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Abstract 
 

Waste combustion has gone from being a volume reducing discarding-method to an energy 
recovery process for unwanted material that cannot be reused or recycled. Different fractions of 
waste are used as fuel today, such as; municipal solid waste, refuse derived fuel, and solid 
recovered fuel. Furthermore, industrial waste, normally a mixture between commercial waste and 
building and demolition waste, is common, either as separate fuels or mixed with, for example, 
municipal solid waste.  

Compared to fossil or biomass fuels, waste mixtures are extremely heterogeneous, making it a 
complicated fuel. Differences in calorific values, ash content, moisture content, and changing 
levels of elements, such as Cl and alkali metals, are common in waste fuel.  Moreover, waste 
contains much higher levels of troublesome trace elements, such as Zn, which is thought to 
accelerate a corrosion process. Varying fuel quality can be strenuous on the boiler system and 
may cause fouling and corrosion of heat exchanger surfaces. 

This thesis examines waste fuels and waste combustion from different angles, with the objective 
of giving a better understanding of waste as an important fuel in today’s fuel economy. Several 
chemical characterisation campaigns of waste fuels over longer time periods (10-12 months) was 
used to determine the fossil content of Swedish waste fuels, to investigate possible seasonal 
variations, and to study the presence of Zn in waste. Data from the characterisation campaigns 
were used for thermodynamic equilibrium calculations to follow trends and determine the effect 
of changing concentrations of various elements. The thesis also includes a study of the thermal 
behaviour of Zn and a full—scale study of how the bed temperature affects the volatilisation of 
alkali metals and Zn from the fuel.  

As mixed waste fuel contains considerable amounts of fresh biomass, such as wood, food waste, 
paper etc. it would be wrong to classify it as a fossil fuel. When Sweden introduced waste 
combustion as a part of the European Union emission trading system in the beginning of 2013 
there was a need for combustion plants to find a usable and reliable method to determine the 
fossil content. Four different methods were studied in full-scale of seven combustion plants; 14C-
analysis of solid waste, 14C-analysis of flue gas, sorting analysis followed by calculations, and a 
patented balance method that is using a software program to calculate the fossil content based on 
parameters from the plant. The study showed that approximately one third of the coal in Swedish 
waste mixtures has fossil origins and presented the plants with information about the four 
different methods and their advantages and disadvantages.  
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Characterisation campaigns also showed that industrial waste contain higher levels of trace 
elements, such as Zn. The content of Zn in Swedish waste fuels was determined to be 
approximately 800 mg kg-1 on average, based on 42 samples of solid waste from seven different 
plants with varying mixtures between municipal solid waste and industrial waste. A review study 
of the occurrence of Zn in fuels confirmed that the highest amounts of Zn are present in waste 
fuels rather than in fossil or biomass fuels. In tires, Zn is used as a vulcanizing agent and can 
reach concentration values of 9600-16800 mg kg-1. Waste Electrical and Electronic Equipment is 
the second Zn-richest fuel and even though on average Zn content is around 4000 mg kg-1, the 
values of over 19000 mg kg-1 were also reported. The increased amounts of Zn, 3000-4000 mg 
kg-1, are also found in municipal solid waste, sludge with over 2000 mg kg-1 on average (some 
exceptions up to 49000 mg kg-1), and other waste derived fuels (over 1000 mg kg-1). Zn is also 
found in fossil fuels. In coal, the average level of Zn is 100 mg kg-1, the higher amount of Zn was 
only reported for oil shale with values between 20-2680 mg kg-1. The content of Zn in biomass is 
basically determined by its natural occurrence and it is typically 10-100 mg kg-1.  

The thermal behaviour of Zn is of importance to understand the possible reactions taking place in 
the boiler. By using thermal analysis three common Zn-compounds were studied (ZnCl2, ZnSO4, 
and ZnO) and compared to phase diagrams produced with thermodynamic equilibrium 
calculations. The results of the study suggest that ZnCl2(s/l) cannot exist readily in the boiler due 
to its volatility at high temperatures and its conversion to ZnO in oxidising conditions. Also, 
ZnSO4 decomposes around 680°C, while ZnO is relatively stable in the temperature range 
prevailing in the boiler. Furthermore, by exposing ZnO to HCl in a hot environment (240-330°C) 
it was shown that chlorination of ZnO with HCl gas is possible. 

Waste fuel containing high levels of elements known to be corrosive, for example, Na and K in 
combination with Cl, and also significant amounts of trace elements, such as Zn, are demanding 
on the whole boiler system. A full-scale study of how the volatilisation of Na, K, and Zn is 
affected by the bed temperature in a fluidised bed boiler was performed parallel with a lab-scale 
study with the same conditions. The study showed that the fouling rate on deposit probes were 
decreased by 20 % when the bed temperature was decreased from 870°C to below 720°C. In 
addition, the lab-scale experiments clearly indicated that the amount of alkali metals and Zn 
volatilised depends on the reactor temperature. 
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Svensk sammanfattning  
 

Avfallsförbränning har gått från att vara en volymreducerande bortskaffningsmetod till en 
energiåtervinningsprocess för oönskat material som inte kan återanvändas eller återvinnas. Olika 
fraktioner av avfall som används som bränsle idag är till exempel; fast kommunalt avfall, 
bränslekross och fasta återvunna avfallsbränslen. Dessutom är industriavfall, ofta en blandning 
av mellan verksamhetsavfall och bygg- och rivavfall, vanligt förekommande, antingen som 
enskilda bränslen eller blandat med kommunalt avfall. 

Jämfört med fossila bränslen och biobränslen är avfall extremt heterogent, vilket gör det till ett 
komplicerat bränsle. Skillnader i värmevärde, askhalt och fukthalt samt skiftande koncentrationer 
av till exempel Cl och alkalimetaller är vanliga i avfallsbränslen. Avfall innehåller också mycket 
högre nivåer av besvärliga spårelement, såsom Zn som tros kunna accelerera en 
korrosionsprocess. Varierande bränslekvalitet kan vara påfrestande för pannsystemen och orsaka 
beläggningsbildning och korrosion av värmeväxlande ytor. 

Denna avhandling presenterar studier från olika vinklar av avfallsbränslen och förbränning av 
avfall med målet att ge en bättre förståelse för avfall som ett viktigt bränsle i dagens 
bränsleekonomi. Flera långtidsbaserade (10-12 månader) kemiska karaktäriseringskampanjer har 
använt för att bestämma det fossila innehållet i svenska avfallsbränslen, för att undersöka 
eventuella årstidsvariationer, samt för att studera förekomsten av Zn i avfall. Data från 
karaktäriseringskampanjerna användes också för termodynamiska jämnviktsberäkningar för att 
se trender och bestämma effekten av förändrade halter av olika kemiska element.  I avhandlingen 
ingår också en undersökning av det termiska beteendet hos Zn och en fullskalig studie av hur 
bäddtemperaturen kan påverka volatiliseringen av alkalimetaller och Zn från bränslet. 

Eftersom blandat avfallsbränsle innehåller en hel del färsk biomassa, såsom trä, matavfall, 
papper etc, skulle det vara fel att klassificera det som ett fossilt bränsle. Då Sverige inkluderade 
avfallsförbränning i Europeiska Unionens system för utsläppsrättigheter i början av 2013 fanns 
ett behov för förbränningsanläggningar att hitta en användbar och tillförlitlig metod för att 
bestämma fossilandelen i avfallsbränslet. Fyra olika metoder studerades i fullskala vid sju 
förbränningsanläggningar; 14C-analys av fast avfall, 14C-analys av rökgasprover, plockanalyser 
följt av beräkningar samt en patenterad balansmetod som använder ett mjukvaruprogram för att 
beräkna fossilandelen baserat på pannparametrar. Studien visade att ungefär en tredjedel av kolet 
i svenska avfallsbränslen har fossilt ursprung och gav anläggningarna underlag med för- och 
nackdelar med de olika metoderna. 
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Karaktäriseringskampanjer användes också för att visa att industriavfall innehåller högre halter 
av spårelement, såsom Zn. Halten av Zn i svenska avfallsbränslen bestämdes till ca 800 mg kg-1 i 
gensomsnitt, baserat på 42 fasta avfallsprover från sju olika anläggningar med varierande 
mängder hushålls- och industriavfall. En litteraturstudie bekräftade att förekomsten av Zn i 
bränslen är betydligt högre mängder än i fossila bränslen eller i biomassa. I däck används Zn 
som vulkaniseringsmedel och kan nå koncentrationer mellan 9600 och 16800 mg kg-1. 
Fraktionen el- och elektronikavfall är den näst Zn-rikaste med ett medel på cirka 4000 mg kg-1 

men med värden så höga som 19000 mg kg-1 har också rapporterats. Höga koncentrationer av Zn 
återfinns också i fast kommunalt avfall (3000-4000 mg kg-1), i avloppsslam med över 
2000 mg kg-1 Zn i genomsnitt (med några undantag upp till 49000 mg kg-1) och i andra typer av 
behandlat avfall (mer än 1000 mg kg-1). Zn finns också i fossilt bränsle, i kol är medelvärdet för 
Zn i nivå med 100 mg kg-1 men värden mellan 20 och 2680 mg kg-1 har rapporterats för 
oljeskiffer. Halten Zn i biomassa bestäms av dess naturliga förekomst i växten och ligger typiskt 
i intervallet mellan 10 och 100 mg kg-1. 

Det termiska beteendet hos Zn är av betydelse för att förstå de möjlige reaktioner som sker i en 
förbränningsanläggning. Detta utreddes genom att använda termisk analys av tre vanliga Zn-
ämnen (ZnCl2, ZnSO4 och ZnO) och jämföra med fasdiagram konstruerade med termodynamiska 
jämviktsberäkningar. Resultaten från studien visar att ZnCl2(s/l) inte kan existera i pannan på 
grund av dess flyktighet vid höga temperaturer och dess omvandling till ZnO under oxiderande 
förhållanden. Studien också att ZnSO4 sönderfaller vid ca 680°C medan ZnO är relativt stabilt 
inom temperaturområdet som råder i en förbränningsanläggning. Genom att exponera ZnO för 
HCl i en varm miljö (240-330°C) kunde studien påvisa att det är möjligt att klorera ZnO med 
HCl-gas. 

Avfallsbränsle innehåller relativt höga koncentrationer av element som är kända för att vara 
korrosiva, till exempel Na och K i kombination med Cl, och även betydande mängder av 
spårelement såsom Zn, vilket är påfrestande för hela pannsystemet. En fullskalig studie av hur 
flyktavgången av Na, K och Zn påverkas av bäddtemperaturen i en förbränningsanläggning med 
fluidiserad bädd utfördes parallellt med en laboratoriestudie med samma villkor. Studien visade 
att tillväxten av beläggningar på en korrosionssond minskade med 20 % när bäddtemperaturen 
sänktes från 870°C till under 720°C. Dessutom visade de laborativa försöken tydligt att 
flyktavgången av och mängden alkalimetaller och Zn som avgår från bädden beror på reaktorns 
temperatur.



 
 

Nomenclature 

vii 

 

Nomenclature 
 

AMS Accelerator Mass Spectrometry 
BFB Bubbling Fluidised Bed 
BI Beta-Ionisation  
CCA Copper-Chromium-Arsenic (pressure-treated wood) 
CFB Circulating Fluidised Bed 
Dp Aerodynamic particle diameter 
DS Dry substance 
DSC Differential Scanning Calorimetry 
DTA Differential Thermal Analysis 
ETS Emission Trading System 
FB Fluidised Bed 
ICP-MS Inductively Coupled Plasma - Mass Spectroscopy 
ICP-OES Inductively Coupled Plasma - Optical Emission Spectroscopy 
IW Industrial Waste 
JJA June-July-August (European summer) 
LHV Lower Heating Value 
LSC Liquid Scintillation Counting (also known as PSM) 
MSW Municipal Solid Waste 
pmC percentage modern Carbon 
PSM Proportional Scintillation counter Method 
RBT Reduced Bed Temperature 
RDF Refuse Derived Fuel 
RWW Recovered Waste Wood 
SD Standard Deviation 
SRF Solid Recovered Fuel 
TDF Tyre Derived Fuel 
TGA Thermogravimetric Analysis 
THC Total Hydrocarbon 
WEEE Waste Electrical and Electronic Equipment 
WtE Waste-to-Energy 
Wt% Weight% 
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1 Introduction 
 

Disposal of waste through combustion has been used for thousands of years; it has been an easy 

way to reduce the volume of waste. However, most development has taken place during the past 

few decades, resulting in the advanced combustion technology and state-of-the-art flue gas-

cleaning equipment of today.  

In Sweden, waste combustion started in the 1970s as a result of new legislation giving the 

municipalities a monopoly on household waste [1]. The amounts of generated waste had 

increased enormously during the 1960s and landfilling was the dominant treatment method. At 

the same time, the first worldwide oil crisis forced society to welcome a complementary 

technique to meet the demand for heat in the district heating systems.  

In addition to this, research has shown that landfilling of waste significantly contributes to the 

release of methane gas [2, 3], a known greenhouse gas, which has a warming potential in the 

atmosphere that is 21 times more powerful than CO2 [4]. As well as contributing gaseous 

emissions to the atmosphere, landfills release a number of chemical compounds in the form of 

leachates and particulate matter, some of them hazardous to the environment [5, 6]. Combustion 

of waste can therefore serve several purposes: mass and volume reduction of waste, production 

of heat and power, and a reduction in the emission of methane and leachates from landfills. As a 

consequence, more and more countries nowadays are opting to prohibit or reduce the flow to 

landfills of materials such as organic and combustible waste.  

The EU’s Council Directive 99/31/EC on landfills (agreed on 26th April 1999) [7], aimed to 

prevent, or reduce, the possible negative effects on the environment from the landfilling of waste 

by introducing stringent technical requirements for waste and landfills. Directive 06/12/EC of the 

European Parliament and of the Council of 5th April 2006 on waste elucidates the EU waste 

treatment hierarchy [8]. It encourages all member countries to prevent, reuse, and recycle waste 

as far as possible and then use waste as an energy source, e.g. in Waste to Energy (WtE) plants. 

Improvement and expansion of waste combustion is taking place worldwide and progress within 

the technical areas has refined the cleaning technologies and eliminated a greater part of the 

emissions [9, 10]. Figure 1 shows great potential for energy recovery within the EU-27 by using 

combustion instead of landfilling as a treatment method for Municipal Solid Waste (MSW) [11].  
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Figure 1. Treatment methods for MSW in EU27 countries in 2011. Data for the EU27, Germany, Ireland, Spain, France, 
Italy, Cyprus, Luxembourg, Austria, Poland, Portugal, Romania, and the United Kingdom are estimated [11]. 

However, combustion of waste fuels is more challenging compared to most other fuel in 

combustion plants owing to the heterogeneity and the content of various problematic 

compounds. Several studies done over recent decades, such as Uberoi [12] and van Lith [13], 

have pointed out that fuel composition is a determining factor during combustion, and that it has 

a substantial effect on the occurrence of fouling and corrosion. High levels of certain problematic 

elements, such as alkali metals and Cl, are present in waste. They are known to affect the 

formation of deposits, cause lower boiler efficiency, lead to an increased need for maintenance 

and shorten boiler lifetime. Induced by high temperatures, Cl-containing deposits are known to 

cause severe corrosion of heat exchangers. To minimise these problems today, waste boilers are 

operated at a significantly lower steam temperature than, for example, fossil fuel boilers, to 

extend the steel lifetime [14]. A lower steam temperature means that the electricity production is 

decreased as well, and the full energy potential of the fuel is not acquired.  

Fuel characterisation gives valuable information about the combustion properties of the fuel. 

Studying waste mixtures used for combustion provides an opportunity to find ways to reduce or 

avoid unwanted chemical reactions. Long-period studies can also provide information about 

possible time-related variation patterns in the fuel composition, such as the political economic 
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climate, which affects consumption patterns, or seasonal variations. Furthermore, the 

introduction of waste combustion in the CO2 Emission Trading System (ETS) [15] in Sweden 

requires a good knowledge of waste and its origin to be able to determine the fossil content. 

1.1 Purpose of this thesis 
The purpose of this work was to support the further use of waste derived fuels in energy 

conversion by deepening the understanding of some important chemical aspects of waste fuels 

and the combustion process. The work presented in this thesis is threefold, considering: 

(i) different ways of characterising fuel, (ii) occurrence and sources of Zn in fuels, and its 

behaviour during combustion, and (iii) the effects due to reduction of the bed temperature in 

boilers. 

Suitable waste fuel sampling processes facilitates proper characterisation of elemental 

composition as well as a possibility to determine the shares of carbon with fossil origin in waste. 

Both of which are important factors for modern combustion plants, striving for an efficient 

combustion process with no or little problems and also expecting tougher regulations regarding 

emissions of fossil CO2. The occurrence and behaviour of Zn in waste fuels is of importance for 

increased understanding of fuel related issues, as Zn may play a role in deposit and corrosion 

problems. However, more studies are needed in this area. One way of reduce the formation of 

corrosive products, such as ZnCl2 and alkali chlorides could be to reduce the bed temperature of 

a fluidised bed boiler, and the effects of such a change is part of the study for this thesis.  
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This thesis is based on six papers, which will henceforth be referred to by the roman numerals 

below: 

I. ”Determination of fossil carbon content in Swedish waste fuel by four different methods” 
Jones, F.C., Blomqvist, E.W., Bisaillon, M., Lindberg, D.K., Hupa, M.  
Waste Management & Research 31:10 (2013) 1052-1061. 
(http://dx.doi.org/10.1177/0734242x13490985) 
 

II. “Chemical Characterization of waste fuel for fluidized bed combustion” 
Claesson, F., Skrifvars, B-.J., Elled, A-.L., Johansson, A. 
Published in the proceeding of the 20th International Conference on Fluidized Bed 
Combustion (2010) 1116-1122.Conference held in Xi’an, China May 18-21, 2009.  
(http://dx.doi.org/10.1007/978-3-642-02682-9_174) 
 

III. “Occurrence and sources of zinc in fuels”  
Jones, F. Bankiewicz, D. Hupa, M.  
FUEL 117 (2014) 763-775. 
(http://dx.doi.org/10.1016/j.fuel.2013.10.005) 

 
IV. ”The presence of Zinc in Swedish waste fuels”  

Jones, F., Bisaillon, M., Lindberg, D., Hupa, M.   
Waste Management 33:12 (2013) 2675-2679. 
(http://dx.doi.org/10.1016/j.wasman.2013.07.023) 

 
V. ”Thermal Stability of Zinc Compounds”  

Jones, F, Tran, H., Lindberg, D., Zhao, L., Hupa, M.   
Energy & Fuels 27:10 (2013) 5663–5669. 
(http://dx.doi.org/10.1021/ef400505u) 

 
VI. “Effects of Reduced Bed Temperature in Laboratory- and Full-Scale Fluidized-Bed 

Boilers: Particle, Deposit, and Ash Chemistry”  
Jones, F., Niklasson, F., Lindberg, D., Hupa, M.   
Energy & Fuels 27:8 (2013) 4999–5007. 
(http://dx.doi.org/10.1021/ef400836e) 
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2 Background 
 

This chapter describes different combustion technologies and sampling techniques, as well as 

techniques for chemical analysis of waste fuel samples. In addition to the chemical analyses, this 

chapter describes the presence of Zn in fossil, biomass, and waste fuels. The chapter also 

includes the behaviour of Zn during combustion. Furthermore, this chapter features descriptions 

of thermal analysis, analytical techniques for determining the fossil content in waste used for 

combustion, and thermodynamic equilibrium calculations. 

2.1 Combustion technologies for waste 
In 2012, there were a total number of 455 waste combustion plants in Europe, of which 

approximately 80 are located in the Nordic countries (Denmark, Finland, Norway, and Sweden) 

[16]. There are two dominating combustion technologies typically used for waste combustion, 

Fluidised Bed (FB) boilers and grate-fired boilers. In Sweden, the latter is the dominating 

technique, used at approximately 75 % of the waste combustion plants. Brief descriptions of the 

combustion technologies are presented below. 

2.1.1 Grate-fired boilers 
Grate-fired boilers are a type of fixed-bed combustion boilers of which there are different types, 

mainly depending on the feeding systems for fuel and air: see the left part of Figure 2. The 

dominantly used commercial feeding method is cross-current feeding (showed to the right in 

Figure 2) where the fuel is fed on to a conveyor belt, the grate, and the air is inserted from a 

cross-current direction, from below the grate [17]. There are also different types of grates 

according to the movement of the rods in the grate: forward, backward, up-and-down or 

reciprocating. For complete combustion it is important that the air/fuel ratio is kept at oxidising 

conditions but avoiding cold passages. In a grate-fired boiler the primary air comes in at the grate 

and secondary, and possibly tertiary air, is introduced above the bed and further up in the boiler. 

The moving grate has several tasks in the combustion system [18]: 

 

• The mechanical transport of the fuel from the entering side, through the combustion 

process, and disposal of slag and ash to the slag transport system 

• Mechanical distribution and mixing of the fuel to ensure optimal combustion conditions 
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• Mechanical adjustment of the fuel height across the grate depending on the stage of 

combustion the process is at 

• Controlling the primary air addition.  

The fuel used for waste combustion in Swedish grate-fired boilers most often consists of a 

mixture of MSW and IW. By logging the delivered waste based on specified codes entered by 

the lorry drivers at the weight-in point of waste, the plant can monitor an approximate ratio 

between the two. At a grate-fired boiler there is little or no pre-treatment of the waste before it is 

combusted, most of the lorries deliver their waste loads directly into the bunker from a dumping 

hall. From the bunker the untreated fuel is fed to the grate by an automated or man-operated 

overhead crane. 

2.1.2 Fluidised bed boilers 
There are two types of Fluidised Bed (FB) boilers, Circulating Fluidised Bed (CFB), and 

Bubbling Fluidised Bed (BFB), see Figure 3 for examples of both versions [19]. In both versions 

combustion takes place in a bed of fine sand particles, fluidised by primary air inlets in the 

bottom of the boiler.  

 

 

 
Figure 2. Left: Different types of feeding of fuel and air in grate-fired boilers. Right: the schematic view of a cross-
current grate-fired boiler. 
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The BFB has a higher particle density due to lower air velocity than that in a CFB. In the CFB 

the fluidisation of the bed material is so powerful that the sand follows the flue gas and is 

separated in a cyclone and recirculated to the bed. Secondary and tertiary air is introduced further 

up in the boiler to ensure complete combustion. A normal bed temperature for a FB-boiler is 

around 800-900°C. The boiler design and bed temperature must facilitate the process that after 

the last point of addition of secondary air the flue gas temperature must keep a temperature of 

850°C for at least two seconds, as determined by the EU for European waste combustion [20]. 

