 

d(Pt) by 
chem., nm  

d(Pt) by 
TEM, nm  

Pt/Al2O3 5 110 0.25 8.2 74.6 0.29 3.9 - 

Pt/TiO2 4 83 0.20 - 49.1 0.24 4.7 - 

Pt-Re/TiO2 4-4 53 0.17 - 103.1 0.25 5.0 - 

Re-TiO2 4 63 0.22 - 59.8 0.29 - - 

Pt/TiC-CDC 2.8 850 0.61 1.4 18.3 0.12 9.0 3.3±1.0 

Pt/C (Degussa) 5 910 0.52 1.5 119.6 0.47 2.4 2.8±1.0 

Pt/Sibunit (1)a 5 339 0.53 2.9 31.3 0..12 9.0 3.4±0.6 

Pt/Sibunit (2)b 5 408 0.47 2.6 104.5 0.41 2.8 1.9±2.1 

Pt/BAC 5 890 0.45 1.2 191.5 0.29 1.5 2.0±1.8 

a- Pt/Sibunit (1) – corresponds to the Pt/Sibunit prepared from (NH3)4Pt(HCO3)2.  
b- Pt/Sibunit (2) – corresponds to the Pt/Sibunit prepared from H2PtCl6, 

The catalysts have Pt loadings between 2.8 and 5 wt.% as can be seen from Table 1. All materials 

are nanoscale supported catalysts with the average size of Pt below 10 nm. Dispersion of the 

catalysts was determined by two different techniques: pulse CO chemisorption and TEM. The TEM 

images along with the particle size distributions are depicted on Fig. 4. In general, both techniques 

showed a good correspondence in terms of the Pt cluster size determination. However, some 

discrepancy in the results was obtained for samples Pt/TiC-CDC and Pt/Sibunit (1). The plausible 

reason for that might be the fact that during TEM imaging only selected parts of the catalytic 

material were exposed to examination, not representing therefore the whole particle size 

distribution. As for the case of Pt/Sibunit (1), the discrepancy was caused in our opinion by the 

partial melting of the Pt particle into the background which in turn complicated the identification of 

metal particles and corresponding size distributions (Fig. 4e) [V]. 
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Fig. 4. TEM image and corresponding particle size distribution of a) Pt/BAC b) Pt/AC (Degussa), c) Pt/TiC-
CDC, d) Pt/Sibunit (1) and Pt/Sibunit (2) catalysts.  
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It is important to note that for all the catalysts examined by TEM, a narrow monomodal particle size 

distribution was observed. 

The catalysts were subjected to temperature programmed reduction (TPR) under hydrogen flow to 

determine the corresponding reduction temperatures. The TPR profiles for the catalysts are shown 

on Fig. 5.  
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Fig. 5. TPR profiles for a) Pt/Al2O3 [I,III], b) Pt/TiO2, Pt-Re/TiO2, Re/TiO2 [IV] and c) series of Pt/C [V] catalysts. 

The Pt/Al2O3 catalyst demonstrated three peaks in a TPR profile: at 73, 180 and 350°C. The first 

two peaks may be attributed to reduction of PtOx species, whereas a high-temperature peak is  most 

likely caused by the interaction of Pt with the Al2O3 support25.  The Pt/TiO2 catalyst demonstrated 

two low temperature peaks of hydrogen uptake (below 100°C) and one at 300-350°C as evidenced 

from the TPR profile shown on Fig. 5b. The TPR analysis of the 4 wt.% Pt – 4 wt.% Re/TiO2 

catalyst showed three peaks at 3°C, 40°C, and 400–600°C26. The first two peaks correspond to the 

reduction of Pt only, in agreement with the TPR of the 4 wt.% Pt/TiO2 catalyst, and to oxygen at the 

interface between Pt and Re, indicating significant interactions between Pt and Re. High 

temperature peaks at 315°C and 380°C were found for 4 wt.% Re/TiO2
26. These high temperature 

peaks could be due to the reduction of ReOx
27 and/or reduction of the bulk titania support. 

The Pt/C catalysts after preparation were reduced using various techniques. The detailed data are 

provided in the experimental section in article [V]. However, as can be seen from the TPR curves, 

formation of Pt oxide species might occur. The high temperature hydrogen consumption peaks 

above 300°C can be assigned to hydrogen spill-over. The hydrogen uptake was very low in the case 

of Pt/BAC, since this catalyst was reduced chemically by HCOOH. During storage, the catalytic 

material is partially oxidized as revealed by the TPR curve: the peak at 125°C corresponds to the 

reduction of PtOx species.  
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Prior to all the tests, the catalysts were pre-reduced 

under hydrogen flow for 2 hours at 250°C. Therefore, 

treatment at 260°C for 2 hours under hydrogen flow 

leads to a complete reduction of Pt. Thus, the Pt 

oxidation state for all the Pt supported catalysts can be 

regarded as Pt(0). 

The acidic properties of the Pt catalysts were evaluated 

by temperature-programmed desorption of ammonia. 

The data are collected in Table 2.  

The detailed data on acidity measurements and 

corresponding NH3-TPD profiles are reported in [IV] 

and [V] for Pt/MOx and Pt/C, respectively. The NH3-

TPD profile for Pt/Al2O3, shown as an example, exhibited a peak at 349-386 K, depending on the 

heating rate (Fig. 6a). Desorption of ammonia at these temperatures implies a weak interaction of 

NH3 and acid sites of the catalyst being mainly physisorption rather than acid-base interaction. 

Thus, Pt/Al2O3 is a catalyst with a low acidity and does not contain, according to NH3-TPD data, 

strong and medium strength acid sites. Moreover, the calculated heat of desorption is 52 kJ×mol-1 is 

a very low value corresponding to a weak interaction of ammonia and acid sites of the support (Fig. 

6b). 

  

Fig. 6. Determination of acidity for Pt/Al2O3 by NH3-TPD (a) and calculation of Edes (b) [IV]. 

  

  

Table 2. Acidic properties of Pt supported 
catalysts 

Catalyst NH3 desorbed*, 
µmol×g-1 

Edes (NH3), 
kJ×mol-1 

Pt/Al2O3 317 52 

Pt/TiO2 279 47 

Pt-Re/TiO2 220 68 

Re-TiO2 - - 
Pt/TiC-CDC 6 45 
Pt/C (Degussa) 47 51 
Pt/Sibunit (1)a 103 53 
Pt/Sibunit (2)b 92 54 
Pt/BAC 158 51 

a- Pt/Sibunit (1) – corresponds to the Pt/Sibunit 
prepared from (NH3)4Pt(HCO3)2. b- Pt/Sibunit (2) – 
corresponds to the Pt/Sibunit prepared from 
H2PtCl6, 
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The NH3-desorption curves were recorded for all the catalysts investigated in the present work. 

