Ivan Porres | Tommi Mikkonen

Adnan Ashraf (Editors)

DIGILE

Developing Cloud Software

: UD SOFTWARE FINLAND

Algorithms, Applications, and Tools

Turku CENTRE for COMPUTER SCIENCE

TUCS General Publication
No 60, October 2013

Developing Cloud Software
Algorithms, Applications, and Tools

Edited by

Ivan Porres
Tommi Mikkonen

Adnan Ashraf

TUCS General Publication
No 60, October 2013

ISBN 978-952-12-2952-7
ISSN 1239-1905

Preface

Executed during years 2010-2013, Cloud Software is a Finnish research pro-
gram, whose goal has been to significantly improve the competitive position
of Finnish software intensive industry in global markets in the field of cloud
computing. More than 30 Finnish IT companies and research organizations
have participated in the program, and the output of the program has been
considerable both in terms of scientific publications as well as industry trans-
formation towards using cloud computing techniques.

This book contains selected contributions by the Cloud Software Pro-
gram partners focusing on innovative algorithms, applications, and tools to
develop new services and applications to be deployed in public and private
cloud infrastructures. These are needed to fully utilize the concept comput-
ing as a utility as promised by cloud computing. In addition to the actual
contributions, the first chapter of the book contains an introduction to cloud
computing from the point of view of software development. For the rest of
the book, each chapter tackles a concrete problem relevant to software de-
velopment for cloud infrastructures that originated in the program company
partners.

We want to thank all the participants in the Cloud Software program for
their efforts, shared experiences, and insights during these four years that
have been materialized in the contents of the book. Specially, we want to
thank Dr. Janne Jarvinen, focus area director, Professor Veikko Seppénen,
academic coordinator, Dr. Tua Huomo, program coordinator, and Dr. Pauli
Kuosmanen, Digile CTO, for leading the program. In addition, we wish to
thank Hans Ahnlund and Mika Laurila (ECE Ltd.), Marc Englund (Vaadin
Ltd.), Sami Helin (Steeri Oy), Jarno Kallio (Packet Video Finland), Risto
Laurikainen (CSC), and Heikki Nousiainen (F-Secure) for performing reviews
for the different chapters that constitute the book. Finally, we also wish to
thank all the contributors of this book for their dedicated efforts both in the
program itself as well as in reporting the results.

Ivan Porres, Tommi Mikkonen, Adnan Ashraf
October 2013

iii

iv

Acknowledgments

This work was supported by TEKES, the Finnish Funding Agency for Tech-
nology and Innovation, as part of the Cloud Software program of DIGILE,
the Finnish Strategic Centre for Science, Technology and Innovation in the
field of ICT and digital business.

vi

Contents

1 Introduction to Cloud Computing Technologies 1
1.1 Technology Drivers and Adoption Problems 2
1.2 Background Technologies 7

1.2.1 Cloud Hardware Virtualization Technologies 7
1.2.2 Sandboxing 9
1.2.3 Virtualized Network Block Storage 10
1.2.4 Network Virtualization 11
1.3 Scalable Cloud Technologies 12
1.3.1 Scalable Datastore 13
1.3.2 Scalable File Storage 17
1.3.3 Scalable Batch Processing 18
1.3.4 Approaches to Fault Tolerance in Cloud Infrastructure 20
1.3.5 Latency and Clouds 21
1.4 Cloud from Application Programmer View 23
1.4.1 Infrastructure as a Service 23
1.4.2 Platform as a Service 27
1.4.3 Software as a Service 31
1.4.4 Discussion 36
1.5 Conclusions 36

2 The Social Devices Platform: An Infrastructure for Social
Devices in a Mobile Cloud 43
2.1 Imtroduction 44
2.2 Social Devices 45

2.2.1 Motivation and Background 45
2.2.2 Running Example 47
2.2.3 Requirements and Characteristics 49
2.3 The Social Devices Platform 52
2.3.1 Overall Architecture 53
2.3.2 ProximityServer: Managing Proximity Information . . 54

2.3.3 StateServer: Managing Device States and Properties . 54

vii

2.3.4 Controller: Triggering and Scheduling of Actions. . . . 55

2.3.5 CaaS: Configuration of Actions 56
2.3.6 Orchestrator: Execution of Actions 57
2.3.7 SocialDevicesClient: The Client for Social Devices . . 58
2.4 Related Work 59
2.5 Discussion and Results 62
2.6 Conclusions 66

Prediction-Based Virtual Machine Provisioning and Admis-

sion Control for Multi-tier Web Applications 71
3.1 Imtroduction 72
3.2 Related Work 75
3.2.1 VM Provisioning Approaches 7
3.2.2 Admission Control Approaches 78
3.3 Architecture 80
3.3.1 Load Balancer 80
3.3.2 Global Controller 82
3.3.3 Admission Controller 83
3.3.4 Cloud Provisioner 84
3.3.5 Entertainment Server 84
3.3.6 Application Server 84
3.3.7 Application Repository 85
34 Algorithms. o 86
3.4.1 Load Prediction 89
3.4.2 The Server Tier 90
3.4.3 The Application Tier 92
3.4.4 Admission Control 93
3.5 Experimental Evaluation 94
3.5.1 VM Provisioning Experiments 95
3.5.2 Admission Control Experiments 100
3.6 Conclusions 106
Proactive Virtual Machine Allocation for Video Transcoding
in the Cloud 113
4.1 Introduction 114
4.2 Video Bit Stream Structure 116
4.3 System Architecture oL 118
4.4 Video Segmentation 120
4.5 Proactive VM Allocation Algorithms 121
451 VM Allocation Algorithm 122
4.5.2 VM Deallocation Algorithm 124

viii

4.6 Load Prediction 126

4.7 MPI-Based Distributed Video Transcoder 127
4.8 Simulation Results of VM Allocation 128
4.8.1 Experimental Design and Setup 128
4.8.2 Results and Analysis 131
4.9 Evaluation of MPI-Based Distributed Video Transcoder 132
4.9.1 Experimental Design and Setup 133
4.9.2 Results and Analysis 134
4.10 Related Work 136
4.11 Conclusion 138
Hadoop in Large Scale Data Analytics for Bioinformatics 145
5.1 Introduction 146
52 MapReduceo 149
5.2.1 Execution Model 150
5.2.2 Distributed File System 154
53 Hadoop 156
531 Pig 158
53.2 Hive 159
533 HBase 162
5.4 Hadoop in Bioinformatics 166
54.1 Hadoop-BAM 167
542 SeqPigo 176
55 Closing Remarks 176
Performance Testing in the Cloud Using MBPeT 191
6.1 Introduction 191
6.2 Related Work 193
6.3 The Performance Testing Process 195
6.3.1 Model Creation 195
6.3.2 Model Validation 195
6.3.3 TestSetup 195
6.3.4 Load Generation 196
6.3.5 Monitoring o oL 196
6.3.6 Test Reporting 196
6.4 MBPeT Tool Architecture 197
6.4.1 The Master Node 197
6.4.2 TheSlave Node 202
6.4.3 Graphical User Interface 204
6.5 Model Creation 204
6.5.1 Workload Characterization 205

ix

6.5.2 Workload Modeling Using PTA 206

6.6 Performance Testing Process 207
6.6.1 TestSetup 207
6.6.2 Load Generation 209
6.6.3 Test Reporting 211

6.7 Experimentso 211
6.7.1 YAAS 211
6.7.2 Test Architecture 212
6.7.3 Load Models 212
6.74 Experiment 1 0L 215
6.7.5 Experiment 2 L. 219

6.8 Conclusions 222

Cloud Communication Service 227

7.1 Introduction 228

7.2 Business Scenarios 228

7.3 Pastwork 230
7.3.1 Framework 231
7.3.2 Quality of an Ontology 232
7.3.3 Cloud Communication System as a Big Data Problem . 233

7.4 Human Interaction, 237
7.4.1 Information Filtering and Recommender Systems . . . 238
7.4.2 Content-based Information Filtering 238
7.4.3 Collaborative Filtering 239
7.4.4 Knowledge Based Recommendation 239

7.5 Implementation and User Interfaces of the Cloud Communi-
cation System L 240

7.6 Conclusion 245

HTML5 in Mobile Devices — Drivers and Restraints 249

8.1 Introduction 249

8.2 Theoretical Background 252
8.2.1 Technology Evolution 252
8.2.2 Research Framework 253

8.3 Technology Overview 254
831 HTML5 254
832 Firefox OS. 256

84 Analysis 257
8.4.1 Added Value 257
8.4.2 Ease of Experimentation 259
8.4.3 Complementary Technologies 260

84.4 Incumbent Role 260

8.4.5 Technological Performance 262
8.5 Summary of Results and Discussion 263
8.5.1 General Results 263
8.5.2 Practical Examples 265
8.6 Conclusions 267
Collaborative Coding Environment on the Web: A User
Study 275
9.1 Introduction 275
9.2 Collaborative Development: The CoRED Approach 277
9.3 Experiment 280
9.3.1 Research Questions 280
9.3.2 Proof-of-concept Session 281
9.3.3 Experiment Setup L. 282
9.3.4 SUrveys . . .o .. 283
9.4 Results. 283
9.4.1 Survey 284
9.42 LogData 285
9.4.3 Imterviews 287
9.5 Developer Expectations for Real-time Collaborative IDEs . . . 290
9.6 Future Work 293
9.7 Related Work 294
9.8 Conclusion 296

xi

1 Introduction to Cloud Computing
Technologies

Adnan Ashraf', Mikko Hartikainen?, Usman Hassan®, Keijo Heljanko?,
Johan Lilius!, Tommi Mikkonen?, Ivan Porres', Mahbubul Syeed?,
and Sasu Tarkoma?

1Abo Akademi University, Turku, Finland
Email: firstname.lastname@abo.fi

2Tampere University of Technology, Tampere, Finland
Email: firstname.lastname@tut.fi

3Aalto University, Espoo, Finland
Email: firstname.lastname@aalto.fi

4University of Helsinki, Helsinki, Finland
Email: firstname.lastname@helsinki.fi

Abstract—This chapter presents the main technologies currently used in
cloud computing, what are the main commercial offerings and what are their
programming models. We discuss hardware virtualization technologies used
in datacenters, three different service abstraction levels: infrastructure, plat-
form and application and the main driver and adoption problems in cloud
computing.

Keywords-Cloud computing, virtualization, scalability, [aaS, PaaS, SaaS.

The authors are listed in alphabetical order.

2 A. Ashraf et al.

1.1 Technology Drivers and Adoption Problems

The cloud computing paradigm is a new framework for purchasing comput-
ing as a utility (Utility Computing) instead of using traditional datacenters
to provide data processing capability. Perhaps the best overview of the tech-
nology drivers behind cloud computing is given in the report “Above the
Clouds” [7, 6] from Berkeley, which also discusses the main obstacles and
opportunities in cloud computing.

Cloud computing contains a number of technologies that are required to
realize the “computing as utility” promise made by cloud computing ven-
dors. Many of the key technologies have existed already before the term
“cloud computing” was invented, while others have been born out of the
Internet-scale deployment of computing in distributed data centers by sev-
eral big companies such as Google, Amazon, Yahoo, and Salesforce.com.
Consequently there are many definitions of cloud computing but the main
distinguishing features of cloud computing are:

e Computing resources can be purchased on-demand from a virtually
unlimited supply.

e The capital expenses needed to purchase computing resources up-front
are changed to operational expenses, shifting the capital investment
risk for under/overprovisioning to the cloud computing vendor.

e Computing is priced with a pay-as-you-go pricing model where capacity
can be scaled up and down on a short term basis.

The National Institute of Standards (NIST) in the US has also decided to
emphasize the elasticity of computing resources in their definition of cloud
computing [40], which is a definition we can largely agree with. One fre-
quently cited article defines the cloud as follows:

Clouds are a large pool of easily usable and accessible virtual-
ized resources (such as hardware, development platforms and/or
services). These resources can be dynamically reconfigured to
adjust to a variable load (scale), allowing also for an optimum
resource utilization. This pool of resources is typically exploited
by a pay-per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized SLAs [54].

One of the main drivers for cloud computing are the economics of scale in
datacenter building and operations costs. The pricing of hardware, electric-
ity, cooling, and especially global network capacity is much more competitive

Introduction to Cloud Computing Technologies 3

when bought for data centers with tens or hundreds of thousands of servers
instead of small scale datacenter operations with maybe a hundred to a thou-
sand servers.

This chapter focuses on the technical aspects of the available cloud com-
puting platforms and mostly overlooks financial and business aspects of cloud
computing. The key technologies we are discussing in this chapter are:

1. Hardware virtualization: In order to allow for maximum flexibility of
offering customers the illusion of dedicated computing, storage, and
networking infrastructure on a computing infrastructure shared with
other clients, virtualization technologies are heavily used. Section 1.2.1
discusses the commonly used virtualization technologies, for example
Xen is used by the Amazon cloud offering.

2. Sandboring: Sometimes the overhead per (Linux or Windows) virtual
machine can be quite significant, as typically each virtual machine is
running its own kernel instance. Another commonly used approach
is to use high-level programming languages with sandboxing (Python,
Java, etc.) virtual machines to do the isolation between clients on
a multi-tenant cloud infrastructure. Examples of this are the Google
App Engine that uses Python and Java runtime environments that
have been sandboxed to disallow things such as writing to files and
opening of network sockets. Sandboxing is discussed in more detail in
Section 1.2.2.

3. Virtualized network block storage: This is similar to having a virtualized
network file server with redundancy available to mount storage to a
virtual machine. A typical product is the Amazon Elastic Block Store,
which can be used to mount network attached storage to a cloud server
instance. The technologies employed here are similar to traditional file
serving technology with a virtualization layer on top. This technology
is discussed in more detail in Section 1.2.3.

4. Scalable datastore: One of the key technologies in scalable web services
is the scalable datastore, a database component to manage the data
behind the web application. There is a large interest in NoSQL (for No
SQL or Not Only SQL) datastores. This is a quite central topic that
we will discuss at length in Section 1.3.1.

5. Scalable file storage: Another basic cloud building blocks is that of
geographically replicated hashed file storage. Examples of this service
include the Amazon S3 storage system, and the recently announced

4 A. Ashraf et al.

Google storage system. The data in replicated hashed file storage is
accessed through a REST (via HTTP) based interface, and can thus be
directly linked into in web sites. Replicated hashed file storage is often
used to store the virtual machine images that are loaded to virtual
machines at startup, to store backups of block storage, as well as to
store large binary blobs (images, software, etc.) of data served through
Web servers, as well as the seeds of data to be distributed through
content distribution networks. These will be discussed in Section 1.3.2

6. Scalable batch processing: One of the key new technologies used in the
cloud are scalable batch processing systems. The main reference imple-
mentation here is Google MapReduce and its open source implementa-
tion Apache Hadoop. This will be discussed in detail in Section 1.3.3.

7. Cloud controller: All of the cloud offering provide either a command
line or a Web based interface to deploy and administer cloud computing,
including not only computing but also storage and networking. Exam-
ples include the Eucalyptus Cloud Controller (CLC), the OpenNebula
Virtual Infrastructure Manager, and the Web based Google App En-
gine Administration Console. These technologies will be discussed in
Chapter 1.4. The different types of approaches (Infrastructure as a
Service, Platform as a Service, Software as a Service) are addressed in
individual Sections 1.4.1, 1.4.2, and 1.4.3.

In addition to technologies listed above most of the traditional Web appli-
cation and web content serving technologies such as web services using load
balancing and caching are quite predominant in Cloud application develop-
ment, as one of the main drivers of scalable technologies are Web applications
deployed at the massive Internet scale. For example, clouds are used to do
the distribution of static Web content globally. Several providers such as
Akamai and Amazon with its Cloudfront service offer caching services for
static content using globally distributed network of datacenters to minimize
the Internet data transfer fees for providing Web-based services. As these are
basically Web serving content delivery networks, they will not be discussed
further in this chapter.

Figure 1.1 presents an overview of the central elements in cloud com-
puting. The lowest layer pertains to datacenters, clusters, and networking.
Flexibility is achieved by using virtualization, and creating and moving plat-
form instances at runtime. On the client-side, the Web browser is becoming
a key platform for applications. Various Web application frameworks are
then used through the browser. On a higher level, the aim of the cloud infra-

Introduction to Cloud Computing Technologies 5

structure is to support on-demand service creation, management, and access.
Open APIs are key components for interoperable cloud-based systems.

Private, community, public, hybridclouds

Software as Platformasa | |Infrastructure as
a Service (SaaS) Service (PaaS) a Service (laaS)

On-demand service

Information demand and Ubiquitous Network
supply (Open APIs) Access
Location Independent ‘ | Elasticity ‘

Resource Pooling

Web Application

Virtualization
Frameworks

Datacenters and clusters Browser as a Platform

Figure 1.1: Overview of cloud services

The figure highlights the different roles found in cloud computing, namely
the service consumer, provider, and developer. The service provider is a
central element of cloud computing, because it facilitates the deployment and
execution of various building blocks. The service provider achieves flexibility
through virtualization and dynamic configuration of the runtime system.
This flexibility that takes the supply and demand of content into account can
be seen as a central feature of clouds. Virtualized resources include networks,
CPUs, and storage. In order to implement and manage a cloud platform, a
number of management features are needed. The necessary management
features include reporting, Service Level Agreements, capacity planning, and
billing. The software layer providing the virtualization is called a virtual
machine monitor or hypervisor. A hypervisor can run on bare hardware
(Type 1 or native VM) or on top of an operating system (Type 2 or hosted
VM). The service developer uses APIs exposed by the cloud platform and the
software it is executing. The service developer needs to have tools for service
creation, deployment and publishing, and analyzing the service at runtime.

6 A. Ashraf et al.

The service consumer uses various APIs and user interfaces to access the
deployed services.

The services of Cloud computing can be divided into three categories:
Software-as-a-Service (SaaS), in which a vendor supplies the hardware infra-
structure, the software product, and interacts with the user using a portal.
Platform-as-a-Service (PaaS), in which a set of software and development
tools are hosted by a provider on the provider’s infrastructure, for exam-
ple, Google’s AppEngine. Infrastructure-as-a-Service (IaaS), which involves
virtual server instances with unique IP addresses and blocks of on-demand
storage, for example, Amazon’s Web services infrastructure. Figure 1.2 shows
layer architecture of cloud computing.

Client

Software

\ Platform as a Service

Infrastructure as a Service

Hardware

i)
E { Cloud provider

D Traditional Web Services

5 Cloud Web Services

Figure 1.2: Layer architecture of cloud software

This chapter focuses on the cloud computing technologies from two dif-
ferent perspectives. The first one is the view of the application programmer:
What kinds of application frameworks do the different cloud providers pro-
vide and what are the benefits and drawbacks on the frameworks in question.
The second perspective is that of a cloud service provider: What technologies
are employed in the cloud platforms, especially concerning the scalability of
services. Many of the available implementations share similar (or even the
same) components, and they are often composed by mixing and matching

Introduction to Cloud Computing Technologies 7

proprietary and open source components.

1.2 Background Technologies

There are some commonly used technologies that have already existed before
the introduction of cloud computing, but which have lately experienced a
renaissance due to the introduction of cloud computing. Such technologies
include in particular the following:

e hardware virtualization technologies
e virtualized network block storage

e sandboxing

These technologies play such a big role in current approaches to cloud com-
puting that we have decided to address them separately.

1.2.1 Cloud Hardware Virtualization Technologies

Virtualization, or the capability to make one computer appear as several
computers or a totally different computer, is a 4 decades old idea, introduced
by IBM in its 7044 computer together with the Compatible Time Sharing
System (CTSS) developed by MIT.

Virtualization is key component in Cloud computing as it allows one to
distinguish the underlying hardware from the operating system, and allows
the cloud hardware provider to easily let the client run any operating system
that is needed.

The report Secure Virtualization and Multicore Platforms State-of-the-
Art report, by Heradon Douglas and Christian Gehrmann [20] provides a
good overview of the underlying techniques and issues.

Virtualization techniques can be split into two main approaches:

1. System virtualization in which the entire system is virtualized. This en-
ables multiple virtual systems to run concurrently totally isolated from
each other. The hypervisor or virtual machine monitor provides access
to memory, devices, network, including the CPU. As a consequence,
the Guest operating system thinks it has the machine for itself.

2. Para-virtualization in which the guest operating system is modified to
cooperate with the hypervisor. The guest is modified to use interfaces
that are safer or more efficient to use than the original guest operating
system interfaces.

8 A. Ashraf et al.

The two main hypervisor types are the following:

e Type 1 runs directly on the host’s hardware and executes the guest
operating system.

e Type 2 (or hosted) runs within an operating system.

System virtualization typically requires hardware support from the pro-
cessor. Such support is provided e.g. by Intel Virtualization technology
Intel-VT [33], AMD’s support for virtualisation AMD-V [4], or ARM’s Trust-
Zone [53] . Thus, system virtualization is typically only supported for newer
[A-32, Xeon, Itanium, Athlon, and Phenom families of processors.

System virtualization can also be achieved by pre-virtualization, in which
the guest operating system code is scanned before execution by the hypervisor
and then modified at run-time, thus resembling a Just-In-Time compiler.
This approach naturally comes at a premium performance wise.

A comprehensive list of different virtualization solutions is available on
wikipedia [15]. The list contains over 70 different solutions, with either open-
source, or commercial licensing. Below, we focus on 3 solutions, KVM, XEN|,
and VMWare. This choice is motivated by the fact that XEN is the open-
source market leader, while VMWare can be considered the commercial mar-
ket leader. KVM has been included in the list as it is gaining quite a lot of
interest in the Linux community.

XEN

The Xen hypervisor was created at the University of Cambridge at the end of
the 1990’s as part of the Xenoserver research project. The first open-source
release of the Xen hypervisor was done 2002, and the current version of the
hypervisor is 4.0. It can thus be considered a mature and stable product.
Commercial support is provided by XenSource Inc. Xen is also provided as
the virtualization solution by solution providers like Red Hat, Novell, and
Sun. Xen is currently marketed by Citrix (http://www.citrix.com/).

Xen is usually considered a para-virtualization solution, although version
4.0 adds capabilities for system virtualization. Xen handles device drivers by
running a special operating system in a special high-privilege Xen domain
(dom0). This operating system handles all device driver requests and has
optimized device drivers for the available hardware. The guest operating
system then has to be modified to work against these interfaces.

Introduction to Cloud Computing Technologies 9

VMWare

VMware (http://www.vmware.com/) offers a commercial hypervisor
ESX [58]. ESX runs on “bare metal” and does not require a separate oper-
ating system. Instead it comes with an included Linux kernel that is booted
first and used to load special device drivers and other features required by
the hypervisor. The Linux kernel provides access to all devices of the system
to the guest operating system using these drivers. In principle, VMWare is
thus a para-virtualization solution. However “Scan-Before-Execution” the
VMWare marketing term for its run-time pre-virtualization technology, al-
lows the guest operating system to run unmodified on VM Ware.

KVM

KVM is a newcomer among virtualization solutions. What KVM provides is a
solution to make a Linux kernel into a hypervisor by loading a module. Each
guest operating system is now a process in user-mode of the KVM hypervisor.
KVM assumes that it is running on a processor with hardware support for
virtualization. Thus it is not possible to run it on older processors, nor is
any such support planned.

KVM consists of two parts: the KVM module that is used to virtualize
memory and QEMU [46], an emulator, for virtualization of I/O.

Summary

Figure 1.3 presents a summary of well-known hypervisors including the three
hypervisors mentioned above. The key properties of hypervisors include
whether or not the system is open source, on what level does it operate
(type 1 or 2), what hardware is supported and what hardware can be vir-
tualized, and additional features such as live nested virtualization and live
migration.

1.2.2 Sandboxing

Sandboxing is a commonly used security mechanism that separates programs
and resurces from one another. By including the different applications in
separate sandboxes, the infrastructure used to host them can be shared by
numerous applications, some of which may have different trust levels. More-
over, it is easy to use experimental software in the same infrastructure as
the production software, since by encapsulating the different systems into
sandboxes of their own they can not cause harm to each other.