Fuel that is combusted in FB-boilers need to undergo pre-treatment before combustion, to ensure 

a particle size suitable for the combustion technology. As in the grate-fired boilers the incoming 

fuel for a waste-firing FB-boiler in Sweden is often a mixture between MSW and IW but both 

fractions are shredded and mixed at a preparation site before being placed in the bunker and are 

subsequently fed into the boiler via an overhead crane, which is often automated. 

 

 
 

 

Scematic overview of a CFB: 1, combustion chamber; 2, fuel 
chute; 3, primary cyclone; 4, cyclone leg; 5, loop seal; 6, heat 
exchanger; 7, secondary cyclone; 8, bag house filter; 9, sludge 
pump; 10, ammonium sulphjate; 11, hydrated lime; 12, 
measurement location upstream of the convection pass; 13, 
measurement location in the convection pass; 14, measurement 
location downstream the convection pass; 15 measurement 
location of stack gases. 
 

Schematic overview of a BFB: 1, combustion chamber; 2, 
fuel feed chute; 3, primary air; 4, secondary and tertiary air; 
5, empty gas pass; 6, superheaters; 7, cyclone; 8, 
economiser. 
 

Figure 3. The two types of FB-boilers: a Circulating Fluidised Bed Boiler (CFB) to the left (Figure from Elled et al. [19]), 
and a Bubbling Fluidised Bed Boiler (BFB) to the right (paper VI). 
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3 Methods 
 

The sampling techniques (3.1) and fuel analysis methods (3.2) subsequently described were 

applied in the work for papers I, II, IV, and VI. The results in paper V are based on thermal 

analysis (3.3) and different methods were used to determine the fossil content in waste (3.4) for 

paper I. Thermodynamic equilibrium calculations (3.5) were performed to support the findings in 

papers II, V, and VI. 

3.1 Sampling of waste 
Sampling of waste for chemical analysis is a complicated process owing to the uncertainty of 

accuracy when taking just a few samples, especially when the sampling is performed on different 

occasions. The heterogeneous composition of waste produces great variation from time to time 

and therefore a single waste sample cannot be regarded as representative of a whole waste 

bunker in terms of ash-forming species and trace elements. One sample can be analysed and 

discussed but only with the proviso that it solely represents that particular waste and its unique 

composition. A better overview of the fuel can be gained by performing repeated samplings over 

a long period of time. The scattering of different species can then be correlated to, for example, 

political economic climate, seasonal variation, household consumption patterns, large batches of 

special industrial waste in a particular month, or problems that may arise in the boiler. 

3.1.1 Sampling from a fixed bed grate furnace 
Since most of the fuel is not treated before combustion, the process of sampling waste from a 

grate-fired boiler is complex. The heterogeneity of the fuel requires a representative sampling 

method. In this study a dividing method based on the standard CEN/TS15442 [21] has been 

employed for all solid waste samples. The sampling procedure starts some days before the actual 

extraction of a sample: the material is mixed in the dumping hall bunker using the overhead 

crane. This requires the involvement of an experienced overhead crane driver who has good 

knowledge of the waste streams in the bunker. After a few days of mixing of all incoming waste, 

a sample of two to seven tonnes is extracted from the bunker, depending on the capacity of the 

plant. The sample is then shredded and mixed at least twice, aiming at leaving the largest pieces 

a few centimetres in size. The shredded sample is spread on clean ground in the shape of a 

square of approximately 10x10 m, once again depending on how much waste that was extracted 
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and the plant capacity. The square is divided into two halves; one half is disposed of and the 

remaining half is once again spread out on the same-sized area as the original square. As before, 

one half is removed and this dividing procedure is repeated until each half (four in total) has 

been removed once, which normally leaves a square about 20 cm high. Subsequently, the square 

is divided into smaller squares of approximately one square metre. From each square one sample 

is carefully taken with a shovel, with the aim being to secure samples all the way from the 

bottom to the top of the waste pile. The total weight of the final sample should be between 

30 and 40 kg. Figure 4 shows a schematic overview of the dividing method used for fuel 

sampling for the grate-fired plant. 

3.1.2 Sampling at a fluidised bed boiler 
Owing to the fuel preparation the fuel sampling in FB-boilers is a simpler process than that 

applied in grate-fired boilers. In this study the FB-boilers included have had an accessible hatch 

placed where the fuel falls down towards the last pass to the FB. At this point the waste fuel 

samples were directly collected from the falling stream of prepared waste. This was done by 

repeatedly inserting a shovel into the falling waste stream in a specific pattern until all the sub-

samples result in a total mass of 30-40 kg. The sub-samples can be extracted over a period of one 

or several days, depending on plant availability and capacity. 
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Figure 4. A schematic overview of the sampling procedure at grate-fired plants. The fuel sample is evenly spread over a 
quadrangular area and half of the square is discarded. The remains are once again spread over the same area and the 
halving and discarding-process is repeated for all four halves. The remaining square is divided into smaller squares and 
sub-samples are taken from each square. 
 

3.2 Fuel analysis of solid samples 
After collection the samples are chemically analysed at an accredited laboratory. The samples are 

first prepared for analysis at an accredited laboratory by grinding and mixing before a sub-

sample is taken from the larger sample by using a coning and quartering method in accordance 

with CEN/TS15443:2006 [22]. For a full fuel analysis it is common to include a proximate 

analysis (Moisture, volatiles, char, and ash), an ultimate analysis (C, H, N, O, and S), and an 

elemental analysis (ash-forming elements that are present in a concentration of g/kg dry and trace 

element analysis, elements that are present in a concentration of mg∙kg-1 dry). Table 1 shows the 

different methods of analysis for the components in the fuel. 
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Table 1. Analysis methods for waste fuel samples. Each method is described in the subsequent sections 

Parameter Method Reference  
Moisture Gravimetric analysis SS-EN 14774-2  [23] 

Ash Gravimetric analysis SS-EN 14775  [24] 

S, Cl Ion Chromatography SS-EN 15289 [25] 

C, H, N Gas analyser  SS-EN 15104 [26] 

Calorific value Bomb calorimeter SS-EN 14918  [27] 

Ash-forming matter 
ICP-OES Modified ASTM D 

3682  

[28] 

Trace elements 
ICP-OES Modified ASTM D 

3683  

[29] 

3.2.1 Determination of moisture and ash content 

. 

Determination of the ash content is done by heating a cold fuel sample up to 250°C with a 

heating rate of 4.5-7.5°C/min. This temperature is then held for at least 60 minutes, which allows 

the volatiles to leave the sample before ignition. The sample is then heated by 10°C/min up to 

500 ± 10°C and the temperature is maintained for 120 minutes. This is performed with at least 

two individual sub-samples from the original fuel sample. A calculation is then performed based 

on the loss of mass. Furthermore, the standard used for determining the ash content shows that 

carbonates are present in the ash owing to the low temperature used to avoid loss of alkali [24]. 

3.2.2 Determination of S, and Cl content 
To determine the content of S and Cl (calculated from measuring Cl- and SO4

2-) the samples are 

processed and then analysed with Ion Chromatography (IC) and a Conductivity Detector (TCD) 

[25]. The method is based on a separation process where the sample is eluted thorough a 

separator column. The stationary phase (the inside phase of the column) has different affinities 

for different ions; this means that some ions in the solute will remain in the column longer, i.e. 

the column causes retardation. In this work anion exchange columns were used. In this type of 

column the stationary phase consists of positively charged groups, which attract solute anions. 

The moisture is determined by weighing a sample before and after it has been treated at  

105 ± 2°C until constant mass is achieved. The total moisture is then calculated based on mass 

change of the fuel [23]. 
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3.2.3 Determination of C, H, and N content 
The principle when analysing C, H and N content is that a known mass of the sample is burned 

in oxygen or in an oxygen/carrier gas mixture, which converts the sample into ash and gaseous 

combustion products [26]. These products are treated to ensure that H is liberated as water 

vapour (rather than associated with S or halides). Products that could interfere with the gas 

analysis are removed. Nitrogen oxides are reduced to elemental nitrogen and the mass fractions 

of nitrogen, CO2 and water vapour are determined quantitatively by a gas analyser. 

3.2.4 Determination of calorific value 
The method used to determine the calorific value is based on burning the sample at a constant 

volume at 25°C in a bomb calorimeter [27]. The result obtained is the gross calorific value of the 

sample at a constant volume.  

3.2.5 Determination of ash-forming matter and trace elements 
To determine the ash-forming elements the fuel sample is analysed dry but for some elements 

(Fe, Al, Si, Ti, Mg, Ca, Ba, Na, K and P) the analysis is performed after treating the sample at 

500°C [28, 29]. The ash-forming matter is then analysed by Inductively Coupled Plasma- Optical 

Emission Spectroscopy, ICP-OES. ICP is a type of atomic spectroscopy where the sample is 

atomised by a plasma. The plasma is much hotter than a combustion flame (~ 6000 – 8000°C) 

and it is used in a stable, inert argon environment that reduces interferences that is otherwise 

common in flames [30]. The ICP can perform simultaneous multi-element analysis. The waste 

samples are vapourised and decomposed into ions in the plasma. The OES is used to determine 

the ions present in the solution. This is done by measuring the concentration of atoms in the 

vapour by emission of characteristic wavelengths of radiation [30].  

3.3 Thermal analysis 
Thermal analysis is a group of techniques that monitor the physical and chemical properties of a 

substance or material as they change with temperature. The properties that can be studied by 

using thermal analysis include mass change, enthalpy, thermal capacity, and the coefficient of 

heat expansion. In solid state chemistry thermal analysis is a tool for studying thermal 

degradation, phase transitions, and phase diagrams. Three of the conventional thermal analysis 

techniques are Thermogravimetric Analysis (TGA) measuring mass changes, Differential 

Thermal Analysis (DTA) measuring temperature difference, and Differential Scanning 

Calorimetry (DSC) measuring heat difference [31].  
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TGA measures changes in mass associated with heating, cooling, or a given temperature to 

determine material composition, material purity, thermal stability of a material, and/or humidity 

[32]. Mass is plotted as a function of temperature at a constant heating or cooling rate, or as a 

function of time under isothermal conditions [33]. Mass change is caused by physical (gas 

adsorption, gas desorption, vaporisation, or sublimation) or chemical (decomposition, solid/gas 

reactions, chemisorption) phenomena. Figure 5 shows an example of a TGA curve.  

DTA measures the temperature difference by studying the substance/material and an inert 

reference by using the exact identical thermal cycles and records any temperature difference 

between the sample and the reference. DSC is a method of measuring the amount of heat that is 

absorbed or released to produce a zero temperature difference between a sample and a reference, 

as a function of temperature or time [33]. It requires both the sample and the reference to operate 

under the same experimental conditions. The instrument has independent thermocouples 

(platinum/platinum-rhodium) under each sample holder (one for the reference and one for the 

studied substance/material), which provide heat separately. First, the sample and the reference 

are heated or cooled at a constant rate. If there is any temperature difference, the power input for 

the reference will be adjusted to eliminate the difference. This continuous and automatic power 

adjustment is directly proportional to the amount of heat required during the process by the 

sample and reference [34]. 

 
Figure 5. Example of TGA-results: The decomposition of calcium oxalate monohydrate (CaC2O4∙H2O). Three mass 
changes are exhibited as the sample is heated in an inert atmosphere, for example, N2. The changes represent the loss of 
H2O to form CaC2O4, loss of CO to form CaCO3, and loss of CO2 to form CaO, respectively.  



 
 

Methods 

15 

 

An exothermic process corresponds to an increase in heat flow, which is indicated as a positive 

peak in the results, while an endothermic process has a decreasing heat flow, showing a drop in 

the resulting curve. Changes in temperature or heat could be caused by several different 

phenomena, either physical (adsorption, desorption, melting, vaporisation, sublimation, 

crystallisation, and change in crystal structure), or chemical (oxidation, reduction, solid state 

reactions, decomposition, and chemisorption). 

Several instruments are available for Simultaneous Thermal Analysis (STA), for example, the 

instrument SDT Q600TM that simultaneously can generate TGA and DSC data for each sample.  

3.4 Determination of the fossil content of waste 
As regards fossil content in waste used for combustion there is not yet a determined standard in 

Sweden. However, it is expected that Swedish waste combusting operations will face changes in 

instruments of control. For example, the Swedish Environmental Protection Agency (EPA) 

introduced the fossil share of MSW into the European ETS during 2013, based on guidelines 

from the European Commission [15]. The methods used for determining the fossil share in waste 

prior to 2013 included sorting analyses followed by calculations that involve several 

assumptions, a plausible source of error. With the upcoming changes there was a need for a study 

of Swedish waste as well as a comparison of different methods available for Swedish waste 

plants. 

3.4.1 Calculation method based on sorting analyses 
By using input data from sorting analyses it is possible to calculate the carbon with fossil origin 

content in waste. In Sweden there is a sorting analysis instruction manual recommended by 

Avfall Sverige –Swedish Waste Management [35]. The application of the method in this manual 

means that a waste sample considered to represent the bunker is divided into nine primary 

fractions. The results of the sorting are then used as input data for the calculation of the 

proportions of carbon with fossil origin. All primary fractions consist of secondary fractions but 

for determining the carbon with fossil origin it is enough to follow through with sorting for two 

of the primary fractions; Plastics and Other. The fractions are shown in Table 2. All sorting 

analyses are performed manually, meaning the sorting itself is time-consuming and hence 

expensive. 
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The sorting analysis results are then used as input data in a calculation model that links each 

fraction from the sorting analysis to an assumed chemical composition of the fraction. In this 

study, the calculations have been performed together with Profu AB and the chemical 

composition information has been taken from Profu AB’s database AvfallsAtlas (in English: 

WasteAtlas), which contains chemical analyses of various waste fractions such as paper, plastics 

and glass. A description of the parameters in Table 2 can be built up for each fraction using the 

database. 

Table 2. Waste fractions used in sorting analyses when using Avfall Sverige –Swedish Waste Management’s manual [35]. 
There are nine primary fractions listed to the left and two of them (Plastics and Other) are further divided into secondary 
fractions listed in italics to the right 
Sorting analysis waste fractions  
Biowaste  
Paper  
Plastics  

 Soft plastics 
Expanded plastic foam 
Hard plastics packaging 
Other plastics 

Glass  
Metal  
Other inorganic  
Hazardous waste  
Electrical and electronic waste  
Other  

 Woods 
Textiles 
Absorbent hygiene products 
Miscellaneous 

 

Table 3. Parameters that can be described by calculations in a calculation model with the database AvfallsAtlas 
Fuel parameters 
Moisture content 

Dry solids content (DS) 

Carbon content (C) as % of dry solids (both biogenic and fossil contents) 

Hydrogen content (H) as % of dry solids 

Oxygen content (O) as % of dry solids 

Nitrogen content (N) as % of dry solids 

Sulphur content (S) as % of dry solids 

Ash as % of dry solids 
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Combining data on the composition of each sorting analysis (percentage by weight) and the 

chemical composition of each fraction enables the chemical composition of the waste as a whole 

to be calculated, from which the biogenic and fossil carbon proportions can be determined.  If it 

is assumed that all carbon is oxidised to CO2, then the biogenic, fossil and total emissions of CO2 

can be calculated. An effective calorific value of the entire body of waste is also calculated in 

order to be able to relate emissions to the quantity of energy delivered from the waste. 

An advantage with this calculation method is that when all the basic work is done (calculations 

structure, deciding what chemical composition each fraction should have, etc.) it is easy to insert 

the result from the sorting analyses to get the calculated results. The method is easily adapted to 

the sorting analysis data available. The cost for the evaluation itself is low, but the total cost 

could increase dramatically depending on how often the sorting analyses have to be performed in 

order to get a representative overview of the waste that is going to be burned. This is a 

disadvantage/challenge for the method. Another challenge is whether the chemical composition 

that is assigned to each fraction gives a correct description of the current fraction. In calculations 

like this the description of the plastic fraction is of major importance since it plays such an 

important role when it comes to the resulting emission of fossil CO2. One other important 

parameter is the moisture content, since it affects both the share of carbon (higher moisture 

content leads to a lower share of carbon) and the LHV (higher moisture content leads to a lower 

LHV). 

3.4.2 The radiocarbon (14C) method 
The 14C-method, also known as the radiocarbon method, can be used on both solid waste 

samples and on flue gas samples. The 14C analysis method is based on the same concept as 

radiocarbon dating; determination of decay events of the unstable carbon isotope 14C per time 

unit (half-life about 5,730 years). 

The solid samples need to be as representative as possible and in this study the sampling 

procedures described above in section 3.1 were implemented. This laboratory prepared sample of 

about 30 g is then used for 14C analysis in accordance with CEN/TS 15747:2008 [36]. The 

standard allows three different methods of transforming the carbon in the sample into a sample 

suitable for 14C-determination; conversion by combustion in a calorimetric bomb, conversion by 

combustion in a tube furnace, and conversion by combustion in a laboratory scale combustion 
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apparatus. In all three methods the CO2 formed is absorbed in a suitable solution, depending on 

the subsequent 14C analysis method. The choice of final 14C-determination method is between 

Liquid Scintillation Counting, LSC (also known as PSM), Beta-Ionisation (BI), and Accelerator 

Mass Spectrometry (AMS). 

The biogenic share of solid waste samples could also be analysed using a method that is different 

from the 14C-method, namely the selective dissolution method. This method is described in 

Annex B of CEN/TS 15440:2006 [37]. It includes treatment with concentrated sulphuric acid 

topped with hydrogen peroxide. The biomass in waste will selectively dissolve and oxidise while 

all material consisting of non-biomass components will remain in the residue. The sample should 

be weighed before and after the selective dissolution procedure. The biomass content by weight 

is corrected for the content of carbonates by measuring the ash content before and after 

dissolution [38]. 

For flue gas samples there is a standard method and it is described in ASTM D7459-08 [39]. In 

this sampling method flue gas is extracted into a gas-proof bag, for example, a Tedlar® bag. The 

method is based on sampling with a constant flow over time so the plant must be operated with 

an even load. The standard specifies permissible limits for the variation of the flow in the plant 

for the sampling to still be considered equal to flow proportional sampling. To ensure that the 

sampling follows the recommendations at least one parameter that can be directly related to the 

stability of the operation, such as flue gas flow or fuel flow, is logged during sampling. It is also 

stated in the standard that sampling should be performed after the flue gas cleaning system and 

for at least one hour, resulting in a minimum sample of 2 cm3. The flue gas samples are analysed 

using the same method as the solid samples standardised in CEN/TS 15747:2008. 

In other sampling methods the flue gas is bubbled through a solution of 4 M KOH or 4 M NaOH, 

which is then analysed using a standard method. Another method is to use an organic reagent 

solution (3-methoxypropylamin “Carbosorb-E”) to absorb the flue gas in directly at the sampling 

point. This solution is then analysed with respect to a density analysis, giving the total carbon 

content, and by LSC, giving the 14C-activity. From these two analyses the biogenic and fossil 

share of the fuel can be determined by calculation. 
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Instead of using age equations as in radiocarbon dating, a ratio is derived from the amount of 

radiocarbon present in an unknown sample to a modern reference standard, giving a distinction 

of carbon with fossil origin, where all the originally existing 14C is completely decayed. Thus, 

the fossil content in the samples is reported as percentage modern Carbon (pmC). However, due 

to anthropogenic activities the background level of 14C changes over time, complicating 

interpretation of the results. One observed effect is the Suess-effect: dilution of atmospheric 14C 

over time due to the admixture of fossil fuel derived CO2, containing no 14C-isotopes described 

by Suess [40]. Furthermore, the thermonuclear-weapon tests performed during almost two full 

decades after the Second World War nearly doubled the 14C concentration in the atmosphere.  

Levin and Kromer have shown that the decrease in 14C since the bombing stopped in the mid-

1960s has gone slowly and is primarily due to buffering in the oceans [41]. This means that this 

method of analysis requires an atmospheric correction factor, making up for the changes in 14C in 

the atmosphere, which is also implied in the standard. This is also called the 14C-background 

value representing the ratio of the 14C/12C-isotopes in the atmosphere during the time the material 

in the samples grew and absorbed CO2. This ratio has been measured since the 1950s and its 

change due to the Suess-effect and the atmospheric bombings can be seen in Figure 6 [42]. 

 

 
Figure 6. The 14C concentration in the atmosphere, figure from Reinhardt and Richers [42].  
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This change in atmospheric 14C means that a fossil material will have a pmC of zero while a 

young biomass, such as fruit or grass, will have a pmC-value reflecting the present value in the 

atmosphere, circa 107 pmC. Older biomass, for example a 40-year-old tree, would have a 

background value starting at approximately 130 pmC but would have been growing during the 

slow dilution of 14C. For a fuel consisting of a homogeneous material of known age, it is possible 

to calculate with a fairly good accuracy. However, for a heterogeneous sample, such as MSW 

and IW, it is hard to determine an exact value for the material. In the standard [36] it is 

recommended that 113 pmC should be used for SRF but values ranging from this down to the 

biomass value of 107 pmC are used for waste samples with a large proportion of MSW. Mohn et 

al. [43] calculated a correction factor of 1.113 ±0.038 for mixed household, commercial, and 

bulky waste, for the year 2010 which was also used in a later publication by Mohn et al. [44]. By 

using a similar approach Fellner and Rechberger [45] suggested 1.156 ± 0.034 for the then 

current European waste. Swedish waste mixtures contain large shares of biological waste, 

paper/cardboard waste, and wood waste; all of these materials have correction factors of 1.12 or 

lower according to Mohn et al. [43]. For determining the fossil content in Swedish waste the 

lower limit could be set to 1.07, as suggested for fresh biomass in CEN/TS 15747 [36], and the 

upper limit could be 1.12, as suggested by both Mohn et al. [43] and Fellner and Rechberger 

[45]. It is likely that the true carbon with fossil origin content value in Swedish waste mixtures is 

found within these limits, as a large share of the waste mixtures are waste fractions with a 

content of 1.12 or lower as suggested by Mohn et al.[43].  

To investigate the capability of flue gas sampling with subsequent 14C analysis, Hämäläinen et 

al. experimented with seven different fuels, both fossil and biogenic, at different combustion 

plants [46]. They also included methane gas as an alternative to the solid fuels. The samples were 

extracted from the flue gas stack, stored in Tedlar® bags and subsequently analysed by AMS. 

Their study shows that the method is reliable and that the contamination risks with the sampling 

method and the storing of the samples are low but that they increase the smaller the size of the 

total sample. To evaluate the method they compared their results from the methane gas sampling 

to available literature values of 13C and found their measured sample was within the range. 