Quantitative data on acidity are given in Table 2. As can be seen, the higher values of acidity were 

observed for catalysts supported on metal oxides, whereas Pt/C possessed a moderate amount of 

acidic sites capable of adsorbing ammonia molecules in the range of 6-158 µmol×g-1. Pt/Al2O3 

demonstrated a higher acidity compared to the samples supported on TiO2. In addition to a 

significant impact on acidic properties of the material28 by addition of Re, it leads to formation of 

stronger acid sites on the catalyst surface. However, the total number of acid sites is diminished 

after addition of Re as can be noticed from Table 2. The acidities of the Pt/C catalysts decrease in 

the following order: Pt/BAC > Pt/Sibunit (2) > Pt/Sibunit (1) > Pt/C (Degussa) > Pt/TiC- CDC. 

Generally speaking, the surface acidity of carbon materials is determined by the surface chemistry 

of the carbons, i.e. by the functional groups presented on the carbon surface29. The fact that some 

catalyst materials exhibiting higher values of Edes possessing less number of acid sites is explained 

by the difference in the nature of the carbon material, Pt source as well as a catalyst preparation 

technique.  

3.2 Mass transfer effects 
Prior to obtaining the experimental catalytic 

data, the absence of external and internal 

diffusion limitations was checked for the APR 

of sorbitol. In order to study the influence of 

external mass transfer limitations, a series of 

experiments was performed at different contact 

times (Fig. 7). The linear dependence of the 

conversion versus contact time reflects the 

absence of external mass transfer limitations. 

In order to verify the absence of internal 

diffusion limitations the Weisz-Prater criterion was used30. Due to this criterion no pore diffusion 

limitation occurs, if the Weisz-Prater modulus 

eff

obs

cD
Rr 2

=Φ             (6) 

for the first order reaction is below unity (Φ < 1 ), for zero order reaction Φ < 6 and for the second 

order reaction the modulus is below 0.3. In equation (6) robs — maximal initial reaction rate, R — 

 
Fig. 7. Dependence of the substrate conversion on contact 
time between the substrate and the catalyst [VI].. 
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the mean radius of the catalyst particle, c — the substrate concentration. The largest radius of the 

Pt/Al2O3 catalyst particle is 1.25×10-4 m (125 µm).  

The effective diffusion coefficient (Deff) of substrate (sorbitol) in water is defined as
χ
ξDDef = , 

where D is the substrate diffusion coefficient in the liquid phase,ξ χ are catalyst porosity and 

tortuosity, respectively. Typical values of porosity are in the range 0.3-0.6, while values of 

tortuosity are varied from 2 to 5. 

Equation of Wilke-Chang was used for calculation of the molecular diffusion coefficient: 

6.0
)(

218 )(104.7

AbB

B
AB

o

V
TMD

η
φ−×=  [cm2/s]         (7) 

The dimensionless association factor φ is taken 2.6 for water, MB is the molecular weight of solvent, 

ηB = 0.11888 cP is solvent dynamic viscosity at reaction temperature T (K) and pressure (estimated 

at 498 K and 30 bar), Vb(A) = 122.15 cm3×mol-1 is the liquid molar volume at solute’s normal boiling 

point. Assuming ξ/χ = 1/10 the diffusion coefficient of sorbitol is calculated to be  

Def =1.18×10-9 m2/s (498 K and 30 bar). The concentration of the substrate in the solvent is equal to 

0.515 mol×l-1. For the maximal sorbitol reforming rate (1.93×10-4 mol×l-1×s-1 calculated at 2.7 h-1 

[III]) obtained for the Pt/Al2O3 catalyst the estimated Weisz-Prater modulus was amounted to 

Φ=0.005. It indicates that substrate diffusion inside the catalyst pores does not affect the reaction 

rate. 

3.3 Catalyst stability studies 
All the catalysts described in the present work were subjected to long-run stability tests to 

investigate possible deactivation. As for example, Fig. 8 displays time-on-stream changes in 

conversion and selectivity to hydrogen of two Pt supported catalysts in the APR of xylitol.  

  

Fig. 8. Performance of Pt/Al2O3 (a) and Pt-Re/TiO2 (b) with time-on-stream in the APR of xylitol. Conditions: 
Conditions: 225°C, 29.3 bar, 10 wt.% xylitol solution, 30 ml×min-1 nitrogen flow rate, 1.8 h-1 [III,IV]. 
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The Pt supported catalysts demonstrated a stable performance within more than 140 h time-on-

stream [I, III]. Minor deactivation expressed by decrease in selectivity to hydrogen was observed in 

a case of Pt/Al2O3. However, the catalyst may be subjected to a regeneration procedure (see 

Experimental part for details) and the selectivity towards the desired product may be regained. In 

the article [III] we explain the change in the selectivity towards hydrogen by the fact that during 

aqueous-phase reforming under severe hydrothermal conditions, γ-Al2O3 might transform into 

boehmite. In fact, the transformation of unsupported γ-Al2O3 into boehmite is completed within 10 

hours under similar experimental conditions; however, the presence of Pt leads to an increase of the 

hydrothermal stability of the material and retards this transformation process as stated by Ravenelle 

et. al.31. Furthermore, as shown recently by the same research group32, the presence of a polyol 

substrate (sorbitol, glycerol) significantly reduces the boehmite formation compared to hot water. 

Moreover, the stabilizing effect was even more profound in the case of sorbitol compared to 

glycerol. It is concluded32 that higher stability in the presence of polyol substrates was due to 

formation of protective carboneous layer containing different functional groups which prevents 

formation of boehmite. On the other hand, the deposition of carboneous layer led to a significant 

blockage of the metal surface area. Therefore, during APR of xylitol, formation of carboneous 

layers might take place thus stabilizing the catalytic material: as can be seen, the conversion does 

not change with time-on-stream (TOS). Nevertheless, the blockage of the metal surface area might 

lead to the decrease in hydrogen selectivity. The fact that regeneration procedure indeed helped to 

regain the selectivity implies that washing of the catalyst layer with acetone followed by reduction 

in hydrogen flow at 225°C partially removes adsorbed carboneous species rescuing the metal 

surface area which in turn leads to the improvement in selectivity. 

Bimetallic Pt-Re sample supported on TiO2 showed insignificant deactivation (less than 5% within 

150 h TOS) [IV]. All the catalysts supported on carbons demonstrated high stability during long-run 

tests. For example, changes in conversion of xylitol and selectivity to hydrogen were within 10% 

after 120 h performance of Pt/TiC-CDC with time-on-stream. Other Pt/C catalysts also 

demonstrated a stable behavior without any noticeable deactivation [V].  