10

A. Ashraf et al.

KVM

VMWare

Hyper-V

Open source

Type 1/2

1.5 (DomoO privileged guest)

1.5 (Linux kernel, Qemu)

Hardware

x86 / x86_64

x86 / x86_64

x86 / x86_64

X86_64

Virtual hardware

Qemu: x86 / x86_64

Qemu: X86 / x86_64

x86 / x86_64

x86 / x86_64

Features

Nested virtualization, live
migration

Nested virtualization, live
migration

Association

Citrix

Red Hat/ Intel

VmWare

Microsoft

Figure 1.3: Comparison of hypervisors

In the simplest form, sandbox systems are really isolating applications
from each other and the hosting operating system in full. They have no
way to interact, exept indirectly in terms of processor time, which they must
share, provided that the same computing infrastructure is used. However, it
is also common that not everything is isolated to such a degree, but differ-
ent privileges can be offered to applications in exchange for e.g. providing
reasonable evidence that the developer is authorized to use some services.
Such a fine-grained sandboxing system can be implemented using so-called
capabilities, which can be used to provide an access to different resources
based on more detailed definitions.

Since sandboxing has been proven a really useful technology in many
fields of computing, it is not uncommon to find different implementations
that have been geared towards some particular area of application. In the
realm of cloud computing, the most common use of sandboxing is together
with a virtualization system, where the goal of sandboxing is to provide an
illusion of a single computer, dedicated to the developer, which is isolated
from the rest of the applications run in the same server farm or datacenter.

1.2.3 Virtualized Network Block Storage

The goal of storage virtualization is to abstract the physical location of the
data from users and developers. Provided with adequate implementation,

Introduction to Cloud Computing Technologies 11

this leads to location independence. The role of the virtualization storage is
to provide a mapping from the perceived data to the actual physical location.

For obvious reasons, the actual form of the mapping is implementation
dependent. For example, there may be limitations on granularity of the map-
ping, where different implementations provide a scale from a full, physical
single disk residing physically in a certain computer to small subsets of the
disk, provided in e.g. megabytes or gigabytes.

Commonly available implementations allow heterogeneous management
of multi-vendor storage systems. Consequently it is possible to build a virtu-
alized system out of best-suited component subsystems, which may provide
different quality of service in terms of e.g. access speed.

The benefits of virtualized storage systems in general are many. They
include at least the following:

e Non-distruptive data migration. With the virtualized system, data can
be migrated to different locations even if it is being used. Consequently,
there is more freedom on organizing the data in the network in accor-
dance to the services that are being provided and computers and data
storages that are currently available.

o Improved utilization. As is general with cloud computing, one of the
gains of using a virtualized storage is the ability to use the available
resources in a more optimized fashion.

o Simplified management. Another common gain of cloud computing
is the fact that one needs less management points when relying on
virtualized storage. This in turn simplifies management.

1.2.4 Network Virtualization

OpenFlow is an open standard that allows to run experimental protocols in
production networks [39]. OpenFlow is a feature added to switches, routers,
access points (APs) and basestations, allowing these datapath devices to
be controlled through an external, standardized API. Major switch vendors
are now implementing the system and it is used by universities to deploy
innovative networking technology. Basically, OpenFlow is a software-defined
Ethernet switch. Software-defined networking is expected to be one of the
new emerging research topics in computer networking.

Figure 1.4 presents an overview of the OpenFlow protocol. Routers and
switches implement the open API that allows administrators and control
components to create, modify, and remove flows in the flow table. The pro-
tocol is a step towards software-defined networks.

12 A. Ashraf et al.

/\ \l‘]
OpenFlow Ope(\\;\o e »

i N
Switch o 0\30‘0‘
.
Secure L ssv Controller and API
SwW Py
Channel [4*
+ Add/delete flow entries

hw Flow » Encapsulated packets

Table + Controller discovery

Interfaces

Figure 1.4: The OpenFlow protocol

NOX is an open source network control platform that can control all
connectivity on the network including forwarding, routing, which hosts and
users are allowed. NOX is a control plane element that can be used with
OpenFlow switches [28].

1.3 Scalable Cloud Technologies

A key driver behind cloud computing are Web applications deployed at the
Internet scale. One of the problems with these applications is the variability
of demand in the capacity needed to serve users. An application that proves
successful on the Internet, for example a game, can have its load increased
dramatically in a very short time period. For example, when released as a
Facebook plugin, Animoto (http://animoto.com/) traffic doubled every 12
hours for 3 days [6]. If the application serving the load is not constructed
from scalable building blocks, such scaling to heavy Internet scale loads is not
possible. Another way to see these scalable cloud computing technologies is
that they are software based approaches to horizontally scale data processing
to be run on a large number of small machines instead of a few very powerful
machines. This can have potential in cost reduction for hardware as well as
potential for energy consumption reduction. As an example, Google discusses

Introduction to Cloud Computing Technologies 13

the high energy consumption of typical servers at idle, and are suggesting
architectures that are more energy-proportional, that is, the server power
should be proportional to its application performance level [5, §]. Thus
the cloud should also be able to scale not only up but also down: when
application load decreases, the number of active servers needed to serve the
load should also be automatically decreased as well. Another example is the
paper [52], which discusses the use of virtualization technology to power off
idle machines for better power efficiency during hours of low load.

The scalable cloud computing technologies presented here can also be
seen as a preview of technologies to be employed on a smaller (company
private datacenter) scale in the future, as the need of scaling of systems to a
“private cloud” of small commodity servers in an economical fashion becomes
an issue.

1.3.1 Scalable Datastore

One of the key components to scalability on the Internet scale is that of a
scalable datastore. The datastore is needed as a backend to Web applica-
tions serving dynamic Web pages built on top of the Representational State
Transfer (REST) architectural style [23]. These datastores can be seen as
databases with often very limited functionality but they are able to scale to
even tens of thousands of servers in a single datastore instance. For exam-
ple, all of the Google App Engine applications are sharing a single datastore
instance making up a massively distributed datastore system.

Example scalable cloud datastores include Google Datastore (based on
Google Bigtable [12, 13]), Amazon SimpleDB (http://aws.amazon.com/
simpledb/), Amazon Dynamo [19] (based on Chord [48, 49]), the Yahoo!
PNUTS (also called Sherpa) [16] system (which internally uses MySQL
(http://www.mysql.com/) for ordered storage), the open source Apache
Cassandra [36] (http://cassandra.apache.org/) system, the open source
Tokyo Tyrant (http://1978th.net/tokyotyrant/) system, and the open
source Project Voldemort (http://project-voldemort.com/), just to name
a few examples. As can be seen from the list of systems above the field is
still quite fragmented but also in very active development.

NoSQL Datastores

One of the current hot topics is NoSQL (for No SQL or Not Only SQL)
datastores. A good short overview of the topic can be found in [50, 51].
In traditional database systems literature [29] the guarantees given to the
user by most traditional database systems are denoted with the term ACID

14 A. Ashraf et al.

(Atomicity, Consistency, Integrity, Durability). A part of the NoSQL move-
ment is instead insisting on that a much more limited datastore functionality
called BASE [24] (Basically available, soft state, eventually consistent) is to
be adopted. The main idea of datastores implementing BASE is to favor
availability (and often also low write latency) over consistency.

An example given by the Amazon Dynamo paper [19] is that of a shopping
cart: A customer would prefer to have the shopping cart application available
even though some datacenters of the Amazon infrastructure would not be
currently available due to e.g., disk failures or network connection problems
to other datacenters which might also manipulate the same shopping cart.
In the rare occasion that a shopping cart update should manage to write its
data only to a subset of the servers storing the database, and another update
for the cart comes in, the database would contain two conflicting versions of
the shopping cart data. This is conceptually very similar to merge conflicts in
distributed revision control systems. When such inconsistency is noticed, the
shopping cart application would eventually be presented with two conflicting
versions of the contents of the shopping cart.

The approach taken by Amazon was to use the union of the two shopping
carts as the “true contents” of the shopping cart in the case of such rare fail-
ure, and to handle the exceptional cases of missing deletes of items from the
shopping cart by the user being presented with a slightly wrong contents of
the shopping cart. This allowed the Amazon system to scale easier but at the
expense of having each of the applications handle the inconsistent versions
of the datastore contents in an application dependent fashion. Amazon also
employs a lot of ACID systems in billing and order manipulation, but these
are often not customer facing applications, and thus can tolerate the longer
latencies and lower availability than the applications the customers are di-
rectly interacting with. So a good system design might employ a mixture of
BASE and ACID datastores, depending on the application and its inherent
requirements.

So one of the main debates in scalable datastores is BASE vs. ACID [45].
The debate is based on a theoretical result on distributed databases: Brewer
argued in his CAP conjecture that it is impossible to build a database system
that is:

e (Consistent: The client perceives that a set of operations has occurred
all at once.

e Available: Every operation must terminate in an intended response.

e Partition tolerant: Operations will complete, even if individual com-
ponents are unavailable.

Introduction to Cloud Computing Technologies 15

This was later proved to indeed be true [26], and without additional assump-
tions it is indeed impossible to create a distributed database system satisfying
all the three properties at the same time. To overcome this impossibility re-
sult, one has to drop one of these three guarantees by either:

e Discarding partitions: CA: The database has to be centralized which
immediately leads to scalability problems.

e Discarding availability: CP: A database server must disallow writes in
case the update can not be written to a majority of the database servers
due to network partition.

e Discarding consistency: AP: The database must allow for inconsistency
of writes in case of network partition of the database servers.

Brewer gives in his PODC 2000 keynote some examples of systems in the
different classes:

e CA systems include: Single-site databases, LDAP, and NFS. These
systems are often based on two-phase commit algorithms, or cache
invalidation algorithms.

e CP systems include: Distributed databases, distributed locking sys-
tems, and majority protocols. The systems often use pessimistic lock-
ing or majority (aka quorum) algorithms such as Paxos [37].

e AP systems include: Filesystems allowing updates while disconnected
from the main server such as Coda, Web caching, and DNS. The em-
ployed mechanisms include cache expiration times and leases.

One of the key observations here is that caching of Web applications have
already discarded consistency as caches might contain stale data not available
anymore in the database. So in a way data staleness of data already exists
in Web applications to some extent.

When we look at the BASE vs. ACID debate, it is interesting to note that
the Google App Engine Datastore is by default ACID. The BASE proponents
are the Amazon Dynamo and Yahoo! PNUTS (Sherpa) system, as well as
the Cassandra datastore that can be configured either in BASE or ACID
mode on a per table basis.

The Google App Engine Datastore as well as most other NoSQL datas-
tores support a very limited notion of transactions, and most systems do not
support table joins used in relational databases. The Google Datastore stores
its key values in a sorted fashion by the primary key, and thus range queries

16 A. Ashraf et al.

are still efficient. Also Google itself notes that Datastore writes are expen-
sive compared to reads that can be usually served from a cache. This is not
surprising given the fact that the written data has to be replicated (using
GFS) to ensure durability. Thus a common scalable application program-
ming strategy Google proposes to be used is to batch datastore writes using
a memory cache and only periodically flush the required writes to the data-
store “backup”. So the Google Datastore can be seen as quite database-like
datastore system (without complex transactions or table joins) engineered
for massive scalability.

Key/Value Datastores

The other interesting approach to datastores is that of pure key/value stores.
These are systems built on top of massive distributed hash-tables, and the
only thing one can do is lookup a value based on a key (md5 checksums
of key material are often used). One of the ideas underlying these systems
was presented in the peer-to-peer system Chord [48, 49]. Tt uses a technique
called consistent hashing to allow for nodes to enter and leave a peer-to-
peer content lookup network with minimal overhead. Basically if a network
contains n nodes each containing a set of values, if one node leaves the
system, only (9(%) data items have to be reallocated to the remaining nodes.
In other words only the data that went missing by the node leaving needs
to be reallocated while other nodes do not have to move the data they still
store around to other nodes. Similar result also holds for new nodes entering
the system. The Amazon Dynamo and its descendant the Cassandra system
uses this idea to implement a scalable key/value store with replication, and
it is used in internal Amazon infrastructure (to implement parts of Amazon
S3, most likely file location lookup). Many of the other key/value stores use
the consistent hashing primitive as well to do load balancing in a way that
minimizes the effects of adding or removing servers to the servers remaining to
serve the application load. For an overview on the performance of Cassandra,
which copies heavily from Dynamo for its load balancing and configurable
consistency levels, as well as from Bigtable for its on-disk storage design,
see [35].

Also in-memory caching systems based on key-value lookup such as the
open source memcached (http://www.memcached.org/) are heavily used in
cloud computing offerings and usually used as very high performance caches
to persistent databases. However, as memcached is just a least-recently-used
cache (forgetting data is a feature, not a bug), we do not discuss it at length
here. It should be noted that memcached seems to be one of the most widely
deployed pieces of infrastructure, though. For example, the combination of

Introduction to Cloud Computing Technologies 17

memcached with MySQL database is often used datastore solution for ap-
plications with small load, and for applications where the load is almost
exclusively read-load and MySQL replication is used to improve the read ca-
pacity by having lots of read-only MySQL replicas of a single master MySQL
database. However, once write load is significant, the replication overhead
becomes problematic with a straightforward MySQL replication solution.

Scalable Consensus Datastores

One of the interesting pieces of technology Google uses in their system is
the Chubby system [10, 11]. It is a highly fault tolerant database, where the
contents of the database are replicated over a number of servers. If more than
half of the servers are available, the database can serve requests. The system
is used to mainly maintain configuration data for other Google services, for
example BigTable uses Chubby to store the master node identity, servers
that are up, and the location of the root table in GFS. Bigtable (as well as
other Google services) has been designed to reboot quickly if needed, and it
fetches the initial configuration data from Chubby. Google also uses Chubby
internally to store the DNS records of internal services, which allows for
atomic updates of DNS data. Chubby is thus a piece of the infrastructure
that needs to be kept running 24/7. The design is based on the classic Paxos
algorithm [37]. In Paxos writes are very expensive, but read performance can
be made quite good by using extensive client caching and cache invalidation
technologies [10, 11]. An open source implementation of the Paxos algorithm
is Keyspace by Scalien (http://scalien.com/keyspace/). Also the Cassandra
datastore can be configured to implements a majority algorithm on a table
basis.

1.3.2 Scalable File Storage

Another key component in scalable cloud computing technologies is that
of scalable file storage. The main reference here is the Amazon S3 system
that implements a file storage that is geographically replicated for durability.
Amazon says that the data should still be available even if two different
datacenters are affected. In practice this means that all of the data must
be available on at least three geographic location. In practice storing data
in many different geographically disjoint locations means high latency for
updating data. The Amazon S3 system uses standard HTTP methods to
read and write data, and also data stored on S3 can be directly linked into
on Web pages as standard URLs. Google has a new competing product
with almost identical interface called Google storage. Scalable file storage

18 A. Ashraf et al.

can use many methods in data storage inside the cloud: it can compress
the customer data, it can deduplicate (detect identical data blocks and only
store one copy of the data), and it can replicate the data not only for storage
but also for caching purposes on geographically disjoint locations, trying to
minimize latencies in accessing data stored on the file storage.

These scalable file storages can be used for example to: Store virtual
machine images and disk images for servers, backups, serving static content
to the Web, seeding content distribution networks. For example Amazon
S3 can be used to seed BitTorrent feeds of data, thus feeding peer-to-peer
distribution of content on the Internet.

For filesystem type interface to data, see the Google filesystem (GFS) [25],
and the Hadoop HDFS filesystem (http://hadoop.apache.org/common/
docs/current/hdfs_design.html) whose design is heavily influenced by
GFS.

1.3.3 Scalable Batch Processing

In addition to scaling up datastores and storage horizontally to a large num-
ber of machines, also asynchronous batch processing of data needs to hori-
zontally scale to a large number of computers. The main cloud reference here
is the Google MapReduce system [18, 17] and its open source clone Apache
Hadoop (http://hadoop.apache.org/) originally developed at Yahoo!.
The Google MapReduce is an implementation of MapReduce, a dis-
tributed batch programming paradigm based on functional programming
techniques. It consists of a framework for automatically distributing batch
jobs onto a large number of worker machines, and the framework takes care
of the scheduling and synchronization between the jobs. An overview of the
system is presented in Figure 1.5. The input data to MapReduce is given
in a very large file, usually split into large (64MB is typical) chunks of data
to be processed in parallel by n mapper tasks. Each one of the chunks con-
tains number of records (for example lines of text), which are fed into a user
provided map function record at a time. The map function processes each
line at a time and decides for each record to produce some number of records
consisting of a pair (key, value). Next the MapReduce framework does what
is called a shuffle operation, which groups all the data from all the parallel
mappers using a (user provided) hash function to distribute them over m
reducer tasks. This is a very network bandwidth heavy operation, as each
one of the n mappers has to communicate the values it has for each of the
m reducers in parallel, amounting to O(n - m) pairs of file transfers. After
the temporary files have been transfered by the shuffle, they are next sorted
locally by the reducers in order to give the user provided reduce function,

Introduction to Cloud Computing Technologies 19

which is presented with the list of values attached to each key, for example

as (key, (valuey, values, .. .)).

4

(Dfork & f(1)fork™,
' %, (1)fork
s '(.2)a55|gn (2) R ".‘
4 aSS|gn-,. Y
reduce %

s,
4, ‘.

[vorer
R (6)write
(5)Remote output
split 1 read file O
m(:ﬁ)ﬂql llocal write II/
output
file 1

split 4 II
Map Intermediate files

phase (on local disks)

Input
files

Reduce
phase

Output
files

Figure 1.5: Overview of MapReduce

A really nice feature of the MapReduce framework is that it automatically
parallelizes the work among the user provided number of computer nodes.
Furthermore, the programs can be easily debugged, as the output of the
program (following the rules of the framework) run in parallel is exactly the
same as running the same program sequentially. This is the guarantee given
by the functional programming framework. Also the functional programming
paradigm gives very good fault tolerance: all the data produced by any
number of mapper or reducer tasks can be lost and the framework can still
continue making progress by rescheduling the re-execution of the lost jobs.

Google has been using the MapReduce framework to compute the pro-
duction Web indexes Google uses to index the Web. For example, one of the
heavy processing task is to compute the reverse Web link graph. That is, for
each indexed site, collect all the sites linking to it. This perfectly matches the
MapReduce framework. Also things like processing and doing statistics from
log files matches the MapReduce framework nicely. Interestingly Google is
not providing the full MapReduce feature to its customers. Also unfortu-

20 A. Ashraf et al.

nately the MapReduce programming paradigm has been recently patented
by Google.

The Apache Hadoop system is directly based on the design of the Google
MapReduce and the Google Filesystem for its own distributed filesystem
HDFS. The Hadoop system is written fully in Java and many cloud providers,
for example Amazon, provides support for it in their service offering. Hadoop
is used by many high volume production sites (http://wiki.apache.org/
hadoop/PoweredBy), for example Facebook is running Hadoop clusters with
15 PetaBytes of storage using mainly the Hive (http://hadoop.apache.
org/hive/) system implementing a SQL-style query language on top of the
Hadoop MapReduce engine. Another Hadoop HDFS based database used
mainly for batch processing is HBase (http://hbase.apache.org/), which
is heavily inspired by Google Bigtable. The main applications for Hadoop
seem to be log analysis, web indexing, and various data mining and customer
analysis applications.

If a batch processing task fits the MapReduce framework, the framework
gives good parallelization. In addition, MapReduce and Hadoop do not offer
control of multiple parallel frameworks. In practice, there is a requirement
to execute several different data processing frameworks, such as different
versions of MapReduce and Hadoop, in parallel. The Nexus system presents
a framework for running multiple frameworks in the same cluster [31]. The
key idea of Nexus is to multiplex resources across frameworks and decouple
job execution management from resource management. Figure 1.6 gives an
overview of the Nexus framework.

1.3.4 Approaches to Fault Tolerance in Cloud Infra-
structure

When providing scalable computing infrastructure on the cloud level the sys-
tems must be very fault tolerant and self-healing. When running datacenters
with tens of thousands of computers there will always be some number of
machines and hard disks that are broken. Most of the scalability solutions
in the cloud space are built to have redundancy in a shared-nothing infra-
structure. The aim of these systems is to provide an environment where
one can power off any individual server in the datacenter, and the cloud
infrastructure will recover automatically from the loss of the server without
any manual intervention. The key techniques to achieve this is to have high
redundancy in the datastore system for fault tolerance, and to never store
any persistent data on the servers themselves: all data on the servers is just
cached /preprocessed contents of the real application data that is stored in

Introduction to Cloud Computing Technologies 21

App 1 App 2 App 3
! 1 }
Hadoop Hadoop Custom
scheduler scheduler scheduler

!

Nexus master

N

Nexux slave Nexus slave Nexus slave
Custom
Hadoop Custom Hadoop Executor
executor Executor executor

Figure 1.6: The Nexus system

the datastore. By doing so, all that is lost by powering down a server is
the contents of a cache, that can be repopulated, and the server load can
be redistributed among the remaining servers. Such a design also allows for
powering off servers at off-peak hours, allowing the minimization of overall
power usage of computing.

1.3.5 Latency and Clouds

On a much more philosophical level a key observation affecting the design
decisions of future looking scalable cloud computing technologies is that com-
puting capacity, memory capacity, storage capacity, and network bandwidth
all improve at a much higher rate than latency improves. This is because
ultimately latency is fixed by the speed of light, and especially when dealing
with cloud computing systems where different computers of the cloud can
be geographically very far from each other, latency certainly is an important
issue. This has been observed by David Patterson in [42]. Maybe of much
more practical interest are the three classical solutions to latency mentioned
in the paper [42]: Caching, Replication, and Prediction.

If we look at the three above mentioned techniques in the scalable cloud
computing technologies context, we observe all of the technologies are in use:

22 A. Ashraf et al.

e Caching — Caching is one of the key components to cloud scalability,
and is one of the reasons why cloud computing is heavily based on Web
technologies that are themselves engineered with efficient caching in
mind. In the cloud context especially memory based caches such as
memcached have been introduced as additional write-through caches to
lower back-end datastore read load.

e Replication — Replication is heavily used by all scalable cloud com-
puting infrastructures. Many of the storage systems such as Amazon
S3 and Google File System are using replication not only to provide
improved data durability across geographically redundant replication,
but also to improve the serving of “hot” files by replicating the highly
requested files on a much higher number of file server nodes than the in-
frequently requested “cold” files. One of the implications of potentially
very high replication ratios is that modifying data in-place becomes
very expensive as basically all the (geographically distant) replicas have
to be modified. The solution to this problem employed is to heavily
emphasize write-once-read-many storage patterns with quite big block
sizes in application design, see for example the Google BigTable de-
sign [13], as once written the files cannot be efficiently modified. Thus
BigTable has been designed from the ground up to be run on a repli-
cated file storage system to eliminate most of the random access write
traffic to the replicated filesystem.

e Prediction — Quite a common architectural style these days is the pre-
computation of potential application database queries asynchronously
beforehand and populating caches such as the main memory memcached
beforehand with contents that the application might require in the fu-
ture. This is once more done to hide latency from the user and to serve
the common case queries from cache instead of a datastore. To im-
plement this background processing one can employ asynchronous job
queueing systems such as Amazon Simple Queue Service and scalable
batch processing systems such as Hadoop to pre-populate the caches
in advance.

As a practical consideration, if one develops applications that need to scale to
large numbers of users on the cloud infrastructure, ACID datastore writes are
going to become more and more expensive compared to the datastore reads.
Thus applications need to be designed in a manner that tries to minimize the
number of datastore writes per time unit to ensure application scalability, or
to use a datastore that does not use ACID but BASE, and deal with the

Introduction to Cloud Computing Technologies 23

potentially significant application complexity increase that is needed to deal
with the inconsistent datastore.

1.4 Cloud from Application Programmer View

In terms of engineering, web application development is still in its infancy
for obvious reasons — as long as the primary purpose of web development was
the creation of web pages, there was no need to apply established software
engineering principles to web development. However, cloud computing forces
one to treat web development in the same fashion as software development in
general. These include aspects like reusability, interoperability, and security,
just to give some examples.

In the following, we will study different cloud computing approaches in
terms of the type of cloud service they offer. The viewpoint is that of a
programmer that might be interested in benefitting from the available cloud
platform, not that of a potential cloud service developer that might wish to
build a similar system.