During experiments with biogenic samples, saw dust and wood chips, they thought the measured 

values were quite low owing to the fact that the trees used would have been growing during a 

time of high pmC in the atmosphere. Further investigations showed that even though sawdust 
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contains all the parts of a tree, the wood chips consisted mostly of the younger parts of the tree, 

hence the lower pmC. To verify this theory they performed laboratory-scale tests with a wood 

material with a known age and found, as expected, that the old material gave a higher pmC. In 

the more complicated fuel mixes they used their results are still satisfying compared with 

calculated values (somewhat based on assumptions). The article states that flue gas sampling 

with subsequent 14C analysis is an adquate method of determining the biogenic share of material 

in fuels. However, they also point out that there is uncertainty with regard to background levels 

of 14C in the atmosphere in mixed fuels. 

Other studies of the fossil content in flue gas include Mohn et al. [44] who performed a yearlong 

sampling campaign with 24 samples from five plants and were able to show that the bag 

sampling procedure proved to be simple and straight-forward when it came to obtaining 

temporally integrating exhaust samples. In the study, they also combined the bag sampling with 

direct 14CO2 analysis by AMS, improving quality control. In an earlier study by Mohn et al. [43] 

the CO2 from the flue gas was sampled directly into washing bottles with KOH solutions. The 

same method was used by Calcagnile et al. [47] and both studies confirm the high potential of 

this approach in the analysis of industrial CO2 emissions. Furthermore, Palstra and Meijer [48] 

performed similar sampling (but in NaOH instead of KOH) of flue gas samples from a 

combustion plant burning pulverised coal and pulverised wood pellets. The experiments had 

known input and output data of carbon in the fuel providing the possibility of calculating a 

carbon balance [48]. The study also included flue gas samples from a waste combustion plant. 

All samples were collected in a solution and analysed in a laboratory using AMS. The approach 

to reach finalised calculation results differ slightly from other studies since the coal combustion 

plant shared a stack with a natural gas combustion plant, meaning there is an extra source of CO2 

to be taken into consideration. The results of the measurements show that the method is reliable 

by comparing the carbon mass input and output data from the power plants with the results they 

obtained. They point out the importance of using clean chemicals and also a suitable flow of flue 

gas through the absorbing chemical (in this case NaOH) [48]. An unsuitable flow, in relation to 

the volume of the NaOH, could result in a loss of CO2. It is not possible to assume the leaking 

CO2 is homogenous since 12C and 13C are more soluble than 14C, thus dissolve to a greater degree 

than 14C in the NaOH solution and the sample is ruined [48]. Furthermore, the authors state that 

the uncertainties in flue gas sampling and 14C analysis are not related to the laboratory analysis 
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but rather to the extraction method. In summary the study shows that flue gas samples are 

suitable for determining the biogenic shares of various fuels. Nevertheless, they also specify that 

with fuels consisting of less than 10 % biogenic material other sources of CO2, such as 

atmospheric CO2, should be taken in to consideration as well so as to properly determine the 

biogenic emissions [48]. 

3.4.3 The balance method 
The balance method was developed at the Vienna University of Technology [49]. It is a 

calculation method based on mass balances and energy balances that together give an 

overdetermined equation system, i.e. the number of equations > the number of unknowns  

[49, 50]. The Vienna University of Technology has developed a software program, BIOMA©, 

that performs all calculations on-line - it is a commercial product available on the market for 

combustion plants to buy. The method utilises the operating data from the existing control 

system at the plant. The most important input data is the balance between the oxygen 

consumption and the CO2 formation in the process. The method is based on the fact that there are 

several fundamental differences between how biogenic and fossil carbon reacts in a combustion 

process, making it possible to separate these reactions. Some of the differences are: 

Carbon/oxygen ratio: Fossil fuels, such as plastics, have a high carbon:oxygen ratio. In some 

cases it is extreme, for example, polyethylene, where the ratio is infinite since polyethylene does 

not contain any oxygen at all. A typical biomass, for example, cellulose (-C C6H10O5)-n, can have 

a carbon:oxygen-ratio of almost 1.  

Oxygen consumption: Due to the high share of oxygen in a biogenic material, it consumes less 

free oxygen (available in the combustion air) during combustion.  

Energy content: A fossil material generally has a higher energy content since biogenic material 

contains more water and less inert material per mass.  

During waste combustion CO2 is produced while free oxygen from the surrounding air is 

consumed according to two general equations specific to the two carbons sources: 

Biogenic (cellulose): (-C6H10O5-)n + 6nO2  6nCO2 5nH2O 
 

(R-1) 

Fossil (Polyethylene plastic): (-CH2-CH2-)n + 3nO2  2nCO2 + 2nH2O (R-2) 
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As can be seen from the equations above, the two reactions consume different amounts of 

oxygen. Reaction (1) consumes 1 mole of oxygen per each produced mole of CO2, while reaction 

(2) consumed 1.5 moles of oxygen per each produced mole of CO2. This means that the 

difference between the oxygen consumption during combustion of biogenic and fossil material is 

50 %. 

By starting from the two extreme cases, 100 % biogenic material and 100 % fossil material, it is 

possible to calculate theoretical values for the heating value (HVwaste, kJ/kg) and the oxygen 

consumption (O2
C

waste). The balance method also includes the possibility of doing a “plausibility 

test” to control whether the calculated values are reasonable, i.e. are within the limits of what is 

possible.  

Information on the following process parameters (listed in Table 4) is required in order to 

perform the calculations. Of the parameters in the table, it is the measured O2 and CO2 

concentrations in the flue gas that are the most important for the calculations.  

Purely mathematically the balance method is based on the solving of five theoretical balance 

equations, one energy balance equation (for mass, element and energy), and measured data. The 

measured data is conventional measurement data available on waste combustion plants (for 

example, flue gas volume, O2, and CO2 concentrations, steam production, ash and slag 

production).  

Table 4. The process parameters used in the balance method 
Continuous input data  Predefined input data 
- O2 and CO2 concentrations in the flue gas (actual  
   value, dry, %) 
- Waste quantities (tonne/h) 
- Masses of bottom ash, filter ash and filter cake  
- Flue gas quantity (Nm3/h)  
- Steam production (tonne/h) 
- Steam pressure and temperature (bar and °C) 
- Feed water temperature (°C) 
- Quantity of additional fuel (oil [tonne/h], gas  
  [Nm3/h] or [for example] sludge [tonne/h]) 

- Water content in the bottom ash (slag), % 
- Water content in the fly ash, % 
- Slag content in the waste, excluding metals, % 
- Energy efficiency of the boiler, (%) 
- O2 content of the combustion air, %.  (Normally  
  atmospheric air, but there are sometimes occasions when it 
is enriched or changed.)   
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The equations solved are the following (parameters listed in Table 5) 

Mass balance: mB + mF + mI + mw = 1 
 

(Eq-1) 

Ash balance: mI = awaste 
 

(Eq-2) 

Carbon balance: cB*mB + cF* mF = Cwaste 
 

(Eq-3) 

Energy balance: HVB*mB + HVF*mF  - 2.45*mW = HVwaste 
 

(Eq-4) 

O2-balance: O2
C

,B*mB + O2
C

,F*mF = O2
C

Waste 
 

(Eq-5) 

The unknown parameters from the equations are the mass fractions of inert, biogenic, and fossil 

material as well as the share of water (mi, mB, mF, and mW). The coefficients in the equations for 

these parameters (HVB, CB, etc.) can be extracted from the chemical composition of the fuel 

(here: waste). The chemical composition used by the balance method software is described 

below. A more detailed description of the equations and the method to solve them can be found 

in Fellner et al. [49] and in the Austrian patent A539/2005 (in German) [50]. 

Table 5. Explanation of the parameters in equation 1-5 
Parameters for equation 4-9 
mB  
mF  
mI  
mw 
awaste  
cB  
 
cF  
 
Cwaste  
HVB  
 
 

the share of biogenic material in the waste, % 
the share of fossil material in the waste, % 
the share of inert material in the waste, % 
the share of water in the waste, % 
*the mass of ash in the waste, kg 
the carbon share in biogenic material, g/kg 
ash free 
the carbon share in fossil material, g/kg ash 
free  
*the carbon share in the waste, g/kg ash free 
the lower heating value of biogenic material, 
kJ/kg 
 

HVF 
HVwaste 
O2

C
,B  

O2
C

,F  
O2

C
Waste  

ΔOCB                    
 
ΔOCF                           
 
ΔOCwaste  
 

the lower heating value of fossil material, kJ/kg 
*the lower heating value of waste, kJ/kg 
the oxygen share in biogenic material, % 
the oxygen share in fossil material , % 
*the oxygen share in waste, % 
the difference between oxygen consumption and 
CO2-production for the biogenic share  
the difference between oxygen consumption and 
CO2-production for the fossil share 
* the difference between oxygen consumption and 
CO2-production for the waste 
 

*Marked parameters are input data from the combustion plant 

Table 6. The chemical composition of the biogenic and fossil share in waste used in the Balance method 
Share C 

g/kg ash free 
H 

g/kg ash free 
S 

g/kg ash free 
N 

g/kg ash free 
O 

g/kg ash free 
 Mean STD Mean STD Mean STD Mean STD Mean STD 

Biogenic 483.3 3.2 65.0 0.8 1.2 0.3 8.0 2.9 441.4 5.3 
Fossil 768.6 20.2 109.0 7.0 3.0 1.1 13.3 5.5 87.7 21.8 
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Some simplifications and assumptions are included in the software program that it might be 

important to take into consideration as waste fractions change over time. For example, 

bioplastics are still considered fossil in the calculations. At present this is not of major concern 

since the share of bioplastics in the total plastic so far is so small it is negligible [49]. The Vienna 

University of Technology is constantly improving the software and special request by the plants 

can be arranged if required; for example, it is now possible to include oxidations of metals and 

calcination of limestone, something that was not possible a few years ago [51].  

Furthermore, it is worth noting that the balance method software BIOMA© is very sensitive 

when it comes to input data. An increase of only 1 % CO2 could cause changes of up to 9 % in 

the emitted CO2 calculated.  

In Fellner et al. [52] the inventors of the Balance method and distributors of the BIOMA© 

software made a long-term analysis of the biomass content in the fuel at a waste combustion 

plant. This particular combustion plant had oxygen-enriched combustion air which meant the 

balance method had to be modified for the special needs of the plant. The conclusions of the 

study are that the method is both adaptable and accurate. The writers argue that, with proper 

service and calibration of all measuring equipment, it is possible to produce reliable data 90 % of 

the operating time. However, the maximum error of the final results seems to be higher than 

when the method is used in a combustion plant with a conventional oxygen supply. No validation 

was performed in the study other than the plausibility test and a sensitivity analysis. 

3.4.4 Comparisons between the 14C-method and the balance method 
Most available publications concerning determination of the fossil share of waste for combustion 

use the 14C-method by analysing flue gas samples, rather than solid samples, or the balance 

method. There is still a need for more comparisons between the different methods [48]. 

However, it should be borne in mind that all comparisons of results are between single specific 

flue gas samples and data showing averages over time (often weekly or monthly averages) from 

the balance method.  

In a comparative study by Mohn et al. [43] parallel measurements of flue gas samples and 

recording of data for the balance method were carried out in three different combustion plants in 

Switzerland. The sampling time was between three and four days during a month when the 
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operational data was used for the balance method. The results from the two technically separate 

methods are highly comparable. 

Obermoser et al. [53], welcomes the validation of the balance method but somewhat question the 

results from Mohn et al. [43], pointing out uncertainties that need to be incorporated, as 

described by Fellner et al. [45]. Here it is argued that a waste mixture is too heterogeneous to be 

determined by only using one pmC value, as suggested in standard methods. However, 

Obermoser et al. [53] present a simultaneous balance method measurement at two separate 

combustion lines being fed from the same bunker. By having separate lines, all parameters are 

separately and independently determined for each line. The results for the two lines are very 

similar but not identical; this is as expected since the waste fuel is heterogeneous [53]. 

Another comparison was carried out by Staber et al. [54] who compared flue gas samples with 
14C analysis to the balance method and an alternative method called the selective dissolution 

method for solid samples. The flue gas is absorbed directly into Carbosorb-E, which then 

undergoes a density analysis and an LSC analysis. The solid sample analysis is thought to be 

complicated due to the sample heterogeneity and the method has considerable limitations owing 

to the fact that the fuel makes it less user-friendly than the two other methods. The method 

standard was withdrawn in April 2011 [37]. 

More validations and comparisons of these methods are welcome. Naturally, many of the articles 

published about the balance method include authors from the Vienna University of Technology 

[45, 49, 50, 52-54], making the publications less independent, but evidently not unreliable since 

the balance method has been studied and validated by others, such as Mohn et al. [43]. The 

balance method software BIOMA© is now established a several combustion plants and a great 

advantage with the method is the on-line resolution of the fossil and biogenic share of the flue 

gas.  

The different methods involved in extracting the flue gas for 14C analysis make it hard to 

compare studies of the measurements of fossil/biogenic CO2. The sampling of flue gas plus the 

handling and storage of the samples are of greater importance than the laboratory analysis 

method determining the accuracy of the sampling results. Nevertheless, the method has shown 

good comparability and repeatability when used with well-defined fuels. Compared with solid 
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samples, the flue gas samples give a more absolute overview of the fossil emissions since the 

solid samples really only reflect the exact extracted samples, while the flue gas is collected for a 

minimum of one hour. Compared with the balance method the flue gas samples produce results 

for a shorter time period. 

3.5 Thermodynamic equilibrium calculations 
Thermodynamic equilibrium calculations have been widely used to better describe and 

understand inorganic reactions taking place during combustion processes [55-62]. They provide 

information that allows detailed studies of the mechanisms of, for example, bed agglomeration in 

fluidised beds, deposits and corrosion on heat transfer tubes, and emissions of particles. It is also 

valuable for building phase diagrams. It is a useful tool for studies of different fuels (different 

elemental concentrations) and evaluation of changes in temperature and/or pressure. The 

calculations will provide information about whether equilibrium lies in favour of reactants or 

products under certain conditions [63].  

Thermodynamic equilibrium calculations are based on the minimisation of the total Gibbs free 

energy. The expression for Gibbs free energy at constant absolute temperature and pressure is 

shown in Equation 6 and the equation-parameters are explained in Table 7. 

𝐺𝑡

𝑅 × 𝑇
= �𝑛𝑖 × �

𝐺𝑓𝑖
0

𝑅 × 𝑇
 + ln (𝑎𝑖)�

𝑁

𝑖=1

 (Eq-6) 

There are some limitations to thermodynamic equilibrium calculations. For example, the 

calculations exclude physical phenomena like kinetics, mass transfer and particulates (aerosol 

formation, surface reactions, absorption and adsorption). Furthermore, the local conditions 

(residence time and mixing) are not taken into account in the calculations. One of the most 

limiting factors is the quality of the thermodynamic data. For thermodynamic equilibrium 

calculations to be precise, consistent and accurate thermodynamic data is required for all the ash 

phases that may form in furnace and boiler conditions. These different phases include complex 

liquid and solid ionic phases, such as molten slats and silicate slags, as well as multicomponent 

gas phase [61].  
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Table 7. Calculation parameters for Gibbs free energy at constant absolute temperature and pressure 
Parameters for equation 6 
Gt 
R 
T 
ni  
ai  
fi  
G0  
N 

total Gibbs free energy (kJ) 
universal gas constant (JK-1∙mole-1) 
temperature (K) 
number of moles of component i 
activity of component i 
activity coefficient (fugacity) of component i 
Gibbs free energy for the pure substance in the standard state (kJ) 
total number of chemical elements 

There are several available thermodynamic software programs used for modelling of ash 

chemistry, such as ChemApp, ChemSheet, HSC, MTDATA, Thermo-Calc and DICTRA, and 

FactSage [61]. Currently, FactSage is one of the most commonly used for calculating 

multicomponent, multiphase equilibria for metallurgical and thermochemical processes.  

Expansion of databases is an on-going process, for example, the prediction of melting properties 

of alkali salt mixtures relevant to ash chemistry can be done with a high degree of accuracy 

while phosphate chemistry is harder to predict owing to the lack of required experimental data 

for the databases. However, although the databases, and therefore the calculations and 

predictions, are constantly improving, thermodynamic modelling has already been successfully 

used in combination with advanced fuel analysis, computational fluid dynamics and a stand-

alone tool to predict ash deposition in full-scale boilers [55-62]. 
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4 Results 
 

This chapter describes the results from the papers this thesis is based on. Section 4.1 presents 

results from Paper I, and section 4.2, 4.3, 4.4, 4.5, 4.6 corresponds to Paper II-VI, respectively.  

4.1 Determination of carbon from fossil fuels in Swedish waste mixtures  
When this study was performed the methods in current use for determining the fossil share in 

waste included sorting analyses followed by calculations that include several assumptions, a 

possible source of error. With changes on the horizon, such as the impending introduction of 

Swedish WtE plants into the ETS, there was a need for a study of Swedish waste. Furthermore, 

there was a need for a comparison of the different methods available for Swedish waste plants to 

determine the fossil fraction in their waste mixtures. 

In this study, four different methods were used and compared to determine the fossil share of 

waste mixtures going into seven different Swedish WtE-plants. Some plants burn 100 % MSW 

while others also include a share of IW. The findings are published in paper I. 

The seven WtE plants in this study are geographically spread over the whole of Sweden. Table 8 

describes the combustion technologies and MSW ratios for the participating plants. The study 

included six solid waste fuel samples taken at each combustion plant. In addition to the solid 

waste fuel samples, three 24-hour flue gas samples were taken simultaneously as solid waste 

samples for each combustion plant. Furthermore, three sorting analyses were performed at three 

different plants (C, D and F) to be used in calculations to predict fossil content in the waste. Data 

from plant E and F were also used for balance method equations. 

The sampling of solid waste was performed as described in sections 2.1.1 and 2.1.2, for the grate 

furnaces and BFBs respectively. Sorting analyses and flue gas sampling were conducted as 

described in sections 3.4.1 and 3.4.2. The balance method used for the calculations is described 

in section 3.4.3. 
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Table 8. Participating plants, combustion technique and average mass ratio between MSW and IW as fired (paper I) 
Plant ID Combustion technique Average MSW:IW-ratio during study 
A Bubbling Fluidised Bed 25:75 
B Bubbling Fluidised Bed 35:65 
C Grate 100:0 
D Grate 100:0 
E Grate 55:45 
F Grate  40:60 
G Grate 40:60 

The results from the 14C analysis of both solid samples and flue gas samples are shown in  

Figure 7. The x-axis represents the amount of industrial waste in the waste at the sampling time 

and the y-axis shows the percentage of carbon with fossil origin of the total carbon content in 

each sample. Two samples, one solid and one flue gas are statistically significant outliers, both 

outside 3 standard deviations, and will not be included in further evaluations. As both 

measurements had been carried out exactly as the others, there was no explanation for the 

outliers. In addition, the solid sample did not contain anything out of the ordinary according to 

the combustion plants delivery codes. 

When investigating the effects of impact attributable to the share of IW, the samples can be 

divided into three groups, 0 % IW, 20-50 % IW and 50-80 % IW, as shown in Figure 7. A study 

of the mean values and standard deviations for the three groups reveals that they overlap. The 

trend is that a waste mixture consisting of 100 % MSW contains less carbon with fossil origin 

than a mixture with IW, but the results show no distinction in different shares of IW.  

The same kind of analysis was performed with reference to when in the year the samples were 

collected (from October 2010 to August 2011). The analysis showed no correlation between 

fossil content and sampling date. 

To illustrate the correlation between solid samples and flue gas samples taken simultaneously, 

Figure 8 shows the measured share of carbon with fossil origin in both a solid sample and a flue 

gas sample taken at the same time. The solid waste samples come to a mean average of 35 % 

(SD = 7) carbon with fossil origin out of the total carbon concentration. For the flue gas samples 

the mean average is 38 % (SD = 5) fossil CO2 out of the total CO2 concentration.  
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Figure 7. All solid samples and flue gas samples. The circles correspond to the three groups involving different share of 
IW used to analyse the correlation between the share of IW and carbon with fossil origin in the waste (paper I). 

 

 
Figure 8. Analysis results of fossil share of carbon in solid fuel samples and flue gas samples taken simultaneously. NB. 
The solid sample corresponding to flue gas sample A6 was lost. Sample E4 and its corresponding flue gas sample are 
excluded from the graph beacuse the flue gas sample was an outlier (paper I).  
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When the two methods are compared by plotting the difference against the results from the solid 

samples, a systematic error appears that cannot be seen when using mean averages (see  

Figure 9). In this figure it is clear that the solid samples show a higher fossil content than what 

the flue gas samples do when the share of carbon with fossil origin is high and a lower content 

when the concentration is low. This information cannot be seen in the previous results due to the 

fact that the systematic error cancels itself out when using both high and low values.  

Based solely on the data in this study, it is more likely that the flue gas results would be more 

accurate, corresponding to the full waste mixture over a 24-hour sampling. In addition, when the 

flue gas is measured the result will show the amount of carbon with fossil origin emitted rather 

than the amount of carbon with fossil origin of an extracted portion of waste. However, it has not 

been possible to determine the reason for the systematic error, or its source. It cannot be linked to 

either the share of IW or type of sampling.  

 
Figure 9. The difference between the carbon with fossil origin content in the solid waste samples compared with the 
parallel flue gas samples plotted as a function of the carbon with fossil origin content in the solid samples. The lines 
represent the fluidised bed plants A and B, and the stars represent the grate bed plants C-F (paper I). 
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The calculations based on sorting analyses were performed with the input data from Table 9. The 

calculations show that the fossil content is strongly connected to the plastic content in the input 

data, which explains the reason for plant C as a result having a higher share of carbon with fossil 

origin, 48 % compared to 38 % and 31 % for plants D and F, respectively. 

For plants D and F where the plastic content was similar, other factors became significant. The 

major difference between the two plants was that the fraction “others” was dominated by hygiene 

products at plant D and wood at plant F. According to the calculation model used, hygiene 

products contain 64 % carbon with fossil origin while wood is 100 % biogenic.  