3.4 Identification of reaction products [I] 
The main products which are formed during aqueous-phase reforming of sorbitol are H2, CO2, and a 

mixture of alkanes in the gas phase as well as oxygenated products which are mainly present in the 

liquid phase (Fig. 9). As has been mentioned earlier, transformations of the initial polyol result in 
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formation of H2 and CO at the first step. Carbon monoxide is then converted via water-gas-shift 

reaction which takes 

place under the similar 

experimental conditions 

to form CO2 and 

additional hydrogen 

molecules16. However, 

hydrogen formed may 

be involved in side 

hydrogenation processes of C=C or C=O bonds as well as hydrogenolysis reactions leading to its 

consumption and formation of hydrogenated intermediates. The gaseous products were collected in 

bottles and further analyzed by means of micro-GC and GC-MS. Therefore, the analysis of gas-

phase products revealed formation of C2-C6 alkanes in the gaseous phase. The concentration of 

hexane, however, was very low. It is important to note that CO did not appear among the reaction 

product (which in fact means that its concentration is below the detection limit by micro-GC 

being~100 ppm). Total organic carbon analysis was applied to monitor the carbon balance during 

the APR reactions. In all the experiments, the carbon balance was 95-100%. 

In order to investigate the type and structure of intermediates formed as well as structure of liquid-

phase products, an approach comprising up-to-date analytical methods was developed and applied. 

The schematic representation of the method is shown in Fig. 10. To identify the volatile compounds, 

the solid-phase micro-extraction method was used (SPME). In brief, the method includes adsorption 

of volatiles by the carbon 

polymer coated fiber 

followed by GC-MS 

analysis of the adsorbed 

molecules33. Enormously 

large amount of products 

(> 260) can be formed 

during the APR of 

sorbitol [I] as has been 

shown by GC-MS, 

HPLC and SPME. 

 
Fig. 10. The scheme representing analytical tools applied to investigation of reaction 
prodcuts in the APR of sorbitol. 

- Volatile products

APR products
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Micro-GC GC-MS HPLC TOC

SPME + GC-MS
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OH OH OH
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H2, CO2, alkanes

oxygenates

100%

Fig .9. Distribution of products between gas and liquid phases in the APR of sorbitol. 
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However, the concentrations of most of these products were negligible; therefore, 25-30 main 

components might be selected and considered as reaction intermediates and products. They include 

mainly ketones, alcohols, furanes, cyclic ethers, carboxylic acids, etc [I]. The composition of the 

reaction mixture as well as pathways of products formation will be discussed below. 

3.5 Aqueous-phase reforming of sugar alcohols: effect of the substrate  

structure [II,III] 

As mentioned above, aqueous phase reforming of polyols results in formation of hydrogen and CO2 

as the main products in the gas phase. Additionally, a mixture of hydrocarbons is also formed.  

Typical curves illustrating conversion of the initial substrate and selectivity to hydrogen are shown 

on Fig, 11. 

  

Fig. 11. Conversion of the substrate and selectivity to H2 as a function of space velocity [III]: a) sorbitol, b) xylitol [III]. 

As can be seen, the conversion decreases for both substrates as WHSV increases. This is caused by 

shorter contact times between the catalyst and the feed at higher values of space velocity. Hydrogen 

formed during the APR process is inevitably involved in side-reactions such as hydrogenolysis of 

the initial substrate or hydrogenation of dehydrated intermediates, which contributes to its 

consumption and results in a lower selectivity towards hydrogen. 

Moreover, hydrogen which is formed during APR of xylitol may be consumed in hydrogenolysis of 

C-C and C-O bonds of the initial substrate and intermediate compounds. These reactions 

considerably lowered the yield and selectivity of APR process towards hydrogen in the case of 

sorbitol [I]. 

At lower space velocities, the contact time of the feed and the catalyst in hydrogen rich conditions is 

higher. Therefore, hydrogen consuming reactions contribute to a larger extent and depletion in the 
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selectivity is observed. This explanation is in perfect correlation with previous experimental results 

of Huber and Li obtained for APD/H process17. 

The higher selectivity observed for the substrate with a shorter carbon chain can be attributed to the 

lower probability of side-reactions because hydrogen which is formed participates in many different 

side-reactions. Such a tendency was also observed for the following sequence: methanol – 

ethyleneglycol – glycerol – sorbitol13 wherein the yield of H2 increased as follows:  

sorbitol < glycerol < ethyleneglycol < methanol, 

thus highlighting that the substrates bearing less carbon atoms in a chain are more selective in terms 

of hydrogen production.  Moreover, higher rates of hydrogen production were earlier observed for 

glycerol in comparison to sorbitol [II]. Similar trends have been observed over Pt-Re/C catalysts; 

therefore, the selectivity and hydrogen yield depend on the nature of the substrate34. 

Generally, the yield of H2 increases with a decrease in WHSV and goes through a maximum in both 

cases [III]. The yield of H2 is higher for xylitol throughout the range of the space velocities studied. 

Thus, the highest yield corresponding to 32% was observed for xylitol at 1.8 h-1, while the 

maximum yield for sorbitol was 21%, at the same space velocity. 

During APR, mainly formation of linear alkanes was observed. In general, the alkanes comprised 

ethane, propane, n-butane and n-pentane in the case of xylitol [III].  
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Trace amounts (<0.1%) of n-hexane 

were detected in the case of sorbitol 

[I,III]. Selectivity profiles for both 

substrates are shown in Fig. 12. 

It can be seen that, in both cases, the 

selectivity to alkanes decreases with an 

increase in space velocity. These data 

coincide well with the data on H2 

selectivity (Fig. 11). Obviously, 

hydrogen is involved in the formation 

of alkanes from oxygenated substrates 

as also reported in earlier studies16. Therefore, formation of alkanes at lower values of WHSV is 

favored, explaining the higher alkane selectivity. 

Depending on the space velocity, the distribution of carbon presented initially in the substrate 

varied. The carbon content in the gas phase increases with an increase in contact time between the 

catalyst and the feed. Therefore, the amount of carbon-containing products is higher at higher 

substrate conversions. This tendency is valid for all the substrates investigated and for all the 

catalytic systems. 

As has been mentioned above, the liquids-phase product formation takes place during APR of 

polyols. The detailed study on the composition of liquids phase in the aqueous phase reforming of 

sorbitol is reported in [I]. It is important to note that similar composition of the liquids phase 

mixture has also been observed for the APD/H process of sorbitol by Li and Huber17.  

The composition of the liquid phase in APR of xylitol, at 0.9 h-1, is depicted in Fig. 13. 
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Fig. 13. Composition of the liquid phase in APR of xylitol. 95% of all compound present in the liquid phase are 
detected. Carbon content in the liquid phase is 14% [III]. 

 
Fig. 12. Comparison of selectivities to alkanes in APR of sorbitol 
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It was possible to identify 70-90% of the liquid phase products in the APR of sorbitol [I], while for 

xylitol up to 95% of compounds presented in the liquid phase were detected [III]. A comparison of 

the liquid phase composition is given in Table 3. 

Table 3. Liquid phase composition for APR of xylitol and sorbitol at0.9 h-1 [I, III]. 