1.4.1 Infrastructure as a Service

Infrastructure as a service (IaaS) is about providing a hosted computing
infrastructure. A typical way to implement such a system is platform virtu-
alization, where the user of the system can consider that the service corre-
sponds to a piece of hardware and associated system software. One common
approach seems to be that Linux type of a system is provided, where the
developers can deploy their own software stack.

Examples of TaaS type systems include the following:

e Amazon EC2 (http://aws.amazon.com/ec2/)
e Eucalyptus project [41] (http://open.eucalyptus.com/)

e Ubuntu Enterprise Cloud (http://www.ubuntu.com/cloud/)

Next, we address these systems in more detail.

Amazon Elastic Computer Cloud

Amazon, which is better known from its Internet bookstore, was one of the
first companies to enter into the cloud computing business. Amazon’s Elastic
Computer Cloud (Amazon EC2) was designed to make it easier for developers
to use web-scale computing power [3]. Amazon promises 99.95% availability

24 A. Ashraf et al.

for each EC2 region. Amazon EC2 offers a virtual computing environment
where developer can launch multiple instances with variety of operating sys-
tem or with custom application environment. Amazon offers a web service
interface to launch instances.

One of key advantages in Amazon EC2 is that it allows a freedom for de-
velopers to choose their tools as they want. Amazon offers Amazon Machine
Images (AMIs), which are preconfigured with several Linux distributions, Mi-
crosoft Windows Server, or OpenSolaris. Developers can customize AMI by
choosing Amazon provided software (e.g. Java Application server, Database
server). If offered operating systems or software do not meet developers’
needs, they are always free build their own custom AMI. Since each devel-
oper can have the root access and can manage network access permissions,
therefore the developer has total control over the software stack they use.

Amazon has three different kinds of pricing models: On Demand In-
stances, Reserved Instances, and Spot Instances. In On Demand Instances,
the user pays for the capacity which is actually used. This approach is good
when system needs to scale. In Reserved Instances, the user pays one time
fee for each instance user wants reserve. With Spot Instances, Amazon is
selling unused capacity of EC2. The price fluctuates based on supply and
demand.

Amazon Elastic Block Store (EBS) offers persistent storage for Amazon
EC2 instances [2]. EBS allows the user to create 1GB to 1TB volumes for use
of EC2 instances. Instances see volumes as raw unformatted block devices
and they can be used as any other block device (e.g. hard drive). EBS
volumes are automatically replicated to prevent dataloss and they can be
used as boot partitions.

Amazon divides locations into regions, e.g. US and Europe. These re-
gions are divided into smaller areas - Availability Zones. EC2 instances can
be placed into multiple locations in case of failure in an Availability Zone.
Availability Zone are designed to be insulated from other AZs and they have
inexpensive, low latency network connectivity to other Availability Zones in
the same region.

Amazon EC2 uses Elastic IPs, static IPs that has been design for dynamic
cloud computing. Elastic IP points to users account instead of EC2 instances.
User controls the IP until the user chooses to release it. Elastic IP allows
the user to remap IP to point instance, which the user has chosen. In case
of a failure in Availability Zone, user can start new instance from other
Availability Zone and keep running the service.

Amazon offers Virtual Private Cloud (VPC) technology for enterprises
to extend their existing infrastructure [21]. VPC works as a secure isolated
portion of the Amazon cloud. So far, Amazon VPC integrates EBS, EC2 and

Introduction to Cloud Computing Technologies 25

Cloud Watch and rest of the Amazon cloud features are under development.
Amazon provides enterprise a VPN connection and one cloud, where user
can define up to 20 subnets.

Cloud Watch is the Amazon’s cloud monitoring system. Cloud Watch
enables user to monitor EC2 instances and Elastic Load Balancing (ELB)
in real-time via Web Service interface. ELB distributes traffic automatically
across multiple Amazon EC2 instances. From Cloud Watch, user can also
enable Auto Scaling, which automatically scales capacity up or down depend-
ing upon the conditions that the user defines. This suits well in application
that has high variability in usage.

Eucalyptus

Eucalyptus is an open source software used to implement cloud computing on
compute clusters. Eucalyptus implements Infrastructure as a Service (IaaS)
while giving the user the ability to run and control virtual machine instances
deployed across a variety of physical resources [9]. Some aspects of underlying
protocol and interface design for Eucalyptus are similar to Amazon Web
Services (AWS). For example, the external interface to Eucalyptus is based
on the API provided by Amazon [41]. The system is relatively easy to set-up,
even on a local environment with limited resources. It is already a part of
the Ubuntu Enterprise Cloud (UEC) installation.

Figure 1.7 presents an overview of the Eucalyptus system that follows a
hierarchical design. The primary high-level components that comprise the
Eucalyptus architecture are as follows:

e Node Controller (NC): An NC makes queries to discover the node’s
physical resources - the number of cores, the size of memory, the avail-
able disk space as well as to learn about the state of VM instances on
the node (although an NC keeps track of the instances that it controls,
instances may be started and stopped through mechanisms beyond
NC'’s control) [41].

e Cluster Controller (CC): The CC schedules the distribution of virtual
machines to the NC and collects resource capacity information [9]. Each
CC may manage one or more NC(s). The Cluster Controller (CC)
generally executes on a cluster front-end machine, or any machine that
has network connectivity to both the nodes running NCs and to the
machine running the Cloud Controller (CLC) [41].

e Storage Controller (Walrus): To put it simply, Walrus is a put/get
storage service that implements Amazon’s S3 interface, providing a

26

A. Ashraf et al.

mechanism for storing and accessing virtual machine images and user
data [41]. Walrus implements the REST (via HTTP), sometimes
termed the “Query”interface, as well as the SOAP interfaces that are
compatible with S3. Walrus provides two types of functionality. Firstly,
users that have access to EUCALYPTUS can use Walrus to stream data
into/out of the cloud as well as from instances that they have started
on nodes. In addition, Walrus acts as a storage service for VM images.
Root filesystem as well as kernel and ramdisk images used to instantiate
VMs on nodes can be uploaded to Walrus and accessed from nodes [41].

Cloud Controller (CLC): It is the entry-point into the cloud for users
and administrators. It queries node managers for information about
resources, makes high level scheduling decisions, and implements them
by making requests to cluster controllers [41].

Client-side Interface

Client-side API
Translator
Cloud Controller Database Walrus (S3)

Cluster Contrpller ode Controller
Slofo S Sy
o|o|o OO O o|o| o
olo|o OO O o|lo| o

Figure 1.7: Overview of Eucalyptus

Each of these components runs as a web service on the respective ma-

chines; we have seen above that the machines distribution is separated for
CLC/Walrus, CC(s) and NC(s). However it is also possible to set-up a test
system with lesser resources. A minimal working “cloud” structure as men-
tioned in UEC set up guide is to have the CLC, Walrus and CC running on
one machine and an NC service running on another.

Several performance measurements with Eucalyptus compared to the

original AWS have been made. The result of these measurements is that a

Introduction to Cloud Computing Technologies 27

private cloud can provide almost the same functionality and possibly better
performance compared to the AWS. The performance can be easily improved
with storage area networks (SAN) for storing the data in the S3/EBS direc-
tories (e.g. image files) in a better performing environment. This approach
also helps a lot to reduce the time needed to start the virtual server instances.
On the other hand, AWS offers unlimited scalability and thus it would be
beneficial to combine both, private and public resources in a hybrid cloud [9].
Eucalyptus system has filled an important niche in the cloud-computing
design space by providing a system that is easy to deploy atop existing re-
sources, that lends itself to experimentation by being modular and open
source, and that provides powerful features out-of-the-box through an inter-
face compatible with Amazon EC2 [41]. Eucalyptus is an interesting product
to build private cloud infrastructures for R&D. The performance of such an
installation with commodity hardware is satisfying for most common scien-
tific applications. Already now a large number of open source tools exist for
cloud management. As also other cloud software providers start to imple-
ment Amazon AWS as a cloud computing interface AWS has the potential to
become a de facto standard for cloud computing infrastructure services [9].

Ubuntu Enterprise Cloud

Company Canonical claims that Ubuntu is only Linux distribution to posi-
tion itself as true Cloud OS. Ubuntu Enterprise Cloud(UEC) is one of the
three components in Canonical’s cloud strategy [56]. Other two components
are Ubuntu Server edition and UbuntuOne. UEC and Ubuntu Server are
aimed as TaaS and UbuntuOne is aimed as SaaS. Canonical’s cloud project
started with offering official AMI for Amazon EC2. Later, Canonical took
Ubuntu Server Edition and integrated enchanted version of KVM [34] based
Eucalyptus into the distribution. As a result Canonical got UEC — a user
deployable cloud, which matches the API that AWS provides.

The architecture of UEC closely follows the architecture of Eucalyp-
tus [41]. Tt has the same controllers (node controller, cluster controller and
cloud controller) as Eucalyptus. One difference is that UEC includes also
ESB Controller, which runs in the same machine as CC and is configured au-
tomatically when CC is installed. EBS Controller follows the same ideology
as Amazon ESB [2].

1.4.2 Platform as a Service

Platform as a Service (PaaS) is about providing a computing platform that
contains a complete solution stack, hosted as a service. Applications devel-

28 A. Ashraf et al.

oped on top of PaaS can commonly be run as a part of the service. The

biggest difference between PaaS and IaaS seems to be that PaaS usually as-

sumes a certain kind of application model, together with associated libraries

and system software, whereas in IaaS the developers have more freedom to

select the systems they want to use. PaaS usually offers additional features

such as load balancing, automatic provisioning and geographic replication.
Sample PaaS systems include the following:

e Google AppEngine (http://code.google.com/appengine/)
e Microsoft Azure (http://www.microsoft.com/windowsazure/)

e Heroku (http://heroku.com/)

Google AppEngine

Google App Engine is a service developed by Google to allow developers to
run web applications on Google’s infrastructure [27]. The reason for want-
ing to run web applications on Google’s infrastructure is the access to their
immense computing power and storage capabilities. The promise is that
developers can start out small and then scale when the need arises.

One of the key advantages with App Engine is that there are no servers
that need to be maintained by the developer, one can simply use part of the
infrastructure Google already has in place. The need to have your own servers
has traditionally been an issue for smaller projects, since they represent a
considerable investment in hardware. By using App Engine the developer
can simply use more processing power when the service usage grows.

App Engine allows developers to simply upload their code and have
it deployed automatically, ready to be used by consumers. App Engine
supports applications written in multiple languages. A Java runtime en-
vironment supports development with standard Java technologies, including
JVM, Java servlets, and the Java programming language. It also supports
any other language that uses a JVM-based interpreter or compiler such as
JavaScript or Ruby. Python is also supported and App Engine offers a dedi-
cated Python runtime environment, which includes a fast Python interpreter
and the Python standard library. Both the Java and Python runtime envi-
ronments are built to ensure that web applications run quickly, securely and
without any interference from other applications running on App Engine.

App Engine provides its own storage solution called Datastore which uti-
lizes BigTable as the method for storage. BigTable is not a relational and
SQL compatible database and requires a different approach for storing and

Introduction to Cloud Computing Technologies 29

retrieving data compared to a conventional SQL database. The advantages
of BigTable is that it is fast and can scale to large tables and loads.

Google Datastore authors describe it as being “a sparse, distributed multi-
dimensional sorted map”, sharing characteristics of both row-oriented and
column-oriented databases. It performs queries over data objects, known as
entities. An entity has one or more properties, named values of one of several
supported data types. A property can be a reference to another entity. The
datastore supports executing multiple operations in a single transaction, and
roll back the entire transaction if any of the operations fail. This type of
feature is especially useful for distributed web applications.

Google currently supplies two standard Java interfaces for interacting
with the Datastore, JDO (Java Data Objects), JPA (Java Persistence API),
a low-level API is also available to allow developers direct access and the pos-
sibility to develop new interfaces. These interfaces allow developers to man-
age relational data in applications and include mechanisms that are meant
to be used when trying to define classes for data objects and for performing
queries.

JDO uses annotations on Java classes (POJO’s) to describe how instances
of the class are stored in the Datastore as entities, and how entities are
recreated as instances when retrieved from the datastore. At the moment
Datastore supports the use of JPA version 1.0. JPA also requires the use
of annotations as in JDO but it also requires a persistence.xml file to be
added which indicates to App Engine how to use the Datastore with this
specific application. In order to make use of the App Engines persistence
capabilities all objects used must be serializable.

All these features make App Engine a very attractive solution for deploy-
ing web applications that can scale without manual provisioning of computing
resources.

Microsoft Azure

Azure is a Platform as a Service (PaaS) cloud offering from Microsoft [14].
It provides a platform for running mainly Windows applications and storing
data in the cloud. These applications could be existing Windows applica-
tions that have been modified to run on cloud, or brand new ones written
specifically for Microsoft Azure.

Developers can create applications for Microsoft Azure using familiar
tools such as Visual Studio 2010. Azure applications are usually written
using the .NET libraries, and are compiled to the Common Language Run-
time (CLR). However, there is also support for the Java, Ruby and PHP
languages.

30 A. Ashraf et al.

Developers get a choice of language, but cannot control the underlying
operating system or runtime. The platform provides a degree of automatic
network configuration failover and scalability, but requires the developer to
specify some application properties in order to do so.

The main components of the Windows Azure platform are:

e Windows Azure: Provides a Windows-based environment for running
applications and storing data on servers in Microsoft data centers.

e SQL Azure: Provides data services in the cloud based on SQL Server.

e Windows Azure platform AppFabric: Provides cloud services for con-
necting applications running in the cloud.

Microsoft Azure may be a good solution to deploy existing applications
for Windows and .NET platform. However, it raises the question on how
well applications that have not been designed for the cloud can be scaled in
the first place.

Heroku

Heroku [30] is a cloud application platform for the Ruby programming lan-
guage. It was founded in 2007 by Orion Henry, James Lindenbaum, and
Adam Wiggins. Heroku architecture consists of six components: HTTP
reverse proxy, HTTP cache, routing mesh, dyno grid, SQL database with
replication, and memory cache.

HTTP reverse proxy is the entry point for all requests coming into the
platform. These front-end servers are used to manage DNS, load balancing,
and fail-over. Heroku uses Nginx (http://wiki.nginx.org/Main) as its
proxy.

All requests go through a HTTP cache (Varnish) [55]. If the requested
content is available in the cache (a hit), the cache responds immediately and
the request never reaches the application servers.

The routing mesh is a distributed pool of dynamic HTTP routers that
balances requests across applications, dynos described below, tracks load,
and intelligently routs traffic to available resources. The mesh easily handles
frequent and instantaneous registration and de-registration of dynos. It is
implemented using Erlang.

Actual application logic runs inside a dyno process. The number of dynos
running for an application can be increased or decreased dynamically. Ac-
cording to the platform provider, it takes less than two seconds to start a

Introduction to Cloud Computing Technologies 31

dyno for most applications. The dyno grid is spread across a large pool of
server instances. The size of this pool varies with load.

Heroku provides a fully featured SQL database (PostgreSQL) for every
application and an in-memory cache (Memcached). A dyno is a single process
running Ruby code on a server in the dyno grid. In terms of computing power,
four dynos are equivalent to one CPU-core on other systems. Each dyno is
independent and includes the following layers:

e POSIX environment (Debian Linux).

e The Ruby VM, which then loads the application.
e The Thin application server.

e The Rack web server interface.

Rails web framework. It is also possible to use other Rack-compliant
frameworks.

We consider Heroku to be conceptually similar to the Google Application
Engine (GAE) from a technical point of view. However there are several
important differences worth mentioning:

e Heroku supports the Ruby programming language, while GAE supports
Python and JVM languages.

e Heroku applications can use a SQL database.

e Heroku allocation of application threads is performed manually by the
application provider. Thread allocation is automatic in GAE.

1.4.3 Software as a Service

Software as a Service (SaaS) can be considered as the most service oriented
way to use cloud. So far, SaaS has proven useful as a business model among
the cloud approaches. In SaaS, complete software systems that are ready-
to-use is hosted in the software providers’ servers and is offered to users to
use over internet. The end-user willing to use this system pays the software
provider a subscription fee for the service. This is completely different form
the traditional way of software distribution and use, in which end-users need
to purchase the license from the software provider and then install and run
the software directly form on-site servers. Thus, SaaS allows some serious
cost cutting for the companies (end-users) as they can avoid maintenance
costs, licensing costs and the costs of the hardware required to run servers
on-site.

32 A. Ashraf et al.

Examples of such systems include the following:
e Salesforce (http://salesforce.com)
e Facebook (http://www.facebook.com/)

e Zynga farmwille game (http://www.farmville.com/)

Salesforce

Salesforce.com offers Customer Relationship Management (CRM) applica-
tion services in the Software as a Service (SaaS) Industry [47, 57]. For end
users, it offers services (applications) to industries and businesses of all sizes
through online access, with minor implementation and no on-premise instal-
lation or maintenance of software or physical servers. These applications can
be used to systematically record, store business data and to optimize differ-
ent aspects of a company’s business including sales, marketing, partnerships,
and customer service. But due to the fact that CRM solutions should dif-
fer from one company to another, customization is obvious. That’s why the
cloud platform Force.com came into existence. Force.com [44] provides de-
velopers a platform to create data-oriented business applications which run
against the salesforce.com database. This platform uses its own programming
language called Apex. It has the following platforms [44]:

e Collaboration Platform: Chatter is a real time collaboration platform
that brings together people, data, and content in a secure, private,
trusted social framework. It facilitates creating customized profile
across multiple business applications; provide real-time monitoring of
business activities; secured content sharing; APIs to create new collab-
oration applications as add-ons; integration with other social networks
like facebook and twitter.

e Development Platform: Development platform provides following ser-
vices,

— Database customization: Users can create and customize database
relationships, formula fields, validation rules, reporting, tagging,
auditing, and searches using the Web-based environment or the
Eclipse-based IDE. It also generates user interface based on the
data model defined which can be edited with page layout editor.

— Programmable UI: User can build interfaces with customized be-
havior and look & feel. Force.com pages use a standard model-
view-controller (MVC) design, HTML, and web technologies such

Introduction to Cloud Computing Technologies 33

as CSS, AJAX, and Adobe Flash and Flex. It also has 60 pre-
defined components that can be assembled with minimal coding
in building-block fashion. Force.com also provides an IDE to im-
plement cloud-based RIAs which can be deployed through the
browser via the Adobe flash player, or directly to the desktop
using the Adobe AIR runtime. It runs seamlessly online or of-
fline while taking full advantage of the security, scalability, and
reliability of Force.com.

— Programmable Cloud logic: Force.com code has similar syntax to
Java and C+#. Its Eclipse-based IDE can be used to create, modify,
test and deploying applications.

— Visual process manager: Visual Process Manager, along with
workflow and approvals, enables users to rapidly design and run
any business process in the cloud without infrastructure, software,
or code.

— Mobile deployment: Users can create complex mobile applications
with point-and-click ease that work across BlackBerry, iPhone,
Windows Mobile, and others with offline mobile access to key

Salesforce CRM data.

e Cloud Infrastructure: Force.com is based on a multitenant architecture
that makes it secure, reliable, and elastic. It has ISO 27001 security cer-
tification and used by nearly 60,000 companies including Cisco, Japan
Post Network, and Symantec. It provides real time query optimization,
upgradation, and scalability.

Facebook

Facebook is a social networking website that provides following services as
SaaS to its users: Publisher (used to post information and messages which
appear on the user’s own Wall), Wall (space on each user’s profile page
that allows friends to see and post messages), Photo and video uploads,
Gifts (virtual gift shop), Marketplace (allows users to post free classified ads
in different catagories), Status updates, Events (to organize and notify the
community with new events), Networks, groups and like pages, Chat, Pokes
(to attract the attention of another user).

Facebook also provides platform that consists of a set of APIs and tools
for developing social networking applications [38]. It is possible to develop
Facebook applications using external server capacities from Cloud computing
service providers like Amazon or Joyent [38].

34

A. Ashraf et al.

In general, there are two types of applications on Facebook [22]:

e F'BML Canvas applications: This kind of applications are rendered by
Facebook using FBML (Facebook Markup Language). The application

is hosted by the developer on their own server.

e [Frame Canvas applications and websites using Facebook: This kind
of applications are usually rendered by the developer’s server with-
out using Facebook as an intermediary. IFrame Canvas applications
are architecturally very similar to websites which incorporate data and

widgets from Facebook.

Although the two types of applications do roughly the same things, they

differ in the way user data is retrieved from Facebook, display static content
and perform optimization.

The list of APT’s and SDK’s currently provided by facebook platform [22]

to develop applicaiton on Facebook are as follows:

e Core APIs:

— Graph API: The Graph API can be used to read and write ob-

jects and connections in the Facebook social graph. Objects can
be for example, album, photo, event, link, note, status message,
video and so on. Whereas connections can be friend relationships,
shared content, and photo tags. Every object in the social graph
has a unique id and the data associated with the object can be
fetched using that id.

Social plugins: Social plugins are the extensions of Facebook.
These plugins are designed for not to share personal data with
the sites on which they appear, but to show users with their ac-
tivities on the facebook. These social plugins can be added to a
site with a line of HTML code.

e Advanced APIs:

— Facebook Query Language (FQL): FQL provides a SQL-style in-

terface to query the data exposed by the Graph API. Batching
multiple queries into a single call is possible. Query response for-
mat can be specified as either XML or JSON with the format
query parameter.

Introduction to Cloud Computing Technologies 35

— Facebook Markup Language (FBML): FBML is used to build
Facebook applications that can be hooked into several Facebook
integration points, including the profile, profile actions, and can-
vas. FBML is HTML extension and is used in traditional FBML
Canvas applications, and is rendered by Facebook directly.

— XFBML is also a HTML extension provided by Facebook platform
that can be used to incorporate FBML into an HTML page on a
Facebook Connect (a set of API’s to provide trusted connection
between facebook and developer site) site or an iframe application.

e Facebook SDKs:

— Android SDK (unofficial).

— JavaScript SDK: JavaScript is used to access features of the Graph
API. Tt also provides client-side functionality for authentication
and sharing. Its recommended to load the SDK asynchronously
in the site for better efficiency.

— PHP SDK: It also supports access to Graph API.

— Python SDK: This client library is designed to support the Face-
book Graph API and the Facebook JavaScript SDK, which is the
canonical way to implement Facebook authentication.

— iPhone SDK: This mobile SDK is a Objective-C code that can
be used to connect users’ Facebook accounts with a mobile ap-
plication. User authorization is required to fetch user profile data
from the Graph API and to publish messages on user’s wall. Face-
book uses OAuth 2.0 protocol for authentication and authoriza-
tion. There are also releases for PHP and Python SDKs for the
Graph API to support mobile application development.

All the above Facebook SDKs are open source and are available on GitHub.

Zynga

Zynga is a social game developer, which develops games to play on social
networks such as Facebook and MySpace, on mobile devices like the iPhone,
on MSN games and my yahoo. Zynga makes some of the most popular
social networking games that run on Facebook which includes Mafia Wars,
Farmville, and Cafe World. The company’s games attract 235 million users a
month, which is more than half of Facebook’s worldwide total of 400 million
users [32].

36 A. Ashraf et al.

1.4.4 Discussion

Since Cloud Computing has become a buzzword only relatively recently, there
are no dominant technology designs yet that would be used predominantly.
However, there are certain emerging trends, especially when approaching the
development from programming perspective.

To begin with, although the paradigm shift from client-side programs to
running the majority of applications in the cloud per se does not prescribe
any new programming techniques, there have been some recent trends that
deserve attention. However, in practice the trend seems to be that developers
are increasingly using web technologies and scripting, as pointed out in [43].
In part, we believe that this is a consequence of the availability of increas-
ing computing resources, but also the fact that modifiability, extendability
and the access to ready-made web-enabled implementations simply are more
important than the development of the most optimized implementation.

Finally, we fundamentally believe that it still remains a challenge to com-
pose reliable software systems that are distributed and scalable in nature.
Consequently, there is a need for improved understanding and better tools
and methods for developing applications for any cloud programming plat-
form.

1.5 Conclusions

This chapter has looked at cloud computing from both the application devel-
opers perspective as well as from looking at the technologies employed inside
the cloud.