Table 9. Input data for calculations and results from sorting analyses at plants C, D, and F (paper I) 

Plant id. C D F 
Type of waste 

100 % MSW 100 % MSW 
40-45 % MSW 

55-60 % IW 
Composition (%)    

Biological waste 14.6% 31.4% 24.8 % 

Paper 37.6% 23.2% 20.8 % 

Plasticsa 25.7% 13.8% 15.8 % 

Soft plastics 
Hard plastic packages 
Polystyrene/styrofoam 

Other plastics 

15.8 % 
0.5 % 
8.3 % 
1.1 % 

9.4 % 
0.3 % 
3.3 % 
0.8 % 

7.4 % 
0.4 % 
3.2 % 
4.8 % 

Glass 3.4 % 1.4% 1.8 % 

Metal 3.1 % 2.8% 3.8 % 

Inorganic 0.4 % 2.7% 3.0 % 

Hazardous waste 0.1 % 0.1% 0.1 % 

Electric waste 0.1 % 0.3% 0.6 % 

Othersb 15.1% 24.5% 29.3 % 

Wood 
Textile 

Absorbent hygiene products 
Miscellanous/unidentifiable 

1.6 % 
4.5% 

6.7 % 
2.3 % 

0.4 % 
1.4 % 

16.0 % 
6.8 % 

17.3 % 
3.6 % 
1.6% 

6.8 % 
Calculated results    

Share of fossil C 48 % 38 % 31 % 

a) This fraction was further sorted into soft plastics, hard plastic packages, polystyrene/styrofoam, and other plastics, see numbers 
in italic representing the percentage of the total sum of waste. 
b) This fraction was further sorted into wood, textile, absorbent hygiene products (such as nappies and feminine care products), 
and miscellaneous/unidentifiable, see numbers in italic representing the percentage of the total sum of waste. 
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The results of the balance method calculations with pre-logged data from plant E show that the 

average fossil share during this three-month period was 52 %. From the six solid samples and the 

two flue gas samples from plant E the averages for the fossil share are 38 % and 42.5 %, 

respectively. However, the calculations were performed with some uncertainties since not all the 

input data were logged but calculated based on assumptions.  

The results from the online-installation at plant F are presented in Figure 10. During the three 

months of the study, weekly averages were calculated by the software. The average for all 

weekly samples is 43 %, compared to 34 % average for the solid samples and 36 % in the flue 

gas samples. However, it is clear that five of the weeks deviate from the others (see Figure 10). 

There is no visible relationship between the industrial waste content and the differences in 

carbon with fossil origin content. It turned out that the temporary use of a reserve O2/CO2-

instrument during this week caused the differences. The instrument showed values increased by 

0.2 percentage points for the O2 and 0.9 percentage points for the CO2, which produced a 

significant difference compared with when the more accurately calibrated ordinary instrument 

was used. When the weeks when the reserve instrument was used are excluded, the average for 

the whole period goes down to 36 %. 

 
Figure 10. Weekly averages for the balance method showed together with the approximated share of industrial waste in 
the waste being combusted (paper I). 
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Table 10 collects together all the results from the study. Both the solid samples and the flue gas 

samples show that the majority of the samples have a share of between 30 % and 40 % carbon 

with fossil origin out of the total carbon content. The solid samples represent the waste 

composition from the original five-to-seven tonne samples extracted from the bunker, while the 

flue gas samples are averaged from a 24-hour continuous sampling. This should make the flue 

gas sample more homogenous and it also takes in all combusted waste rather than only one 

mixed extracted portion from the bunker. As discussed above, there is also a systematic error in 

the sampling of solid samples, which also points to the flue gas samples as being more 

trustworthy. 

From the sorting analysis the results are somewhat similar. However, there are assumptions 

behind the calculations, making them dependent on predefined data. The balance method was 

only used at two of the plants: in plant E where old logged data was used, some of the input 

parameters had to be estimated, which resulted in a relatively high fossil share. In plant F the 

software program was installed and the results are in the same range as the results from other 

methods. Nevertheless, the software program turned out to be extremely sensitive and small 

changes in input data resulted in substantial differences in the results.  

Overall, the results from this study suggest that approximately a third of the carbon in Swedish 

waste has fossil origin. This would correspond to a carbon with fossil origin share of 

approximately 10 wt% in a waste mixture. All methods provide data about the share of carbon 

with fossil origin in the waste mixtures but it is clear that the choice of method depends on the 

plant. 

Table 10. All results from the four different methods presented together (paper I) 

                                     Plant id. 
 
Fossil C 
of total C. 
Averages per  
analysis method 

A B C D E F G 

Solid waste samples (%) 36 38 33 29 38a 34 43 

Flue gas samples (%) 39 38 33 35 41a 36 44 

Sorting analysis (%) - - 48 38 - 31 - 

Balance method (%) - - - - 52 36b - 

a) This is calculated excluding outliers. 
b) This is calculated without results from weeks with reserve instrument.  
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For example, sampling of solid waste is much more feasible and economically justified in a 

fluidised bed plant than in a grate-fired plant. The flue gas method seems to be more accurate 

than the solid samples but using solid samples also makes it possible to do a chemical fuel 

analysis of the waste mixture and retrieve information about its composition as well as the fossil 

share. The balance method provides online data, but requires that the plant log all the parameters 

required and it is very sensitive to changes. However, this sensitivity also makes the balance 

method a validation tool for all logged data and evaluates the quality of the logging instruments 

in the plants. Furthermore, the balance method provides information about the share of the 

produced energy that is fossil, which is of interest for other political decisions. The sorting 

analysis that has traditionally been used in Sweden is dependent on assumptions that produce 

great uncertainties but for two of the three plants it produced results in the same range as the 

other methods. 

4.2 Chemical characterisation of waste fuel for commercial WtE boilers 
The heterogeneous composition of waste makes both sampling accuracy and prediction of 

possible chemical reactions difficult to achieve. At the same time the variation in chemical 

composition is of great significance for the performance of the boilers in the WtE-plants in terms 

of availability and power efficiency. For example, the content of the alkali metals Na and K, in 

combination with the content of Cl and S, have a substantial effect on agglomeration, fouling and 

corrosion mechanisms, which often limits the steam data and requires counteractions such as 

soot blowing and outages. Increased knowledge on favourable levels and ratios of fuel 

components are therefore of great importance when retrofitting or developing waste combustors. 

Detailed knowledge of variations in waste composition over long periods is lacking and, as a 

consequence, it is also difficult to implement proactive measures to reduce unwanted reactions. 

The focus of this study was to characterise the waste fuel mixtures from two separate WtE 

plants, and achieve an overview of the composition as well as trying to identify seasonal 

variations. 

This chapter presents the findings from a one-year chemical study of the waste streams of both 

MSW and IW to two commercial boilers, one grate-fired boiler and one BFB-boiler.  
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The findings for the BFB-boiler were published in “Chemical characterization of waste fuel for 

fluidized bed combustion” (Paper II). The study includes chemical analysis of the waste and 

thermodynamic equilibrium calculations to predict the chemical composition between 400 and 

1000°C. The aim with the calculation was to predict unwanted reactions that shorten the boiler 

lifetime, such as the formation of corrosive alkali, and other metal, chlorides. 

In the study plant A is a fixed-bed grate furnace, with fuel consisting of 60 wt% source-separated 

MSW and 40 wt% IW. Due to the decreasing heat demand in Sweden during the summer 

months, June, July, and August (JJA), the fuel consists of significantly less IW during these 

months. Instead, the IW is baled and saved for the colder months. The fuel at this plant is 

sampled according to the method described in section 3.1.1.  

Plant B is a commercial BFB where the fuel normally consists of 30 % MSW and 70 % 

industrial waste. As at plant A, the IW is baled during the summer and the combusted fuel is 

close to 100 % MSW. The fuel at this plant is sampled according to the method described in 

section 3.1.2. 

The fuel samples from both plants then underwent fuel analysis as described in section 3.2.  

In paper I the results from the chemical analyses of the waste from plant B were used as input 

data to the thermodynamic equilibrium calculations. Three different cases were analysed; 

- Case one (#1) a reference case with a normal combustion environment (oxidising) where 

the average values for all twelve samples were used as input data.  

 

- Case two (#2) where the same average values on all species were used, except for Cl, 

which has been decreased to the lowest measured value from the samples to investigate 

how the Cl content affected the reactions.  

 

- Case three (#3) where the content of S was increased to a Cl/S ratio of 1:4 to simulate the 

influence of a S additive. All other values were kept at the average for all twelve samples.  

The program used was FactSage 5.5 and the databases FToxid, FTsalt and Fact53 were used with 

an oxygen level of 5 % in the flue gas, based on fuel consumption and combustion air. 
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Fuel sampling was performed twelve times for each plant between September 2007 and October 

2008. Owing to some unscheduled shutdowns and planned maintenance periods the samplings 

did not take place once a month for a consecutive 12-month period, Table 11 shows the months 

when the fuel samplings were performed. Plant A has a maintenance period at the end of the 

summer, which means no sampling was performed for the boiler when it was shut down and 

during the start-up phase (August and September). At the end of 2007 two samples were lost 

from plant B (November and December). The second sample from plant A (October 2007) was 

divided into two plastic bags and analysed as two samples. Two samplings were performed at 

plant B in January 2008, one at the beginning and one at the end of the month.  

The main differences in the chemical composition of these waste fuels and a biomass, such as 

wood pellets, are the moisture content and the ash content. Wood pellets normally have a 

moisture content around 8 wt% and less than 1 wt% ash. High ash content implies a high 

proportion of metals, which are often troublesome in combustion processes. The lower effective 

heating value relates to the high moisture content in the waste. Compared to wood pellets, the 

waste mixtures also contain an approximately 50 times higher proportion of chlorine, which is 

potentially corrosive, especially in combination with high alkali content, as in waste. 

Both plants had a larger variation in the content of ash-forming elements which is evident in 

Figure 11 and Figure 12. The horizontal line at 1 represents the mean value for each element (the 

analysis result of each species is normalised against its mean value) and the distribution around 

this line shows the variation on the logarithmic y-axis. It is important when looking at the 

variation figures to take into account the differences in total content (wt%, g/kg, or mg∙kg-1). A 

low concentration, as for the trace elements, will make the variation larger. All samples are 

presented in the figures but for the fuel mixture from plant A there is no analysis for Sb, and for 

the fuel mixture from plant B there are no analyses made for Hg and Mn. 

Table 11. Schedule for the fuel sampling. Each “x” marks one sampling 
Year 2007 2008 

Month Sep Oct Nov Dec Jan Feb March April May June July Aug Sep Oct 
Plant A X XX* X X X X X X X X X   X 

Plant B X X   XX** X X X X X X X X  

*After sampling in October the sample was divided into two bags and analysed as two samples.  
**Two samples were taken at plant B in January 2008, one at the beginning and one at the end of the month. 
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In Figure 12 (fuel mixture from plant B) there are bars on some of the species. These bars are 

given by the manufacturer of the boiler, and keeping the fuel composition within these guidelines 

(under the black one and above the white one) should give the durable performance of the boiler. 

 

Both figures show that species such as Na, K, and Cl, which affect the corrosion risk, exhibit a 

larger spread from their mean value than for example C or N. Also S varies over the year, 

between 0.10 and 0.49 wt% ds in the fuel mixture from plant A and between 0.01 and 0.62 wt% 

ds in the fuel mixture from plant B. Furthermore, trace metals were present in low concentrations 

and show the widest relative variation (together with Ti and Ba). The figures also show that the 

spread from the average values is somewhat higher at plant A which could be related to the more 

heterogeneous fuel mixture. At plant B the fuel is shredded and then mixed several times, which 

gives a more homogenised fuel mixture than can be achieved when taking a 2-tonne sample from 

the bunker at plant A. However, there are no major differences so both sampling methods have to 

be seen as satisfactory. 

4.2.1 Seasonal variations 
The change of fuel mixture during the summer to close to 100 % MSW produces a notable 

change in fuel composition, most evident for the fuel mixture from plant B. In Figure 13 and 

Figure 14 the variation is presented again but with the summer months marked in black. For the 

fuel mixture from plant A (Figure 13) there are only two samples taken during the summer, June 

and July (JJ). The variation for the fuel mixtures from Plant B is shown in Figure 14 and it 

appears that the samples from the Swedish summer period contain less ash-forming material and 

predominantly fewer trace elements since they all lie on or under the annual average. A similar 

trend can be discerned for the fuel mixture in plant A but it is not as apparent as in the fuel 

mixture from plant B. This is an important observation supporting the conclusion above 

regarding the importance of repeated samplings of waste fuels, where one sample does not take 

into account possible seasonal (or other) variations. 
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Figure 11. Variation over the sampling period in the fuel mixture from plant A. One Pb sample (April-08, 0.002 mg∙kg-1 
dry) is below the minimum in the diagram and not shown in the figure. The horizontal line at 1 represents the mean value 
for each element (the analysis result of each species is normalised against its mean value) and the distribution around this 
line shows the variation on the logarithmic y-axis. 

 
Figure 12. Variation over the sampling period in the fuel mixture from plant B. The small bars on some of the elements in 
the figure are given by the manufacturer of the boiler. There is a recommendation to keep the fuel composition of these 
elements within these guidelines (under the black one and above the white one) to get a durable performance from the 
boiler. The horizontal line at 1 represents the mean value for each element (the analysis result of each species is 
normalised against its mean value) and the distribution around this line shows the variation on the logarithmic y-axis. 
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Figure 13. Comparison of the elemental composition in the summer months (JJ) and the rest of the year in the fuel 
mixture from plant A. The horizontal line at 1 represents the mean value for each sample (the analysis result of each 
species is normalised against its mean value) and the distribution around this line shows the variation on the logarithmic 
y-axis. 

 

Figure 14. Comparison of the elemental composition in the summer months (JJA) and the rest of the year in the fuel 
mixture from plant B. The horizontal line at 1 represents the mean value for each element (the analysis result of each 
species is normalised against its mean value) and the distribution around this line shows the variation on the logarithmic 
y-axis. 
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4.2.2 Thermodynamic equilibrium calculations 
The thermodynamic equilibrium calculations for paper II were performed with the average 

values for C, H, N, Cl, S, Fe, Al, Si, Mg, Ca, Na, K, P, Zn, and Pb from the twelve fuel samples 

from plant B used as input data. Equilibrium calculations like these are to be used as plausible 

scenarios, and are only implying possible outcomes in equilibrium at each temperature, which is 

not always the true scenario. In addition to this, the thermodynamic equilibrium calculations do 

not take into consideration kinetics or mixing. 

The calculations suggested that most of the Na under these given conditions is bound in silicates 

but with increasing temperature, there is a formation of Na2SO4 and NaCl, while Cl is mostly 

found in the form of gaseous HCl. It is evident from the calculations that in the formation of 

corrosive alkali chlorides, NaCl is the favoured compound rather than KCl, showing the 

importance of Na in waste compared to biomass where K is often present in high concentrations. 

The superheater steam temperature in plant B is just above 400ºC, kept at this temperature to 

avoid superheater tube corrosion caused by condensed alkali chlorides on tube surfaces. This 

corrosion is known to be very temperature dependent and increase steeply at higher steam 

temperatures. 

Of the twelve fuel samples taken, the sample with the least amount of Cl (sample 6) contained 

0.35 wt% DS. compared with the average of all samples, 0.5 wt% DS. One calculation was 

performed with all values kept at their average but with the lower Cl content of 0.35 wt% DS. (a 

30 % decrease). This minor shift in Cl content in the fuel, changes some of the outcomes of the 

inorganic reactions in the boiler, for example, decreasing the formation of NaCl significantly. 

Furthermore, another trend in this calculation is that there is an increase in the formation of 

PbCl between 400ºC and 900ºC  x  .

Since about 1/3 of the Na is bound in the less corrosive form Na2SO4(s) it could be possible that 

S contributes to a lower amount of NaCl by reacting with the Na. An increase of S was simulated 

in case 3 and the results show that the proportion of Cl bound in NaCl decreases with higher S in 

the fuel mix. Instead of forming NaCl, almost all Na is found in the solid sodium aluminium 

silicates in the lower temperature range, but no significant increase of Na2SO4 was noticed in this 

case. Instead a considerable increase in CaSO4 occurred, leaving the Na still available for 
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reaction with Cl. Moreover, this was another case where a minor increase in the formation of 

PbClx was noted. 

4.3 Evaluation of the presence of zinc in fuels 
A comparative study on the content and sources of Zn in waste fuels is of interest towards an 

improved understanding of fuel related issues, where Zn may play a role in deposit and corrosion 

problems. The Zn content in common fossil fuels, common biomass fuels and different waste 

fuels used for power and heat production were presented in paper III. This section will describe 

the findings for the waste fractions included in the paper: Tyre Derived Fuel (TDF), Recovered 

Waste Wood (RWW), Waste Electrical and Electronic Equipment (WEEE), Municipal Solid 

Waste (MSW), Refuse Derived Fuel (RDF), Solid Recovered Fuel (SRF), and Industrial Waste 

(IW).  

4.3.1 Tyre Derived Fuel 
A Tyre Derived Fuel is generally called TDF and is refined scrap of shredded automotive tyres. 

The processing of TDF includes shredding into rubber chips of a certain size [64]. The tyre chips 

are rich in synthetic material and contain bead and radial wires, which in certain cases are 

removed [64, 65]. Tyres contain high amounts of Zn which is a vulcanising agent and is added to 

the rubber mainly as ZnO with just small amounts as different organozinc compounds [66, 67]. 

The high quantities of Zn can be found in both the tyres’ tread (1.1-2.7 wt%) and wall 

(1-2.2 wt%). Smolders and Degryse [67] reported that the average amount of ZnO present in a car’s 

tyre tread was estimated to be 1.2 wt%, while for lorry’s tyres it was 2.1 wt-%. This gives 

between 12,000 and 21,000 mg∙kg-1 of ZnO and since ZnO contains 80.3 % Zn, there are 

between 9,600 and 16,800 mg∙kg  of Zn in the tyres. From the point of view of emissions -1

problems, Zn is of special interest due to its relatively high volatility [65]. However, as indicated 

by Smolders and Degryse [67], ZnO has low volatility and this is the form of Zn present both in 

the tyres and in the ash remaining after combustion. It was noted that combustion of tyres may 

increase Zn-emissions by a factor of up to 20, which seems to be reasonable taking into account 

that the ash remaining after tyres combustion contains up to 60 wt% Zn [68].  

4.3.2 Recovered Waste Wood 
Recovered waste wood originates from stem wood and is composed to a great extent of different 

types of wood materials which result mainly from construction and demolition operations, and 

from commercial and industrial sources [69, 70]. In RWW there is a problem of heavy metal 
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contamination. The biggest and particularly inextricable sources of contamination in terms of 

heavy metals such as Zn, Cd, Pb, Cu, Cr and Hg in waste wood are many kinds of surface 

treatments such as paints (white pigments), lacquers, siccatives, binders and preservatives  

[71, 72]. This work, however, focused on sources and quantities of Zn. Krook et al. reported, 

citing the example of Swedish RWW, that surface-treated wood is responsible for about 70 % of 

the Zn present in RWW. In paints, Zn is present as zinc oxide (ZnO) (white) or zinc chromates 

(yellow), some siccatives use Zn salts e.g. zinc carboxylate as a drying agent/accelerator, and in 

wood preservatives Zn can be found e.g. as ZnO, ZnSO4 or ammoniacal copper zinc arsenate 

(ACZA). Many wood-plastic composites can also be treated with zinc borate [71, 73, 74]. Sorted 

waste wood also contains over 1 wt% of components other than wood such as plastics, metals, 

concrete, and gypsum, out of which the first two are potential sources of heavy metals including 

Zn. Galvanised fastening systems and metallic parts (nails, handles, screws, hinges, wires and 

different types of fittings) especially those made of brass (Cu-Zn alloy) in particular are the 

biggest source of Zn in waste wood. Krook et al. [71] established that the galvanised metal 

fraction in RWW contains over 14,000 mg∙kg-1 of Zn and if the average amount of metal present 

in RWW is 0.5 wt%, assuming that all metal is galvanised, it equals on average 70 mg∙kg-1 of Zn 

resulting just from metal fraction. The plastic parts such as flooring, wallboards, sheeting and 

electrical wires are usually well-integrated with the wood and may also, to some extent, be 

responsible for the increased presence of Zn. This is due to the fact that  such PVC heat 

stabilizers as Ca/Zn, Ba/Zn and K/Zn have been incorporated and established in a wide range of 

applications such as cable covering, foil and sheet, flooring, wall coverings etc. [75]. Jermer et 

al. [76] reported that PVC represent roughly 40 % of the plastics present in RWW and the 

fraction of plastics reported in the available literature was estimated to be 0.1-2 wt%, as cited by 

Krook et al [71]. Overall the average total concentration of Zn in RWW is 400-600 mg∙kg-1, but 

quantities over 1000 mg∙kg-1 have also been reported. In comparison, the concentration of Zn in 

untreated stem wood (based on pine and spruce analysis) is <10 mg∙kg-1 [69, 76, 77], while other 

studies show that spruce’s heartwood contains 23-60 mg∙kg-1, and sapwood 17-31 mg∙kg-1 [78]. 

The amount of Zn found in pine was reported to be a little lower when compared to spruce. 

Ivaska and Harju [79] reported that the average concentration of Zn in Scots pine (Pinus 

sylvestris) ranges from 1-10 mg∙kg-1. These data correspond well with the data reported by Pais 

and Jones [80] which show that the normal content of Zn in plants ranges from 10-100 mg∙kg-1. 



 
 

Results 

45 

 

4.3.3 Waste Electrical and Electronic Equipment 
Waste from electrical and electronic equipment (WEEE) means electronic and electrical 

equipment together with their non-electronic parts, which were discarded. Electronics being the 

world’s largest and fastest growing business, the amount of WEEE waste is growing rapidly. 

WEEE contains a lot of combustible material, such as plastics, and hence a lot of energy; 

however, the presence of heavy metals, flame retardants and other harmful chemicals is an 

important environmental and health issue [81]. WEEE is a highly valuable waste fraction and the 

industry strives towards sustainable recovery of the many scarce and valuable metals that are 

present in complex electrical and electronic equipment today [82-88]. However, there are 

examples of WEEE not included in recycling laws [89] and therefore resulting in in MSW plants 

releasing Zn alongside other metals during combustion. 

Zn is present in many different WEEE fractions due to its versatility in applications. For 

example, in addition to being used for galvanising, Zn is found in printed circuit boards  

[88, 90, 91], batteries [86, 92], and flame retardants [93]. Furthermore, Zn is also used as a filler, 

stabiliser, and/or pigment in plastics [83, 91, 94] and has traditionally been among the world’s 

most used plastics additives [95].  

4.3.4 Municipal Solid Waste, Refuse Derived Fuel, Solid Recovered Fuel, and 
Industrial Waste  

Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF), and Solid recovered fuel (SRF) are 

fuels derived from either domestic or industrial waste differing in composition and quality. 