Substrate 
Carbon in 

liquid 
phase, % 

Product distribution,% Total 
products 

detected, % alcohols diols ethers ketones acids other 
products 

Xylitol 13.2 16.4 27.2 7.0 1.6 36.8 11.0 89.0 
Sorbitol 24.4 17.3 49.9 4.2 5.0 4.9 18.7 81.3 

 

It can be seen, that the liquid phase is composed mainly of mono- and bifunctional products 

including linear alcohols, diols, ethers, ketones and acids. At the long contact times and therefore at 

complete conversion of xylitol, most of the carbon is presented in the gas phase. Meanwhile, only 

thermodynamically stable compounds which do not further undergo transformations are present in 

the liquid phase under these experimental conditions. Under the sane experimental conditions, more 

carbon stays in the liquid phase in the case of sorbitol compared to xylitol. The composition of 

liquid phase is similar in xylitol and sorbitol APR. However, in the case of xylitol a significantly 

lower amount of diols was formed compared to sorbitol. On the other hand, during APR of sorbitol, 

the amount of carboxylic acids detected in the reaction mixture was 4.9%, whereas for the case of 

xylitol, the amount was substantially higher – 36.8%. 

On the basis of the experimental data obtained from reforming of sorbitol [I,III[ and xylitol [III], 

the analysis of the selectivities towards the main products (H2, CO2, alkanes) and consideration of 

the liquid phase composition, the advanced scheme describing the main pathways of polyols 

transformations under APR conditions was proposed (Fig. 14). 

Moreover, the scheme proposed takes into account the results obtained earlier by other research 

groups on elucidation of the reaction pathways of polyols16,17,35. 
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Fig. 14. The main pathways of xylitol transformation during aqueous-phase reforming [III]. 

 

Degradation of the initial substrate may occur via various routes as recently was reported for 

glycerol35. However, the number of possible processes involving metal and acid sites of the 

catalytic material thereby influencing the intermediate formation in the case of C5 and C6 polyol 

species is much higher compared to glycerol. Generally speaking the formation of the same 

intermediates, for instance, carboxylic acids can proceed via different routes. We have reported 

previously that initially a molecule can undergo dehydrogenation on the metal sites leading to the 

formation of short-lived aldehyde species not detected in the liquid phase (Fig. 14, Pathway 1). The 

aldehyde species may react with water to form acetals. This reaction can proceed over acid sites of 

Al2O3. The acetal intermediate may further undergo dehydrogentaion which leads to the formation 

of carboxylic acid. Aldehydes can undergo decarbonylation to form polyols with shorter carbon 

chains as shown by Wawretz et al.35. Carbon monoxide eliminated during this step is converted to 

H2 and CO2 via water-gas shift reaction. Moreover, the formed H2 may participate in the 

hydrogenolysis of C-C and C-O bonds either of the initial substrate or of any oxygenated 

intermediates16,17,35 [III]. 

Elimination of either CO from the aldehyde intermediates (Pathway 1) or CO2 from carboxylic 

group (Pathway 3) leads to the formation of polyol species with a shorter carbon chain, for instance, 

erythritol. This compound may undergo hydrogenolysis of the C-O bond in the presence of 

hydrogen on Pt, resulting in formation of less oxygenated molecules such as diols. This can be a 

plausible explanation for the formation of butanediols (butanediol-1,2 and butanediol-2,3) under 
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experimental conditions (Fig. 14). Butanediols may in turn be further hydrogenated leading to 

butanols (butanol-1 and butanol-2) which were also detected. Elimination of the hydroxyl function 

from butanols results in formation of butane which is present in the gas phase during APR of xylitol 

and sorbitol as discussed above. Furthermore, dehydrogenation of butanol-2 over platinum surface 

can be a plausible explanation for butanone-2 formation. 

Erythritol being a polyol compound may be transformed via the reaction pathway 1 to glycerol and 

further to ethylene glycol which were both found in the reaction mixture in the liquid phase during 

the experiments. Formation of acetic acid, found in the liquid phase for both substrates, may follow 

pathways similar to butanoic acid formation.   

Likewise, the initial polyol may undergo dehydration at terminal carbon atom to form carbonyl 

compounds (Pathway 1). Furthermore, the carbonyl group can be hydrogenated in the presence of 

hydrogen to form a polyol species with less oxygen atoms than in the initial polyol. Repetition of 

these steps can lead to formation of the final mono- or bifunctional compounds without scission of 

the carbon chain, such as pentanediol-1,2, which were detected in the reaction mixture (Fig. 14). 

It can be assumed that the initial polyol can undergo dehydration resulting to cyclic intermediates 

with a carbonyl function (Fig. 15). The carbonyl group can be hydrogenated over platinum surface 

resulting in formation of a cyclic ether with three hydroxyl groups. Repetition of several 

dehydration/hydrogenation steps or cleavage of C-O bonds via hydrogenolysis on platinum clusters 

may lead to the formation of cyclic 2-methylpyrane. It is worth mentioning that in the presence of 

these compounds was confirmed in the liquid phase in APR of xylitol at 0.9 h-1. 
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Fig. 15. Formation of 2-methyltetrahydrofuran during APR of xylitol [III]. 

Meanwhile, the substrate – xylitol – may undergo dehydration on the terminal position to form enol 

leading to a ketone which can be hydrogenated further on the platinum surface to a corresponding 

alcohol which in turn can undergo further transformations. In the APR of C5-C6 polyols, the 

contribution of other reactions such as retro-aldol reaction catalyzed by acidic/basic sites of the 

support might be significant along with various dehydration/hydrogenation processes [I]. The 

hypothesis that intermediate products can react with each other is proven by APR experiments with 

sorbitol-ethanol mixtures [II]. It was observed that addition of ethanol to sorbitol improved the 
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hydrogen yield and resulted in less amount of side products formed. It has been assumed that 

ethanol being much more reactive under APR conditions compared to sorbitol reacted with 

intermediate species thus enhancing the process of hydrogen formation from sorbitol. 

3.6 Aqueous-phase reforming of polyols over Pt/MOx: the effect of support 

properties and Re addition [IV] 
Production of hydrogen and hydrocarbons from polyols via APR has bifunctional nature16. As has 

been shown previously, dehydration reactions mainly occur on acid sites of support, whereas 

hydrogenation and hydrogenolysis reactions take place over metallic sites. Recently Menezes et. al. 

has demonstrated that the nature of the catalyst support has a significant impact on hydrogen 

formation in APR of glycerol36. Guo et. al37 also revealed that the acid-basic properties of the 

support substantially influence the activity of the catalytic material in terms of hydrogen production. 