Virtualization is nowadays a mature technology that is heavily used both
in clouds and in datacenters to remove the dependency of a server from the
physical hardware it is running on, easing maintenance including hardware
replacement and fail-over.

On the application development side it can be seen that the Web appli-
cation development methodologies such as RESTful services and high level
programming frameworks similar to the Google App Engine and Ruby on
Rails are key building blocks for building Web applications hosted on the
cloud.

Cloud computing can be used as a direct drop-in replacement for tra-
ditional applications using technologies such as Amazon EC2 and Amazon
EBS. They basically provide virtual (Linux/Windows) machines and virtual
(NAS) storage with traditional database products used as data storages. If
the application does not have to scale to very large user numbers this is a
viable alternative. It basically just uses clouds as virtualized hardware to

REFERENCES 37

run traditional applications. If scalability to large user counts is needed, the
other approach is to use scalable datastores such as, for example, Google App
Engine Datastore, Cassandra, or Amazon SimpleDB to create scalable Web
applications. In this framework the value add is that the cloud computing
provider provides many of the pieces of the infrastructure to monitor and
scale the applications to very large numbers of users but this requires some
re-architecting the applications for scalability. The use of Web application
development frameworks is a good start as it uses a similar division of work
between the application itself and the datastore (database) used to store the
data for the application.

To make cloud application deployment and administration cost-effective
for large scale applications, scalable cloud based systems are generally archi-
tected in a shared-nothing architectural style where loosing any single server
due to hardware failures will not effect the behavior of the cloud applications,
as the cloud infrastructure will reconfigure the load of the failing server to
the remaining servers. The key techniques to achieve this is to have high
redundancy in the datastore system for fault tolerance, and to never store
any persistent data on the servers themselves: all data on the servers is just
cached or preprocessed contents of the real application data that is stored in
the datastore.

When selecting if and how to employ the cloud technologies one should
consider the scalability needs of the developed application as this gives
requirements on the employed development and datastore methodologies.
Many of the advanced cloud technologies are still in active development, and
clear suggestions on which technologies to employ for which applications are
not yet straightforward. Also the financial issues of cloud computing need
to be considered, as common cloud pricing structure (pay-as-you-go) is at its
best for handling computing loads that are bursty and hard to predict in ad-
vance and therefore carry investment risks in server and datacenter capacity
planning.

References

[1] 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06), November 6-8, Seattle, WA, USA. USENIX Association,
2006.

[2] Amazon Elastic Block Store. http://aws.amazon.com/ebs/.
[3] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

38

A. Ashraf et al.

AMD Virtualization (AMD-V™) Technology. http://sites.amd.
com/us/business/it-solutions/virtualization/Pages/amd-
V.aspx.

H. Amur et al. “Robust and Flexible Power-Proportional Storage”.
In: ACM Symposium on Cloud Computing (ACM SOCC). 2010.

M. Armbrust et al. “A view of cloud computing”. In: Commun. ACM
53.4 (2010), pp. 50-58.

M. Armbrust et al. Above the Clouds: A Berkeley View of Cloud Com-
puting. Technical Report UCB/EECS-2009-28. Available from: http:
/ /www . eecs . berkeley . edu/Pubs/TechRpts /2009 /EECS-2009 -
28 . pdf. University of California at Berkeley, Electrical Engineering
and Computer Sciences, 2009, p. 23.

L. A. Barroso and U. Hélzle. “The Case for Energy-Proportional Com-
puting”. In: IEFE Computer 40.12 (2007), pp. 33-37.

C. Baun and M. Kunze. “Building a private cloud with Eucalyptus”.
In: E-Science Workshops, 2009 5th IEEE International Conference
on. 2009, pp. 33 —=38. DOI: 10.1109/ESCIW.2009.5408006

M. Burrows. “The Chubby Lock Service for Loosely-Coupled Dis-
tributed Systems”. In: OSDI. USENIX Association, 2006, pp. 335
350.

T. D. Chandra, R. Griesemer, and J. Redstone. “Paxos made live: An
engineering perspective”. In: PODC. Ed. by 1. Gupta and R. Watten-
hofer. ACM, 2007, pp. 398-407. 1SBN: 978-1-59593-616-5.

F. Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data”. In: OSDI. USENIX Association, 2006, pp. 205-218.

F. Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data”. In: ACM Trans. Comput. Syst. 26.2 (2008).

D. Chappell. Introducing The Windows Azure Platform. Tech. rep.
Microsoft. Corporation, 2009.

Comparison of platform virtual machines. http://en.wikipedia.
org/wiki/Comparison_of_platform_virtual_machines.

B. F. Cooper et al. “PNUTS: Yahoo!’s hosted data serving platform”.
In: PVLDB 1.2 (2008), pp. 1277-1288.

J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: OSDI. 2004, pp. 137-150.

REFERENCES 39

[18]

[19]

[20]

J. Dean and S. Ghemawat. “MapReduce: Simplified data processing
on large clusters”. In: Commun. ACM 51.1 (2008), pp. 107-113.

G. DeCandia et al. “Dynamo: Amazon’s highly available key-value
store”. In: SOSP. Ed. by T. C. Bressoud and M. F. Kaashoek. ACM,
2007, pp. 205-220. 1SBN: 978-1-59593-591-5.

H. Douglas and C. Gehrmann. “Secure Virtualization and Multi-
core Platforms State-of-the-Art report”. In: SICS Technical Report
T2009:14A (2010), pp. 1-71. URL: http://soda.swedish-ict.se/
3800/.

Extend Your Virtual IT Infrastructure With Amazon Virtual Private
Cloud. Tech. rep. Amazon Web Services, 2010.

Facebook Developers. http : //developers . facebook . com/docs/.
2010.

R. T. Fielding and R. N. Taylor. “Principled design of the modern Web
architecture”. In: ACM Trans. Internet Techn. 2.2 (2002), pp. 115—
150.

A. Fox et al. “Cluster-Based Scalable Network Services”. In: SOSP.
1997, pp. 78-91.

S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google file system”.
In: SOSP. Ed. by M. L. Scott and L. L. Peterson. ACM, 2003, pp. 29—
43. 1SBN: 1-58113-757-5.

S. Gilbert and N. A. Lynch. “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services”. In: SIGACT
News 33.2 (2002), pp. 51-59.

Google App Engine. http://code.google.com/appengine/.

N. Gude et al. “NOX: towards an operating system for networks”. In:
SIGCOMM Comput. Commun. Rev. 38.3 (2008), pp. 105-110. 1SSN:
0146-4833. DOI: http://doi.acm.org/10.1145/1384609.1384625.

T. Hérder and A. Reuter. “Principles of Transaction-Oriented
Database Recovery”. In: ACM Comput. Surv. 15.4 (1983), pp. 287—
317.

Heroku Homepage. http://heroku. com/.

B. Hindman et al. Nezus: A Common Substrate for Cluster Comput-
ing. Tech. rep. UCB/EECS-2009-158. EECS Department, University
of California, Berkeley, 2009. URL: http://www . eecs . berkeley .
edu/Pubs/TechRpts/2009/EECS-2009-158.html.

[40]

[41]

[42]

[43]

[44]

A. Ashraf et al.

Information Week. http://www.informationweek.com/. 2010.

Intel®) Virtualization Technology. http://www.intel.com/technol
ogy/virtualization/technology.htm?iid=tech_vt+tech.

KVM Homepage. http://www.linux-kvm.org/page/Main_Page.

J. Laine. Cloud Storage Systems in Telecom Services. Master’s The-
sis, Aalto University, School of Science and Technology, Degree Pro-
gramme in Computer Science and Engineering. 2010.

A. Lakshman and P. Malik. “Cassandra - A Decentralized Structured
Storage System”. In: LADIS 2009: The 3rd ACM SIGOPS Interna-
tional Workshop on Large Scale Distributed Systems and Middleware.
20009.

L. Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput.
Syst. 16.2 (1998), pp. 133-169.

A. Lenk et al. “What’s Inside the Cloud? An Architectural Map of
the Cloud Landscape”. In: ICSE ’09: Proceedings of the Workshop
on Software Engineering Challenges in Cloud Computing. Available
from: http://www.icse-cloud09.org/cloud-dashboard. 2009.

N. McKeown et al. “OpenFlow: enabling innovation in campus net-
works”. In: SIGCOMM Comput. Commun. Rev. 38.2 (2008), pp. 69—
74. 13SN: 0146-4833. DOI: http://doi.acm.org/10.1145/1355734.
1355746.

P. Mell and T. Grance. The NIST Definition of Cloud Computing
v15. Version 15 available from: http://csrc.nist . gov/groups/
SNS/cloud-computing/cloud-def-v15.doc.

D. Nurmi et al. “The Eucalyptus Open-Source Cloud-Computing Sys-
tem”. In: CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 124-131. 1SBN: 978-0-
7695-3622-4. DOI: http://dx.doi.org/10.1109/CCGRID.2009.93.

D. A. Patterson. “Latency lags bandwith”. In: Commun. ACM 47.10
(2004), pp. 71-75.

L. D. Paulson. “Developers Shift to Dynamic Programming Lan-
guages”. In: Computer 40.2 (2007), pp. 12-15. 1sSN: 0018-9162. poI:
http://dx.doi.org/10.1109/MC.2007.53.

force.com platform. In: http://www.salesforce.com/platform/
cloud-platform/, 2010.

D. Pritchett. “BASE: An ACID Alternative”. In: ACM Queue 6.3
(2008), pp. 48-55.

QEMU Open Source Processor Emulator. http://wiki.qemu.org/
Index.html.

“SalesForce products”. In: http://www.salesforce.com/crm/produ
cts.jsp, 2010.

I. Stoica et al. “Chord: A scalable peer-to-peer lookup protocol for
internet applications”. In: IEEE/ACM Trans. Netw. 11.1 (2003),
pp. 17-32.

I. Stoica et al. “Chord: A scalable peer-to-peer lookup service for
internet applications”. In: SIGCOMM. 2001, pp. 149-160.

M. Stonebraker. “SQL databases v. NoSQL databases”. In: Commun.
ACM 53.4 (2010), pp. 10-11.

M. Stonebraker et al. “MapReduce and parallel DBMSs: Friends or
foes?” In: Commun. ACM 53.1 (2010), pp. 64-71.

N. Tolia et al. “Delivering Energy Proportionality with Non Energy-
Proportional Systems - Optimizing the Ensemble”. In: HotPower. Ed.
by F. Zhao. USENIX Association, 2008.

TrustZone. http://www.arm. com/products/processors/technolo
gies/trustzone.php.

L. M. Vaquero et al. “A break in the clouds: towards a cloud defini-
tion”. In: SIGCOMM Comput. Commun. Rev. 39.1 (2009), pp. 50—
55. ISSN: 0146-4833. DOI: http://doi.acm.org/10.1145/1496091.
1496100.

Varnish Homepage. http://varnish-cache.org/.

S. Wardley, E. Goyer, and N. Barcet. Ubuntu Enterprise Cloud Ar-
chitecture. Tech. rep. Canonical, 2009.

“wikinvest”. In: http://www.wikinvest.com/wiki, 2010.

Wikipedia page for VMWare ESX. http://en . wikipedia. org/
wiki/VMware_ESX.

41

42

2 The Social Devices Platform: An
Infrastructure for Social Devices in a
Mobile Cloud

Timo Aaltonen', Varvana Myllirniemi?, Niko Mikitalo?,
Tomi Mannist6??3, Jari Paikko?, and Mikko Raatikainen?

!Department of Pervasive Computing
Tampere University of Technology, Tampere, Finland
Email: firstname.lastname@tut.fi

?Department of Computer Science and Engineering
Aalto University, Espoo, Finland
Email: firstname.lastname@aalto.fi

3Department of Computer Science
University of Helsinki, Helsinki, Finland
Email: firstname.lastname@helsinki.fi

Abstract—Mobile devices are becoming the primary access point for users
for various services and mobile cloud computing has emerged as a means of
utilizing the advantages of cloud computing within mobile devices. Cloud
computing, in general, hides the location of services, regardless of whether
they are provided by the mobile devices or by backend services. Thus, mo-
bile cloud computing is especially suitable in situations in which several mo-
bile devices participate in synchronized behavior as the cloud can provide
a unifying infrastructure for such a scenario in addition to content. In this
chapter, we present an approach to how distributed, collaborative, and co-
ordinated services among multiple mobile devices can be supported with a

The authors are listed in alphabetical order. The chapter is extended and combined
from the authors’ earlier publications in the WICSA workshop [30], the MUM confer-
ence [27], and the APSEC conferences [31][1].

43

44 T. Aaltonen et al.

cloud-based infrastructure. In particular, our contribution outlines an exem-
plar infrastructure called the Social Devices Platform, which delivers social,
co-located multi-device services to users. The contribution combines research
from different areas, such as mobile computing, service-oriented computing,
pervasive computing, artificial intelligence, and human-computer interaction.
The Social Devices Platform utilizes the cloud to store contextual data and
to select, compose, and coordinate services provided by mobile devices, thus
extending the cloud to mobile devices and making devices’ resources available
to the cloud.

Keywords-Social devices, mobile devices.

2.1 Introduction

Technological advances are redefining the ways that people behave and com-
municate, making digital communication increasingly important. Social me-
dia services, such as Facebook and Flickr, have created a new means for
people to find like-minded friends and to communicate with others regarding
their everyday activities. While various devices support remote connectivity,
the communication of such devices still largely overlooks specific co-located
social situations. While there are obvious advantages in supporting remote
social interactions, we argue that it is important to support the face-to-face,
co-located interactions between people. In practice, support then relies on
mobile phones or other personal devices that are in proximity to each other.
Similarly, as smart spaces are emerging to provide services between humans
and computers in specific places, similar kinds of smart spaces could be
formed in a mobile and ad-hoc manner between various nomadic devices.

While in cloud computing, applications, and computing resources are
provisioned and released dynamically to address dynamic needs, mobile cloud
computing extends the cloud paradigm to mobile devices thus offering a
means for connecting mobile devices to web-based services and to each other.
The concept of a so-called mobile cloud in its simplest form refers to accessing
cloud computing resources from a mobile device [21], but often the ability
to share more advance services among mobile devices in the same cloud is
assumed [36], even to the extent of delivering s unique user experience by
shared and pooled resources. Mobile clouds are becoming a means for a
technology platform for implementing social interactions and service sharing
between mobile devices.

In this chapter, we describe the concept of Social Devices along with a
prototype implementation called the Social Devices Platform (SDP). The

The Social Devices Platform 45

concept of Social Devices focuses on enriching local interaction by a means
of technology such as audio or picture relevant to the specific context. The
interaction can be between devices and between humans and technology,
whereas the enrichment can rely almost solely on the autonomous interaction
within technology such as between mobile phones. Therefore, humans and
proactive, context-sensing mobile devices form a new kind of socio-digital
system where the mobile devices are active participants and can initiate
interaction between other devices as well as with people. As is traditional
in social interactions, the interaction between different co-located physical
nodes is essential regardless of if such nodes are humans or devices. In
short, the setting of Social Devices resembles socially interactive pervasive
computing between different nodes or an ad-hoc smart space.

The rest of this chapter is structured as follows. Section 2.2 gives the
motivation, provides a running example, and lists the key characteristics of
Social Devices. Section 2.3 describes the implementation of the SDP. Section
2.4 provides a comparison to related work and Section 2.5 gives a more general
discussion. Conclusions are drawn in Section 2.6.

2.2 Social Devices

In this section, we summarize certain key characteristics related to the con-
cept of Social Devices [27]. These characteristics help to distinguish Social
Devices from other related concepts and give an understanding of the in-
herent properties of Social Devices. Furthermore, these characteristics help
in forming the basic requirements for the actual implementation of the con-
cept. We define constructs, give the motivation, provide a running example,
and finally present the requirements and characteristics that are essential to
Social Devices.

2.2.1 Motivation and Background

The primary objective of Social Devices is to enrich various kinds of co-
located interactions. When people meet face-to-face, Social Devices can aug-
ment the social interaction that takes place. Also, device-to-device interac-
tions can be enriched: Social Devices can make otherwise invisible device
interaction explicit to users. Finally, Social Devices enable more intuitive
interaction between users and devices, especially when the devices need to
give feedback to the users.

Any interaction as a whole that is enriched or enabled by Social Devices
is called an action. A key characteristic of actions is to provide human

46 T. Aaltonen et al.

Social Devices Platform

M&

Meeting and greeting
people

On the road At the office

Figure 2.1: Examples of using the Social Devices Platform

users some visible value intelligently. An action is, in practice, a sequence
or behavior that is carried out by the Social Devices. The actions can be
performed autonomously by the devices, although the actions can require
human interaction. The actions differ largely in nature, but typically involve
interaction of heterogeneous devices near each other in a situation that is not
mission-critical.

Figure 2.1 illustrates various actions that can take place between Social
Devices. Meetings and greetings between people offers plenty of situations for
Social Devices. For example, the devices of two businessmen can exchange
contact cards and at the same time announce each other’s information aloud.
Social Devices may also help in situations where one cannot remember a per-
son’s name by greeting him or her aloud on the street. Social Devices can
also make invisible device interactions more explicit; for example, a laptop
and a mobile phone can speak about their synchronization progress. As an-
other example, a mobile phone tell to a car navigator where to go in addition
to setting the destination automatically based on a calendar entry. The user
is then aware of the ongoing navigation and can interrupt if necessary by, for
example, specifying a new destination address. Interaction can also involve
a large number of devices; for example, mobile devices can make a massive
wave of flashing screens at a rock concert. Finally, actions can be instructive
by nature, such as in the case when an elevator instructs a visitor to find
the correct meeting room based on an upcoming entry in the mobile device’s
calendar.

A precondition of Social Devices is the availability of computationally
capable smart devices that are aware of, and can interact with, other de-
vices and users in their proximity. A prime example of a Social Device is
a mobile phone, which most people carry everywhere, although many other

The Social Devices Platform 47

kinds of devices can become social. Some devices are highly personal, such
as mobile phones, and some are impersonal, such as meeting room screens.
Some devices are very stationary, such as elevators, and others do not have a
fixed location but move around other devices freely, such as family laptops or
tablets. Finally, the devices have heterogeneous resources with varying levels
of quality. These resources include speakers, microphones, and screens.

In Social Devices, actions are executed in a very dynamic environment.
Potential social situations arise as people interact and carry out their every-
day tasks. Since mobile devices move in and out of the range of other devices,
the devices that can participate in an action change constantly. Furthermore,
device states change dynamically: they can be turned to silent mode or run
out of power.

Several other research areas are related to the concept of Social Devices.
Social Devices resemble smart spaces [39] because both utilize the proximity
of devices to provide services. In contrast to smart spaces, Social Devices are
not tied to a particular location or particular devices, and their actions focus
on providing user-visible behavior rather than background services. However,
some Social Devices can be stationary, such as a meeting room screen, and
then they resemble more a smart space. In contrast to pervasive computing
[39, 43] or the Internet of Things [3], Social Devices provide human-visible
actions, rather than performing actions and forming compositions in the
background. In fact, central to Social Devices is the interruption of social in-
teraction that is, in a sense, just the opposite of pervasive computing that has
the vision of indistinguishable form or minimal user distraction [39]. Actu-
ally, Social Devices can be used to complement pervasive computing as they
can make the background tasks performed by pervasive computing visible.
Nevertheless, both pervasive computing and Social Devices rely mainly on
smart devices in an environment. In contrast to Web Services or other tradi-
tional service-oriented architectures (SOA) [33], the key for Social Devices is
to utilize resources and capabilities of various physically co-located devices
and the proximity of the devices in a user-observable manner. Finally, a key
characteristic in Social Devices compared with many other similar approaches
is that instead of devices autonomously forming collaborating networks and
agreeing on operations, the users should always have control of the actions
in which their devices participate. Furthermore, advanced users could create
new actions to make the devices interact.

2.2.2 Running Example

We use PhotoSharing as a running example to explain the motivation and the
basic concepts of Social Devices. In our PhotoSharing example, Alice meets

48 T. Aaltonen et al.

Cartoonize.net

Figure 2.2: Alice and her friends at a cafeteria.

Bob, Carol, and Dan at a cafeteria (Figure 2.2). When Alice joins the table,
her phone recognizes that her friends are nearby and suggests that she could
share and present the photo album from her latest trip. Although Alice has
already previously added her travel photos to Flickr, the cafeteria provides a
socially convenient moment for talking about the trip. Instead of squeezing
in to see the photos on Alice’s screen, or everyone individually browsing the
photos, the friends can see the photos on their own devices in a synchronized
manner as Alice comments on each photo.

In more detail, what happens in the PhotoSharing example is that when
Alice approaches her friends, her phone recognizes and notifies her of the
possibility of sharing the new photos. This notification may utilize several
forms of interaction, such as talking aloud, vibration, and screen dialogs.
After Alice indicates that she wants to share her photos, Bob and Carol join
the session with the confirmation dialog that appeared on their devices. Since
Dan’s phone is running out of power, he decides not to join. Alice browses
her photos and selects the ones to be viewed. At the same time, the photos
appear in Bob’s and Carol’s devices, while Alice talks about her trip. Alice
has also recorded audio related to some photos, which is played by Bob’s
device as it has the best loudspeaker.

The PhotoSharing example highlights the key aspects of Social Devices
elaborated in more detail in the following section. All functionality is built

The Social Devices Platform 49

around actions: an action provides proactively initiated, typically user-
visible, coordinated behavior, such as photo browsing, in a synchronized
manner between multiple devices. To participate in an action, each user is
assumed to have a device to which the necessary capabilities to join in an ac-
tion are installed. Actions can start proactively, even without user assistance,
but the user can control whether or not the action continues. Therefore, ac-
tions can define triggers, upon receipt of which the action is executed, or at
least attempted. In addition, the necessary preconditions must be satisfied
before any action can take place.

2.2.3 Requirements and Characteristics

The running example of PhotoSharing highlighted several requirements and
characteristics of Social Devices. In the following, we discuss these in more
detail.

The devices need to have identities, and the SDP needs to keep track of
these identities. The identity of a device can be associated with a person,
such as Alice and her phone. The need for device identities is highlighted by
the fact that devices collaborate in a way that is often personal to the user
and closely related to user preferences, and the collaboration takes place in
a social situation where devices are identifiable rather than background ser-
vices. In the PhotoSharing example, all users use their own personal device.
The need for identities arises from the fact that users have different prefer-
ences for their mobile devices such as not being too verbose; in other words,
not to speak aloud about the synchronization’s progress. From a technical
point of view, the approach for device identity management in the SDP is to
use a centralized registry where devices need to register their identity as well
as other properties discussed below. Moreover, as users are essential for So-
cial Devices, the platform needs to maintain user models that indicate which
device is the most personal for a user and the other kinds of devices that a
user has. The information about the most personal devices can be used to
indicate the proximity of users. The user model can also contain personality
and social network information that can, for example, be used for suggesting
actions in different contexts.

Devices need to know the other nearby devices because proximity is a
precondition for Social Devices in general: Co-located social interaction re-
quires that users (and devices) are near each other; for example, Alice is near
her friends. Thus, the proximity of the devices needs to be discovered with
respect to each device that will participate in an action. The SDP maintains
proximity information in the form of a weighted graph, called a proximity
graph, where nodes denote devices and edges denote the mutual distance

50 T. Aaltonen et al.

class PhotoSharing (Action):
@actionprecondition
def precondition(self, src, sinks, albumURI):
return areFacebookFriends(src, sinks) and)\
haveCapabilities (sinks, [’Screen’,’Notification’]) and)\
src.hasCapabilities (['ImageBrowser’, Notification’]) and

@actionbody
def body(self, src, sinks, albumURI):

message = 'Hey ’ + src.getOwnerName() + > let\’s share images’
if src.notification.notify (message, ['Yes’, 'No’]) = ’'No’:
return

notifying the sinks is omitted

bestAudioDev = self.participants.chooseOne(’AudioDevice’)
for image in src.imageBrowser.browse (albumURI):
relatedAudio = image.getRelatedAudio ()
if bestAudioDev and relatedAudio:
bestAudioDev.audioDevice. play (relatedAudio)

startParallelExecution ()
for sink in sinks:

sink . screen .show (image)
endParallelExecution ()

tearing down omitted for brevity

@classmethod
def getTriggers(cls):
return [’PhotoSharingTrigger]

class PhotoSharingTrigger(Trigger):
def __init__(self, albumURI, sender):
Trigger. __init__(self, sender)
self.albumURI = albumURI

Figure 2.3: The definition of the PhotoSharing action and PhotoSharingTrig-
ger

of these devices, which discover and measure the signal strength of other
nearby devices and report this to a centralized server that calculates the mu-
tual distances of the devices and updates the proximity graph. In the current
implementation, the measurement of proximity is simply based on Bluetooth
signal strength. Thus, the approach allocates much of the computing to the
server side, keeping the devices simple rather than relying on the devices to
continuously discover, measure, and keep track of the proximity.