Industrial Waste (IW) comes directly from industrial and commercial activities and also includes 

waste from the building and demolition sector. MSW is a very heterogeneous source of energy 

with little, if any, pre-treatment. MSW originates primarily from domestic and industrial sources 

and is typically household waste. The processed, partially sorted, high calorific fraction of MSW 

is called RDF. The other waste derived fuel with a similar composition to RDF is SRF. SRF is a 

high-quality fuel originating from MSW and industrial and commercial waste. The composition 

and quality of SRF are controlled, classified and certified by European standards. The maximum 

quantities of Zn allowed in RDF are e.g. 16 mg/MJ in Switzerland and 28 mg/MJ in Italy (as 

summarized in [96]). SRF is composed mainly of paper (40-50 %), plastics (25-35 %) and 

textiles (10-14 %) while RDF, in addition to SRF components, may also contain fractions such 

as organics or wood in amounts of around 1 % [97]. Unlike the above-mentioned RDF and SRF 
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fuels, the main fraction of MSW are usually, but not exclusively, organics amounting to 30-

40 %. Other fractions of MSW that are smaller in quantity are cardboard/paper, plastics, metals, 

glass, textiles and others (representing up to 30 wt%) [72]. Rotter et al. [96] reported (Table 12) 

the chemical composition of MSW from Germany with respect to Zn content, which gives a 

good general overview of the most Zn-rich fractions in waste derived fuels. The values in the 

table are sorted in descending order for Zn content in waste fractions. It is clear that, owing to the 

very heterogeneous character of MSW, any estimate, even on a rough basis, of the Zn content 

might be very difficult. If the general composition of MSW is known, the table gives an idea as 

to whether Zn is likely to be present in higher quantities. In the table, the largest source of Zn in 

MSW is spent batteries. Surprisingly, the report quantifying the percentage amount of batteries 

in MSW [98] showed that batteries are responsible for just 2 % of the Zn present in MSW. That 

indicates that even though batteries are rich in Zn, they are not responsible for the high amount 

of Zn in waste. However, due to the changeable composition, type of sorting, origin, etc. of 

MSW big variances are possible. If the values from Table 12 are recalculated so that they show 

the fractions responsible for the highest percentage of Zn in MSW, it is noticeable that fines 

<10 mm and 10-40 mm the largest problem, being responsible for almost 50 % of the Zn present 

in MSW. The second largest fraction responsible for high Zn content being batteries according to 

Table 12 does not seem to correlate with the data reported in [98] and described earlier. Non-

ferrous metals also represent significant amounts of Zn in waste. Other fractions represent up to 

4 % of the Zn. It should be remembered that the situation may change completely when 

investigating MSW coming from different cities or countries where segregation and recycling are 

at a different level. If the amounts of Zn from different fractions are added up, they come to over 

4,000 mg∙kg-1 of Zn present in MSW originating from rural housing and almost 3,000 mg∙kg-1 of 

Zn being present in urban housing. These data can also be used to make rough estimates of the 

amount of Zn in SRF and RDF. As was noted earlier, RDF is composed of paper, plastics, 

textiles, organics and wood in proportions roughly 50/35/14/1 % respectively. In the table, there 

were two fractions of plastics that differed in their amount of Zn-content. Assuming that half of 

the Zn present in RDF plastics comes from packaging and the other half from other plastic 

products it was estimated that RDF may contain little over 1,100 mg∙kg-1 of Zn. Removing 

organics and wood from the calculations gives an approximate amount of Zn in SRF, but the 
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situation does not change much since those fractions were estimated to be present in amounts of 

only 1 %. Moreover, in this case the amount of Zn was not much above 1,100 mg∙kg-1. 

 
Table 12. Zn content in different fractions of MSW from Eastern Germany, supplemented Table from Rotter et al. [96] 

 Waste composition 
(wt%) 

Chemical 
properties 

(mg ∙kg-1
DS) 

Zn from certain source 
(mg∙kg-1

DS) 

Rural 
housing 

Urban 
housing Zn +/- 

In rural  
housing 

In urban 
housing 

mg∙kg-1
DS % mg∙kg-1

DS % 
Batteries 0.7 0.4 176668 68045 1237 29.9 707 25.4 
Non-ferrous metals 0.5 0.6 30446 12038 152 3.7 183 6.6 
Rubber 0.1 0.2 14913 4562 15 0.4 30 1.1 
Fines <10 mm 20.6 10.4 10034 285 2067 49.9 1044 37.6 
Electronic waste 0.6 1.2 9113 3601 55 1.3 109 3.9 
Other composite material 1.0 1.6 6361 3694 64 1.5 102 3.7 
Other plastic products 0.6 1.5 4381 2801 26 0.6 66 2.4 
Wood 1.8 1.5 4202 5829 76 1.8 63 2.3 
Shoes 1.0 1.3 2918 1441 29 0.7 38 1.4 
Leather 0.1 0.1 1296 1240 1 0.03 1 0.05 
Fines 10-40 mm 21.5 17.6 1274 406 274 6.6 224 8.1 
Packaging plastics 2.1 2.9 768 264 16 0.4 22 0.8 
Non-packaging films 1.8 2.8 730 291 13 0.3 20 0.7 
Textiles 3.5 5.4 520 235 18 0.4 28 1.0 
Diapers 5.0 5.7 461 169 23 0.6 26 0.9 
Paper and cardboard 5.6 14.0 424 296 24 0.6 59 2.1 
Organic waste 18.5 17.1 241 99 45 1.1 41 1.5 
Ferrous metals 1.7 3.4 214 118 4 0.1 7 0.3 
Packaging composites 0.6 2.1 204 112 1 0.03 4 0.2 
Glass 3.4 6.3 50 - 2 0.04 3 0.1 
Minerals 8.2 2.8 n.d. - - - - - 
Others 1.1 1.0 n.d. - - - - - 
Total 100 100 - - 4142 100 2777 100 
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Profu AB, an independent research and consultancy company in the areas of energy, 

environment and waste management, has developed a database called AvfallsAtlas [99]. 

Information from different waste fraction characterisation studies has been collected and 

summarised in this database, so that it is possible to show the waste fractions with the highest 

contribution to the proportion of Zn in waste. In Table 13 different waste fractions are listed with 

the minimum and maximum reported Zn content from AvfallsAtlas. The merging of different 

types of materials within each fraction, such as a summary of all plastic materials, also means 

that the origins of the waste fractions are merged. Therefore, all of the fractions presented in 

Table 13 include waste collected as MSW, but also Industrial Waste (IW) made up of mixtures 

of both industrial and commercial waste, and building and demolition waste. 

The internal variation of Zn within each fraction also indicates how difficult it is to determine the 

Zn content in a waste mixture, for example in the textile/leather/rubber fraction where the Zn 

content varies from 31.5 up to 17,640 mg∙kg-1 waste. Furthermore, although the difference 

between the materials in the Textile/leather/rubber-fraction is obvious, there is also a major 

difference within the glass fraction with reported measurements varying between 0 and 

10,000 mg∙kg-1. A study of the details behind Table 13 reveals that the materials contributing the 

most to the Zn content in waste are rubber tyres, glass, plastics treated with flame retardants, and 

PVC plastics. In PVC zinc stearate (Zn(C18H35O2)2) is used as a heat stabiliser in combination 

with other elements such as calcium, barium, or potassium [100, 101]. Owing to the flexibility, 

mechanical properties, and electrical properties in materials stabilised with the Ca/Zn-

combination, it is used in a variety of PVCs, such as potable water pipes, healthcare products, 

water bottles, cable covering, and toys [75]. In combination with barium the most common 

materials include flexible foils, flooring, wall coverings, fabric coating, and footwear while the 

K/Zn-combination is used as a stabiliser for foam layers in cushion flooring, foamed wallpaper 

and foamed fabric coating [75]. These are all common products that can be found in MSW, 

industrial and commercial waste, and building and demolition waste. 
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Table 13. Waste fractions and their zinc content, summarised information from the AvfallsAtlas database [99] 
Waste fraction Minimum (mg∙kg-1

DS) Maximum (mg∙kg-1
DS) 

Cardboard/paper/corrugated cardboard 13 160 
Plastics 15 10 000 
Kitchen and garden waste 14 125 
Textile/leather/rubber 32 17 640 
Glass < 1 10 000 
Wood/RWW*/CCA**/sleepers 26 539 
Scrap/electronic waste 101 210 
Sanitary products/nappies 13 29 
Other combustible 150 322 

Other non-combustibles 12 150 
*RWW = Recovered Waste wood **CCA = pressure-treated wood with Cu, Cr, and As 

4.4 Zinc in Swedish waste fuels 
A more detailed study on the Zn content in Swedish waste fuels is published in paper IV. The 

study includes chemical analysis of 42 solid waste samples, investigating the presence of Zn in 

Swedish waste fuels. 

To obtain a good overview of the Zn content in Swedish waste fuel, seven waste combusting 

plants spread over the whole of Sweden were used in this study, with 1,000 km between the 

southernmost and the northernmost plant. This provides the study with information about the 

waste content from different parts of Sweden as opposed to only being concentrated in one area. 

In total, there were two BFB-boilers and five grate-fired boilers. This distribution is in 

accordance with what the distribution of Sweden’s waste combustion plants were at the time of 

the study, approximately 25/75 between plants with FB-boilers and plants with grate-fired 

boilers. 

Six solid waste samples were collected at each plant over a 12-month period. The sampling was 

performed as described in sections 3.1.1 and 3.1.2 for the grate furnaces and BFBs respectively. 

Each sample underwent fuel analysis (according to the methods in section 3.2) to determine the 

Zn content as well as the content of Al, Si, Fe, Mn, Ti, Ca, Mg, Ba, Na, K, P, As, Pb, Cd, Cr, Cu, 

Co, Ni, V, Mo, and Sb. 

In Table 14 the plants are described according to the type of combustion technique and the mean 

average of MSW during the sampling campaign; the table also shows the months in which the 

samples were taken. The time of sampling was based on plant availability, which leads to 

irregularity in times for some of the plants.  
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Table 14. The seven waste combusting plants included in the project and the time of sampling. Each “x” marks one 
sampling (paper IV) 

Plant 
ID 

Combustion  
technology 

Mean 
Average 

MSW (%) 

Sampling marked with x 
2010 2011 

S O N D J F M A M J J A 
A BFB* 25   x x  x  x x   x 
B BFB* 35   x x  x x  x x   
C Grate 100   x x x  x x x    
D Grate 100     x x x x x x   
E Grate 55  x  x x x  x  x   
F Grate  40 x x  x  x  x  x   
G Grate 40   x x   xxx   x   
 

4.4.1 Combustion technology, share of MSW and geographical relevance 
The trace analysis results for Zn are presented in Table 15, which shows considerable differences 

between the samples, both between the seven plants and also within the plants. There is no clear 

difference between the waste mixtures from the two different combustion technologies. 

However, there is a lower mean average and median in the Zn content over the whole sampling 

campaign for the two plants with a fuel mixture of 100 % MSW (plants C and D). Furthermore, 

plant E has the lowest share of MSW and also the highest mean average and median, but also the 

highest standard deviation. This is related to the fact that plant E has one extreme sample, 

namely sample E6 containing 15,000 mg∙kg-1 Zn, increasing both the mean and the median.  

Considering all the samples, the mean average is 1,124 mg∙kg-1 DS. owing to the outlier of 

15,000 mg∙kg-1 DS. from plant E. When excluding the min/max samples it goes down to 

799 mg∙kg-1 DS., which is much closer to the median of all samples, 825 mg∙kg-1 DS.  

The Zn analysis results suggest that the concentration of Zn in the waste fuel, over longer time 

periods is more related to the mixtures of IW, rather than the MSW.  

Table 15. Results from the Zn analysis of each solid waste fuel sample. Minimum and maximum analyses for each plant 
are in italics. The mean and median are given for each plant and for all samples, as well as for all samples where the 
minimum and maximum analyses of all samples have been subtracted (paper IV) 
                 Sample     
Plant Id.       1 2 3 4 5 6 Mean Median 
A mg∙kg-1 (DS) 960 1000 750 910 930 630 863 920 
B mg∙kg-1 (DS) 830 550 860 1020 660 1000 820 845 
C mg∙kg-1 (DS) 950 840 480 420 260 450 567 465 
D mg∙kg-1 (DS) 250 250 380 300 1250 280 452 290 
E mg∙kg-1 (DS) 850 640 1090 1405 950 15000 3323 1020 
F mg∙kg-1 (DS) 630 450 1600 1500 840 580 933 735 
G mg∙kg-1 (DS) 1100 820 1800 640 450 660 912 740 
All samples       1124 825 
All samples – min/max       799 825 
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4.4.2 Correlations with other elements 
A correlation study was performed within each of the combustion plants where the Zn content 

were correlated to each of the other elements analysed in the waste samples. No clear pattern was 

apparent for correlations with Zn when comparing all waste mixtures. However, in three of the 

plants - C, D, and F - there were good correlations with one or more elements, suggesting the 

waste consisted of material combining the elements. The correlating elements are all metals, 

except the metalloid As. In both plants C and D the fuel mixture was 100 % MSW, meaning that 

neither waste from industrial and commercial activities nor major amounts of building and 

demolition waste has contributed to the proportion of metals. In addition, plants C and D are also 

the plants with the lowest mean average content of Zn. The elements occurring together with Zn 

in these two plants - Cu, Mn, Pb, and Fe - may originate from small WEEE that should have 

been excluded from the MSW by sorting at source.  

With more than half of the waste mixture consisting of industrial and commercial/building and 

demolition waste in plant F it is hard to determine the dominating source of the Zn-Fe 

combination but the alloy is widely used in the automotive industry, for example, which 

indicates it originates from somewhere other than from MSW.  

4.4.3 Variation over time 
Owing to the significant difference in the mean average for all 42 samples when the clear outlier 

E6 (1124 compared to 799 mg∙kg-1 DS.) is or is not included, the following data analysis is done 

by using the Zn content normalised against the mean average that is closest to the median, 

excluding the min/max of all samples.  

Figure 15 presents the variation in Zn content over the year the sampling campaign was 

performed. The mean average for all samples is represented by 1 on the logarithmic scale and all 

variation around it is the scattering of the different Zn content in the samples. The first samplings 

took place in the Swedish autumn and the very last sample was taken in late summer, at the end 

of August.  

For the two BFB-plants (A and B) and the two plants operating on 100 % MSW (C and D) the 

Zn content stays relatively stable over the sampling campaign. Two of the plants with the highest 

proportion of IW (E and F) both have a slightly higher Zn content during the winter, possibly 
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indicating that the waste mixtures contain more Zn during this time period. However, no general 

trends of Zn either increasing or decreasing depending on the month of the year or season can be 

concluded with only a few samples from each plant and time period. 

 

 
Figure 15. The variation in Zn in the waste fuel mixes during the full sampling campaign on a logarithmic scale. The 
figure is based on the normalisation of all samples by the mean average excluding the minimum and maximum samples. 
In the figure the four time periods are related to the Swedish autumn (Sept-Nov), winter (Dec-Feb), spring (March-May) 
and summer (June-Aug) (paper IV). 
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4.5 Thermal Stability of Zinc compounds  
This study is focused on the thermal behaviour and stability of Zn compounds and how ZnCl2 

affects the thermal stability of alkali chlorides. The possibility of chlorinating ZnO and 

sulphating ZnCl2 was also investigated. The results from this study are published in paper V. 

4.5.1 Zinc Oxide (ZnO) 
ZnO is thermally stable with a melting temperature above 1975°C and is insoluble in both water 

and alcohol [102]. However, ZnO does react with hydrochloric acid forming ZnCl2. Verhulst et 

al [102] have shown by thermodynamic equilibrium calculations that the presence of HCl 

increases the volatility of Zn, and that the presence of water decreases the volatility of Zn by 

shifting the equilibrium to the right in reaction (3). In a study of Zn and lead (Pb) occurrence in 

aerosols and deposits Enestam et al. [103] doped wood chips with ZnO to increase the Zn 

content. They showed that ZnO can be chlorinated during the combustion process. 

4.5.2 Zinc Chloride (ZnCl2) 
As a pure chemical, the anhydrous form of ZnCl2 is highly hygroscopic, rapidly taking up 

moisture from the ambient air turning into one of five hydrates [104, 105]. The anhydrous form 

has a melting point of 318°C [106].  

ZnCl2 may react to form ZnO according to reaction (3) with oxygen or reaction (4) with H2O.  

Stepwise it may also form ZnSO4 with SO2 or SO3 according to reactions (5) and (6). 

4.5.3 Zinc Sulphate (ZnSO4) 
The most common form of ZnSO4 is the natural mineral goslarite, ZnSO4·7H2O. This 

heptahydrate form of ZnSO4 decomposes at around 280°C to form anhydrous ZnSO4 [107]. The 

thermal decomposition of anhydrous ZnSO4 has been thoroughly investigated and has been 

found to occur at temperatures between 610°C and 846°C. The highest temperature, 846°C, was 

determined in vacuum and with the decomposition temperature defined as the temperature where 

the equilibrium pressure of the gaseous decomposition products was equal to one atmosphere 

[108], while the lowest temperature, 610°C, was determined when heated on a thermobalance 

[109]. According to Ostroff and Sanderson [110], who studied the decomposition temperature 

with DTA-TGA, ZnSO4 starts to decompose at 646°C and eventually forms ZnO. When the 

same experiments were repeated by Kolta and Askar [111], the decomposition temperature was 

found to be 675°C with TGA and 682°C with DTA. Mu and Perlmutter [112] carried out studies 
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at different heating rates and intermediate phases. They showed that the heptahydrate form of 

ZnSO4 is unstable at room temperature and is therefore often partially dehydrated. By back-

calculation they determined the starting compound in their experiments to be ZnSO4·5.44H2O. 

During the TGA experiment the ZnSO4-hydrate then loses its water molecules stepwise, starting 

to form anhydrous ZnSO4 above 230°C. It subsequently decomposes from ZnSO4 to 

ZnO·2ZnSO4 between 590°C  and  712°C, and then forms ZnO above 900°C, see reaction (7).  

The melting point of pure ZnSO4 is difficult to measure owing to its decomposition reaction.  

Khaklova and Dombrovskaya [113] extrapolated the melting point of ZnSO  to 730°C from 4

phase diagram data of the Na2SO4-K2SO4-ZnSO4 system based on the liquidus temperatures of 

ZnSO4-rich mixtures. 

4.5.4 Chemical reactions of ZnCl2, ZnSO4, ZnO 
Reactions involving ZnCl2, ZnSO4, and ZnO are given below. These reactions are bulk reactions 

and should not be treated as elemental reactions, as the detailed reaction mechanisms are much 

more complex.  

𝑍𝑛𝐶𝑙2 𝑎𝑛𝑑 𝑍𝑛𝑂  

𝑍𝑛𝐶𝑙2(𝑠) +  𝐻2𝑂(𝑔) ⇌ 𝑍𝑛𝑂(𝑠) + 2𝐻𝐶𝑙(𝑔) (R-3) 

𝑍𝑛𝐶𝑙2(𝑠) +  ½𝑂2(𝑔) ⇌ 𝑍𝑛𝑂(𝑠) + 𝐶𝑙2(𝑔) (R-4) 

  

𝑍𝑛𝐶𝑙2 𝑎𝑛𝑑 𝑍𝑛𝑆𝑂4  

𝑍𝑛𝐶𝑙2(𝑠) +  𝑆𝑂3(𝑔) +  ½𝑂2(𝑔) ⇌ 𝑍𝑛𝑆𝑂4(𝑠) + 𝐶𝑙2(𝑔) (R-5) 

𝑍𝑛𝐶𝑙2(𝑠) +  𝑆𝑂3(𝑔) + 𝐻2𝑂(𝑔) ⇌ 𝑍𝑛𝑆𝑂4(𝑠) + 2𝐻𝐶𝑙2(𝑔) (R-6) 

  

𝑍𝑛𝑆𝑂4 and 𝑍𝑛𝑂  

𝑍𝑛𝑆𝑂4(𝑠) ⇌  𝑍𝑛𝑂(𝑠) + 𝑆𝑂3(𝑔) (R-7) 

It should be noted that in reactions 5-7, SO3 can be replaced by SO2 and O2 according to the 

following reaction:  

𝑆𝑂3(𝑔) ⇌  𝑆𝑂2(𝑔) + ½𝑂2(𝑔) (R-8) 
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Thermodynamically, SO3 is favoured at lower temperatures, while SO2 is favoured at higher 

temperatures [114]. However, the conversion of SO2 to SO3 at low temperatures is very slow 

unless it occurs as a heterogeneous reaction in the presence of catalytic materials.  

4.5.5 The fate of Zn during combustion 
Findings of ZnCl2 in fireside deposits in MSW-boilers as well as in deposits formed in industrial 

boilers that burn Zn-containing fuels has led to the belief that ZnCl2 may play a role in corrosion 

of heat transfer tubes in these boilers owing to its low melting temperature and high corrosivity 

when molten [102, 115-122].  

Elled et al. [55] performed an investigation of combustion of demolition wood contaminated 

with Zn by using thermodynamic equilibrium calculations and by studying deposits in a 12 

MWth circulating fluidised bed boiler. The results show that Zn in combination with chlorine do 

give rise to the formation of ZnCl2 in the flue gas. Moreover, Elled et al. suggested that the 

formation is thermodynamically favoured between 450°C and 850°C under reducing conditions, 

while under oxidising conditions, the formation begins at 400°C and gradually increases with 

temperature. However, the calculations also show that reducing conditions increase the release of 

Zn to the flue gas but in the case of oxidising conditions, Zn is retained in the ash. 

Furthermore, Elled et al. [55] summarised published knowledge about the influencing parameters 

on Zn behavior in combustion. They found that during oxidising conditions Zn is, in the absence 

of chlorine, retained in the ash within the temperature range usually encountered in solid waste 

combustion due to the formation of stable solid compounds, such as ZnO [115, 116]. In addition, 

the literature review suggested that limited access to oxygen (reducing conditions) promotes the 

volatility of Zn and increases the release of metallic Zn to the flue gas which may form, for 

example, ZnO and contribute to deposit formation [102, 116, 122]. It has also been concluded 

that an increase of available chlorine is an effective way to increase Zn volatilisation; the 

presence of HCl in the flue gas results in the formation of ZnCl2 which is more volatile 

compared to the elemental and oxide form of Zn [102, 116]. The formation of alkali chlorides 

lowers the partial pressure of HCl in the flue gas and hence hinders the formation of ZnCl2. On 

the other hand, S may react with alkalis to form alkali sulphates and by that reaction lower or 

hinder the formation of alkali chlorides and increase HCl in the flue gas, which may then 

increase the volatility of Zn by Cl [116]. 
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4.5.6 Experimental set-up, results, and discussion 
The thermal behaviour of the chemical compounds ZnO, ZnSO4, ZnCl2, and mixtures of ZnCl2 

and alkali chlorides (NaCl and KCl) was studied using simultaneous Thermogravimetric 

Analysis/ Differential Scanning Calorimetry (TGA/DSC) apparatus from TA instrument (Model 

SDT Q600TM). All samples were studied in N2 and in air. The 110 µl crucible (6.5x4 mm) used 

for the experiments was filled with approximately 15 mg of powder-form sample, equalling 

about 2 mm particle bed thickness.  The experimental conditions are listed in Table 16. 