The more basic is the catalytic support, the more the reaction is directed towards hydrogen 

formation. Hence, formation of hydrocarbons is supposed to be facilitated over more acidic 

supports. However, the supports with substantial acidic properties suffer from low stability under 

severe hydrothermal conditions. Therefore, additional acidity to the catalytic material can be 

imposed by introduction of a second metallic component. It is known that the addition of Re to Pt 

leads to an increase in the surface acidity of the resulting material since Re is withdrawing electron 

density from Pt thus forming slightly positive charge on the noble metal38. Moreover, PtRe alloys 

are probably the most important for the chemical industry39. Therefore, Pt supported on titania was 

chosen to investigate the effect of the support, and Pt-Re/TiO2 catalyst was utilized to study the 

effect of the Re addition on the product formation in APR. 

Platinum supported on titania was anticipated to demonstrate inferior performance in terms of the 

hydrogen formation compared to alumina supported catalyst since the basicity of this support is 

lower37. Indeed, significantly higher selectivities and yields of hydrogen were observed in  
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the whole range of space velocities studied (Fig. 16). These results are in good correspondence with 

literature data on APR of glycerol over Pt supported on metal oxides37. 

The effect of the support basicity was also demonstrated in the APR of xylitol over Pt/Mg(Al)Ox 

catalysts. Under semi-batch conditions, Pt/Mg(Al)O was proven to be more active in APR of xylitol 

in terms of the H2 production compared to Pt/Al2O3 and it also displayed higher H2 selectivity and 

suppressed alkane formation (see publication 1 from the list of related publications). This trend has 

been previously observed in glycerol APR23. The use of a basic support Mg(Al)O suppressed 

methane formation, a side reaction which typically causes a decrease of the H2 selectivity. At lower 

feed flows, the xylitol conversion was higher in the case of Pt/Al2O3 than Pt/Mg(Al)O; the H2 

production was higher for the latter catalyst. The higher selectivity of Pt/Mg(Al)O was in 

accordance with the results obtained under semi-batch conditions. 

In the aqueous-phase reforming process, formation of hydrogen and alkanes are competing with 

each other. Moreover, formation of alkanes requires substantial amounts of hydrogen since it 

proceeds through multiple deoxygenation steps. Therefore, additional acidity is required if the aim 

is to synthesize hydrocarbons in the aqueous phase reforming. Recent studies on bimetallic Pt-Re 

catalysts supported on carbons revealed elevated hydrocarbon formation during APR of glycerol 

compared to monometallic catalysts40. The study of Zhang et. al. attempted to determine the 

reasons for that behavior reporting an increase in Pt charge with an increase of amount of Re 

added41. In the present study, it was| demonstrated that addition of Re to Pt/TiO2 has a significant 

effect on catalytic properties of the material. Essentially higher conversions of xylitol were 

observed in the case of bimetallic catalyst compared to the monometallic one supported on titania 

(Fig. 16a). Lower selectivity to hydrogen in the case of the Pt-Re sample compared to the Pt/TiO2 

catalyst imply that the addition of Re changes surface acid-basic properties of the catalytic 

material substantially. As anticipated, with lower selectivities and yields to hydrogen, PtRe 

bimetallic catalyst is slightly superior in terms of hydrocarbon formation as can be seen from Fig. 

16c. It is important to note that Re itself has no remarkable catalytic activity in the APR process 

as revealed by many studies on glycerol APR28,34,40. The addition of Re changes both the number 

of acid sites and their strength. Zhang et al. demonstrated that the addition of Re increases the 

amount of acid sites in Pt/C catalysts41. In the present study, it was demonstrated that in the case 

of titania supported Pt catalysts, the addition of Re in fact leads to a decrease in the number of 

acid sites; however, the strength of these acid sites slightly increases. Therefore, the Pt-Re/TiO2 

Fig. 16. Comparison of Pt/Al2O3 and Pt(M)/TiO2 catalysts in APR of xylitol [IV]. 
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has a better performance in terms of hydrocarbon production while monometallic catalyst is more 

suitable for production of hydrogen. 

The dramatic effect of the catalyst acidity on hydrocarbon formation in the APR was also observed 

over a series of Pt supported on various carbon carriers [V]. The textural and acidic properties of the 

catalysts studied are presented in Table 1 and Table 2, respectively. 

The rate of alkane formation and H2/CO2 ratio are 

influenced dramatically by the amount of acid sites 

on the catalyst surface as illustrated by Fig. 17. As 

can be seen from Fig. 16, with an increase in the 

total acidity of the catalytic material selectivity to 

H2 decreases, while, the rate of hydrocarbon 

production increases with an increase in Pt/C 

acidity. 

Textural properties of Pt/C catalysts have a 

significant impact on the catalytic performance of 

these materials in APR of xylitol. Thus, results obtained at 3.0 h-1 showed that the highest 

conversion of xylitol was achieved in the case of Pt/Sibunit (1) catalyst (32%). Pt supported on TiC-

CDC was able to convert 22% of xylitol, whereas the conversion for Pt/BAC and Pt/Sibunit (1) was 

22 and 15%, respectively. The Pt/C (Degussa) demonstrated the lowest value of the xylitol 

conversion among the Pt/C catalysts investigated – 8%. 

Thus, the catalysts can be placed in the following order 

on the basis of xylitol conversion: Pt/Sibunit (1) > 

Pt/TiC-CDC > Pt/BAC > > Pt/Sibunit (2) > Pt/C 

(Degussa). 

Conversion of the substrate in the APR does not 

represent itself the transformation into target products 

since the initial feed can be destructed via several 

pathways including dehydrogenation and dehydration 

steps (Fig. 18). The ratio H2/CO2 is of high significance 

in the APR process displaying the potential of Pt/C catalysts to selectively produce hydrogen. 

Moreover, as has been mentioned above, formation of hydrogen is accompanied with production of 

 

Fig. 17. Dependence of alkane formation rate and 
H2/CO2 ratio in APR of xylitol versus acidity of Pt/C 
determined by NH3-TPD [V].  
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CO2 in the APR process. The corresponding H2/CO2 

ratios at xylitol conversions ca. 10-12% are shown on 

Fig. 19. All catalysts showed a H2/CO2 ratio exceeding 

2.2 with Pt/TiC-CDC being the most selective (H2/CO2 

= 2.95 at 10% conversion). Slightly less selective 

behavior in terms of hydrogen production was observed 

for Pt/C (Degussa) (2.65) and Pt/Sibunit (2) (2.53) 

samples. The H2/CO2 ratio for Pt/BAC and 

Pt/Sibunit (1) was 2.37 and 2.30, respectively. 

The important parameter in the APR process of poyols 

is an ability of a catalyst to convert carbon to gaseous 

products, in other words, to cleave C-C bonds in the 

substrate. The conversion of carbon to gas in APR of 

xylitol is shown in Fig. 20. As can be noted, the leading 

catalyst is Pt/C (Degussa) with 13.6% of carbon 

converted to the gaseous products at 10% of xylitol 

conversion. The Pt/BAC catalyst was able to convert 10.5% of carbon, whereas the corresponding 

values found for Pt/TiC-CDC, Pt/Sibunit (2) and Pt/Sibunit (1) were 8.5%, 5.6% and 4.4%, 

respectively. 