In order to know what kinds of different collaborative actions are avail-
able between devices, Social Devices utilize action descriptions that describe
the actions in more detail. The action descriptions are managed centrally
rather than relying on ad-hoc or autonomous behavior. The objective is that
developers can easily write new action descriptions. Actions are described
in two parts: the action body, that is, the description of what the devices

The Social Devices Platform 51

should do during an action, and the action precondition, that is, the descrip-
tion of what is expected from the devices participating in the action. The
PhotoSharing action description is described in Figure 2.3.

In order for the action to actually do anything meaningful, it needs to be
known what the devices can do. This is achieved by the concept of a device
capability. While actions define behavior, the capabilities of devices (e.g., a
capability to view a picture) provide the functionality. When writing actions,
a developer can develop new or reuse existing capabilities. For example, an
action PhotoSharing may need to operate on devices that can show and
browse images. These expectations are characterized via interfaces that the
devices need to fulfill; for example, the ability to show images is characterized
with a Screen interface. Hence, the interface specifications for services in
Social Devices are what WSDL is for Web Services: an interface specifies a
contract, while it is the responsibility of a device to implement the interface.
A Social Device can provide any number of interfaces: The owner of a social
device can install and enable different capabilities to her own liking.

Besides capabilities and proximity, the devices have different kinds of pro-
perties and states. For instance, a device can be running out of power, or
be in a silent or power-saving mode. Hence, there are not only the static ca-
pabilities of devices, but also dynamically changing device properties. Such
properties that affect whether a device can participate in an action are mon-
itored via device states; for example, the integer-valued state batteryLevel
can indicate the remaining power. For this purpose, the devices continu-
ously report their states to a central server, which then has all the necessary
information to decide whether an action can take place.

The condition when actions are executed needs to be decided automati-
cally at runtime because social devices are autonomous in the sense that di-
rect user interaction is not necessarily needed to start an action. Continuous
searching for devices that satisfy the action precondition is computationally
hard. Therefore, the SDP has taken the relatively simple approach that a
trigger marks the need for action execution. In particular, certain actions are
attempted to be scheduled when a certain trigger is received: For example,
PhotoSharingTrigger is associated with the PhotoSharing action. A trigger can
be caused by an external event or a change in the proximity group. In the
running example, PhotoSharingTrigger was created when Alice uploaded her
photos to Flickr. Triggers and related actions are managed by a centralized
server that also receives the triggers and decides whether and which action to
initiate. Thus, the intelligence for making decisions about initiated actions
is built and refined in one location on the server. Consequently, the devices
only need to identify the condition to raise a trigger. Although anything can
send a trigger to the server, the server does not necessarily initiate an action.

52 T. Aaltonen et al.

In addition to identifying when to execute an action, one needs to decide
at runtime which concrete devices will participate in the action; this is called
scheduling. The main task is to relate the potentially available devices to the
preconditions stated in the action description and to decide the roles to which
the devices should be assigned. An action precondition may require certain
capabilities from the devices, such as the implementation of certain interfaces.
For example, the PhotoSharing action requires that Bob’s, Carol’s, and Dan’s
devices can receive and show images by using the Screen interface. When a
trigger for action execution is intiated, several devices can potentially fulfill
the preconditions. The same set of devices can participate in an action in
different roles; for example, with respect to who is sharing the photos. Thus,
the configuration problem in Social Devices is as follows: find an action that
matches a runtime trigger and a set of devices and device roles that fulfill the
action preconditions. However, in practice, the configuration problem is often
eased by the action preconditions, which can restrict the number of potential
devices that can participate in the action. For instance, the preconditions
can require that the device that initiated the trigger should participate in
a certain role in the action and that other participating devices are in its
proximity.

Finally, the action is executed. For this, the action coordination or or-
chestration problem requires defining a control flow for a set of independently
operating devices. Since each device has been designed to run its own soft-
ware — apart from mission-specific coordination tasks such as making a
phone call on a cell phone — additional features are needed to manage the
interactions taking place between the devices. In the SDP, in order to cre-
ate a generic system where various cooperation possibilities are available, we
decided to use a coordination approach by defining a platform into which
coordination is built.

To summarize our high-level solutions, we rely on a centralized approach
rather than device autonomy and intelligence. This is in contrast to, e.g.,
agent-based systems or ad-hoc networks. For example, proximity manage-
ment and decisions about actions and device configurations are not the bur-
den of the devices. As a consequence, quite simple devices can also be Social
Devices since complex calculation or special resources are not needed.

2.3 The Social Devices Platform

The concept of Social Devices has been implemented in a supporting infra-
structure termed the Social Devices Platform. The SDP implements all the
necessary concepts and tasks related to Social Devices. In the following, we

The Social Devices Platform 53

describe the overall architecture, and the different responsibilities in more
detail.

2.3.1 Overall Architecture

CaaS State Server

class PhotoSharing(Action):

Dactionprecondition 7:GET {A,B,C,D} Bat Noise...
def precondition(self, src, sinks, albumURI) > A 80% 70% ...
8:State (A,B,CD) B | 70% 66%..
C 92% 72% ...
D | 10%75%..
E 80% 10% ...
Flickr) F 99% 90% ...
6:GET ing(A,_ ') 9:Pl [8,C1)
Observer
Controller
1:PhotoSharingTrigger(src=A) TriggeringTable
~
N e
Proximity Server T2 Al A4
Photo
3:Change(A) Sharing| PhotoSharing
" Trigger
8 13 4:GET A 10:PhotoSharing(A[B,C]
Tl ActiveTriggersTable Orchestrator
7 5:{A,B,C,D} 13:<RET>
\ 7 3 A ‘ Trigger
2 class PhotoSharing(Action):
@actionbody
»\ \ AN 12.2:notification.notify(..) ' def body(self, src, sinks, albumURI)
N /12 1:notification.notify(...
\ \\\\z{:(w, C, 1.1m), (B, D, 2.0m}} /%M]
5 \ - N / [a—
Semversde \ N S /Atinotification.notify("Hey Alice let’s share images”)
Client Side \

\ 2.2:({A,B,Z,zm),lA,\;%D\\\g
\ \\B /
g = 6 @

A D

Figure 2.4: The SDP architecture and the interactions in the photo sharing
example.

The architecture of the SDP (Figure 2.4) consists of clients and a number
of cloud services running on the Amazon cloud. The client side currently con-
sists of Android devices and Python-capable devices, such as Linux laptops
and Meego phones. The interactions in Figure 2.4 show the key services and
exemplify how the photo sharing example is executed; Alice and her friends
are denoted with A, B, C, and D.

At the client side, the responsibilities of SocialDevicesClient include re-
porting the device capabilities and states that are needed for evaluating pre-
conditions, and discovering and reporting other devices in the proximity.

At the server side, ProximityServer is responsible for maintaining infor-
mation about the proximity and notifying about changes in proximity. State-
Server is responsible for managing the device registry and action registry,

54 T. Aaltonen et al.

whereas Controller is responsible for the triggering table and the active trig-
gers table. In addition, Controller takes care of initiating the scheduling
process i.e. other services report triggers to it. CaaS (Configurator-as-a-
Service) is responsible for assigning devices to roles by utilizing an inference
engine. Finally, Orchestrator is responsible for managing the actual execution
of actions between Social Devices.

For example in Figure 2.4, when ProximityServer reports a proximity
change in Alice’s device, scheduling can be initiated since FlickrObserver has
already sent a trigger. Controller retrieves the proximity group, and assigns
device A to the src role in the PhotoSharing action. Thereafter, Controller
utilizes CaaS. Based on the device states, CaaS knows that the battery of D
is dry, so only B and C are assigned to the action. After the scheduling and
device assignment, Controller sends the action along with the participants to
Orchestrator, whose task is to orchestrate the execution of the action body.
The orchestration is based on utilizing the devices’ interfaces and their op-
erations.

2.3.2 ProximityServer: Managing Proximity Infor-
mation

The responsibility of the ProximityServer is to maintain proximity information
of the devices in the form of a graph, where nodes represent the devices, and
edges have their mutual distance as an attribute. An edge gets stale when a
predefined time has passed, after which the edge is removed from the graph.
This way the graph is a model of the real world proximity information. The
proximity graph can be used for searching for sets of devices in each other’s
proximity.

In Figure 2.4, the proximity graph is partitioned into (B, C, D) and (E, F')
based on earlier measurements. When Alice gets close to her friends (message
#2.2), the new edges (4, B, distance = 2.2) and (A, D, distance = 2.7) are
added to the graph. When such significant changes occur in the proximity
graph, ProximityServer notifies Controller (message #3).

2.3.3 StateServer: Managing Device States and Pro-
perties

StateServer is responsible for managing data about device properties, such
as screen type, and about device state or context, such as ambient noise
and battery level. Thus, the properties are more static characteristics, while
states change frequently. The devices report their properties and state to

The Social Devices Platform 55

StateServer. The interaction between the devices and StateServer is omitted
from Figure 2.4 for clarity. State data can be used in action preconditions
to constrain an action role only to a device with specific state values.

Currently, StateServer does not store historical state data about devices.
In other words, StateServer only provides the current state of each device.
This is sufficient for simple actions, but more complex actions can require
contextual inferences based on the device state history. In this case, each
state value must be stored with an associated timestamp.

In the SDP, the actual state values are stored as simple key-value pairs,
where the key is the name of the state and the value is the actual state value
for the device. The SDP is, however, independent of the storage mechanism
and the state values could equally well be stored in a graph database or some
other form of database.

2.3.4 Controller: Triggering and Scheduling of Actions

Controller is the main hub of the SDP basically taking care of the interaction
within the server side. The starting point of, and the invocation for, Con-
troller is a trigger that causes Controller to start interactions that can result
in action execution. In order to utilize triggers, there needs to be an explicit
definition of the triggers and a mapping between triggers and actions. Fig-
ure 2.3 illustrates the definition of PhotoSharingTrigger, which is associated
with the PhotoSharing action using the getTriggers method. In general, there
can exist a many-to-many relation between triggers and actions. The triggers
and the corresponding actions need to be registered in a triggering table.

Based on an incoming trigger, an action needs to be selected from the
set of actions related to a trigger. This process, called scheduling, involves
finding an action whose precondition is satisfied by a set of devices. In some
cases, it may be possible to assign some devices to action roles in advance,
whereby the scheduling process can be eased. For instance, the source of
a trigger might be assigned to a specific role in an action. This kind of
pre-assignment can be made by Controller.

There may be a need to manage the lifespan of incoming active triggers.
For this purpose, all incoming triggers can be stored in an active triggers table
to wait for rescheduling if no action preconditions are immediately satisfied.
Different strategies can be employed for rescheduling active triggers. For
instance, scheduling can be reattempted after a certain amount of time or
after a predefined change in a state. Also, any failed triggers can simply be
discarded.

To be able to recognize various triggers, the architecture can be integrated
with several observer services that are responsible for sending the triggers

56 T. Aaltonen et al.

to Controller. Despite actually not being part of Controller, such observers
are in close relation with it. Figure 2.4 illustrates how FlickrObserver sends
PhotoSharingTrigger on behalf of Alice’s device when Alice uploads her photos
to Flickr. At this point, Controller attempts to schedule the PhotoSharing
action, but since Alice is at home with no friends nearby, the scheduling
fails. Therefore, Controller stores Alice’s device A and the corresponding
active trigger in the ActiveTriggers table and starts waiting for changes in
Alice’s proximity. This is an example of a state-based rescheduling strategy
described earlier in this section.

2.3.5 CaaS: Configuration of Actions

As mentioned in Section 2.2.3, the SDP needs to determine which devices can
participate in an action. In the architecture, this is the responsibility of CaaS
(Configuration-as-a-Service). Caa$S is based on existing research in software
product configuration [19, 28], where the task is to find a valid software
configuration given a configuration model and configuration selections. A
configuration model encapsulates the architectural variability in software,
while the configuration selections provide requirements for the configuration.

In Social Devices, many different factors affect which action can be exe-
cuted and whether a device can participate in an action. Variability arises
from multiple sources:

e New devices are registered in the SDP.

e Different devices have different capabilities.

e Different devices have different states.

e The devices that are in proximity of each other change.
e Several alternative actions can be executed.

e Devices can be in different roles within an action.

e Devices may or may not satisfy the constraints of an action role.

Since, the variability changes dynamically, the configuration model must
be generated dynamically. For generating a configuration model dynami-
cally, CaaS requires a list of actions as input. More specifically, the action
preconditions encode the constraints for the action roles and can be used to
determine which devices can be assigned to what roles.

The Social Devices Platform 57

In addition to the configuration model, Caa$S also needs the configuration
selections. The selections are generated dynamically based on a list of devices
and the capabilities and state values of the devices. Both the list of actions
and devices are sent to CaaS by Controller.

When the configuration model and selections have been generated, they
are given as input to an inference engine that computes a valid configuration,
i.e., an action with a set of devices assigned to the action roles.

Currently, Caa$S only returns an arbitrary, valid configuration. In practice,
however, not all configurations are equal in terms of quality of service (QoS).
In fact, the perceived QoS of a configuration is affected by user preferences,
device features, and context. Accordingly, CaaS can be augmented with
recommendation techniques that take user preferences, device capabilities,
and device context into account when making device selections for particular
action roles [31].

Configuration problems can be computationally expensive due to the com-
binatorial explosion of the number of configurations. In the worst case, the
time required to find a valid configuration grows exponentially with the num-
ber of variability points. In Social Devices, however, variability is limited by
the number of devices in proximity and the amount of roles in an action. In
fact, our initial test runs indicate that finding a valid configuration in the
context of the SDP seems feasible using a standard PC.

For instance, finding a valid configuration for 1000 devices and two actions
with two or three roles, takes approximately two seconds. In general, we
can assume that the size of a proximity group is typically less than 100.
Additionally, since the triggering of actions in the SDP is not time critical
and does not necessarily involve user interaction, the response times only
need to be within a few seconds at most. As such, the response times for
finding a valid configuration are feasible.

2.3.6 Orchestrator: Execution of Actions

Orchestrator is a centralized server that is responsible for executing the ac-
tions or the action body parts to be more specific. The action executions
are based on the configuration of devices that has been computed by CaaS
and returned to Controller. Controller starts action execution by sending the
configuration to Orchestrator using a REST API. When the action execution
begins, the participating devices are reserved for the duration of execution.
This design decision was made to offer a more transactional way for the de-
vices to behave as they can rollback the changes in case of an error. It is
also clearer to the users if their devices are participating to one action at a
time. Finally, Orchestrator monitors the clients, and in a centralized man-

58 T. Aaltonen et al.

ner, handles exceptions raised by the devices when the devices fail or stop
responding.

Invoking the operations of devices is done in a synchronized way, allowing
the operation calls to act like any operation calls in Python. For the devel-
opers, this allows an illustrative way to coordinate the devices and keep the
action body clear. After finishing the body execution, Orchestrator notifies
Controller.

The Orchestrator uses a synchronized way for calling the actor devices’
interface methods. This design decision allows the platform to relay return
values directly from the actor devices to an action execution process, and
hence the operation calls act like regular method calls. This also makes it
illustrative for users to create their own actions and develop new services.

The interfaces have their counterparts on both the server side and the
device side. On the server side, the interfaces are implemented in Python
and are therefore easily callable from the action, as we are using Python as
the coordination language (see Figure 2.3). On the device side, the imple-
mentations of these interfaces and their methods are coupled to the platform
and its programming language (see Figure 2.5). Moreover, because the way
of implementing features varies among different platforms, the service im-
plementations and the quality may vary as well. In other words, each actor
device is responsible for its local operations.

2.3.7 SocialDevicesClient: The Client for Social De-
vices

To participate in actions, the devices need to have SocialDevicesClient in-
stalled and running. The architecture of the client (Figure 2.5) is modular
and based on plugins. Three plugins are essential: OrchestratorPlugin partic-
ipates in action execution by maintaining a connection to the Orchestrator
service and invoking operations according to server coordination; Proximi-
tyPlugin measures periodically the Bluetooth signal strength of nearby de-
vices and reports this information along with the Bluetooth MAC identities
to ProximityServer, which then translates the information to distance; and
StatePlugin reports contextual data and state values, such as battery level or
GPS location, to StateServer. In contrast to the essential plugins, the capa-
bilities are implemented as interface plugins; for example, the ImageBrowser
capability is implemented as one plugin. In general, there can be any number
of interface plugins.

The whole SocialDevicesClient is implemented as a native application for
each environment. While this ensures, e.g., efficiency in terms of battery

The Social Devices Platform 59

Social Devices Client

TalkingDevice

(%]

(V]

= "

S Sereen Orchest.rator Proxm.nty Statfe
8 plugin plugin plugin
©

()

ImageBrowser
Interface plugin Essential plugin

Figure 2.5: The SocialDevicesClient plugin architecture.

consumption, separate implementations of SocialDevicesClient and plugins
are needed for different environments. However, an interface plugin can be
general and used in different actions. The modularity of the client and the
thin implementation of the essential plugins have allowed SocialDevicesClient
to be light from the device point of view. Furthermore, the modularity
allows users to have more control over their devices, as they can decide the
capabilities their devices should provide.

2.4 Related Work

Social Devices, and the SDP in particular, are based on principles adopted
from existing technologies. In fact, one design driver has been to utilize
existing work in the design of the SDP. In general, the SDP follows some
approaches that are similar to a service-oriented architecture approach to
software development [32, 33]. However, the interactions between compo-
nents in the SDP adhere to the REST principles [16]. In particular, the two
central servers, the Configurator and the Orchestrator, have been influenced
by and are related to earlier research.

The Configurator is based on the concepts of knowledge-based product
configuration that aims at satisfying different customer requirements through
mass customization [38]. Instead of explicitly enumerating all products, a
product is configured from a standardized set of well-defined components
that interact in a predefined way [13, 38]. To achieve this, configuration
knowledge, typically represented in a configuration model, needs to capture

60 T. Aaltonen et al.

the rules on how these sets of parts can be combined. Example application
areas of product configuration include the computer hardware industry, the
telecommunications industry, the automotive industry [14], and traditional
services [41]. The concepts have also been applied to software [19, 28] within
the broader research topic of software variability [40]. Within the domain of
software architecture, the need for dynamic adaptation has been identified.
For example, [25, 18] the use of explicit models of components and connec-
tors as runtime artifacts allows architecture-based adaptation. Furthermore,
dynamicity in software variability has received increasing attention, such as
in a form of a dynamic software product line [17]. Our work builds directly
on the results from these domains and provides a significant difference due
to the application in an autonomous platform. The dynamic generation of
a configuration model is an open area of research to which we provide an
initial solution.

The approaches for coordinating multiple devices have mainly focused
on information presentations (e.g., [12, 23, 29]), or for multimedia resource
synchronization (e.g., [36, 37, 44]). However, our work is different since we
are not aiming to offer only automated services or new kinds of interfaces.
For example, in [12], we find similarities in the approach for coordinating the
devices, but the aim is different. As [12] and [29] focus on generating user in-
terfaces and coordinating them on the devices, the system philosophy is more
user-centric than ours. We, on the contrary, aim to make devices interact and
socialize independently, and make the operations visible for the users. When
the majority of approaches focus on coordinating the devices in predefined
locations, such as smart spaces or homes, our focus is in coordinating the
devices wherever they are in proximity to each other in any location. Several
approaches have been proposed for the modeling and specification of collec-
tive actions (e.g. [4, 24]) and for coordinating computational resources (e.g.,
[2, 6, 8, 9]). We are revitalizing the idea by applying it to mobile clouds,
where actors correspond to individual devices forming the cloud and where
a central server is responsible for coordinating the execution of the mobile
devices. In previous research, the closest relative to our approach is consti-
tuted by coordination languages for mobile agents (e.g., [35]). However, our
work is different from these since we are treating complete mobile devices as
agents. Consequently, the granularity of the coordination is fundamentally
different from agent-based approaches.

In the Social Devices, the operations and the device coordination are
based on actions. The notion of an action is rooted in the DisCo method [20],
which is a formal specification method for reactive and distributed systems
based on the joint action theory [4]. Unlike DisCo actions that can be
mapped to terms of logic, the actions in the action-oriented programming

The Social Devices Platform 61

model do not have a formal meaning. In DisCo, the participants are typi-
cally processes, whereas in the action-oriented programming model the action
participants are usually devices. A DisCo action has a guard that is similar
to the precondition. The action body in DisCo is an atomic parallel assign-
ment clause, whereas the body in the action-oriented programming model is
a normal function.

The execution model of an action behaves like a single guarded loop in
Dijkstra’s guarded command language (GCL) [10]. In the GCL, the ba-
sic building blocks are guarded commands is a statement list prefixed with
boolean expressions. The statement list is eligible for execution only if the
boolean expression is true. Similarly, an action can be executed if the pre-
condition is true and the statement list corresponds to the body of an action.
However, since our contribution is a real programming platform, evaluating
the preconditions is alleviated by introducing the notion of triggers, whereas
the GCL requires continuous evaluation of guards.

Work has been done on advanced discovery of proximity [22] focusing on
energy-efficient discovery. Furthermore, existing web services such as Face-
book places, Foursquare, and Google Latitude take location and proximity
into account typically by a means of GPS or network identification. However,
these services facilitate actions or interactions between devices and users in
proximity at most in a manual and rudimentary manner. In contrast, the
focus of our work is on actions suitable for proximity-based systems, whereas
the SDP relies on relatively simple Bluetooth discovery of proximity.

Social Devices can be used to create actions that facilitate the interaction
between humans, devices, and humans and devices. Thus, the actions can
be considered a form of groupware [11], which can be broadly defined as
software systems that facilitate the activities and the interaction of a group
of people for achieving a common task or goal. Actions differ, however,
from traditional real-time groupware applications such as chats or document
editors in that they do not necessarily have to be tied to a common task or
goal but can be more ad hoc in nature, such as greeting a person.

Social Devices also have some similarities to service-oriented computing
(SOC) [34]. For instance, actions, action bodies, capabilities, and interface
definitions correspond roughly to service compositions, workflow processes,
basic services, and service descriptions in SOC. Also, action-oriented pro-
gramming is concerned with concepts such as the publication of capabilities,
action coordination, action composition, and QoS. Social Devices can thus
be considered as a model of SOC for a pervasive context where service com-
positions are initiated proactively.

62 T. Aaltonen et al.

2.5 Discussion and Results

The first prototype implementation, the SDP, has been implemented, but
there are several further research challenges as discussed below.

The decomposition of the SDP architecture (Figure 2.4) aims at a clear
separation of responsibilities with the use of RESTful interfaces; this has
allowed us to develop each component separately. For example, the CaaS as
a service has allowed us to experiment with different intelligent tools without
largely affecting other parts of the SDP components. Furthermore, we have
focused mostly on the server side, whereas the SDP Client only provides basic
functionality. However, the decomposition may not be optimal from, e.g., a
performance point of view. Many of the architectural pieces are quite efficient
but not yet optimal, especially due to the nature of extension discussed below.

The current approach for configuration returns one arbitrary, valid con-
figuration, and there is practically no means to affect what kind of configura-
tion will be returned. However, the capabilities and the QoS of participating
devices affect the overall quality of an action. As an example, audio qual-
ity depends on the quality of the device speakers. Furthermore, contextual
data may also affect the QoS of a service composition: For instance, the
user-perceived audio quality depends on the distance from a display or loud-
speaker. Finally, device users have different kinds of preferences. Thus,
given a set of devices with varying capabilities and levels of QoS, the prob-
lem becomes finding the best or good enough devices for the action roles.
The configuration of an action is typically an under-constrained problem to
which there are several valid configurations. One advanced approach is to
use recommender systems as a means for finding devices so that user prefer-
ences and device capabilities are taken into account. Recommender systems
are information systems that have been introduced in various domains for
proposing items to users based on user preferences using techniques from the
field of artificial intelligence [15]. Our initial feasibility study indicates that
technically recommender systems could be applied instead of configurators
by representing the configuration problem as a recommendation problem [31].
Furthermore, despite the computational complexity of the recommendation
problem, the response times seem to be quite feasible. However, the recom-
mendation adds challenges, such as whose preferences should be taken into
account in social situations and how user preferences should be captured. To
better understand the benefits and challenges of using the recommendation,
we will augment CaaS with recommendation concepts in the near future.