The same TGA-DSC was also used to investigate the possibility of chlorinating ZnO by 

introducing 500 ppm directly to the apparatus. A weight increase would be expected if 

condensed ZnCl2 is formed from ZnO, due to the higher molecular weight of ZnCl2 compared 

with ZnO. The chlorination experiments are included in Table 16 together with the other TGA-

experiments.  

As a hygroscopic substance, ZnCl2 adsorbs moisture in air to form hydrates, which are released 

at the beginning of the heat-up. Aside from this, the DSC results show that in both air and N2, 

ZnCl2 melts at 320°C and remains molten below 400°C. Above this temperature, molten ZnCl2 

vaporizes and in air it is subsequently oxidised to ZnO. As ZnSO4·7H2O is heated above 230°C, 

all of its hydrates are released. The resulting anhydrous ZnSO4 is stable up to 680°C at which it 

decomposes to form ZnO. ZnO is stable at much higher temperatures, than the one used in th 

analysis of pure ZnO, in both air and N2, and no significant change can be seen.  

Table 16. List of samples, gases and TGA-programs used for each Zn-compound or mixture (paper V) 
Sample Gases* TGA-program 
ZnO N2  air HCl/N2/air In N2 and air: heated 10°C/min up to 800°C.  

In HCl/N2/air-mix: heated 10°C/min up to T°C, 
isothermal for 30 min.  
(T = 240, 270, 300, and 330°C). 

ZnCl2 N2  air - Heated 10°C/min up to 800°C. 
ZnSO4 N2  air - Heated 10°C/min up to 800°C. 
NaCl N2  air - Heated 20°C/min up to 850°C. 
KCl N2  air - Heated 20°C/min up to 850°C. 
NaCl + ZnCl2  N2  air - Heated 20°C/min up to 850°C. 
KCl + ZnCl2   N2  air - Heated 20°C/min up to 850°C. 
*The gas flow for all samples was 100ml/min. The concentration of the HCl gas was 1000 ppm in N2, and it was added to the 
TGA as 50 ml/min of the HCl/N2-mix and 50 ml/min air. The gas flow equals a velocity of approximately 0.3 cm/min. 
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Experiments were also performed on mixtures of ZnCl2 and NaCl and mixtures of ZnCl2 and 

KCl. The results suggest that with an increasing ZnCl2 percentage, the mixture becomes less 

stable and melts at a lower temperature for both NaCl and KCl (Figure 16 and Figure 17).  

The melting temperatures of the mixtures were determined by DSC. Figure 18 and Figure 19 

show phase diagrams for ZnCl2–NaCl and ZnCl2–KCl systems, respectively, constructed using 

FactSage. In the figures, results of experiments performed in air in this study are also represented 

by circles, and those of experiments performed in N2 are represented by triangles. The 

experimental results are consistent with the calculated phase diagrams, particularly for the 

ZnCl2-KCl system (Figure 19). For the ZnCl2-NaCl system (Figure 18), however, the 

experimental results suggest that there is also a solid-solid transition of 2NaCl⋅ZnCl2 at about 

250°C.  Small additions of ZnCl2 to KCl or NaCl lower the first-melting temperature by several 

hundred degrees to around 400°C or even lower. These low-melting mixtures may be highly 

corrosive if they form deposits on heat-exchanger surfaces. 

  
Figure 16. TGA curves of mixtures of three different 
amounts of ZnCl2 in NaCl together with the TGA 
analysis of the pure substances in N2 (paper V).  
 

Figure 17. TGA curves of mixtures of three different 
amounts of ZnCl2 in KCl together with the TGA analysis 
of the pure substances in N2 (paper V). 
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Figure 18. Calculated phase diagram of NaCl-ZnCl2 with 
p(O2)=0.21 bar. The circles represent the measured 
melting temperatures and phase transitions from 
experiments done in air and the triangles represent 
experiments done in N2. The labels show the stable 
condensed phases for the phase diagram calculated for 
the air case (paper V). 
 

Figure 19. Calculated phase diagram of KCl-ZnCl2 with 
p(O2)=0.21 bar. The circles represent the measured 
melting temperatures and phase transitions from 
experiments done in air and the triangles represent 
experiments done in N2. The labels show the stable 
condensed phases for the phase diagram calculated for 
the air case (paper V). 

The results from the chlorination of ZnO at 4 different temperatures (240°C, 270°C, 300°C, and 

330°C) suggest that ZnCl2 can form by exposing ZnO to air containing 500 ppm HCl. At all 

these temperatures, the ZnO sample gained weight from the start (i.e. during the heat-up phase of 

approximately 20 to 30 minutes, depending on the final set temperature) and continued to gain 

weight during the isothermal period. Figure 20 shows the weight increase during the isothermal 

period after the system has reached its set temperature. The temperature dependence of this 

reaction appears to be quite complicated, with experimental results showing that the reaction rate 

(or weight gain) at 270°C was the highest, closely followed by that at 240°C, 300°C and then at 

330°C. One way of explaining the results could be by the aid of Figure 21, which is the 

calculated phase stability of ZnO and ZnCl2 as a function of temperature and HCl partial 

pressure. The figure indicates that below 270°C, the stability of ZnCl2(s) is high, while at 

temperatures above 270°C the chlorination of ZnO to ZnCl2 is slowed down. In addition, it is 

possible that the vapour pressure of ZnCl2 at the two higher temperatures causes the substance to 

vaporise and may therefore be lost from the sample. The complete reason for the differences 

between these different temperatures is not yet fully understood. All the experiments were 

repeated three times and the results all show the same trends. The stable phase above 400°C in 

500 ppm HCl is ZnO, but no such experiments were performed since ZnCl2 is highly volatile at 

this temperature, which is confirmed by TGA experiments.  
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Figure 20. The exposure of HCl to ZnO kept isothermal 
at four different temperatures (240, 270, 300, and 330°C). 
The experiments were carried out in 500 ppm HCl mixed 
with air (paper V). 
 

Figure 21. Calculated phase stability of Zn compounds as a 
function of temperature and p(HCl) with P(O2)=0.1 bar. 
The dashed line represents the HCl concentration (500 
ppm) and the four dots mark the experimental conditions 
at 240, 270, 300, and 330°C, and 500 ppm HCl (paper V). 
 

The results of this study suggest that ZnCl2(s/l) cannot exist without difficulty in the boiler due to 

its volatility at high temperatures and its conversion to ZnO in oxidising conditions. ZnSO4 

decomposes around 680°C, while ZnO is relatively stable in the temperature range prevailing in 

the boiler. Furthermore, the experimental data shows that chlorination of ZnO with HCl gas is 

possible. However, the total conversion only reached an increase of a few weight percentages 

(where 1 wt% corresponds to approximately 1.5 % conversion) during the heat-up phase and the 

30-minute isothermal experiment. This could be related to the sample size in the TGA only 

allowing the HCl gas to react with the surface of the ZnO-particles in the crucible, not reaching 

into the core, and also to the limited experiment time of 30 minutes. A conversion as small as 

this cannot solely prove that ZnO can be chlorinated in a boiler but indicates that the conversion 

is possible and that further studies are needed.  

4.6 Reduced bed temperature in a BFB-boiler  
During combustion of MSW and IW, the chemical reactions that remove alkali chlorides from 

the flue gas are hard to predict and control owing to the fuel heterogeneity. The bed temperature 

of a FB- boiler is typically in the range of 750/780°C up to 900°C [120, 123], and is “normally” 

kept around 850°C in a waste boiler. Reducing this bed temperature is expected to change the 

behaviour of gas phase alkali metals, and hence reduce the formation of particles that may cause 

corrosive deposits on heat exchanging surfaces. The purpose of this study was to test this 
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hypothesis with full-scale experiments in an industrial boiler and laboratory-scale experiments in 

a single-pellet fluidised bed reactor. The results from this study are published in paper VI. 

The full-scale tests were carried out at a heat and power plant equipped with two parallel BFB-

boilers of 20 MWth each, delivering superheated steam at 49 bar and 405°C. The boilers will 

hereafter be referred to as B1 and B2. The fuel consists of a mixture of 30 % MSW and 70 % 

IW. A schematic sketch of one the boilers is presented in Figure 22. The bed temperature is 

normally kept around 870°C. In the event of this temperature being exceeded the bed will be 

cooled by means of flue gas recirculation mixed with the primary air (at (3) in Figure 22). 

Secondary and tertiary airs are introduced over the bed at a constriction of the combustion 

chamber (4). At the top of the combustion chamber, the flue gas temperature is normally 

between 900 and 950°C.  After the combustion chamber, the flue gas passes through an empty 

gas pass (5) before reaching the superheaters (6). The flue gas temperature is around 350°C when 

it reaches the economiser (8), in which the gas is cooled to around 150°C. Finally, the flue gas 

passes through a cleaning system before leaving the plant or partly being recycled into the boiler 

to regulate the bed temperature.  

 

 

Figure 22. Sketch of one of two 20 MWth waste combustors used for the experiments. (1) Combustion chamber, (2) Fuel 
feed chute, (3) Primary air, (4) Secondary and tertiary air, (5) Empty gas pass, (6) Superheaters, (7) Cyclone, (8) 
Economiser (paper VI).  

 



 
 

Results 

61 

 

4.6.1 Full-scale tests 
In the experiments, a test case of Reduced Bed Temperature (RBT) has been compared to a 

reference case (Ref). For the RBT-case, the bed temperature was reduced by an increased flow of 

recirculated flue gas through the bed, while some of the primary air was diverted to secondary 

and tertiary airs. The measurements were carried out over two days, one day per bed 

temperature. The two boilers were operated under experimental conditions, given in Table 17, 

for approximately three days before the measurement campaign began. Figure 23 shows the load 

and temperature profiles of the boiler during the two cases.  

Fuel from the boiler was sampled according to the method described in section 3.1.2. The fuel 

analyses are presented in Table 18 together with the analysis of the waste fuel used for the 

laboratory experiments described subsequently in section 4.6.2. The fuel used in the laboratory 

experiments was sampled from the same boiler but at a different occasion.  

Table 17. Operating parameters during the measurements, including measured SO  and HCl contents* (Paper VI) 2

Parameter RBT   Ref 
 Average Min Max Average Min Max 
Tbed (°C) 724 691 761 876 865 888 
O2 (vol-% wet gas) 6.1 5.9 6.3 7.3 7.0 7.7 
CO (mg/Nm3 dry gas, 11 % O2) 12 2 60 6 4 9 
AirTotal (Nm3/s) 7.1 6.8 7.4 8.3 7.8 8.8 
Recycled flue gasTotal (Nm3/s) 4.2 4.0 4.5 4.4 3.6 5.0 
HCl (mg/Nm3, dry gas, 11 % O2) 660*   530*   
SO2 (mg/Nm3, dry gas, 11 % O2) 111*   114*   
*HCl and SO2-analyses were done with a wet chemical method only providing an average in the sample 

  

Figure 23. The figure illustrates the load and the temperature of the boiler during the Ref (left) and RBT (right) cases 
(Paper VI). 
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Table 18. Fuel analysis 
    Ref RBT Lab-scale 

Moisture % by weight, a.r. 33.1 35.7 29.2 

Ash % by weight, d.f. 17.9 19 16.2 

S -”- 0.2 0.35 0.26 

Cl -”- 0.47 0.49 0.53 

C -”- 46.2 46 45.2 

H -”- 6.1 6 5.8 

N -”- 1.1 1.1 1 

O (by diff.) -”- 28 27 31 

Al2O3 % by weight ash 11.61 10.94 9.33 

SiO2 -”- 41.83 50.67 38.30 

Fe2O3 -”- 3.75 7.37 3.62 

TiO2 -”- 2.14 2.20 2.37 

MgO -”- 2.69 2.71 2.56 

CaO -”- 20.32 19.88 20.73 

Na2O -”- 4.82 5.75 4.74 

K2O -”- 2.96 2.28 2.31 

P2O5 -”- 2.69 1.69 1.27 

PbO -”- 0.07 0.07 0.05 

ZnO -”- 0.37 0.39 0.37 

Sum   93.26 103.94 85.64 

a.r. – as received, d.f. – dry fuel 

Fly ash particles were sampled at A, port “P3”, in Figure 22, with a Quench/Dilution probe in 

combination with a Low Pressure Impactor, which is a cascade impactor separating particles 

according to their size. The method is further described by Johansson et al. [124]. Inside the 

impactor, the particles are collected on pre-weighed polycarbonate substrates mounted on 

collection plates. After sampling the polycarbonate substrates were weighed before the chemical 

analysis.  
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Deposit probes were used to study the deposit formation, and the temperature controlled by air 

cooling. The probes were two metres long with a diameter of 38 mm. On each probe, two high 

alloyed steel rings (253 Ma) were placed approximately 10 cm from the tip. At the superheaters 

(the position marked by “A” in Figure 22), two different material temperatures were used: 

435°C, which corresponds to the material temperature at present operation, and 500°C, which is 

a goal for future waste combustion. Deposits were also sampled in the economiser (at B in 

Figure 22), using a material temperature of 230°C, roughly corresponding to the material 

temperatures of the economiser.  

In addition to the particle and deposit samples, other types of ash samples were collected from 

different locations in the boiler during the tests: bottom ash, cyclone ash, ash from the empty gas 

pass, ash from the textile filter, and recycled sand.  

Subsequent to the experiments, the deposit rings, particle samples, and ash samples were 

analysed according to section 3.2. The following elements were analysed: Cl, S, Al, Ba, Ca, Cu, 

K, Mn, Na, P, Pb, Ti, Zn and Si. Fe was not determined on the deposit probes since the analysis 

method would include deposit ring material.  

Gaseous HCl and SO2 were measured in the flue gas after the economiser. An extracted flow of 

the flue gas was bubbled through a solution of 0.1 M NaOH(aq) and 0.3 % H2O2(aq). The 

solution was analysed afterwards to provide average concentrations over the 2 h sampling period. 

Continuous measurements of CO2, CO, and NOx, were done by FTIR (Fourier Transform 

Infrared spectrometry).  

4.6.2 Laboratory experiments 
The small-scale experiments were carried out in a laboratory fluidised bed reactor (see schematic 

overview in Figure 24). The reactor is made of quartz glass with an inner diameter of 60 mm and 

a length of 1.2 m. The reactor is placed in an electrically-heated oven with three individual 

temperature zones (up to 1,100°C). The fluidised bed rests upon a porous plate in the middle of 

the glass reactor. The bed consists of 180 g cleaned quartz sand where 90 % of the particles have 

a diameter between 0.1 and 0.3 mm. The inlet and outlet of the reactor is made of water cooled 

metal flanges attached to the glass reactor at the bottom (inlet) and at the top (outlet). The 

fluidising gas, a mixture of nitrogen and air, is controlled by mass flow regulators.  
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Figure 24. Laboratory set-up, schematics (paper VI). 

The flue gas extracted at the top of the reactor was split between an on-line ICP-MS, and other 

gas analysing equipment (O2, CO, CO2, and total hydrocarbons). Before entering the gas 

analysing instruments, the flue gas passed through a heated ceramic filter and a condenser.  

The flue gas diverted to the ICP-MS did not pass the heated filter; instead the gas was cooled and 

a sample was drawn through a capillary to a nebuliser, driven by a constant flow of Ar. The 

nebuliser controls the dosage of aerosol sample into the reactor. A controlled flow of Kr was 

used as an internal standard in the ICP-MS. 

Single fuel pellets were dropped into the reactor from the top, after which the concentrations of 

the alkali metals and Zn in the flue gas were monitored online. The waste pellets used were made 

out of MSW collected from the full-scale boiler.  

The results from the ICP-MS are presented as a relative mass weighted concentration Cx,rel 

calculated from: 

𝐶𝑥,𝑟𝑒𝑙 = 1
𝑚

𝑆𝑥
𝑆𝐾𝑟

𝐹𝐾𝑟
𝐹𝑟𝑔

         (Eq-7) 

where m is the mass of the fuel sample burned, Sx and SKr are the mass weighted signals from the 

instrument for element x and Kr respectively, and FKr and Frg are the gas flows of Kr and flue gas 



 
 

Results 

65 

 

to the instrument. In order to provide quantitative results, Cx,rel should be multiplied with a 

constant that depends, among other things, on the element being studied. The values of such 

constants have not been determined in this study, implying that the results presented are 

qualitative values, proportional to the actual concentration. 

4.6.3 Thermodynamic equilibrium calculations 
The fuel compositions determined in the study for all three cases (RBT, Ref, and laboratory-

scale) were used as input for the calculations in addition to air to achieve an air-to-fuel ratio of 

λ=0.7 for reducing conditions and λ=1.4 for oxidising conditions. Studies have shown that ash-

forming matter can be divided in either reactive or inert ash-forming matter [125]. For example, 

silicates are usually considered less reactive whereas soluble alkali, Cl, and S are considered to 

be very reactive and are usually easily volatilised and prone to form volatile species. To be able 

to determine the distribution of inert and reactive elements a combination of standard fuel 

analysis, chemical fractionation, and literature information can be used. No further analysis was 

performed on the samples in this study but based on literature information a simplified 

calculation excluding the elements Mg-Fe-Al-Si was performed. When assuming these elements 

to be inert, the calculations can be used to study the behaviour of the alkali metals, Pb, Zn, and 

Ca compounds. 

4.6.4 Results and discussion 
The measurements of the two full-scale tests were made on separate days, one week apart, to 

minimise any memory effects in the bed. Fuel samples were extracted from the fuel feeder a few 

times daily during the measurements.  

A higher concentration of HCl was detected in the flue gas during the RBT-case. The increase of 

gaseous HCl may be related to less alkali being released from the bed, but it could possibly also 

be an effect of temperature-dependent chemical reactions involving S-capture in the bed by Ca, 

which is abundant in the ash. If less S is captured by Ca in the bed, more sulphur will be 

available for other reactions, as with alkali metals, for example, resulting in reduced formation of 

alkali chlorides.  
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4.6.4.1 Particle samples 
A comparison of the particle size distributions shows that the concentration of submicron 

particles (< 1 µm) decreased when operating the boiler with a reduced bed temperature, while the 

supermicron particles (> 1 µm) increased, see Figure 25. The increase in the coarser particles in 

the RBT case is not concluded, but it could be related to less agglomeration tendencies of the bed 

material at a reduced bed temperature.  

In Figure 25 two size fractions are encircled: “fine” and “coarse”. These samples were 

chemically analysed. Since O and C are not determined in the chemical analysis and it is 

plausible that they are present in the particle samples due to oxide and carbonate formation, there 

is no perfect balance between cations and anions. As expected from the chemical analysis, higher 

concentrations of alkali metals and Zn were detected in the fine particles, predominantly formed 

by condensation in the gas phase. The coarser particle fraction contained more Al, Ca and Mg. 

The same increase can be seen for the Pb content. Furthermore, the fine fraction from the RBT-

case contained a slightly higher concentration of Cl than that found in the reference case. 

However, the total concentration of fine particles in the flue gas decreased, which means that the 

total concentration of particle-bound Cl decreased in the flue gas. 

 
Figure 25. Measured particle size distributions using DLPI upstream of super heaters. The y-axis presents the Dp 
(aerodynamic particle diameter) in mg/m3 (paper VI). 
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4.6.4.2 Deposit probe measurements 
All deposit probe exposures were made for two hours and no soot blowing was carried out 

during the tests. Photos of the windward side of the deposit probes and the gained masses of the 

rings are presented in Table 19. The gained masses are recalculated into deposit growth rates in 

Figure 26 and Figure 27, in which the chemical compositions are also presented. The bars are 

balanced with an unaccounted part of the deposit (“others”) referring to unanalysed elements, 

mostly oxygen but to a minor extent also other elements (P, Al, Mn, Ti, Ba, Cu, and Pb). It is 

notable that Cl is lower in all RBT cases when looking at comparable temperatures and positions. 

On average, the deposit growth decreased by 20 %, when the bed temperature was reduced. 

During the RBT case the alkali content was reduced by approximately 25 %, while the S and the 

Ca contents increased compared to the reference case. In addition, also the Zn content decreased 

by approximately 25 %. Generally, the S/Cl ratios of the deposits increased when the boiler was 

operating with RBT. 

Table 19. Photos and gained weight of sample rings after exposure at the superheaters in two different points (P1 and P2 
in Figure 22) (paper VI) 
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Figure 26. Deposit growth at superheaters (the whole bars). The different modes of boiler operation 
compared in pairs by position and material temperature (paper VI). 
 

 
Figure 27. Deposit growth at the economiser (the whole bars). The content of the major elements in 
the deposit are shown as fractions of the bar (paper VI). 

4.6.4.3 Bottom ash, cyclone ash, filter ash, and return sand 
A visual inspection of the bottom ashes, Figure 28, shows that the Ref bottom ash contains a lot 

of small agglomerates and pieces of glass which has melted on the surface, allowing smaller sand 

particles to stick to it. The bottom ash from the RBT case does not contain agglomerates and the 

glass fragments had no sand particles stuck to them. Obviously, the glass did not become sticky 

under RBT conditions.   
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Figure 28. Photos of bed ash for the two different modes of operation of the boiler, Left: Reduced bed temperature case, 
Right: Reference case with agglomeration (paper VI). 

Chemical analyses of the ashes show that the Cl concentration increases in the bottom ash and 

the recycled sand during the RBT case while it was unchanged in the ash from the empty gas 

pass and decreased in the ash collected both in the cyclone and the textile filter. 

An enrichment of alkali chlorides in the bed could increase the risk of bed agglomeration but, on 

the other hand, the low bed temperature decreases the sintering tendencies of the bed. Another 

observation when looking at a longer perspective was that the sand consumption of the plant 

could be reduced by roughly 25 % when running the boiler under RBT conditions. This was a 

direct effect from the reduced sintering tendencies of the bed, resulting in less sand leaving with 

the bottom ash. 