The following order on the basis of carbon converted to the gas phase can be presented: 

Pt/C (Degussa) > Pt/BAC > Pt/TiC-CDC > Pt/Sibunit (2) > Pt/Sibunit (1) 

During APR of xylitol formation of alkanes C1-C5 

takes place as a result of dehydration and further 

hydrogenation reactions as has been discussed above. 

The hydrocarbon formation profile versus WHSV in 

the APR of xylitol over Pt/TiC-CDC catalyst is 

presented in Fig. 21. In general, all catalysts have 

similar composition of the hydrocarbon mixtures 

formed with C1-C3 dominance. Butane was found in 

minor quantities along with carbon monoxide. The 

formation rates for all hydrocarbons as well as carbon monoxide demonstrated a decreasing trend 
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Fig 21. Composition of hydrocarbons mixture in 
the APR of xylitol over Pt/TiC-CDC [V]. 
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with an increase in WHSV, or in other words, in decrease of the conversion. Pentane concentration 

for all experiments was below the detection limit. It 

might be the case that pentane was not formed, since a 

significantly higher surface acidity than those possessed 

by the used carbon-supported catalysts is required [V]. 

A comparative analysis of Pt/C catalysts in terms of the 

hydrocarbon formation is shown in Fig. 22. The 

hydrocarbon formation rate in the case of Pt/BAC was 

more than 1.5 times higher compared to both Pt/Sibunit 

samples and twofold higher compared to Pt/C (Degussa). 

The lowest rate of the hydrocarbon formation was observed in the case of Pt/TiC-CDC which 

demonstrated almost a four times lower rate than Pt/BAC. 

3.7 Effect of Pt cluster size on the formation of hydrogen in APR reaction [V] 
Based on CO chemisorption data (Table 1), corresponding TOF values for Pt/C catalysts studied in 

the present research were calculated. As a result we observed a dependence of TOFH2 for hydrogen 

production on the average Pt cluster as displayed in Fig. 

23. The TOF increases linearly with an increase in the 

average size of Pt cluster in the APR of xylitol thus 

indicating that APR of xylitol is a structure-sensitive 

reaction. Lehnert and Claus explain the increase of the 

hydrogen formation rate during APR of glycerol over 

Pt/Al2O3 with different dispersions, proposed that 

adsorption and C-C cleavage of polyol species 

preferably occurred on the face Pt atoms rather than on 

edge and corner atoms42. With an increase in the cluster 

size the number of face atoms increases whereas the number of corner and edge atoms should 

decline43. The volume of Pt clusters is proportional to r3, while the surface area is proportional to r2, 

where r – is a radius of Pt particles. Therefore, assuming that the Pt face atoms are much active in 

APR than edge and corner atoms, TOF should increase linearly with an increase of the average size 

of Pt cluster then reaching the plateu. The results regarding TOF dependence on the average size of 

the Pt cluster in the APR of xylitol are therefore in a very good correlation with results reported 

earlier for APR of glycerol and ethylene glycol. 

Fig 22. Rate of the hydrocarbon formation for 
different Pt/C catalysts in APR of xylitol.  
conversion ~ 10-12% [V]. 

 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

 

Ra
te

 o
f a

lk
an

es
 fo

rm
at

io
n 

[x
10

6 ], 
m

ol
×m

in
-1

Pt/TiC-CDC

Pt/Sibunit (I)
Pt/Sibunit (II)

Pt/C (Degussa)

Pt/BAC

Fig 23. Dependence of TOF versus mean Pt 
cluster size in APR of xylitol at conversion 
~10-12%. (1) – Pt/BAC, (2) – Pt/C (Degussa), 
(3) – Pt/Sibunit (2), (4) – Pt/TiC-CDC [V]. 

 



 30 

3.8 APR of xylitol over carbon- and metal oxide supported Pt catalysts: 

comparison 
In order to study the influence of support on the catalytic activity and selectivity towards the main 

APR products comparison of Pt/C catlaysts and Pt/MOx catalysts in the APR of xylitol under 

identical experimental conditions was performed. The data are collected in Table 3. For comparison, 

three carbon supported catalysts, Pt/TiC-CDC, Pt/C (Degussa) and Pt/Sibunit (2) were selected. 

Metal oxide supported Pt catalysts are represented by Pt/Al2O3 (Degussa), Pt/TiO2 and Pt-Re/TiO2. 

Platinum mono- and bimetallic catalysts supported on TiO2 demonstrated the highest conversion in 

terms of the initial substrate conversion, conversion of carbon to gas and selectivity to alkanes 

compared to Pt/Al2O3 and Pt/C. However, the H2/CO2 values observed for titania supported 

catalysts are much lower than for other catalysts. As can be seen from Table 3, Pt/C (Degussa) 

demonstrated at 1.2 h-1 the highest conversion of carbon to gas phase products compared to other 

Pt/C catalysts and Pt/Al2O3. Carbon supported catalyst displayed a higher conversion of carbon to 

gas at the same level of xylitol conversion as Pt supported on Al2O3. A similar trend has been 

observed by Kim et al.34 for APR of glycerol over Pt-Re catalysts supported on carbonaceous 

materials CMK-3, oxide supports as well as SiO2 at 250°C, 45 bar and 2.0 h-1. The order on the 

basis of carbon conversion to gas at 1.2 h-1 is the following one: Pt/C (Degussa) > Pt/Sibunit (2) > 

Pt/TiC-CDC > Pt/Al2O3. Shabaker et al.44 has reported higher carbon turnover frequencies, in other 

words rates of carbon conversion to the gas phase, in APR of ethylene glycol: the total carbon TOF 

(comprises CH4, CO2 and C2H6) in the case of Pt/C was 4.88 min-1 whereas for Pt/Al2O3 it was 3.07 

min-1. 
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The H2/CO2 ratio for the catalysts studied decreases in the following order: 

Pt/Al2O3 > Pt/C (Degussa) > Pt/TiC-CDC > Pt/Sibunit (2) > Pt/TiO2 > Pt-Re/TiO2 

Likewise, Kim et al. observed the difference in selectivity to hydrogen for Pt-Re supported catalysts 

in APR of glycerol34. Pt-Re supported on alumina was the most selective catalyst, and SiO2-

supported catalyst demonstrated selectivity comparable to the CMK-3-supported material. The 

lowest selectivity to H2 was observed in the case of Pt-Re/AC. 

Since the production of hydrogen competes with generation of hydrocarbons in the APR process, 

the catalysts which demonstrated the lowest H2/CO2 values possessed the higher selectivity to 

alkanes. Thus, the selectivity to alkanes decreases in the following order: 

Pt-Re/TiO2 > Pt/TiO2 >Pt/Sibunit (2) > Pt/TiC-CDC > Pt/C (Degussa) > Pt/Al2O3 

The results are in a good correlation with literature on APR of glycerol34. 