The implementation of the SDP currently focuses more on devices than
users. However, in the concept of Social Devices, both social interations and
devices, are tightly coupled with the users. Some devices can be personal

The Social Devices Platform 63

while other devices can be shared. To enhance the personalization and con-
textualization of social devices, the concept of users, including social relations
to other users and devices, is required. For example, the interaction with a
friend’s device is most likely different compared to one with a colleague at
work.

To enhance personalization, we need to introduce the notion of a user
model [5]. A user model provides an internal representation of a user and
allows the adaption of actions to users’ behavior, characteristics, and needs.
A user model can include personal information, interests, skills, knowledge,
goals, and preferences. The user model can be updated explicitly or implic-
itly. For instance, the user model could be updated explicitly by asking the
user to rate an action after the action has finished. Alternatively, the SDP
could observe the user’s behavior and implicitly update the user model. For
example, the interruption of an action could indicate that the user does not
like the specific action and the SDP learns not to execute that action for
that user anymore. In addition to deciding what actions to execute, a user
model would enable adaptive deployment of an action on specific devices
based on user preferences as mentioned earlier about the recommendation.
Also, the action behavior and content could be adapted based on the user
model. For instance, an action could assign team members in a game based
on the user models of the players. We will explore the use of user models
and personalization in the SDP in the near future.

Privacy and security are issues that require further investigation. Cur-
rently, users can enable and disable capabilities from their devices and adjust
settings to their liking. However, as the platform becomes more complex,
strict privacy policies will be needed.

Currently, the SDP uses low-level contextual data [7], such as proximity
and device state obtained through device sensors, to trigger and determine
which actions can be executed. This kind of low-level contextual data may
not in itself be sufficient to determine more high-level contexts such as specific
social interactions. Instead, to be able to sense more complex social contexts,
the SDP needs to have a way to infer high-level contexts by, e.g., combining
data from several low-level sensors or by using application data such as a
calendar. The identification of specific social situations can also help to
increase the privacy of users by not allowing certain actions to be executed
in certain situations.

Although Social Devices are not critical in the sense that an action needs
to recover or terminate properly, the highly dynamic nature can result in
actions that do not execute properly, which can become frustrating and in-
convenient. Therefore, the reliability of the SDP would benefit from various
additional supporting services. In particular, the SDP Client provides sev-

64 T. Aaltonen et al.

eral opportunities for advanced context-aware behavior and self-management
capabilities.

The action and interface definitions follow certain predefined conventions
and are in Python due to its simplicity and, in particular, the use of exist-
ing parsers. Currently, however, there are no means to support and ensure
that the correct conventions are used when defining the actions and inter-
faces in Python. An integrated development environment (IDE) would offer
an approach to easily construct actions. One approach is to use a plug-in
for the Eclipse open source IDE (www.eclipse.org) that then connects to the
RESTful API of the SDP to upload actions. Furthermore, it seems to be
possible to ease action definition by a domain-specific language, with even a
graphical notation, that is then transformed into Python. Such an approach
could be used for enabling end-user programming of actions. Additionally,
such conventions would facilitate application deployment, using different pro-
gramming languages, to platforms that do not readily support Python. Nev-
ertheless, Python seems to be quite a feasible coordination language for the
actual action coordination requirements.

The concept of Social Devices intervenes with established norms in social
interactions between people. The ongoing CoSMo! research project studies
multimodal interaction techniques and conducts studies in real context to
gain an empirical understanding of how users experience action-oriented ap-
plications. Moreover, the project studies how users feel about actions that
start proactively and which kinds of actions are socially acceptable [42]. The
concept itself has received quite a polarized response as some have questioned
the concept completely while others have been quite enthusiastic. For exam-
ple, it was considered tempting that Social Devices would violate certain
social norms. Only a few have stayed neutral. Nevertheless, the contribution
of this chapter has been to introduce the concept of Social Devices while
more studies in the real social context are needed.

From the developer’s point of view, we have evaluated the action-oriented
programming model by creating a number of demo applications for the SDP.
These applications include Photo Sharing, Car Game (each device is a “cam-
era” to the track, and everybody controls theor own car with voice), Greeting
Devices (our phones greet each others), and Unread SMS Reminder (the re-
minder is given by a friend’s device).

With this action-oriented paradigm, development has been fast and intu-
itive. An undergraduate student was able to create the photo sharing action
in a couple of days. Constructing a similar application from scratch would

1CoSMo — Co-Located User Interaction through Social Mobile Devices, funded by the
Academy of Finland in 2013-2015, http://wuw.cs.tut.fi/ihte/projects/CoSMo

The Social Devices Platform 65

have required concentrating on difficult connectivity and synchronization is-
sues. Now, these are hidden by the concepts of the programming model.
Moreover, we tested the system from developer’s point of view by hiring
an outside team to design and implement a multiplayer game by using the
platform. The application was developed in cooperation with Demola2, an in-
novation instrument targeted at fostering innovation and experimenting with
radical ideas. Overall, the results (reported in [26]) were encouraging as the
team was enthusiastic about the concept and after only a short introduction
managed to start implementing their application.

Furthermore, the applicability of the action-oriented programming model
should be studied beyond the SDP. The programming model seems to be
applicable to scenarios that involve coordinated and synchronized behavior
between several distributed entities; the behavior is then encapsulated into
actions that are initiated proactively. Example application areas include
smart homes, which often involve distributed, coordinated behavior between
home appliances and devices as a reaction to a certain condition or user
needs.

A programming model reflects the system that executes the programs.
Successful programming models have a straightforward relation to the sys-
tem. For example, procedural and object-oriented languages usually have an
obvious mapping to the von Neumann architecture on which they are exe-
cuted. Similarly, the action-oriented programming model as described in this
chapter reflects the distributed system executing the actions and vice versa.
This means that future needs arising from new application areas on which
the programming model is applied may require changes or additions to the
programming model.

A future work item for the model includes adding transactionality. An
action is a natural unit for transactional execution. In the beginning of the
action, devices join the transaction, and in the end, if all went well, the
changes become persistent.

In the programming model and the SDP, action coordination relies on
the server side. Some confluence to the Message Queue or Publish-subscribe
technologies can be seen: Orchestrator could be regarded as the publisher
that sends messages to an action-specific message bus. However, unlike in
the aforementioned technologies, Orchestrator is always aware of the mes-
sage receiver and expects a response since the operations are invoked syn-
chronously. Moreover, a device is reserved for one action at a time, and
hence is subscribed to only one action-specific message bus at a time. How-
ever, research on different kinds of coordination approaches is ongoing. For

’http://www.demola.fi

66 T. Aaltonen et al.

instance, performance overhead could be reduced by one device coordinat-
ing the other devices directly with Bluetooth, or even by distributing the
coordination among many devices participating in the action.

2.6 Conclusions

The way people communicate and socialize has changed due to social media
services. Whereas these services are useful in many ways for supporting
remote social interactions, they offer only limited advantages for face-to-face
and co-located situations. In this chapter, we described the concept of Social
Devices that offers a new kind of socio-digital system for co-located devices
and humans to interact with each other. The interactions are based on
actions that are predefined processes where devices are used in certain roles
and where each device offers certain services according to its capabilities. In
contrast to smart spaces, the actions are not tied to any specific location
or device, and the devices interact in a more ad-hoc manner. On the other
hand, the processes are made visible for the users, and moreover, users may
interact in these actions as well.

The SDP was introduced as a prototype implementation for the concept
of Social Devices. The SDP offers components for the main practical prob-
lems that have emerged with Social Devices. These problems are: tracking
the proximity of devices, finding a suitable configuration for a set of devices
within close proximity, and orchestrating the operation executions on the de-
vices. While the SDP offers solutions for the main problems, more research is
needed in many areas. For instance, personalizing the contents of the actions
for users in different contexts requires further studies. Also, understanding
how people thoroughly understand the idea of Social Devices and the actions
requires studies in a real context. However, as we designed the client to be
lightweight, implementing it in other mobile platforms shuold happen in the
near future, allowing us to focus on studies on a larger scale.

References

[1] T. Aaltonen et al. “An Action-Oriented Programming Model for Per-
vasive Computing in a Device Cloud”. In: 20th Asia-Pacific Software
Engineering Conference (APSEC). IEEE Computer Society, 2013 (to
be published).

[2] T. Aaltonen et al. “Coordinating Aspects and Objects”. In: Electr.
Notes Theor. Comput. Sci. 68.3 (2003), pp. 248-267.

REFERENCES 67

L. Atzori, A. Iera, and G. Morabito. “The Internet of Things: A sur-
vey”. In: Comput. Netw. 54.15 (2010), pp. 2787—-2805.

R.-J. Back and R. Kurki-Suonio. “Distributed Cooperation with Ac-
tion Systems”. In: ACM Trans. Program. Lang. Syst. 10.4 (1988),
pp. 513-554.

P. Brusilovsky and M. T. Maybury. “From adaptive hypermedia to
the adaptive web”. In: Commun. ACM 45.5 (2002), pp. 30-33.

B. Chapman et al. “Opus: A Coordination Language for Multidisci-
plinary Applications”. In: Sci. Program. 6.4 (1997), pp. 345-362.

G. Chen and D. Kotz. A Survey of Context-Aware Mobile Comput-
ing Research. Tech. rep. TR2000-381. Dartmouth College, Computer
Science, 2000.

P. Ciancarini. “Coordination Models and Languages as Software In-
tegrators”. In: ACM Comput. Surv. 28.2 (1996), pp. 300-302.

J. Darlington et al. “Functional Skeletons for Parallel Coordination”.
In: Proceedings of the First International FEuro-Par Conference on
Parallel Processing. Springer-Verlag, 1995.

E. W. Dijkstra. “Guarded commands, nondeterminacy and formal
derivation of programs”. In: Commun. ACM 18.8 (1975), pp. 453—
457.

C. A. Ellis, S. J. Gibbs, and G. Rein. “Groupware: some issues and
experiences”. In: Commun. ACM 34.1 (1991), pp. 39-58.

C. Elting. “Orchestrating output devices: planning multimedia presen-
tations for home entertainment with ambient intelligence”. In: Pro-
ceedings of the 2005 joint conference on Smart objects and ambient
intelligence: innovative contexrt-aware services: usages and technolo-

gies. ACM, 2005.

B. Faltings and E. C. Freuder. “Guest Editors’ Introduction: Config-
uration”. In: IEEE Intelligent Systems 13.4 (1998), pp. 32-33.

A. Felfernig, G. Friedrich, and D. Jannach. “Conceptual Modeling for
Configuration of Mass-Customizable Products”. In: Artificial Intelli-
gence in Engineering 15.2 (2001), pp. 165-176.

A. Felfernig, G. Friedrich, and L. Schmidt-Thieme. “Guest Editors’
Introduction: Recommender Systems”. In: IEEFE Intelligent Systems
22.3 (2007), pp. 18-21.

68

[16]

[17]

T. Aaltonen et al.

R. T. Fielding. “Architectural styles and the design of network-based
software architectures”. AAI9980887. PhD thesis. University of Cali-
fornia, Irvine, 2000. 1SBN: 0-599-87118-0.

S. Hallsteinsen et al. “Dynamic Software Product Lines”. In: Com-
puter 41.4 (2008), pp. 93 -95.

A. van der Hoek. “Design-time product line architectures for any-time
variability”. In: Sci. Comput. Program. 53.3 (2004), pp. 285-304.

L. Hotz, K. Wolter, and T. Krebs. Configuration in Industrial Prod-
uct Families: The ConIPF Methodology. 10S Press, Inc., 2006. 1SBN:
1586036416.

H.-M. Jarvinen et al. “Object-oriented specification of reactive sys-
tems”. In: International Conference on Software Engineering. IEEE
Computer Society Press, 1990.

A. Klein et al. “Access Schemes for Mobile Cloud Computing”. In:
Proceedings of the 2010 Eleventh International Conference on Mobile
Data Management. IEEE Computer Society, 2010.

R. H. Kravets. “Enabling Social Interactions off the Grid”. In: IEEE
Pervasive Computing 11.2 (2012), pp. 8-11.

C. Kray, A. Kriiger, and C. Endres. “Some Issues on Presentations
in Intelligent Environments”. In: In First European Symposium on
Ambient Intelligence (EUSAI). Springer, 2003.

R. Kurki-Suonio and T. Mikkonen. “Abstractions of Distributed Co-
operation, their Refinement and Implementation”. In: Proceedings of
the International Symposium on Software Engineering for Parallel and
Distributed Systems. IEEE Computer Society, 1998.

J. Magee and J. Kramer. “Dynamic structure in software architec-
tures”. In: SIGSOFT Softw. Eng. Notes 21.6 (1996), pp. 3-14.

N. Mékitalo, T. Aaltonen, and T. Mikkonen. “First Hand Developer
Experiences of Social Devices”. In: Workshop on Mobile Cloud and
Social Perspectives, MoCSoP’13, (to appear). 2013.

N. Makitalo et al. “Social devices: collaborative co-located interac-
tions in a mobile cloud”. In: Proceedings of the 11th International
Conference on Mobile and Ubiquitous Multimedia. ACM, 2012.

T. Méannisto, T. Soininen, and R. Sulonen. “Product Configuration
View to Software Product Families”. In: Proc. of the SCM-10 work-
shop at ICSE °01. 2001, pp. 14-15.

REFERENCES 69

[29]

[30]

[31]

[32]
[33]

[34]

B. A. Myers et al. “Taking Handheld Devices to the Next Level”. In:
Computer 37.12 (2004), pp. 36—43.

V. Myllarniemi et al. “Configurator-as-a-service: tool support for de-
riving software architectures at runtime”. In: Proceedings of the WIC-
SA/ECSA 2012 Companion Volume. ACM, 2012.

J. Paakko et al. “Applying Recommendation Systems for Composing
Dynamic Services for Mobile Devices”. In: 19th Asia-Pacific Software
Engineering Conference (APSEC). IEEE Computer Society, 2012.

M. P. Papazoglou et al. “Service-Oriented Computing: State of the
Art and Research Challenges”. In: Computer 40.11 (2007), pp. 38-45.

M. Papazoglou. “Extending the Service-oriented architecture”. In:
Business Integration Journal 7.1 (2005).

M. Papazoglou and D. Georgakopoulos. “Service-oriented comput-
ing”. In: Commun. ACM 46.10 (2003), pp. 25-28.

F. Peschanski et al. “Coordinating mobile agents in interaction
spaces”. In: Science of Computer Programming 66.3 (2007), pp. 246—
265.

M. Raatikainen et al. “Mobile Content as a Service: A Blueprint for
a Vendor-Neutral Cloud of Mobile Devices”. In: IEEE Software 29.4
(2012), pp. 28-32.

J. Rekimoto. “Multiple-computer user interfaces: "beyond the desk-
top” direct manipulation environments”. In: CHI ’00 Eztended Ab-
stracts on Human Factors in Computing Systems. ACM, 2000.

D. Sabin and R. Weigel. “Product Configuration Frameworks—A Sur-
vey”. In: IEEE Intelligent Systems 13.4 (1998), pp. 42—49.

M. Satyanarayanan. “Pervasive computing: Vision and challenges”.
In: IEEFE Personal communications 8.4 (2001), pp. 10-17.

M. Svahnberg, J. van Gurp, and J. Bosch. “A taxonomy of variability
realization techniques”. In: Softw. Pract. Exper. 35.8 (2005), pp. 705—
754.

J. Tiihonen et al. “Applying the Configuration Paradigm to Mass-
customize Contract Based Services”. In: The World Conference on
Mass Customization & Personalization. 2007.

K. Vaananen-Vainio-Mattila et al. “Social Devices as a New Type of
Social System: Enjoyable or Embarrassing Experiences?” In: Work-
shop on Experiencing Interactivity in Public Spaces in conjunction
with CHI ’13 (to appear). 2013.

[43]

[44]

M. Weiser. “The computer for the 21st century”. In: Scientific Amer-
ican 265.3 (1991), pp. 94-104.

B. Xing, K. Seada, and N. Venkatasubramanian. “Proximiter: En-
abling mobile proximity-based content sharing on portable devices”.
In: Proceedings of the 2009 IEEE International Conference on Perva-
siwe Computing and Communications. IEEE Computer Society, 2009.

70

3 Prediction-Based Virtual Machine
Provisioning and Admission Control for
Multi-tier Web Applications

Adnan Ashraf, Benjamin Byholm, and Ivan Porres
Department of Information Technologies

Abo Akademi University, Turku, Finland

Email: {aashraf, bbyholm, iporres}@abo.fi

Abstract—This chapter presents a prediction-based, cost-efficient Virtual
Machine (VM) provisioning and admission control approach for multi-tier
web applications. The proposed approach provides automatic deployment
and scaling of multiple simultaneous web applications on a given Infra-
structure as a Service (TaaS) cloud in a shared hosting environment. It
monitors and uses resource utilization metrics and does not require a perfor-
mance model of the applications or the infrastructure dynamics. The shared
hosting environment allows us to share VM resources among deployed appli-
cations, reducing the total number of required VMs. The proposed approach
comprises three sub-approaches: a reactive VM provisioning approach called
ARVUE, a hybrid reactive-proactive VM provisioning approach called Cost-
efficient Resource Allocation for Multiple web applications with Proactive
scaling (CRAMP), and a session-based adaptive admission control approach
called adaptive Admission Control for Virtualized Application Servers (AC-
VAS). Performance under varying load conditions is guaranteed by automatic
adjustment and tuning of the CRAMP and ACVAS parameters. The pro-
posed approach is demonstrated in discrete-event simulations and is evalu-
ated in a series of experiments involving synthetic as well as realistic load
patterns.

Keywords-Cloud computing, virtual machine provisioning, admission con-
trol, web application, cost-efficiency, performance.

71

72 A. Ashraf, B. Byholm, and I. Porres

3.1 Introduction

The resource needs of web applications vary over time, depending on the
number of concurrent users and the type of work performed. This stands in
contrast to static content, which requires no further processing by the server
than sending predefined data to an output stream. As the demand for an
application grows, so does its demand for resources, until the demand for
a key resource outgrows the supply and the performance of the application
deteriorates. Users of an application starved for resources tend to notice this
as increased latency and lower throughput for requests, or they might receive
no service at all if the problem progresses further.

To handle multiple simultaneous users, web applications are traditionally
deployed in a three-tiered architecture, where a computer cluster of fixed
size represents the application server tier. This cluster provides dedicated
application hosting to a fixed amount of users. There are two problems with
this approach: firstly, if the amount of users grows beyond the predetermined
limit, the application will become starved for resources. Secondly, while the
amount of users is lower than this limit, the unused resources constitute
waste.

A recent study showed that the underutilization of servers in enterprises
is a matter of concern [37]. This inefficiency is mostly due to application
isolation: a consequence of dedicated hosting. Sharing of resources between
applications leads to higher total resource utilization and thereby to less
waste. Thus, the level of utilization can be improved by implementing what
is known as shared hosting [36]. Shared hosting is already commonly used
by web hosts to serve static content belonging to different customers from
the same set of servers, as no sessions need to be maintained.

Cloud computing already allows us to alleviate the utilization problem by
dynamically adding or removing available Virtual Machine (VM) instances
at the infrastructure level. However, the problem remains to some extent,
as Infrastructure as a Service (IaaS) providers operate at the level of VMs,
which does not provide high granularity. This can be solved by operating at
the Platform as a Service (PaaS) level instead. However, one problem still
remains: resources cannot be immediately allocated or deallocated. In many
cases, there exists a significant provisioning delay on the order of minutes.

Shared hosting of dynamic content also presents new challenges: capacity
planning is complicated, as different types of requests might require varying
amounts of a given resource. For example, consider a web shop: adding items
to the shopping basket might require less resources than computing the final
price with taxes and rebates included. During a shopping session, a user
might add several items to their shopping basket, while the final price is only

Multi-tier Web Applications 73

computed at checkout. The session also has to be reliably maintained, so that
the contents of the shopping basket do not suddenly disappear. Otherwise,
the shop might lose customers.

Application-specific knowledge is necessary for a PaaS provider to ef-
ficiently host complex applications with highly varying resource needs.
When hosting third-party dynamic content in a shared environment that
application-specific knowledge might be unavailable. It is also unfeasible for
a PaaS provider to learn enough about all of the applications belonging to
their customers.

Traditional performance models based on queuing theory try to capture
the behavior of purely open or closed systems [25]. However, Rich Internet
Applications (RIAs) have workloads with sessions, exhibiting a partially-open
behavior, which includes components from both the open and the closed
model. Given a better performance model of an application, it might be
possible to plan the necessary capacity, but the problem of obtaining said
model remains.

If the hosted applications are seldom modified it might be feasible to au-
tomatically derive the necessary performance models by benchmarking each
application in isolation [36]. This might apply to hosting first- or second-
party applications. However, when hosting third-party applications under
continuous development, they may well change frequently enough for this to
be unfeasible.

Another problem is determining the amount of VMs to have at a given
moment. As one cannot provision fractions of a VM, the actual capacity
demand will need to be quantized in one way or another. Figure 3.1 shows
a demand and a possible quantization thereof. Overallocation implies an
opportunity cost — underallocation implies lost revenue.

Finally, there is also the issue of admission control. This is the problem
of determining how many users to admit to a server at a given moment in
time, so that said server does not become overloaded. Preventive measures
are a good way of keeping server overload from occurring at all. This is
traditionally achieved by only relying on two possible decisions: rejection or
acceptance.

Once more, the elastic nature of the cloud means that we have more
resources available at our discretion and can scale up to accommodate the
increase in traffic. However, resource allocation still takes a considerable
amount of time, due to the provisioning delay, and admitting too much traffic
is an unattractive option, even if new resources will arrive in a while.

This chapter presents a prediction-based, cost-efficient VM provisioning
and admission control approach for multi-tier web applications. The pro-
posed approach provides automatic deployment and scaling of multiple si-

74 A. Ashraf, B. Byholm, and I. Porres

12
Requi‘red Capa‘city
Allocated Capacity
10 o B
8 + 7/ \i i
%)
s 6 B
S
4 L i
2 L -
0
0 2 4 6 8 10 12 14
Time (1)

Figure 3.1: The actual capacity demand has to be quantized at a resolution
determined by the capacity of the smallest VM available for provisioning.
Overallocation means an opportunity cost, underallocation means lost rev-
enue.

multaneous third-party web applications on a given TaaS cloud in a shared
hosting environment. It monitors and uses resource utilization metrics and
does not require a performance model of the applications or the infrastructure
dynamics. The research applies to PaaS providers and large Software as a
Service (SaaS) providers with multiple applications. We deal with stateful
RIAs over the Hypertext Transfer Protocol (HTTP).

The proposed approach comprises three sub-approaches. It provides a
reactive VM provisioning approach called ARVUE [9], a hybrid reactive-
proactive VM provisioning approach called Cost-efficient Resource Alloca-
tion for Multiple web applications with Proactive scaling (CRAMP) [8], and
a session-based adaptive admission control approach called adaptive Admis-
sion Control for Virtualized Application Servers (ACVAS) [7]. Both ARVUE
and CRAMP provide autonomous shared hosting of third-party Java Servlet
applications on an IaaS cloud. However, CRAMP provides better respon-
siveness and results than the purely reactive scaling of ARVUE. We con-
cluded that admission control might be able to reduce the risk of servers
becoming overloaded. Therefore, the proposed approach augments VM pro-
visioning with a session-based adaptive admission control approach called
ACVAS. ACVAS implements per-session admission, which reduces the risk
of over-admission. Furthermore, instead of relying only on rejection of new
sessions, it implements a simple session deferment mechanism that reduces

Multi-tier Web Applications 75

the number of rejected sessions while increasing session throughput. Thus,
the admission controller can decide to admit, defer, or reject an incoming
new session. Performance under varying load conditions is guaranteed by
automatic adjustment and tuning of the CRAMP and ACVAS parameters.
The proposed approach is demonstrated in discrete-event simulations and is
evaluated in a series of experiments involving synthetic as well as realistic
load patterns. Byholm [11] described the prototype implementation of these
concepts.