4.6.4.4 Laboratory-scale experiments 
Experiments with single waste pellets, in the lab reactor (Figure 24), were performed to study the 

effect of varied reactor temperature on the release of alkali metals to the flue gas. During these 

tests, the reactor was operated with an atmosphere of 5 % O2 in nitrogen. As an example of 

results from these tests, mass weighted signals of Na + K, and Zn measured by the ICP-MS 

instrument are shown in Figure 29. The horizontal axis shows the time from the start of each 

experiment, when a single waste pellet was dropped into the reactor. The vertical axis shows a 

mass weighted value of the signal from the ICP-MS instrument, scaled to the signal for the 

internal standard (here Kr) and to the weight of each pellet (in order of 0.8 g) as given by 

Equation (7). The lines illustrate the concentrations detected in three different test runs at 

different reactor temperatures.  
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Figure 29. Accumulative measured mass released of to the left: alkali metals (Na + K) and to the right: Zn. Both graphs 
from combustion experiments of waste at 5 % O2 and different temperatures (paper VI). 

The initial peak, lasting about 1 minute, corresponds to the devolatilisation of the fuel, after 

which the char combustion occurs over a longer period. Alkali metals are released during both 

these stages of fuel conversion.  

A comparison of the tests at 850°C and 650°C clearly illustrates that the amount of alkali metals 

released to the flue gas depends on the reactor temperature. In the case of Zn, there is a clear 

difference between the 850°C and 650°C, with a major decrease in the release of Zn. In contrast, 

for the 750°C the release of Zn continues over a longer time period and with more mass than in 

either of the other two cases. It should be mentioned, however, that the laboratory set-up is still 

under development in order to improve repeatability and to provide quantitative results. 

Nevertheless, the results of these experiments support the full-scale results, proposing that a 

lower bed temperature reduces the emission of alkali metals. 

4.6.4.5 Thermodynamic equilibrium calculations 
Calculations were performed for each of the three fuel compositions determined in the study. No 

major differences were noted between the three different fuels, behavioural trends were similar 

and therefore only one fuel is presented in figures, the fuel sampled during the reduced bed 

temperature case. 

Under oxidising conditions (Figure 30) the calculations predict that the volatilisation of alkali 

chlorides increases with increasing temperature, confirming the hypothesis that a lower bed 

temperature would result in less release of potentially corrosive elements. At the same time as 
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the alkali chlorides decrease with reduced temperatures the HCl formation increases, suggesting 

that more Cl forms HCl when less alkali is available from the fuel. The formation of gaseous 

ZnCl2 takes place at much lower temperatures and increases with a maximum release peaking 

around 800ºC, then decreasing with temperatures above this. At temperatures higher than 

1000ºC, gaseous Zn is the main volatile Zn-species. After 800ºC the formation of SO2 increases 

significantly, being the dominant gaseous species close to 1000ºC while HCl decreases due to the 

formation of other chlorides, such as alkali chlorides. 

For the same fuel mixture in reducing conditions there is an even higher concentration of alkali 

chlorides formed around 850°C, see Figure 31. Under these reducing conditions no SO2 is 

formed and ZnCl2 behaves similarly to how it does under oxidising conditions (too low 

concentration to be seen in the figure). However, there is a significant formation of gaseous Zn at 

700°C with a sharp increase up to 800°C and then stabilising, showing a steady level at higher 

temperatures. The trends from the calculations suggest that reducing conditions give rise to the 

release of corrosive elements in higher concentrations than the oxidising conditions. They also 

show that a temperature drop from 850°C to 650°C significantly reduces the alkali chlorides in 

favour of the formation of HCl. 

 

Figure 30. Predicted concentration of selected gaseous compounds at oxidising conditions with all elements included in the 
calculation. All compounds correspond to the primary y-axis on the left except the Zn-compounds that correspond to the 
secondary y-axis on the right. Under reducing conditions (b), Zn reaches a stable level of just over 40ppm at 800°C (above 
axis) (paper VI). 
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Figure 31. Predicted concentration of selected gaseous compounds at reducing conditions with all elements included in the 
calculation. All compounds correspond to the primary y-axis on the left except the Zn-compounds that correspond to the 
secondary y-axis on the right. Under reducing conditions (b), Zn reaches a stable level of just over 40ppm at 800°C (above 
axis) (paper VI). 

The simplified calculations exclude Si, which then prevents the formation of alkali silicates. This 

affects the calculations in that alkali is now available for reaction with chlorine, inhibiting 

domination of gaseous HCl. This is visible in Figure 32 (please note the difference in scale of the 

secondary y-axis compared with Figure 30 and Figure 31) where the HCl concentration stays 

rather low throughout the temperature range. However, at lower temperatures the alkali chlorides 

are in solid state and gaseous alkali chlorides are increasing with temperatures as in the 

calculations with all elements, but being formed at lower temperatures and at higher 

concentrations. In addition to the alkali chlorides, alkali hydroxides are formed in noticeable 

amounts just under 900ºC and increase with temperature, which is also the behaviour of gaseous 

Zn. The calculation also shows the formation of PbO at 500ºC and stabilising from 

approximately 770ºC and upwards. In a reducing environment (Figure 33, please note the 

difference in scale of the secondary y-axis compared with Figure 30 and Figure 31) the increased 

formation of gaseous Zn and Na above 900ºC is significant. Around 1,100ºC the formation of 

alkali hydroxides sharply decreases and SO2 is formed. Pb and PbS are formed in low 

concentration and fluctuate with one another from 500ºC and upwards. As in the calculations 

with all elements, the simplified calculations show that a reducing environment gives rise to a 

higher concentration of potentially corrosive substances. 
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Figure 32. Predicted concentration of selected gaseous compounds under oxidising conditions for the simplified 
calculation. All compounds correspond to the primary y-axis on the left except Zn, and Pb compounds that correspond to 
the y-axis on the right. Under reducing conditions (b), Zn reaches a stable level of just over 40ppm at 780°C (above axis) 
(paper VI). 

 

 
Figure 33. Predicted concentration of selected gaseous compounds under reducing (b) for the simplified calculation. All 
compounds correspond to the primary y-axis on the left except Zn, and Pb compounds that correspond to the y-axis on 
the right. Under reducing conditions (b), Zn reaches a stable level of just over 40ppm at 780°C (above axis) (paper VI). 
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5 Conclusions 
 

The work presented in this thesis is threefold, considering: different ways of characterising fuel, 

Zn and its presence and behaviour in combustion, and the effects due to reduction of the bed 

temperature in boilers. Chemical characterisation of waste fuels is an important tool for 

determining concentration and presence of chemical compounds that have impact on the 

combustion process. Furthermore, the possibility of determining the fossil carbon content in the 

waste fuels is of great importance as the EU is now starting to include Waste-to-Energy plants in 

the Emission Trading System, with Sweden as the first entrant country.  

 

Two different sampling methods, one for grate-fired boilers and one for fluidised bed boilers, 

have been used for taking samples from full-scale commercial boilers geographically spread over 

the whole of Sweden. The samples were used for chemical analysis, such as analysis of ash-

forming matter and trace elements, and analysis of 14C to determine the fossil content. The 

results from ash-forming matter and trace element analyses have been used for thermodynamic 

equilibrium calculations. Also, the analyses have been used for mapping of chemical content, 

determination of seasonal variations, and to study the presence of certain elements of interest 

during combustion. In addition, sorting analyses have been performed to calculate fossil content 

and a software program doing fossil content calculations based on on-line data was evaluated. 

Alongside a characterisation of the Zn content in Swedish waste fuel, a laboratory-scale 

evaluation of ZnO, ZnSO4, and ZnCl2 was performed to study the thermal behaviour. The thesis 

also includes a study of the effects of a reduced bed temperature in both full-scale and small-

scale fluidised bed boilers. The study included sampling of waste fuel, particles, deposits, and 

ash from different positions in the boiler to investigate whether a reduced bed temperature would 

lower the volatilisation of elements from the fuel that can affect the combustion process. 

 

From the 14C analyses it was concluded that about a third of the carbon in mixed Swedish waste 

(municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two 

other methods (the balance method and calculations from sorting analyses), based on 

assumptions and calculations, gave similar results at the plants where they were used. 

Furthermore, the results indicate that the difference between samples containing as much as 
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80 % industrial waste and samples consisting of solely municipal solid waste was not as large as 

expected.   

 

In the 12-month study where solid waste samples were taken from two commercial boilers (one 

grate-fired boiler and one bubbling fluidised bed boiler) the ultimate analyses, (C, H, N, S and O) 

show that the waste fuel composition was rather similar. As expected, there was a larger 

variation between the samples in the content of ash-forming elements, such as Na, K, and Cl, 

which affect the corrosion risk. Furthermore, trace metals were present in low concentrations and 

showed the widest relative variation. It is concluded here that repeatable fuel samples are 

necessary to get a good overview, as single samples can divert significantly from an average over 

a longer period. One notable seasonal change was that the waste fuel contained less ash during 

the summer months of June, July, and August. This is related to the change of fuel mixture to 

only consisting of municipal solid waste. This is also an important observation supporting the 

conclusion above about repeated samplings of waste fuel, where one sample will not take in 

possible seasonal (or other) variations. The grate-fired boiler had a larger spread of the ash 

forming material around the average value for this plant. This is explained by the fact that the 

fuel mixture was more heterogeneous since it was not pre-treated (shredded). The fuel treatment 

in the bubbling fluidised bed boiler not only fragments the fuel but also mixes the shredded fuel, 

thus homogenising the fuel.  

 

The sampling of waste fuel also provided information on the presence of Zn in fuels and showed 

a relationship between the content of municipal solid waste and Zn content; high municipal solid 

waste content produces lower Zn content. When studying the correlations between Zn and other 

chemical elements no general pattern was observed when considering all waste mixtures. 

However, for three of the plants there was a clear correlation between Zn and other elements; in 

one plant there was a strong correlation with Cu, in another a correlation between Zn and Fe, and 

in the third a correlation between Zn and the following three elements: Mn, Pb, and As. This 

suggests that Zn together with these other elements often originate from the same waste fraction 

in these particular WtE plants. Furthermore, it is concluded that the different seasons do not 

appear to affect the Zn concentrations significantly.  
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Experimental results suggest that ZnCl2 is unlikely to form deposits in a boiler due to its 

instability when molten, particularly in an oxidising atmosphere. In addition the study confirms 

the literature data and shows that ZnSO4 and ZnO are less volatile than ZnCl2 in temperatures up 

to about 700°C. ZnSO4 decomposes around 680°C while ZnO is stable at much higher 

temperatures. The experimental findings also show that chlorination of ZnO to ZnCl2 is possible 

at temperatures between 240 and 330°C when it is exposed to 500 ppm HCl. This also tallies 

with thermodynamic equilibrium calculations. It means that it is theoretically possible to form 

ZnCl2 from ZnO. Furthermore, a TGA analysis of mixtures of ZnCl2 and NaCl and KCl, 

respectively, shows that the melting temperatures are lowered with increasing ZnCl2 

concentration compared with those of the pure alkali chlorides. Furthermore, the results show 

that the presence of ZnCl2 in combination with alkali chlorides increases the risk of corrosion, 

owing to the decrease in melting temperatures of the alkali chlorides when mixed with ZnCl2.   

 

A full-scale campaign investigating a reduced bed temperature in a bubbling fluidised bed boiler 

showed that by reducing the bed temperature, the sand consumption of the plant could be 

reduced by roughly 25 %. The measurements also showed that the number of submicron 

particles decreased and the fouling rate on deposit probes was reduced by about 20 %. The 

measured concentration of HCl in the flue gas increased as the bed temperature was reduced, 

while the SO2 concentration remained almost unchanged. This may be a consequence of the 

reduced formation of alkali chlorides. In addition, results from the laboratory-scale tests illustrate 

a trend of reduced alkali emission from the fluidised bed with reduced temperature.  
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6 Future work 
 

Continuous mapping and characterisation of waste fuels is necessary in order to be able to 

control and influence fuel quality as the demands on sorting and recycling of material from the 

waste stream in Europe hardens owing to targets for 2020 within the waste framework. By 

sorting out fractions like paper, plastics, and food waste many parameters that affect combustion 

will be changed. A decrease in heating value due to lower paper/plastic content could be 

expected but at the same time the moisture content will decrease due to the minimisation of food 

waste. By changing the composition of the fuel with these anticipated changes it is very likely 

that the fossil content will be affected as well. When excluding fractions of “young” material, 

such as food waste, the fossil content is likely to increase. To be able to keep the waste 

combustion within the European Emission Trading System for CO2 the precision and availability 

of methods to measure the fossil content needs to improve and be continuously validated. 

It is a possibility that the European waste market might increase the import/export of waste. 

Owing to many export regulations and transportation possibilities, it is fair to assume that most 

waste fractions exported/imported will be of RDF-type excluding, for example, food waste. How 

the waste fuel will be affected by this should be of interest for future studies.     

Still of great importance, the sorting of electronic and hazardous waste will be further targeted in 

the future, both to recover materials and valuable metals, and to avoid the presence of unwanted 

elements in the boilers. The content of trace metals, such as Zn, will continue to be of great 

importance and the behaviour during combustion still requires study. How new future waste fuel 

mixtures develop will be of interest both for plant owners and plant designers. 



 

80 

 

 



 
 

References 

81 

 

7 References 
 

[1] Östman, M.; “Ageing Landfills – Development and Processes” Academic dissertation 

(2008) Swedish University of Agricultural Science, Natural Resources and Agricultural 

Science, Department of Soil and Environment, ISBN 978-91-86195-12-0. 

[2] Bogner, J., Spokas, K.; “Landfill CH4: rates, fates, and role in global carbon cycle” 

Chemosphere 26:1–4 (1993) 369–386. 

[3] Zhang, H., He, P., Shao, L.; “Methane emissions from MSW landfill with sandy soil 

covers under leachate recirculation and subsurface irrigation” Atmospheric Environment 

42 (2008) 5579–558. 

[4] IPCC (Intergovernmental Panel on Climate Change); “Climate Change 2007: Synthesis 

Report”, Contribution of working groups I, II and III to the fourth assessment (Core 

writing team, Pachauri, R.K., and Reisinger, A., eds), (2007) IPCC, Geneva, Switzerland, 

ISBN 92-9169-122-4. 

[5] Koshy, L., Paris, E., Ling, S., Jones, T., BéruBé, K.; “Bioreactivity of leachate from 

municipal solid waste landfills — assessment of toxicity” Science of the Total 

Environment 384 (2007) 171–181.  

[6] Öman, C.B., Junestedt, C.; “Chemical characterization of landfill leachates – 400 

parameters and compounds” Waste Management 28 (2008) 1876–1891.  

[7] Council Directive 99/31/EC, Official Journal of the European Communities L182, 

16/07/1999 (1999).  

[8] Directive 06/12/EC, Official Journal of the European Communities L114, 27/4/2006 

(2006). 

[9] Porteous, A.; “Energy from waste incineration – a state of the art emission review with an 

emphasis on public acceptability” Applied Energy 70 (2001) 157-167. 

[10] McKay, G.; “Dioxin characterisation, formation and minimisation during municipal solid 

waste (MSW) incineration: review” Chemical Engineering Journal 86 (2002) 343-368. 

[11] Eurostat news release 33/2013; “Environment in the EU27 – In 2011, 40% of treated 

municipal waste was recycled or composted, up from 27 % in 2001” 4 March 2011. 



 
 
References 

82 

 

[12] Uberoi, M., Punjak, W.A., Shadman, F.; “The Kinetics and Mechanism of Alkali 

Removal from Flue Gases by Solid Sorbents” Progress in Energy and Combustion 

Science 16 (1990) 205-211. 

[13] van Lith, S.C., Jensen, P.A., Frandsen, F.J, Glarborg, P.; “Release to the Gas Phase of 

Inorganic Elements during Wood Combustion. Part 2: Influence of Fuel Composition” 

Energy & Fuels 22 (2008) 1598–1609. 

[14] Nielsen, H.P., Frandsen, F.J., Dam-Johansen, K., Baxter, L.L.; “The implications of 

chlorine-associated corrosion on the operation of biomass-fired boilers” Progress in 

Energy and Combustion Science 26 (2000) 283–298.  

[15] European Commission Directorate-general climate action. (2010) Directorate B – 

European & International Carbon Markets, Guidance on Interpretation of Annex I of the 

EU ETS Directive (excl. aviation activities). (http://ec.europa.eu/clima/policies/ets/ 

documentation_en.htm#Revision). Visited 25th Oct 2012. 

[16] ISWA, Waste-to-Energy State-of-the-Art-Report, Statistics 6th Edition. August, 2012. 

ISWA- The International Solid Waste Association. 

[17] Hermansson, S.; “Detecting, Modelling and Measuring Disturbances in Fixed-bed 

Combustion” Academic dissertation (2010), Chalmers University of Technology, 

Department of Energy and Environment, Sweden ISBN: 978-91-7385-468-9. 

[18] Laporte, M., Knudsen, C.; “A comparison of different grate techniques” Report 

F2010:03, (2010) Swedish Waste Management (In Swedish). 

[19] Elled, A.L., Davidsson, K.O., Åmand, L.E.; “Sewage sludge as a deposit inhibitor when 

co-fired with high potassium fuels” Biomass and Bioenergy 34 (2010) 1546-1554.  

[20] Council Directive 2000/76/EG of the European Parliament and of the Council, of the 4th 

December 2000 on incineration of waste. 

[21] CEN (2007) Solid recovered fuels. Methods for sampling. DD CEN/TS 15442:2006 

ISBN: 978 0 580 50257 6, European Committee for Standardization CEN, Brussels. 

[22] CEN (2006) Solid recovered fuels. Methods for laboratory sample preparation. DD 

CEN/TS 15443:2006. ISBN: 978-0-580-50256-9, European Committee for 

Standardization CEN, Brussels. 

 



 
 

References 

83 

 

[23] Swedish Standard Institute (2009) Solid biofuels – Determination of moisture content – 

Oven dry method – Part 2: Total moisture – Simplified method SS-EN 14774:2:2009. 

[24] Swedish Standard Institute (2009) Solid biofuels – Determination of ash content SS-EN 

14775:2009. 

[25] Swedish Standard Institute (2009) Solid biofuels – Determination of total content of 

sulphur and chlorine SS-EN15289:2011. 

[26] Swedish Standard Institute (2009) Solid biofuels – Determination of total content of 

carbon, hydrogen and nitrogen – Instrumental methods SS-EN 15104:2001.  

[27] Swedish Standard Institute (2009) Solid biofuels – Determination of calorific value SS-

EN 14918:2010.  

[28] ASTM International Standard ASTM D3682-01 (2006) Standard Test Methods for Major 

and Minor Elements in Combustion Residues from Coal Utilization Processes, DOI: 

10.1520/D3682-01R06. 

[29] ASTM International Standard ASTM D3683-11 (2011) Standard Test Method for Trace 

Elements in Coal and Coke Ash by Atomic Absorption, DOI: 10.1520/D3683-11. 

[30] Harris, D.C.; “Quantitative Chemical Analysis – sixth edition” Michelson Laboratory, 

China Lake, California. W.H. Freeman and company, New York (2003)  

ISBN 0-7167-4464-3. 

[31] Mackenzie, R.C.; “Note”, Talanta 16:8 (1969) 1227-1230. 

[32] Ramachandran, V.S., Paroli, R.M., Beaudoin, J.J., Delgado, A.H.; “Handbook of 

Thermal Analysis of Construction Materials” 1-34. William Andrew Publishing/Noyes 

(2002) ISBN: 0-8155-1437-9. 

[33] Broussely, M., Pistoia, G.; “Industrial Applications of Batteries – From Cars to 

Aerospace and Energy Storage” 147-148 Elsevier (2007) ISBN: 978-0444521606. 

[34] Crompton, T.R.; “Polymer Reference Book” 306-310. Smithers Rapra Technology 

(2006) ISBN: 978-1859574928. 

[35] RVF (2005) “Manual för plockanalys av hushållsavfall” RVF Utveckling, rapport 

2005:19, Swedish Waste Management, Malmö, Sweden (In Swedish). 

[36] CEN (2008) Solid recovered fuels.  DD CEN/TS 15747:2008. ISBN: 978 0 580 60741 7, 

European Committee for Standardization CEN, Brussels. 



 
 
References 

84 

 

[37] CEN (2007) Solid recovered fuels. Methods for determination of biomass content.  DD 

CEN/TS 15440:2006 ISBN: 978 0 580 50258 3, European Committee for Standardization 

CEN, Brussels. (withdrawn in April 2011). 

[38] van Dijk, E.A., Steketee, J.J., Cuperus, J.G;. “Feasibility Study of three Methods for 

Determining the Biomass Fraction in Secondary Fuels; Final Report” TAUW (2002) 

Netherlands. 

[39] ASTM International (2008) Standard Practice for Collection of Integrated Samples for 

the Speciation of Biomass (Biogenic) and Fossil-Derived Carbon Dioxide Emitted from 

Stationary Emissions Sources D7459-08. 

[40] Seuss, H.E.; “Radiocarbon concentration in Modern Wood” Science 122:3166 (1955) 

415-417. 

[41] Levin I., Kromer B.; “The tropospheric 14CO2 level in mid-latitudes of the Northern 

Hemisphere (1959–2003)” Radiocarbon 46:3 (2004) 1261–72. 

[42] Reinhardt, T., Richers, U.,  Suchomel, H.;  “Hazardous waste incineration in context with 

carbon dioxide” Waste Management & Research 26 (2008) 88-95. 

[43] Mohn, J., Szidat, S., Fellner, J.,  Rechberger, H., Quartier, R., Buchmann, B., 

Emmenegger, L.; “Determination of biogenic and fossil CO2 emitted by waste 

incineration based on 14CO2 and mass balances” Bioresource Technology 99 (2008) 

6471–6479. 

[44] Mohn, J., Szidat, S., Zeyer, K., Emmenegger, L.; “Fossil and biogenic CO2 from waste 

incineration based on a yearlong radiocarbond study” Waste Management 32 (2012) 

1516-1520. 

[45] Fellner, J., Rechberger, H.; “Abundance of 14C in biomass fractions of wastes and solid 

recovered fuels” Waste Management 29 (2009) 1495–1503. 

[46] Hämäläinen, K.M., Jungner, H., Antson, O., Räsänen, J., Tormonen, K., Roine, J.; 

“Measurement of biocarbon in flue gases using 14C” Radiocarbon 49:2 (2007) 325–330.  

[47] Calcagnile, L., Quarta, G., D’Elia, M., Ciceri, G., Martinotti, V.; “Radiocarbon AMS 

determination of the biogenic component in CO2 emitted from waste incineration” 

Nuclear Instruments and Methods in Physics Research B 269:24 (2011) 3158–3162. 