Based on the data obtained from CO chemisorption, the corresponding values of turn-over 

frequencies of hydrogen and alkanes formation can be calculated (Table 4). As can be noted, the 

highest value of TOFH2 was observed in the case of Pt/TiC-CDC catalyst being equal to 16.7 min-1. 

Pt/Al2O3 demonstrated almost twofold less value of TOFH2 8.5 min-1 compared to Pt/TiC-CDC. The 

TOF of H2 values for Pt/C (Degussa) and Pt/Sibunit (2) were 4.0 and 3.0 min-1, respectively. It is 

worth to mention that Pt supported on carbon turned out to be more catalytically active also in 

hydrocarbon production via APR than Pt/Al2O3 as evidenced by the corresponding TOFalk values 

presented in Table 4. Thus TOFalk value in APR of xylitol decreases in the following order:  

Pt/TiC-CDC > Pt/Sibunit (2) > Pt/C (Degussa) > Pt/Al2O3 

Shabaker et al.44 reported efficient catalytic performance of carbon supported catalysts compared to 

Pt/Al2O3 in the APR of ethylene glycol in terms of hydrogen and hydrocarbon production. The 

superior catalytic behavior of Pt/C catalysts, especially Pt/TiC-CDC, compared to the alumina 

supported sample, can be linked to higher surface areas of Pt/C materials and enhanced 

hydrothermal stability under severe APR conditions. Similarly to the case of CMK-3 catalysts34
, the 

narrow pore size distribution inside carbide-derived materials as well as regular structure and high 

surface area may facilitate APR, thus resulting in enhanced TOFH2 and TOFalk.  
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3.9 Kinetic modeling of aqueous-phase reforming [VI] 
For mathematical modeling, the kinetics data obtained for aqueous-phase reforming of sorbitol [I] 

were used. To our best knowledge, there is only one article describing kinetic modeling of glycerol 

APR in a batch reactor45. Additionally, there is an article by Moreno et. al. proposing the model 

based on automated network generation method described sorbitol hydrodeoxygenation (i.e. 

APD/H) in the presence of Pt/SiO2-Al2O3
46 .  

Prior to obtaining  the experimental catalytic data which were further used for modeling the absence 

of external and internal diffusion limitations was verified in APR of sorbitol (see Section 3.2 Mass 

transfer effects).  

Two main reaction transformation paths for a particular sugar alcohol were considered (analogously 

to Fig. 14). For development of the kinetic model, the main pathways of sorbitol transformation 

during APR were chosen on the basis of experimental data obtained earlier [I,III] and the current 

understanding of the reaction mechanism. 
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Fig. 24. The main pathways of sorbitol transformations during  APR chosen for mathematical modeling of kinetics 

On acidic sites, sorbitol undergoes dehydration to a ketone (Path 2 in Fig. 24) with subsequent 

hydrogenation to a C6 alcohol with one hydroxyl group less than the starting sorbitol. This initial 

step of dehydration is considered to be the rate determining one, while the subsequent rapid steps of 

hydrogenation – dehydration – hydrogenation were merged together. A similar concept was applied 

for all alcohols of CnOnH2n+2 type. Since C6 and C5 alkanes (i.e. hexane and pentane) as well as 
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methane were observed in the reaction products in inferior quantities [I] it is sufficient to consider 

the formation of C2-C4 alkanes only.  

The path to alcohols CnOnH2n+2 with n <6 (Path 1 in Fig. 24) starts with dehydrogenation on the 

metal sites leading to a corresponding aldehyde. These steps (for different alcohols) were assumed 

to be rate limiting, while decarbonylation steps were considered to be fast ones. In addition to these 

two main paths, water-gas shift reaction (route N(5)) was included in the mechanism, which 

comprised eight reaction routes:  

N(1): COHHOCHOC ++= 212551466   

N(2): COHHOCHOC ++= 210441255   

N(3): COHHOCHOC ++= 28331044  

N(4): COHHOCHOC ++= 2622833  

N(5): 222 HCOOHCO +=+ ,  

N(6): OHHCHHOC 210421044 44 +=+  

N(7): OHHCHHOC 2832833 33 +=+ ,  

N(8): OHHCHHOC 2622622 22 +=+  

The rates for reaction on metal sites  

OHHOCHOCHOCHOCHOC

HOC

VHOCHOC

CKCKCKCKCKCK
CKk

CKkkr

2622833104412551466

1466

14661466

1097531

12

122
)1(

1 ++++++
=

=== θθ
   (8) 

The rates along the second, third and fourth routes are given in a similar fashion  

OHHOCHOCHOCHOCHOC

HOC

CKCKCKCKCKCK
CKk

r
2622833104412551466

1255

1097531

34)2(

1 ++++++
=   (9)  

OHHOCHOCHOCHOCHOC

HOC

CKCKCKCKCKCK
CKk

r
2622833104412551466

1044

1097531

56)3(

1 ++++++
=   (10)  
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OHHOCHOCHOCHOCHOC

HOC

CKCKCKCKCKCK
CKk

r
2622833104412551466

833

1097531

78)4(

1 ++++++
=   (11)  

The rate along the route N(5) can be defined through either of the steps 10 and 11, thus 
 

OHHOCHOCHOCHOCHOC

COOH

CKCKCKCKCKCK
CCk

r
2622833104412551466

2

1097531

11)5(

1 ++++++
=   (12)  

 
Similarly for the reactions routes occurring on the support sites the reaction rates could be 

formulated 

6228331044

1044

161412

1213)6(

1 HOCHOCHOC

HOC

CKCKCK
CKk

r
+++

=        (13)  

6228331044

833

161412

1415)7(

1 HOCHOCHOC

HOC

CKCKCK
CKk

r
+++

=        (14)  

6228331044

622

161412

1617)8(

1 HOCHOCHOC

HOC

CKCKCK
CKk

r
+++

=        (15)  

 
Finally, the generation rates of compounds can be written as; 

)1(1466 r
d

dC HOC =−
τ

, )2()1(1255 rr
d

dC HOC −=
τ

; )6()3()2(1044 rrr
d

dC HOC −−=
τ

; )7()4()3(833 rrr
d

dC HOC −−=
τ

 ; 

)8()4(622 rr
d

dC HOC −=
τ

 ; )5()4()3()2()1( rrrrr
d

dCCO −+++=
τ

; )6(104 r
d

dC HC =
τ

; )7(83 r
d

dC HC =
τ

; 

)8(62 r
d

dC HC =
τ

;  )8()7()6()5()4()3()2()1( 2342 rrrrrrrr
d

dCH −−−++++=
τ

;   (16) 

where τ is the residence time.  
The kinetic modeling comprised all the reaction rates listed above.  For the estimation of 

parameters, a set of differential equations describing the changes in the concentrations profiles of 

the reagents and products along the reactor length was solved by means of ModEst software47. 
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In fact, the model, based on Eqs. (8)-(16), was overparameterized. The presence of adsorption 

coefficients in the denominators resulted in too large errors during parameters estimation. Hence, a 

simplified version of the model was developed. For that purpose K1, K3. K5, K12, K14 and K16 were 

approximated to zero in the model. Moreover, further simplifications were possible, since CO was 

not observed in the gas phase, thus the oxygen on the surface can be neglected. Therefore, the 

modified model which comprised equations (17)-(24) was obtained:  

1466

'
2

)1(
HOCCkr =         (17) 

1255

'
4

)2(
HOCCkr =         (18)  

1044

'
6

)3(
HOCCkr =         (19)  

8338
)4( ' HOCCkr =         (20)  

OHCkr
210

)5( =         (21)  

104413
)6( ' HOCCkr =         (22)  

83315
)7( ' HOCCkr =         (23)  

62217
)8( ' HOCCkr =           (24)  

These modified constants contain also the adsorption coefficients. 