We proceed as follows. Section 3.2 discusses important related works.
Section 3.3 presents the system architecture. The proposed VM provisioning
and admission control algorithms are described in Section 3.4. In Section 3.5,
we present simulation results before concluding in Section 3.6.

3.2 Related Work

Due to the problems mentioned in Section 3.1, existing works on PaaS solu-
tions tend to use dedicated hosting on a VM-level for RIAs. This gives the
level of isolation needed to reliably host different applications without them
interfering with each other, as resource management will be handled by the
underlying operating system. However, this comes at the cost of prohibiting
resource sharing among instances. In order to reliably do shared hosting
of third-party applications, there is a need for a way to prevent applications
from interfering with each other, without preventing the sharing of resources.
Google App Engine is different here in that it instead offers a sandboxed run-
time for the applications to run in [17]. Another way is to use shared hosting
to run multiple applications in the same Java Virtual Machine (JVM) [1].

There are many metrics available for measuring Quality of Service (QoS).
A common metric is Round Trip Time (RTT), which is a measure of the time
required for sending a request and receiving a response. This approach has a
drawback in that different programs might have various expected processing
times for requests of different types. This means that application-specific
knowledge is required when using RTT as a QoS metric. This information
might not be easy to obtain if an application is under constant development.
Furthermore, when a server nears saturation, its response time grows expo-
nentially. This makes it difficult to obtain good measurements in a high-load
situation. For this reason, we use server Central Processing Unit (CPU) load
average and memory utilization as the primary QoS metrics. An overloaded
server will fail to meet RTT requirements.

Reactive scaling works by monitoring user load in the system and re-
acting to observed variations therein by making decisions for allocation or

76 A. Ashraf, B. Byholm, and I. Porres

deallocation. In our previous work [11, 1, 9], we built a prototype of an
autonomous PaaS called ARVUE. It implements reactive scaling. However,
in many cases, the reactive approach suffers in practice, due to delays of
several minutes inherent in the provisioning of VMs [31]. This shortcoming
is avoidable with proactive scaling.

Proactive scaling attempts to overcome the limitations of reactive scaling
by forecasting future load trends and acting upon them, instead of directly
acting on observed load. Forecasting usually has the drawback of added un-
certainty, as it introduces errors into the system. The error can be mitigated
by a hybrid approach, where forecast values are supplemented with error
estimates, which affect a blend weight for observed and forecast values. We
have developed a hybrid reactive-proactive VM provisioning algorithm called
CRAMP [§].

Admission control is a strategy for keeping servers from becoming over-
loaded. This is achieved by limiting the amount of traffic each server receives
by means of an intermediate entity known as an admission controller. The
admission controller may deny entry to fully utilized servers, thereby avoid-
ing server overload. If a server were to become overloaded, all users of that
server, whether existing or arriving, would suffer from deteriorated perfor-
mance and possible Service-Level Agreement (SLA) violations.

Traditional admission control strategies have mostly been request-based,
where admission control decisions would be made for each individual request.
This approach is not appropriate for stateful web applications from a user
experience point of view. If a request were to be denied in the middle of an
active session, when everything was working well previously, the user would
have a bad experience. Session-Based Admission Control (SBAC) is an al-
ternative strategy, where the admission decision is made once for each new
session and then enforced for all requests inside of a session [26]. This app-
roach is better from the perspective of the user, as it should not lead to ser-
vice being denied in the middle of a session. This approach has usually been
implemented using interval-based on-off control, where the admission con-
troller either admits or rejects all sessions arriving within a predefined time
interval. This approach has a flaw in that servers may become overloaded
if they accept too many requests in an admission interval, as the decisions
are made only at interval boundaries. Per-session admission control avoids
this problem by making a decision for each new session, regardless of when
it arrives. We have developed ACVAS [7], a session-based admission con-
trol approach with per-session admission control. ACVAS uses SBAC with
a novel deferment mechanism for sessions, which would have been rejected
with the traditional binary choice of acceptance or rejection.

Multi-tier Web Applications 7

3.2.1 VM Provisioning Approaches

Most of the existing works on VM provisioning for web-based systems can
be classified into two main categories: plan-based approaches and control
theoretic approaches [15, 29, 30]. Plan-based approaches can be further clas-
sified into workload prediction approaches [31, 6] and performance dynamics
model approaches [39, 21, 14, 23, 19]. One common difference between all
existing works discussed here and the proposed approach is that the proposed
approach uses shared hosting. Another distinguishing characteristic of the
proposed approach is that in addition to VM provisioning for the application
server tier, it also provides dynamic scaling of multiple web applications. In
ARVUE 9], we used shared hosting with reactive resource allocation. In
contrast, our proactive VM provisioning approach CRAMP [8] provides im-
proved QoS with prediction-based VM provisioning.

Ardagna et al. [6] proposed a distributed algorithm for managing SaaS
cloud systems that addresses capacity allocation for multiple heterogeneous
applications. Raivio et al. [31] used proactive resource allocation for short
message services in hybrid clouds. The main drawback of their approach
is that it assumes server processing capacity in terms of messages per sec-
ond, which is not a realistic assumption for HTTP traffic where different
types of requests may require different amounts of processing time. Never-
theless, the main challenge in the prediction-based approaches is in making
good prediction models that could ensure high prediction accuracy with low
computational cost. In our proposed approach, CRAMP is a hybrid reactive-
proactive approach. It uses a two-step prediction method with Exponential
Moving Average (EMA), which provides high prediction accuracy under real-
time constraints. Moreover, it gives more or less weight to the predicted
utilizations based on the Normalized Root Mean Square Error (NRMSE).

TwoSpot [39] supports hosting of multiple web applications, which are
automatically scaled up and down in a dedicated hosting environment. The
scaling down is decentralized, which may lead to severe random drops in
performance. Hu et al. [21] presented an algorithm for determining the min-
imum number of required servers, based on the expected arrival rate, service
rate, and SLA. In contrast, the proposed approach does not require knowl-
edge about the infrastructure or performance dynamics. Chieu et al. [14]
presented an approach that scales servers for a particular web application
based on the number of active user sessions. However, the main challenge
is in determining suitable threshold values on the number of user sessions.
Igbal et al. [23] proposed an approach for multi-tier web applications, which
uses response time and CPU utilization metrics to determine the bottleneck
tier and then scales it by provisioning a new VM. Han et al. [19] proposed

78 A. Ashraf, B. Byholm, and I. Porres

a reactive resource allocation approach to integrate VM-level scaling with a
more fine-grained resource-level scaling. In contrast, CRAMP supports hy-
brid reactive-proactive resource allocation with proportional and derivative
factors to determine the number of VMs to provision.

Dutreilh et al. [15] and Pan et al. [29] used control theoretic models to
design resource allocation solutions for cloud computing. Dutreilh et al.
presented a comparison of static threshold-based and reinforcement learning
techniques. Pan et al. used Proportional-Integral (PI)-controllers to provide
QoS guarantees. Patikirikorala et al. [30] proposed a multi-model frame-
work for implementing self-managing control systems for QoS management.
The work is based on a control theoretic approach called the Multi-Model
Switching and Tuning (MMST) adaptive control. In comparison to the con-
trol theoretic approaches, our proposed approach also uses proportional and
derivative factors, but it does not require knowledge about the performance
models or infrastructure dynamics.

3.2.2 Admission Control Approaches

The existing works on admission control for web-based systems can be clas-
sified according to the scheme presented in Almeida et al. [3]. For instance,
Robertsson et al. [32] and Voigt and Gunningberg [38] are control theoretic
approaches, while Huang et al. [22] and Muppala and Zhou [26] use machine
learning techniques. Similarly, Cherkasova and Phaal [13], Almeida et al. [3],
Chen et al. [12], and Shaaban and Hillston [33] are utility-based approaches.

Almeida et al. [3] proposed a joint resource allocation and admission
control approach for a virtualized platform hosting a number of web ap-
plications, where each VM runs a dedicated web service application. The
admission control mechanism uses request-based admission control. The op-
timization objective is to maximize the provider’s revenue, while satisfying
the customers’ QoS requirements and minimizing the cost of resource uti-
lization. The approach dynamically adjusts the fraction of capacity assigned
to each VM and limits the incoming workload by serving only the subset of
requests that maximize profits. It combines a performance model and an op-
timization model. The performance model determines future SLA violations
for each web service class based on a prediction of future workloads. The
optimization model uses these estimates to make the resource allocation and
admission control decisions.

Cherkasova and Phaal [13] proposed an SBAC approach that uses the
traditional on-off control. It supports four admission control strategies: re-
sponsive, stable, hybrid, and predictive. The hybrid strategy tunes itself to
be more stable or more responsive based on the observed QoS. The proposed

Multi-tier Web Applications 79

approach measures server utilizations during predefined time intervals. Us-
ing these measured utilizations, it computes predicted utilizations for the
next interval. If the predicted utilizations exceed specified thresholds, the
admission controller rejects all new sessions in the next time interval and
only serves the requests from already admitted sessions. Once the predicted
utilizations drop below the given thresholds, the server changes its policy for
the next time interval and begins to admit new sessions again.

Chen et al. [12] proposed Admission Control based on Estimation of Ser-
vice times (ACES). That is, to differentiate and admit requests based on the
amount of processing time required by a request. In ACES, admission of a re-
quest is decided by comparing the available computation capacity to the pre-
determined delay bound of the request. The service time estimation is based
on an empirical expression, which is derived from an experimental study on a
real web server. Shaaban and Hillston [33] proposed Cost-Based Admission
Control (CBAC), which uses a congestion control technique. Rather than
rejecting user requests at high load, CBAC uses a discount-charge model to
encourage users to postpone their requests to less loaded time periods. How-
ever, if a user chooses to go ahead with the request in a high load period,
then an extra charge is imposed on the user request. The model is effective
for e-commerce web sites when more users place orders that involve monetary
transactions. A disadvantage of CBAC is that it requires CBAC-specific web
pages to be included in the web application.

Muppala and Zhou [26] proposed the Coordinated Session-based Admis-
sion Control (CoSAC) approach, which provides SBAC for multi-tier web
applications with per-session admission control. CoSAC also provides coor-
dination among the states of tiers with a machine learning technique using
a Bayesian network. The admission control mechanism differentiates and
admits user sessions based on their type. For example, browsing mix ses-
sion, ordering mix session, and shopping mix session. However, it remains
unclear how it determines the type of a particular session in the first place.
Huang et al. [22] proposed admission control schemes for proportional differ-
entiated services. It applies to services with different priority classes. The
paper proposes two admission control schemes to enable Proportional De-
lay Differentiated Service (PDDS) at the application level. Each scheme is
augmented with a prediction mechanism, which predicts the total maximum
arrival rate and the maximum waiting time for each priority class based on
the arrival rate in the current and last three measurement intervals. When a
user request belonging to a specific priority class arrives, the admission con-
trol algorithm uses the time series predictor to forecast the average arrival
rate of the class for the next interval, computes the average waiting time for
the class for the next interval, and determines if the incoming user request

80 A. Ashraf, B. Byholm, and I. Porres

is admitted to the server. If admitted, the client is placed at the end of the
class queue.

Voigt and Gunningberg [38] proposed admission control based on the
expected resource consumption of the requests, including a mechanism for
service differentiation that guarantees low response time and high throughput
for premium clients. The approach avoids overutilization of individual server
resources, which are protected by dynamically setting the acceptance rate of
resource-intensive requests. The adaptation of the acceptance rates (aver-
age number of requests per second) is done by using Proportional-Derivative
(PD) feedback control loops. Robertsson et al. [32] proposed an admission
control mechanism for a web server system with control theoretic methods. It
uses a control theoretic model of a G/G/1 system with an admission control
mechanism for nonlinear analysis and design of controller parameters for a
discrete-time PI-controller. The controller calculates the desired admittance
rate based on the reference value of average server utilization and the esti-
mated or measured load situation (in terms of average server utilization). It
then rejects those requests that could not be admitted.

3.3 Architecture

The system architecture of the proposed VM provisioning and admission
control approach is depicted in Figure 3.2. It consists of the following com-
ponents: a load balancer with an accompanying configuration file, the global
controller, the admission controller, the cloud provisioner, the application
servers containing local controllers, the load predictors, an entertainment
server, and an application repository.

The purpose of the load balancer is to distribute the workload evenly
throughout the system, while the admission controller is responsible for ad-
mitting users, when deemed possible. The cloud provisioner is an exter-
nal component, which represents the control service of the underlying IaaS
provider. Application servers are dynamically provisioned VMs belonging to
the underlying IaaS cloud, capable of running multiple concurrent applica-
tions contained in an application repository.

3.3.1 Load Balancer

The purpose of the load balancer is to distribute the workload among the
available application servers. The prototype implementations of ARVUE [1,
9, 11] and CRAMP [8] use the free, lightweight load balancer HAProxy [34],
which can act as a reverse proxy in either of two modes: Transmission Control

Multi-tier Web Applications 81

ACVAS External Application Server 1
, Application 1 !

CRAMP [|

— HTTP : : '

1 Application ml-:
N

\
|
|

Entertail Server |

HTTP Predictor :
|
|
|
|
I

Local Controller
e ——

__________ N -
«<—| Load Balancer Global Controller }- = = = ! Cloud Provisioner I*: - - - o Repository .
HTTP [t !

I

|
S T

Application Server n
Admission Controller

I
I
I
I
I
I
I
________ - !
I
I
’

[
HTTP 1 Application m.,:

N - -

Predictor
Local Controller

Figure 3.2: System architecture of the proposed VM provisioning and admis-
sion control approach.

Protocol (TCP) or HTTP, which correspond to layers 4 and 7 in the Open
Systems Interconnection (OSI) model. We use the HTTP mode, as ARVUE
and CRAMP are designed for stateful web applications over HTTP.

HAProxy includes powerful logging capabilities using the Syslog standard.
It also supports session affinity, the ability to direct requests belonging to a
single session to the same server, and Access Control Lists (ACLs), even in
combination with Secure Socket Layer (SSL) since version 1.5.

Session affinity is supported by cookie rewriting or insertion. As the
prototype implementations of ARVUE and CRAMP are designed for Vaadin
applications [18], which use the Java Servlet technology, applications already
use the JSESSIONID cookie, which uniquely identifies the session the request
belongs to. Thus, HAProxy only has to intercept the JSESSIONID cookie
sent from the application to the client and prefix it with the identifier of the
backend in question. Incoming JSESSIONID cookies are similarly intercepted
and the inserted prefix is removed before they are sent to the applications.

HAProxy also comes with a built-in server health monitoring system,
based on making requests to servers and measuring their response times.
However, this system is currently not in use, as the proposed approach does
its own health monitoring by observing different metrics.

82 A. Ashraf, B. Byholm, and I. Porres

When an application request arrives at the load balancer, it gets redi-
rected to a suitable server according to the current configuration. A request
for an application not deployed at the moment is briefly sent to a server
tasked with entertaining the user and showing that the request is being pro-
cessed until the application has been successfully deployed, after which it is
delivered to the correct server. This initial deployment of an application will
take a much longer time than subsequent requests, currently on the order of
several seconds.

The load balancer is dynamically reconfigured by the global controller as
the properties of the cluster change. When an application is deployed, the
load balancer is reconfigured with a mapping between a Uniform Resource
Identifier (URI) that uniquely identifies the application and a set of applica-
tion servers hosting the application, by means of an ACL, a usage declaration
and a backend list. Weights for servers are periodically recomputed accord-
ing to the health of each server, with higher weights assigned to less loaded
servers.

The weights are integers in the range [0, Wyax], where higher values mean
higher priority. In the case of HAProxy, Wyax = 255. The value 0 is special
in that it effectively prevents the server from receiving any new requests. This
is explained by the weighting algorithm in Algorithm 3.1, which distributes
the load among the servers so that each server receives a number of requests
proportional to its weight divided by the sum of all the weights. This is
a simple mapping of the current load to the weight interval. Here, S(k) is
the set of servers at discrete time k, Cy(s, k) is the weighted load average
of server s at time k, C(s,k) is the measured load average of server s at
time k, and similarly C (s, k) is the predicted load average of server s at time
k. w. € [0,1] is the weighting coefficient for CPU load average, Cyg is the
server load average upper threshold, and W (s, k) is the weight of server s at
time k for load balancing. Thus, the algorithm obtains C(s, k) and C(s, k)
of each server s € S(k) and uses them along with w, to compute C,(s, k) of
each server (line 1). Afterwards, it uses Cy (s, k) to compute W (s, k) of each
server s (lines 2-10). The notation used in the algorithm is also defined in
Table 3.1 in Section 3.4.

3.3.2 Global Controller

The global controller is responsible for managing the cluster by monitoring its
constituents and reacting to changes in the observed parameters, as reported
by the local controllers. It can be viewed as a control loop that implements
the VM provisioning algorithms described in Section 3.4. Inter-VM commu-
nication is performed using Java Remote Method Invocation (RMI), which

Multi-tier Web Applications 83

Algorithm 3.1. Weighting algorithm

1: Vs € S(k)|Cu(s, k) = we - C(s,k) + (1 — we) - C(s, k)
2: for s € S(k) do
3. if Cy(s, k) > Cyg then

4: W(s, k) :=0

5. else if Cy(s, k) > 0 then

6: W(S, k) = [WMAX — %Zk) . WMAX—‘
7. else

8: VV(S7 k) = Wamax

9: end if

10: end for

is a practical implementation of the Proxy pattern, performing distributed
object communication: the object-oriented equivalent of Remote Procedure
Call (RPC).

An alternative to RMI could be the Remote Open Services Gateway initia-
tive (OSGi) specification [28], implemented in both Apache CXF and Eclipse
ECF. This was not attempted, as it would have taken more time to imple-
ment. However, this approach might be easier to maintain. It would also be
possible to use a Representational State Transfer (REST) interface through
HTTP, which could make it easier to interface with the inner workings of
the platform.

3.3.3 Admission Controller

The admission controller is responsible for admitting users to application
servers. It supplements the load balancer in ensuring that the servers do
not become overloaded by deciding whether to admit, defer, or reject traf-
fic. It makes admission control decisions per session, not per request. This
allows for a smoother user experience in a stateful environment, as a user of
an application would not enjoy suddenly having requests to the application
denied, when everything was working fine a moment ago. The admission
controller implements per-session admission control. Unlike the traditional
on-off approach, which makes admission control decisions on an interval ba-
sis, the per-session admission approach is not as vulnerable to sudden traffic
fluctuations. The on-off approach can lead to servers becoming overloaded if
they are set to admit traffic and a sudden traffic spike occurs [7]. The admis-
sion control decisions are based on prediction of future load trends combined
with server health monitoring, as explained in Section 3.4.4.

84 A. Ashraf, B. Byholm, and I. Porres

3.3.4 Cloud Provisioner

The cloud provisioner is an external component, which represents the control
service of the underlying IaaS provider. The global controller communicates
with the cloud provisioner through its custom Application Programming In-
terface (API) in order to realize the decisions on how to manage the server
tier. Proper application of the fagade pattern decouples the proposed app-
roach from the underlying IaaS provider. The prototypes [1, 9, 8, 11] cur-
rently support Amazon Elastic Compute Cloud (EC2) in homogeneous con-
figurations. For now, we only provision m1.small instances, as our workloads
are quite small, but the instance type can be changed easily. Provisioning
VMs of different capacity could eventually lead to better granularity and
lower operating costs. Support for more providers and heterogeneous config-
urations is planned for the future.

3.3.5 Entertainment Server

The entertainment server acts as a default service, which is used whenever a
requested service is unavailable. It amounts to a polling session, notifying the
user when the requested service is available and showing a waiting message
or other distraction until then. Using server push technology or websockets,
the entertainment server could be moved to the client instead.

3.3.6 Application Server

The application servers are dynamically provisioned VMs belonging to the
underlying IaaS cloud, capable of concurrently running multiple applica-
tions inside an OSGi environment [27]. The prototype implementations of
ARVUE [1, 9, 11] and CRAMP [8] use Apache Felix, which is a free implemen-
tation of the OSGi R4 Service Platform and other related technologies [35].

The OSGi specifications were originally intended for embedded devices,
but have since outgrown their original purpose. They provide a dynamic
component model, addressing a major shortcoming of Java. Figure 3.3 illus-
trates the OSGi architecture.

Each application server has a local controller, responsible for monitoring
the state of said server. Metrics such as CPU load and memory usage of both
the VM and of the individual deployed applications are collected and fed to
the global controller for further processing. The global controller delegates
application-tier tasks such as deployment and undeployment of bundles to the
local controllers, which are responsible for notifying the OSGi environment
of any actions to take.

Multi-tier Web Applications 85

Applications / Bundles

Java Virtual Machine

Hardware

Figure 3.3: The OSGi platform.

The predictor from CRAMP [8] is also connected to each application
server, making predictions based on the values obtained through the two-step
prediction process. The prototype implementation computes an error esti-
mate based on the NRMSE of predictions in the past window and uses that
as a weighting parameter when determining how to blend the predicted and
observed utilization of the monitored resources, as explained in Section 3.4.1.

3.3.7 Application Repository

Application bundles are contained in an application repository. When an
application is deployed to a server, the server fetches the bundle from the
repository. This implies that the repository is shared among application
servers. A newly provisioned application server is assigned an application
repository by the global controller. The applications are self-contained OSGi
bundles, which allows for dynamic loading and unloading of bundles at the
discretion of the local controller. The service-oriented nature of the OSGi
platform suits this approach well.

A bundle is a collection of Java classes and resources together with a

86 A. Ashraf, B. Byholm, and I. Porres

Listing 3.1: Example manifest file with OSGi headers.

Bundle—Name: Hello World

Bundle—SymbolicName: org.arvue.helloworld
Bundle—Description: A Hello World bundle
Bundle—ManifestVersion: 2

Bundle—Version: 1.0.0

Bundle—Activator: org.arvue. helloworld. Activator
Export—Package: org.arvue.helloworld;version="1.0.0"
Import—Package: org.osgi.framework;version="1.3.0"

manifest file MANIFEST.MF augmented with OSGi headers. Listing 3.1 shows
an example manifest file complete with headers.

3.4 Algorithms

The VM provisioning algorithms used by the global controller constitute a
hybrid reactive-proactive PD-controller [8]. They implement proportional
scaling augmented with derivative control in order to react to changes in
the health of the system [9]. The server tier can be scaled independently of
the application tier in a shared hosting environment. The VM provisioning
algorithms are supplemented by a set of allocation policies. The prototype
currently supports the following policies: lowest memory utilization, lowest
CPU load, least concurrent sessions, and newest server first. In addition to
this, we have also developed an admission control algorithm [7]. A summary
of the concepts and notations used to describe the VM provisioning algo-
rithms is available in Table 3.1. The additional concepts and notations for
the admission control algorithm are provided in Table 3.2.

The input variables are average CPU load and memory usage. Average
CPU load is the average Unix-like system load, which is based on the queue
length of runnable processes, divided by the number of CPU cores present.

The VM provisioning algorithms have been designed to prevent oscilla-
tions in the size of the application server pool. There are several motivating
factors behind this choice. Firstly, provisioning VMs takes substantial time.
Combined with frequent scaling operations, this may lead to bad perfor-
mance [39]. Secondly, usage based billing requires the time to be quantized
at some resolution. For example, Amazon EC2 bases billing on full used
hours. Therefore, it might not make sense to terminate a VM until it is close
to a full billing hour, as it is impossible to pay for less than an entire hour.
Thus, no scaling actions are taken until previous operations have been com-
pleted. This is why an underutilized server is terminated only after being
consistently underutilized for at least UC7 consecutive iterations.