 
 

References 

85 

 

[48] Palstra, S.W.L., Meijer, H.A.J.; “Carbon-14 based determination of the biogenic fraction 

of industrial CO2 emissions – Application and validation” Biosource Technology 101 

(2010) 3702-3710. 

[49] Fellner, J., Cencic, O., Rechberger, H.; “A new method to Determine the Ratio of 

Electricity Production from Fossil and Biogenic Sources in Waste-to-Energy Plants” 

Environmental Science and Technology 41:7 (2007) 2579-2586. 

[50] Fellner, J., Cenic, O., Rechberger, H., 2005 “Verfahren zur Ermittlung det Anteile 

biogener und fossiler Energietrager sowie biogener und fossiler Kohlendioxidemissionen 

beim Betrieb of Verbrennungsanlagen (Bilanzenmethode). Osterreichisches Patent 

A539/2005, Wien (In German). 

[51] Rieber, C., Business Development Manager at Ramböll, 2012-04-10, personal 

communication.  

[52] Fellner, J., Cenic., Zellinger, G., Rechberger, H.; “Long term analysis of the biogenic 

content in the feed of a waste-to-energy plant with oxygen-enriched combustion air” 

Waste Management & Research 29:10S (2011) S3-S12. 

[53] Obermoser, M., Fellner, J., Rechberger, H.; “Determination of reliable CO2 emission 

factors for waste-to-energy plants” Waste Management & Research 27 (2009) 907-913.  

[54] Staber, W., Flamme, W., Fellner, J.; “Methods for determining the biomass content of 

waste” Waste Management & Research 26 (2008) 78-87. 

[55] Elled, A.L., Åmand, L.-E., Eskilsson, D.; “The fate of Zinc during combustion of 

Demolition Wood in a Fluidized Bed Boiler” Energy & Fuels 22:3 (2008) 1519-1526. 

[56] Bäfver, L.S., Rönnbäck, M., Leckner, B., Claesson, F., Tullin, C.; “Particle emission 

from combustion of oat grain and its potential reduction by adding of limestone or 

kaolin” Fuel Processing Technology 90 (2009) 353–359.  

[57] Elled, A.L., Åmand, L.-E., Leckner, B., Andersson, B.Å.; “The fate of trace elements in 

fluidized bed combustion of sewage sludge and wood” Fuel 86:5-6 (2007) 843-852. 

[58] Elled, A.L.; “Co-combustion of Biomass and Waste Fuels in a Fluidised Bed Boiler – 

Fuel synergism” Academic dissertation (2008), Chalmers University of Technology, 

Department of Energy and Environment, ISBN 978-91-7385-139-8. 



 
 
References 

86 

 

[59] Lindberg, D.; “Thermochemistry and melting properties of alkali salt mixtures in black 

liquor conversion processes” Academic dissertation (2007) Åbo Akademi University, 

Process Chemistry CentreTurku, Laboratory of Inorganic Chemistry, Finland.  

[60] Lindberg, D., Becidan, M., Sørum, L.; “High Efficiency Waste-to-Energy Plants – Effect 

of Ash Deposit Chemistry on Corrosion at Increased Superheater Temperatures” Energy 

& Fuels 24:10 (2010) 5387-5395. 

[61] Lindberg, D., Backman, R., Chartrand, P., Hupa, M.; “Towards a comprehensive 

thermodynamic database for ash-forming elements in biomass and waste combustion/ 

Current situation and future developments.” Fuel processing Technology 105:08 (2013) 

129-141. 

[62] Boman, C., Öhman, M., Nordin, A.; “Trace Element Enrichment and Behaviour in Wood 

Pellet Production and Combustion Processes” Energy and Fuels 20:3 (2006) 993-1000. 

[63] Pelton, A.D., Bale, C.W.; “Computational techniques for the treatment of thermodynamic 

data in multicomponent systems and the calculation of phase equilibria” Calphad  (1977) 

253-273.   

[64] Hope, M.W.; “Specification guidelines for tire derived fuel” TAPPI Engineering 

Conference 1993. 

[65] Gieré, R.; “Chemical composition of fuels and emissions from coal + tire combustion 

experiment” Fuel 85 (2006) 2278-85. 

[66] Councell, T.B., Duckenfield, K.U., Landa, E.R., Callender, E.; “Wear Particles as a 

Source of Zinc to the Environment” Environmental Science Technology 38 (2004) 4206-

4214. 

[67] Smolders, E., Degryse, F.; “Fate and Effect of Zinc from Tire Debris in Soil” 

Environmental Science Technology 36 (2002) 3706-3710. 

[68] Podlasek, M., Jervis, R.E.; “Elements in car and truck tires and their volatilization upon 

incineration” Journal of Radioanalytical Nuclear Chemistry 79 (1994) 205-209. 

[69] Krook, J., Mårtensson, A., Eklund, M.; “Metal contamination in recovered waste wood 

used as energy source in Sweden” Resources, Conservation and Recycling 41 (2004) 1-

14. 



 
 

References 

87 

 

[70] European Cooperation in Science and Technology (COST). COST Action E31: 

Management of Recovered Wood; COST: Brussels, Belgium; 2007.  http://www.ctib 

tchn.be/coste31/frames/f_e31.htm Accessed 6th July, 2010. 

[71] Krook, J., Mårtensson, A., Eklund, M.; “Sources of heavy metal contamination in 

Swedish wood waste used for combustion” Waste Management 26 (2006) 158–166. 

[72] Bankiewicz, D.; “Corrosion behaviour of boiler tube materials during combustion of 

fuels containing Zn and Pb” Academic Dissertation (2012), Åbo Akademi University, 

Faculty of Chemical Engineering, Process Chemistry Centre, Finland. ISBN: 978-952-

12-2746-2. 

[73] Drying Accelerators www.biolar.lv Accessed 30th Nov, 2012. 

[74] Clausen, C.A., Kartal, S.N., Arango, R.A., Green, F.; “The role of particle size of 

particulate nano-zinc oxide wood preservatives on termite mortality and leach resistance” 

Nanoscale Research Letters 6 (2011) 427-431. 

[75] PVC Europe www.pvc.org Accessed 29th Nov, 2012. 

[76] Jermer, J., Ekvall, A., Tullin, C.; “Inventering av föroreningar i returträ” (Inventory of 

contaminants in waste wood) Report 732 (2001)Värmeforsk (Thermal Engineering 

Research Institute), Stockholm (in Swedish). 

[77] Berglund, A., Brelid, H., Rindby, A., Engström, P.; “Spatial Distribution of Metal Ions in 

Spruce Wood by Synchrotron Radiation Microbeam X-Ray Fluorescence Analysis” 

Holzforschung 53 (1999) 474–480. 

[78] Krutul, D.; “Content of the extractive and mineral substances in pine wood (Pinus 

sylvestris L.)” Folia Forestalia Polonica B 29 (1998) (in Polish). 

[79] Ivaska, A., Harju, L.; “Analysis of inorganic constituents. Analytical Methods in Wood 

Chemistry, Pulping and Papermaking” Sjöström, E. and Alén, R. (Eds), Springer-Verlag, 

Berlin Heidelberg (1999) 287-304. ISBN: 978-3540631026. 

[80] Pais, I., Jones, J.B. Jr.; “The handbook of trace elements” St. Lucie Press, Boca Raton, 

Florida (1997). ISBN: 978-1884015342 

[81] Chandrappa, R., Bhusan, Das D.; “Waste from Electrical and Electronic Equipment. 

Solid Waste Management. Principles and Practice” Environmental Science, Springer-

Verlag Berlin Heidelberg (2012) ISBN: 978-3642286810 



 
 
References 

88 

 

[82] Bigum, M., Brogaard, L., Christensen, T.H.; “Metal recovery from high-grade WEEE: A 

life cycle assessment” Journal of Hazardous Materials 8 (2007) 207-208. 

[83] Chancerel, R., Rotter, S.; “Recycling-oriented characterization of small waste electrical 

and electronic equipment” Waste Management 29 (2009) 2336-2352.  

[84] Cui, J., Forssberg, E.; “Mechanical recycling of waste electric and electronic equipment: 

a review” Journal of Hazardous Materials B99 (2003) 243-263. 

[85] Cui, J., Zhang, L.; “Metallurgical recovery of metals from electronic waste: A review” 

Journal of Hazardous Materials 158 (2008) 228-256.  

[86] Dodson, J.R., Hunt, A.J., Parker, H.L., Yang, Y., Clark, J.H.; “Elemental sustainability: 

Towards the total recovery of scarce metals” Chemical Engineering and Processing 51 

(2012) 69-78. 

[87] Guo, J., Guo, J., Xu, Z.; “Recycling of non-metallic fractions from waste printed circuit 

boards: A review” Journal of Hazardous Materials 168 (2009) 567-590. 

[88] Park, Y.J., Fray, D.J.; “Recovery of high purity precious metals from printed circuit 

boards” Journal of Hazardous Materials 168 (2009) 1152-1158. 

[89] Oguchi, M., Sakanakura, H., Terazono, A., Takigami, H.; “Fate of metals contained in 

waste electrical and electronic equipment in a municipal waste treatment process” Waste 

Management 32 (2012) 96-103. 

[90] Moltó, J., Egea, S., Conesa, J.A., Font, R.; “Thermal decomposition of electronic wastes: 

Mobile phone case and other parts” Waste Management 31 (2011) 2546-2552. 

[91] Morf, L.S., Tremp, J., Gloor, R., Schuppisser, F., Stengele, M., Taverna, R.; “Metals, 

non-metals and PCB in electrical and electronic waste – Actual levels in Switzerland” 

Waste Management 27 (2007) 1306-1316. 

[92] Salhofer, S., Tesar, M.; “Assessment of removal of components containing hazardous 

substances from small WEEE in Austria” Journal of Hazardous Materials 186 (2011) 

1481-1488. 

[93] Shen, K.K., Kochesfahani, S, Jouffret, F.; “Zinc borates as multifunctional polymer 

additives” Polymers for Advanced Technologies 19 (2008) 469-474.  

[94] Dimitrakakis, E., Janz, A., Bilitewski, B., Gidarakos, E.; “Determination of heavy metals 

and halogens in plastics from electric and electronic waste” Waste Management 29 

(2009) 2700-2706. 



 
 

References 

89 

 

[95] Bilek, G.J., Kollonitsch, V., Kline, C.H.; “Zinc chemicals in plastics systems” Industrial 

& Engineering Chemistry Research 58 (1966) 28-36. 

[96] Rotter, V.S., Kost, T., Winkler, J., Bilitewski, B.; “Material flow analysis of RDF-

production processes” Waste Management 24 (2004) 1005-1021. 

[97] Talonen, T.; “Chemical Equilibria of Heavy Metals in Waste Incineration: Comparison of 

Thermodynamic Databases” Lic. Thesis (2008). Åbo Akademi University, Finland. 

[98] EURAS. B-9052 Gent. Belgium. Contribution of Spent Batteries to the Metal Flows of 

Municipal Solid Waste (2005). 

[99] Profu AB (2012) AvfallsAtlas, is a closed database developed by Profu AB, 

www.profu.se/indexaa.htm. Contact person Mattias Bisaillon 

(mattias.bisaillon@profu.se) or Johan Sundberg (johan.sundberg@profu.se). Accessed 

24th April 2012. 

[100] Minagawa, M.; “New developments in polymer stabilization. Polymer Degradation and 

Stability” 25:2 (1989) 121-141. 

[101] MacKenzie, M.W., Willis, H.A.; “An infra-red spectroscopic study of the stabilization of 

poly(vinyl chloride) by zinc and calcium stearates” European Polymer Journal 19:6 

(1983) 511-517. 

[102] Verhulst, D., Buekens, A., Spencer, P.J., Eriksson, G.; “Thermodynamic Behavior of 

Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces” 

Environmental Science & Technology 30:1 (1996) 50-56. 

[103] Enestam, S., Boman, C., Niemi, J., Boström, D., Backman, R., Mäkelä, K., Hupa, M.; 

“Occurrence of Zinc an Lead in Aerosols and Deposits in the Fluidized-Bed Combustion 

of Recovered Waste Wood. Part 1: Samples from boilers” Energy Fuels 25:4 (2011) 

1970-1977.  

[104] Holleman, A.F., Wiberg, E.; “Inorganic Chemistry” Academic Press San Diego (2001) 

ISBN: 0123526515.  

[105] Wells, A.F.; “Structural Inorganic Chemistry” Oxford: Clarendon Press, 1984, 

ISBN: 0198553706. 

[106] Robelin, C., Chartrand, P. J.; “Thermodynamic evaluation and optimization of the (NaCl 

+ KCl + MgCl2 + ZnCl2) system” Journal of Chemical Thermodynamics 43:3 (2011) 

377-391. 



 
 
References 

90 

 

[107] Lewis, RJ. Sr.; “SAX’S Dangerous Properties of Industrial Materials vol. III”  

9th edition, Van Nostran Reinhold, United States of America (1996)  

ISBN 0-442-02257-3. 

[108] Wöhler, W., Flick, K.; “Trennung von Metallsulfaten durch auswählende Dissoziation” 

Berichte der Deutschen Chemischen Gesellschaft 67B (1934) 1679-1683, (In German).   

[109] Hegedüs, A.J., Fukker, K. Z.; “Thermoanalytischer Beitrag zur Zersetzung und 

Reduktion der Sulfate. I” Zeitschrift für anorganische und allgemeine Chemie 1956, 

284:20 (1956) 20-30, (In German). 

[110] Ostroff, A.G.; Sanderson, R.T.; “Thermal stability of some metal sulphates” Journal of 

Inorganic and Nuclear Chemistry 9 (1959) 45-50. 

[111] Kolta, G.A.; Askar, M.H.; “Thermal decomposition of some metal sulphates” 

Thermochimia Acta 11 (1975) 65-72. 

[112] Mu, J., Perlmutter, D.D.; “Thermal Decomposition of Inorganic Sulfates and Their 

Hydrates” Industrial & Engineering Chemistry Process Design and Development 20 

(1981) 640-646. 

[113] Khaklova, N. V., Dombrovskaya, N. S.; “Fusion of the sodium, potassium and zinc 

sulphate ternary system” Russian Journal of Inorganic Chemistry 4:4 (1959) 416-420. 

[114] Backman, R.; “Sodium and Sulfur Chemistry in Combustion Gases” Academic 

Dissertation (1989). Åbo Akademi University, Finland. ISBN: 951-649-561-3 

[115] Åmand, L-.E., Leckner, B., Eskilsson, D., Tullin, C.; “Ash Deposition on Heat Transfer 

Tubes during Combustion of demolition Wood” Energy & Fuels 20:3 (2006) 1001-1007. 

[116] Backman, R., Hupa, M., Hiltunen, M., Peltola, K.; “Interaction of behaviour of lead and 

zinc with alkalis in fluidized bed combustion or gasification of waste derived fuels” 

Proceeding of FBC 2005, 18th International Conference on Fluidized Bed Combustion, 

May 22-25 2005, Toronto, Ontario, Canada. ISBN: 0-7918-4183-9 

[117] Sjöblom, R. “Hypoteser och mekanismer för bildning av beläggningar innehållande zink 

och bly i samband med förbränning av returflis” (Hypotheses and mechanisms for 

development of deposits containing zinc and lead in conjugation with combustion of 

wood waste) Report 734 (2001) Värmeforsk (Thermal Engineering Research Institute), 

Stockholm (In Swedish). 



 
 

References 

91 

 

[118] Ljungdahl, B.; Zintl, F.; “RT-flis och rötslam. Problemidentifiering relaterad till 

bäddsintring och emissioner vid eldning i FB” (Wood waste and sewage sludge. 

Identification of problems related to bed sintering and emissions when firing in a FB) 

Report 753 (2001) Värmeforsk (Thermal Engineering Research Institute) Stockholm (In 

Swedish). 

[119] Niemi, J.; Enestam, S.; Mäkelä, K.; “The influence of lead and zinc on superheater 

deposit formation in fluidised bed combustion of demolition wood” Proceedings (II) of 

FBC 2006, 19th International Conference on Fluidized Bed Combustion, May 21-24, 

Vienna, Austria. ISBN: 3-200-00645-5. 

[120] Enestam, S.; “Corrosivity of hot flue gases in the fluidized bed combustion of recovered 

waste wood” Academic dissertation (2011). Åbo Akademi University, Faculty of 

Chemical Engineering, Process Chemistry Centre, Finland. ISBN: 978-952-12-2641-0. 

[121] Bankiewicz, D., Enestam, S., Yrjas, P., Hupa, M.; “Experimental studies of Zn and Pb 

induced high temperature corrosion of two commercial boiler steels” Fuel Processing 

technology 105 (2013) 89-97. 

[122] Sarofirm, A.F., Helble, J.J.; “Mechanics of Ash and Deposit Formation. The impact of 

Ash Deposition on Coal Fired Plants” J. Williamson, F. Wigley, (Eds.) Taylor & Francis 

Washington, DC, 1994, pp. 567-582. 

[123] B.G. Miller, Sh.F. Miller.; “Combustion engineering issues for solid fuels; fluidized-bed 

firing systems” (2008), chapter 8, ISBN: 978-0-12-373611-6.  

[124] Johansson, L., Leckner, B., Tullin, C., Åmand, L.-E., Davidsson, K.; “Properties of 

Particles in the Fly Ash of a Biofuel-Fired Circulating Fluidized Bed (CFB) Boiler” 

Energy & Fuels 2008, 22, 3005-3015. 

[125] Zevenhoven, M., Yrjas, P., Hupa, M. Handbook of combustion Vol. 4 Solid fuels, 

chapter 14. (2010) ISBN: 978-3-527-32449-1.  

 



 
RECENT REPORTS FROM THE COMBUSTION AND MATERIALS CHEMISTRY 

GROUP OF THE ÅBO AKADEMI PROCESS CHEMISTRY CENTRE: 
 
 

08-01 Erik Vedel Predicting the Properties of  Bioactive Glasses 
   
08-02 Tarja Talonen Chemical Equilibria of Heavy Metals in Waste Incineration 

-Comparison of Thermodynamic Databases- 
   
08-03 Micaela Westén-Karlsson Assessment of a Laboratory Method for Studying High 

Temperature Corrosion Caused by Alkali Salts 
   
08-04 Zhang Di In vitro Characterization of Bioactive Glass 
   
08-05 Maria Zevenhoven,  

Mikko Hupa 
The Environmental Impact and Cost Efficiency of Combustible 
Waste Utilization - The Potential and Difficulties of On-going 
Technology Developments 

   
08-06 Johan Werkelin Ash-forming Elements and their Chemical Forms in Woody 

Biomass Fuels 
   
08-07 Hanna Arstila Crystallization Characteristics of Bioactive Glasses 
   
   
   
10-01 Markus Engblom Modeling and Field Observations of Char Bed Processes in Black 

Liquor Recovery Boilers 
   
   
   
11-01 Leena Varila et al. Fyrtio År Oorganisk Kemi vid Åbo Akademi 
   
11-02 Johan Lindholm On Experimental Techniques  for Testing Flame Retardants in 

Polymers 
   
11-03 Minna Piispanen Characterization of Functional Coatings on Ceramic Surfaces 
   
11-04 Sonja Enestam Corrosivity of Hot Flue Gases in the Fluidized Bed Combustion 

of Recovered Waste Wood 
  



Doctoral Thesis 

Laboratory of Inorganic Chemistry 
 
 

ÅBO AKADEMI 
 

 
INSTITUTIONEN FÖR 
KEMITEKNIK 
  
 
Processkemiska centret 

 
DEPARTMENT OF CHEMICAL 

ENGINEERING 
 
 

Process  Chemistry Centre  
 
 

 

REPORT 13-04 

 
Characterisation of Waste for 

Combustion  
– with Special Reference to the Role 

of Zinc 
 
 

Frida Jones 
 

 

 
 

Frida Jones  
Characterisation of W

aste for Com
bustion w

ith Special Reference to the Role of Zinc 
2013

 
RECENT REPORTS FROM THE COMBUSTION AND MATERIALS CHEMISTRY 

GROUP OF THE ÅBO AKADEMI PROCESS CHEMISTRY CENTRE: 
 
 

12-01 Xiaoju Wang Enzyme Electrode Configurations: for Application in Biofuel 
Cells 

   
12-02 Patrycja Piotrowska Combustion Properties of Biomass Residues Rich in Phosphorus 
   
12-03 Dorota Bankiewicz Corrosion Behavior of Boiler Tube Materials during Combustion 

of Fuels Containing Zn and Pb 
   
12-04 Mikael Bergelin, Jan-Erik 

Eriksson, Xiaoju Wang,  
Max Johansson,et al.  
 

Printed Enzymatic Power Source with Embedded Capacitor on 
Next Generation Devices, Tekes-PEPSecond 

12-05 Susanne Fagerlund Understanding the in vitro dissolution rate of glasses with respect 
to future clinical applications 

   
   
   
13-01 Oskar Karlström Oxidation rates of carbon and nitrogen in char residues from solid 

fuels 
 

13-02 Juho Lehmusto The Role of Potassium in the Corrosion of Superheater Materials 
in Boilers Firing Biomass 
 

13-03 Bingzhi Li Modeling of Fireside Deposit Formation in Two Industrial 
Furnaces 

   
   
 
 
 
 
 
 
 
 
 
 

 
 

 
ISSN 1459-8205 

ISBN 978-952-12-2979-4 (paper version) 
 ISBN 978-952-12-2980-0   (pdf version) 

Åbo, Finland, 2013 



 
 
    
   HistoryItem_V1
   Nup
        
     Create a new document
     Trim unused space from sheets: no
     Allow pages to be scaled: yes
     Margins and crop marks: none
     Sheet size: 6.929 x 9.843 inches / 176.0 x 250.0 mm
     Sheet orientation: tall
     Scale by 87.00 %
     Align: top left
      

        
     0.0000
     10.0000
     20.0000
     0
     Corners
     0.3000
     ToFit
     1
     1
     0.8700
     0
     0 
     1
     0.0000
     1
            
       D:20131121100336
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1069
     483
     0.0000
     TL
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     0
     1
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: none
     Shift: move down by 5.67 points
     Normalise (advanced option): 'original'
      

        
     16
            
       D:20131120102838
       708.6614
       Blank
       1011.9685
          

     Wide
     1
     0
     No
     1115
     512
    
     Fixed
     Down
     5.6693
     2.8346
            
                
         Both
         78
         AllDoc
         88
              

       CurrentAVDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     7
     110
     109
     110
      

   1
  

 HistoryList_V1
 qi2base