Additionally in order to satisfy the mass balance one more reaction was added to the model 

accounting for formation of other components from the reactant, for example furans: 

83318
)9( ' HOCCkr =           (25) 

This simplified model did not affect the generation rates written in Eq. (16) except for the substrate 

consumption rate, which is converted to 

)9()1(1466 rr
dt

dC HOC +=−
         (26)

 

Using Levenberg-Marquardt simplex method, the target function, which was defined as the 

incompliance between the experimental and calculated values of concentrations was used to 

minimize the objective function. The sum of the residual squares was minimized using the 

following objective function 
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 ( )2
,exp,

2

exp ∑∑ −=−=
t i

itestitest CCCCQ        (27) 

Where Cexp is the experimental value and Cest denotes the predictions given by the model, i is the 

component index and t is the time value. The quality of the fit and accuracy of the model description 

was defined by the degree of explanation R2; which reflects comparison between the residuals given 

by the model to the residuals of the simpliest model one may think of, i.e. the average value of all 

the data points.  

The R2 value is given by the expression 

𝑅2 = 100 �𝑦𝑚𝑜𝑑𝑒𝑙−𝑦𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡�
2

�𝑦𝑚𝑜𝑑𝑒𝑙−𝑦�𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡�
2        (28) 

The overall residual sum of squares for all the products was 0.1595×10-6. 

The values of the calculated frequency factors, and as well as the estimated relative standard errors 

(in %) of the tested reaction mechanism based on Eqs. (16)-(26) are presented in [VI].  

Fig. 25 displays a comparison between the experimental obtained data and model predictions for 

CO2 and hydrogen formation in the APR of sorbitol at different conditions (WHSV). Conversion of 

sorbitol was 100% for all experimental points. 

As can be seen from Fig. 25a, hydrogen formation increases with an increase in WHSV in 

agreement with experiments. In accordance with the results reported earlier, more hydrogen was 

observed at higher space velocities, in other words, at lower contact times. The results are 

understandable since at higher contact times hydrogen is more consumed in various hydrogenation 

reactions.  

Formation of CO2 predicted by the model as a function of WHSV is shown on Fig. 25b. The results 

are in a good correlation with the experimental data obtained and confirm the ability of the model to 

describe at least the main trends in the formation of hydrogen and CO2 as a function of WHSV.  

Fig. 26 displays a comparison between predicted corresponding carbon flows for C3 and C6 

compounds present in the liquid phase during APR of sorbitol and the experimental data. As can be 

seen from Figure 26 the model is able to predict rather well the carbon flows for major liquid 

products, C3 and C6 (with the degree of explanation above 97%) which are present in the liquid 

phase in higher concentration compared to other products. Liquid products containing two, four and 
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five carbon atoms in the structures were also included in the model; however, the error of 

description was rather large.  

It should be noted that deviations from the experimental data were also observed for calculated 

values of hydrocarbons. Compounds CxHy were included in the model, but due to significantly 

lower concentration of each hydrocarbon component compared to CO2 and hydrogen the error was 

large. 

 

Fig. 25. Fit of the model to the experimental data: a) formation of hydrogen and b) carbon dioxide as a function of 
WHSV in the APR of sorbitol. Conditions: 1 g of catalyst, 498 K, 29.3 bar, N2 flow 30 ml×min-1, 10 wt.% sorbitol 
solution, conversion 100%.  

 

Fig. 26. Fit of the model to the experimental data: a) formation of C3 (carbon flow) and b) C6 products (carbon flow) in 
the liquid phase a function of WHSV in the APR of sorbitol. Conditions: 1 g of catalyst, 498 K, 29.3 bar, N2 flow 
30 ml×min-1, 10 wt.% sorbitol solution, conversion 100%. 
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4. Conclusions 
Aqueous phase reforming of the two most abundant sugar alcohols stemming from biomass, sorbitol 

and xylitol, was studied in a continuous fixed-bed reactor over supported Pt and Pt-Re catalysts. The 

catalysts demonstrated a stable performance within 160 h time-on-stream.  

Optimization of reaction parameters aiming at selective production of hydrogen was performed. For 

Pt/Al2O3, the high catalytic activity for hydrogen production from sugar alcohols was observed with 

up to 85% of selectivity to hydrogen.  

Based on the analysis of the principal APR products, H2 and CO2, as well as on the analysis of the 

liquid-phase products, a more complete understanding about the reaction network for polyols APR 

was achieved and an advanced reaction network describing the formation of the main products and 

intermediates was proposed. 

The structure of the substrate has a substantial impact on the hydrogen yield and selectivity in APR. 

Thus, higher yields of hydrogen were observed in the case of a substrate possessing a shorter carbon 

chain (xylitol) compared to longer chain substrates (sorbitol). 

The effect of the support (TiO2, C), as well as addition of the second metallic component (Re), on 

aqueous phase reforming of polyols was studied. It was shown that acid-basic properties of the 

support play a significant role in directing the reaction towards the formation of hydrogen or 

hydrocarbons. Addition of the Re to Pt increases acidic properties of the catalytic material, thus 

enhancing the formation of alkanes compared to monometallic catalysts. 

For the first time, a structure sensitivity of higher polyols (xylitol) was demonstrated using a series 

of Pt/C catalysts. It was found that turn-over frequency linearly increases with an increase in the 

average Pt cluster size.  

The reaction kinetics was modeled based on mechanistic considerations for sorbitol transformation 

during APR. The kinetic model was compared with experimental data through numerical data fitting 

showing a reasonably good correspondence (with degree of explanation for C6 products above 

97%). Further improvements in the model are desirable to incorporate the formation of gas and 

liquid-phase products over a broader conversion range. 

In conclusion, APR is an attractive method for hydrogen and alkane production from renewables. 

By altering the process parameters, a choice of catalyst and the feed, the reaction can be steered to 

the formation of hydrogen or alkanes. 
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