Table 3.1: Summary of VM provisioning concepts and their notation

Multi-tier Web Applications

A(k) set of web applications at time k
A;(k) set of inactive applications at time k
A (k) set of long-term inactive applications at time k
Apver (k) set of overloaded applications at time k
S(k) set of servers at time k
S (k) set of long-term underutilized servers at time k
Sy (k) set of new servers at time k
Sover (k) set of overloaded servers at time k
S-over (k) set of non-overloaded servers at time k
Si(k) set of servers selected for termination at time k
Su(k) set of underutilized servers at time &
C(a, k) measured CPU utilization of application a at time k
C(s, k) measured load average of server s at time &
el (s, k) predicted load average of server s at time k
Cu(s, k) weighted load average of server s at time k
dep_apps(s, k) | applications deployed on server s at time k
inactive_c(a) | inactivity count of application a
M(a, k) measured memory utilization of application a at time k
M (s, k) measured memory utilization of server s at time k
M(s, k) predicted memory utilization of server s at time k
My, (s, k) weighted memory utilization of server s at time k
under_u_c(s) | underutilization count of server s
W (s, k) weight of server s at time & for load balancing
Aa aggressiveness factor for additional capacity
Ap aggressiveness factor for VM provisioning
Ap aggressiveness factor for VM termination
Pp(k) proportional factor for VM provisioning
Dp(k) derivative factor for VM provisioning
Pr(k) proportional factor for VM termination
Dr(k) derivative factor for VM termination
We weighting coefficient for CPU load average
Wip weighting coefficient for memory usage
wp weighting coefficient for VM provisioning
wy weighting coefficient for VM termination
Cra application CPU utilization lower threshold
CrLs server load average lower threshold
Cua application CPU utilization upper threshold
Cus server load average upper threshold
ICr 4 inactivity count threshold for an application
ICrg inactivity count threshold for a server
My 4 application memory utilization lower threshold
Mg server memory utilization lower threshold
My 4 application memory utilization upper threshold
Mys server memory utilization upper threshold
Whaax maximum value of a server weight for load balancing
Na(k) number of additional servers at time k
Np number of servers to use as base capacity
Np(k) number of servers to provision at time k
Nr(k) number of servers to terminate at time k

87

88 A. Ashraf, B. Byholm, and I. Porres

Table 3.2: Additional concepts and notation for admission control

seq (k) set of aborted sessions at time k
seq(k) set of deferred sessions at time k
sen (k) set of new session requests at time k
ser(k) set of rejected sessions at time k

Sopen(k) | set of open application servers at time k

C(ent, k) | load average of the entertainment server at time k

M (ent, k) | memory utilization of the entertainment server at time k
w weighting coefficient for admission control

The memory usage metric M (s, k) for a server s at discrete time k is given
in (3.1). It is based on the amount of free memory mem e, the size of the
disk cache memecqche, the buffers memy,r, and the total memory size menisotq:-
The disk cache memegene is excluded from the amount of used memory, as
the underlying operating system is at liberty to use free memory for such
purposes as it sees fit. It will automatically be reduced as the demand for
memory increases. The goal is to keep M (s, k) below the server memory
utilization upper threshold Myg. Likewise, the memory usage metric for an
application a at discrete time k is defined as M (a, k), which is the amount
of the memory used by the application deployment plus the memory used by
the user sessions divided by the total memory size mem;gsq.

MeMiotal — (MEM free + MEMpyf + MEMcache)

M(s, k) = (3.1)

MeMiotal

The proposed approach maintains a fixed minimum number of application
servers, known as the base capacity Ng. In addition, it also maintains a
dynamically adjusted number of additional application servers N4 (k), which
is computed as in (3.2), where the aggressiveness factor A4 € [0, 1] restricts
the additional capacity to a fraction of the total capacity, S(k) is the set of
servers at time k, and Sy (k) is the set of overloaded servers at time k. This
extra capacity is needed to account for various delays and errors, such as VM
provisioning time and sampling frequency. For example, A4 = 0.2 restricts
the maximum number of additional application servers to 20% of the total

1S(k)]-

(15| - Aal, i [S(8)] ~ [Soer (K)] = 0

NA(k> = { S(k . (3~2)
[7|5(k)|l_‘(so)vlw(k)| 'AA—‘ , otherwise

The number of VMs to provision Np(k) is determined by (3.3), where
w, € [0, 1] is a real number called the weighting coefficient for VM provision-

Multi-tier Web Applications 89

ing. It balances the influence of the proportional factor Pp(k) relative to the
derivative factor Dp(k). For example, w, = 0.5 would give equal weight to
Pp(k) and Dp(k). A suitable value for this coefficient should be determined
experimentally for a given workload. We have used w, = 0.5 in all our exper-
iments so far. The proportional factor Pp(k) given by (3.4) uses a constant
aggressiveness factor for VM provisioning Ap € [0, 1], which determines how
many VMs to provision. The derivative factor Dp(k) is defined by (3.5). It
observes the change in the total number of overloaded servers between the
previous and the current iteration.

Np(k) = [y~ Po(k) + (1= wy) - Dp(R)] (33
Po(k) = [Super ()] - Ap 3.0
DP(k) = |Sover(k)| - ‘Sover(k - 1)‘ (35

The number of servers to terminate Np(k) is computed as in (3.6). It
uses a weighting coefficient for VM termination w; € [0, 1], similar to w,
in (3.3). The currently required base capacity Np and additional capacity
N4 (k) have to be taken into account. The proportional factor for termi-
nation Pr(k) is calculated as in (3.7). Here Ar € [0, 1], the aggressiveness
factor for VM termination, works like Ap in (3.4). Finally, the derivative
factor for termination Dr(k) is given by (3.8), which observes the change in
the number of long-time underutilized servers between the previous and the
current iteration.

Nr(k) = [wy - Pr(k) + (1 —wy) - Dp(k)] — Ng — Na(k) (3.6)
Pr(k) = [Sw(k)| - Ar (3.7)
Dr(k) = [Sw(k)| — [Sw(k — 1) (3.8)

3.4.1 Load Prediction

Prediction is performed with a two-step method [4, 5] based on EMA, which
filters the monitored resource trends, producing a smoother curve. EMA is
the weighted mean of the n samples in the past window, where the weights
decrease exponentially. Figure 3.4 illustrates an EMA over a past window of
size n = 20, where less weight is given to old samples when computing the
mean in each measure.

As we use a hybrid reactive-proactive VM provisioning algorithm, there
is a need to blend the measured and predicted values. This is done through
linear interpolation [7] with the weights w, and wy, [8], the former for CPU

90 A. Ashraf, B. Byholm, and I. Porres

0.10 - H

0.08 - H

Weight

0.06 - H

0.04 - H

e

e
-20 -15 -10 -5 0
Sample(k)

Figure 3.4: Example of EMA over a past window of size n = 20, where less
weight is given to old samples when computing the mean in each measure.

load average and the latter for memory usage. In the current implementa-
tion, each of these weights is set to the NRMSE of the predictions so that
lower prediction error will favor predicted values over observed values. The
NRMSE calculation is given by (3.9), where y; is the latest measured utiliza-
tion, ¢; is the latest predicted utilization, n is the number of observations,
and maz is the maximum value of both measured and observed utilizations
formed over the current interval, while min is analogous to max. More details
of our load prediction approach are provided in [7, 8].

% ?:1(%‘ - Ui)?
NRMSE = (3.9)

max — man

3.4.2 The Server Tier

The server tier consists of the application servers, which can be dynamically
added to or removed from the cluster. The VM provisioning algorithm for
the application server tier is presented in Algorithm 3.2. At each sampling
interval k, the global controller retrieves the performance metrics from each
of the local controllers, evaluates them and decides whether or not to take
an action. The set of application servers is partitioned into disjoint subsets
according to the current state of each server. The possible server states are:
overloaded, non-overloaded, underutilized, and long-term underutilized.

Multi-tier Web Applications 91

Algorithm 3.2. Proactive VM provisioning for the application server tier

1: while true do
2 Vs e S(k)|Culs, k) = w.-C(s, k) + (1 —we) - C(s, k)
3 Vs € S(k)|My(s,k) = wn M(s k) + (1 — wy,) - M(s, k)
4: Soper(k) :={Vs € S(k)|Cy(s,k) > Cys} U{Vs € S(k)|My(s, k) > Mygs}
5. Aoper(k) = Usesom(k d_a(s, k)
6: Sﬁover() () \SOUST()
7 if |Sover(k)] > 1 A |Soover(k)| > 1 then
8: for a € Apyer(k) do
9: deploy application a as per application-to-server allocation policy
10: end for
11: end if
123 [Souer(B)] = (IS(E)| — Na(k)) A Np(k) > 1 then
13: provision Np(k) VMs as a set of new servers Sy, (k)
14: S(k) .= S(k)U S, (k)
15: Wait until servers Sy, (k) become operational
16: for a € Agper(k) do
17: deploy application a on servers Sy, (k)
18: end for
19: end if
20: Syu(k) :={Vs € S(k)|Cu(s, k) < Crgtn{Vvs e S(k)|My(s, k) < Mrg}
21 S (k) = {Vs € Sy(k)|under_u_c(s) > ICrg}
22: if (|Sju (k)] — Ng — Na(k)) > 1 A Np(k) > 1 then
23: sort servers Sy, (k) with respect to server utilization metrics
24: select N (k) servers from Sy, (k) as servers selected for termination S;(k)
25: migrate all applications and user sessions from servers S;(k)
26: S(k) := S(k)\ Se(k)
27: terminate VMs for servers S;(k)

28: end if
29: end while

The algorithm starts by partitioning the set of application servers into a
set of overloaded servers S, (k) and a set of non-overloaded servers S e, (k)
according to the supplied threshold levels (Cpyg and Myg) of the observed
input variables: memory utilization and CPU load (lines 2-4). A server
is overloaded if the utilization of any resource exceeds its upper threshold
value. All other servers are considered to be non-overloaded (line 6). The
applications running on overloaded servers are added to a set of overloaded
applications Aguer(k) to be deployed on any available non-overloaded appli-
cation servers as per the allocation policy for applications to servers (line 5).
If the number of overloaded application servers exceeds the threshold level, a
proportional amount of virtualized application servers is provisioned (line 13)

92 A. Ashraf, B. Byholm, and I. Porres

and the overloaded applications are deployed to the new servers as they be-
come available (lines 16-18).

The server tier is scaled down by constructing a set of underutilized
servers S, (k) (line 20) and a set of long-term underutilized servers Sy, (k)
(line 21), where servers are deemed idle if their utilization levels lie below
the given lower thresholds (CLg and My g). Long-term underutilized servers
are servers that have been consistently underutilized for more than a given
number of iterations ICrg. When the number of long-term underutilized
servers exceeds the base capacity Np plus the additional capacity Na(k)
(line 22), the remainder are terminated after their active sessions have been
migrated to other servers (lines 23-27).

3.4.3 The Application Tier

Applications can be scaled to run on many servers according to their indi-
vidual demand. Due to memory constraints, the naive approach of always
running all applications on all servers is unfeasible. Algorithm 3.3 shows how
individual applications are scaled up and down according to their resource
utilization. The set of applications is partitioned into disjoint subsets accord-
ing to the current state of each application. The possible application states
are: overloaded, non-overloaded, inactive and long-term inactive.

Algorithm 3.3. Reactive scaling of applications

1: while true do
2t Aover(k) :={s € S(k),a € dep_apps(s, k) |
C(a,k) > Cya/|dep-apps(s, k)| V M (a, k) > My 4}
3. if |Agper (k)| > 1 then
4: for all a € Ayyer(k) do
5 deploy application a as per application-to-server allocation policy
6: end for
7. end if
8 Ai(k):={se S(k),a € dep_apps(s, k) |C(a, k) < CpaAM(a, k) < Mpa}
9: Au(k) :={a € A;i(k) | inactive_c(a) > IC 4}
10: if |A;(k)| > 1 then

11: migrate all applications and user sessions for applications Ay (k)
12: A(k) == A(k) \ A (k)

13: for all a € Aj;(k) do

14: unload application a

15: end for

16: end if

17: end while

Multi-tier Web Applications 93

An application is overloaded when it uses more resources than allotted
(line 2). Each overloaded application a € Agper(k) is deployed to another
server according to the allocation policy for applications to servers (lines 4—
6). When an application has been running on a server without exceeding
the lower utilization thresholds (C 4 and My, 4), possible active sessions are
migrated to another deployment of the application and then said applica-
tion is undeployed (lines 8-15). This makes the memory available to other
applications that might need it.

3.4.4 Admission Control

The admission control algorithm is given as Algorithm 3.4. It continuously
checks for new se, (k) or deferred sessions seq(k) (line 1). If any are found
(line 2), it updates the weighting coefficient w € [0, 1], representing the
weight given to predicted and observed utilizations (line 3). If w = 1.0, no
predictions are calculated (lines 5-6). The prediction process uses a two-step
approach, providing filtered input data to the predictor [5]. We currently per-
form automatic adjustment and tuning in a similar fashion to Cherkasova and
Phaal [13], where the weighting coefficient w is defined according to (3.10).
It is based on the following metrics: number of aborted sessions |se,(k)],
number of deferred sessions |seq(k)|, number of rejected sessions |se,(k)],
and number of overloaded servers | Syper (k).

1, if |seq (k)| > 0V |seq(k)| > 0V |se (k)| >0
w=1{1, if | Sover (k)| > 0
max(0.1,w — 0.01), otherwise
(3.10)

For each iteration, a bit more preference is given to the predicted values,
up to the limit of 90 %. However, as soon as a problem is detected, full
preference is given to the observed values, as the old predictions cannot be
trusted. This should help in reducing lag when there are sudden changes in
the load trends after long periods of good predictions.

If the algorithm finds servers in good condition (line 12), the session is
admitted (lines 13-17), else the session is deferred to the entertainment server
(line 20). Only if also the entertainment server is overloaded, will the session
be rejected (line 22).

94

A. Ashraf, B. Byholm, and I. Porres

Algorithm 3.4. Admission control

1: while true do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

2
3
4
5:
6:
7
8
9

if |se, (k)| > 1V |seq(k)| > 1 then

update the weighting coefficient w according to (3.10)
if w =1 then
Vs € S(k)|Cy(s, k) == C(s, k)
Vs € S(k)|My(s, k) := M(s, k)
else
Vs € S(k)|Cu(s, k) = w- C(s, k) + (1 —w) - C(s, k)
Vs € S(k)|[My(s, k) :==w- M(s, k) + (1 —w) - M(s, k)
end if
Sopen(k) :={Vs € S(k)|Cy(s, k) < LAyr AN My(s, k) < MUyr}
if |Sopen(k)| > 1 then
if |seq(k)| > 1 then
pop first session in seq(k) and admit it on a server in Sppen (k)
else
pop first session in se, (k) and admit it on a server in Sypen (k)
end if
else if |se, (k)] > 1 then
if C(ent, k) < LAyr A M(ent, k) < MUyr then
pop first session in se, (k) and defer it
else
pop first session in se, (k) and reject it
end if
end if

end if

26: end while

3.5 Experimental Evaluation

To validate and evaluate the proposed VM provisioning and admission control
approaches, we developed discrete-event simulations for ARVUE, CRAMP,
and ACVAS and performed a series of experiments involving synthetic as
well as realistic load patterns. The synthetic load pattern consists of two
artificial load peaks, while the realistic load pattern is based on real world
data. In this section, we present experimental results based on the discrete-

event simulations.

Multi-tier Web Applications 95

3.5.1 VM Provisioning Experiments

This section presents some of the simulations and experiments that have been
conducted to validate and evaluate ARVUE and CRAMP VM provisioning
algorithms. The goal of these experiments was to test the two approaches
and to compare their results.

In order to generate workload, a set of application users was needed. In
our discrete-event simulations, we developed a load generator to emulate a
given number of user sessions making HTTP requests on the web applica-
tions. We also constructed a set of 100 simulated web applications of varying
resource needs, designed to require a given amount of work on the hosting
server(s). When a new HTTP request arrived at an application, the appli-
cation would execute a loop for a number of iterations, corresponding to the
empirically derived time required to run the loop on an unburdened server.
As the objective of the VM provisioning experiments was to compare the
results of ARVUE and CRAMP, admission control was not used in these
experiments.

Design and Setup

We performed two experiments with the proposed VM provisioning ap-
proaches: ARVUE and CRAMP. The first experiment used a synthetic load
pattern, which was designed to scale up to 1000 concurrent sessions in two
peaks with a period of no activity between them. In the second peak, the
arrival rate was twice as high as in the first peak.

The second experiment was designed to simulate a load representing a
workload trace from a real web-based system. The traces were derived from
Squid proxy server access logs obtained from the IRCache project [24]. As the
access logs did not include session information, we defined a session as a series
of requests from the same originating Internet Protocol (IP)-address, where
the time between individual requests was less than 15 minutes. We then
produced a histogram of sessions per second and used linear interpolation
and scaling by a factor of 30 to obtain the load traces used in the experiment.

In a real-world application, there would be different kinds of requests
available, requiring different amounts of CPU time. Take the simple case
of a web shop: there might be one class of requests for adding items to the
shopping basket, requiring little CPU time, and another class of requests
requiring more CPU time, like computing the sum total of the items in the
shopping basket. Users of an application would make a number of varying
requests through their interactions with the application. After each request,
there would be a delay while the user was processing the newly retrieved

96 A. Ashraf, B. Byholm, and I. Porres

information, like when presented with a new resource. In both experiments,
each user was initially assigned a random application and a session duration
of 15 minutes. Application 1 to 10 were assigned to 50 % of all users, appli-
cation 11 to 20 were used by 25 %, application 21 to 30 received 20 % of all
users, while the remaining 5 % was shared among the other 70 applications.
Each user made requests to its assigned application, none of which was to
require more than 10 ms of CPU time on an idle server. In order to emulate
the time needed for a human to process the information obtained in response
to a request, the simulated users waited up to 20 s between requests. All
random variables were uniformly distributed. This means they do not fit the
Markovian model.

The sampling period was k = 10 s. The upper threshold for server load
average Cyg and the upper threshold for server memory utilization My ¢ were
both set to 0.8. These values are considered reasonable for efficient server
utilization [25, 2].

The application-server allocation policy used was lowest load average.
The session-server allocation policy was also set to lowest load average, real-
ized through the weighted round-robin policy of HAProxy, where the weights
were assigned by the global controller according to the load averages of the
servers, as described in Section 3.3.1.

Results and Analysis

The results from the VM provisioning experiment with the synthetic load
pattern are shown in Figures 3.5a and 3.5b. The depicted observed parame-
ters are: number of servers, average response time, average server CPU load,
average memory utilization, and applications per server. The upper half of
Table 3.3 contains a summary of the results.

The results from the two approaches are compared based on the following
criteria: number of servers used, average CPU load average, mazimum CPU
load average, average memory utilization, maximum memory utilization, av-
erage RTT, and mazimum RTT. The resource utilizations are ranked ac-
cording to the utilization error, where over-utilization is considered infinitely
bad.

In Figures 3.5a and 3.5b, the number of servers plots show that the num-
ber of application servers varied in accordance with the number of simul-
taneous user sessions. In this experiment, ARVUE used a maximum of 16
servers, whereas CRAMP used no more than 14 servers. The RTT remained
quite stable around 20 ms, as expected. The server CPU load average and
the memory utilization never exceeded 1.0.

The results from the experiment with the synthetic load pattern indicate

Multi-tier Web Applications 97

that the system is working as intended. The use of additional capacity seems
to alleviate the problem of servers becoming overloaded due to long reaction
times. The conservative VM termination policy of the proposed approach
explains why the decrease in the number of servers occurs later than the
decrease in the number of sessions. As mentioned in Section 3.4, one of
the objectives of the proposed VM provisioning algorithms is to prevent
oscillations in the number of application servers used. The results indicate
that this was achieved.

Figures 3.6a and 3.6b present the results of the VM provisioning exper-
iment with the realistic load pattern. The results are also presented in the
lower half of Table 3.3.

In this experiment, ARVUE used a maximum of 16 servers, whereas
CRAMP used no more than 8 servers. In the case of ARVUE, the maximum
response time was 21.3 ms and the average response time was 12.63 ms. In
contrast, CRAMP had a maximum response time of 27.43 ms and an average
response time of 14.7 ms. For both ARVUE and CRAMP, the server CPU
load average and the memory utilization never exceeded 1.0.

The results from the experiment with the realistic load pattern show sig-
nificantly better performance of CRAMP compared to ARVUE in terms of
number of servers. CRAMP used half as many servers as ARVUE, but it
still provided similar results in terms of average response time, CPU load
average, and memory utilization. The ability to make predictions of future
trends is a significant advantage, even if the predictions may not be fully
accurate. Still, there were significant problems with servers becoming over-
loaded due to the provisioning delay. Increasing the safety margins further
by lowering the upper resource utilization threshold values or increasing the
extra capacity buffer further might not be economically viable. We suspect
that an appropriate admission control strategy will be able to prevent the
servers from becoming overloaded in an economically viable fashion.

Figure 3.7a shows the utilization error in the first experiment that uses the
synthetic load pattern. For brevity, we only depict the CPU load in the error
analysis. Therefore, error is defined as the absolute difference between the
target CPU load average level Cyg and the measured value of the CPU load
average C(s, k) averaged over all servers in the system. Initially, the servers
are naturally underloaded due to the lack of work. Thereafter, as soon as the
first peak of load arrives, the error shrinks significantly and becomes as low as
0.1 for ARVUE and 0.3 for CRAMP. The higher CPU load error for CRAMP
at this point was due to the fact that CRAMP results in this experiment
were mostly memory-driven, as can be seen in Figure 3.5b. In other words,
CRAMP had higher error with respect to the CPU load, but it had lower
error with respect to the memory utilization. The error grows again as the

98 A. Ashraf, B. Byholm, and I. Porres
< 14 memory utilization q 140
s12F 1.0 11205
g 1 apps. per server -------- 100§
08| 180 5
g06 {60 =
5 2
£ 04 14 §
€02 4 20

0 S 0
14 | load average q 140 __
o 12F 10 - 4 120 8
S 4 response time (ms) -------- 100 g
g o8 80 =
< 06 60 2
< <
S04 40 g
0.2 20 ¢
0 0
1400 F ' ' ' ' sessions] gg
1200 F servers ------- 1 54
21000 - i "
1= T [
@ 800 [] 2
a [}
2 600 []]
400]
200 i
0 P T T S I,
0 4
time (hours)
(a) Results of ARVUE with synthetic load.
< 14 memory utilization q 140
sz} 1.0 - 41205
E 1 apps. per server - 100 %
508 80 5
206 60 &
@
£04 40 §
€02 20
0 — 0
14 | load average 140 _
o121 1.0 - 41208
g 1 response time (ms) -------- 100%
%08 £
© Q
5 06 2
S04 2
0.2 8
0 0
1400 | ' ' ' ' sessions] gg
1200 F servers ------- 1 24
21000 [12 o
S 4 18 ©
‘% 800 |] 452
@ [V I wit = @
8 600 - | | : ‘ 1120
400 [e ; | 1 g
200 | 47 Y. N 13
0 . 1 M St— R 1 M 0
0 1 2 3 6 7 8

4
time (hours)

(b) Results of CRAMP with synthetic load.

Figure 3.5: Results of VM provisioning experiment with the synthetic load
pattern. In this experiment, both ARVUE and CRAMP had similar results,

except that CRAMP used fewer servers.

Multi-tier Web Applications 99

c 14 memory utilization —— 7 140
st12} 1.0 1205
T 4 apps. per server -- 1005
Sos8f {8 3
g06 {60 =
1%
£04 140 &
E 02 {2 °
0 0
141 load average ——— | 140
o121 R 120 2
g 4 response time (ms) -- 100
208 [,ﬂ 480 =
S 0.6 /Lf 60 &
- Ub T
Soal ¥ L,M E-,
02}/,]
0 0
1400 | | | =T
1200 [4 24
[} n 4 21
21000 1% ¢
800 | i i 115 g
& 600 | | 4128
400 | (—— | 12
200 | S 18
0 i 1 1 1 1 P 0
0 1 3 4 5 6
time (hours)
(a) Results of ARVUE with realistic load.
< 14 memory utilizaton —— 7 140
s12f 1.0 120 5
R apps. per server 100;
So0s8 80 3
206 60 &
@
£ 04 40 g2
€02 2 °
0 0
141 load average —— | 140
o121 10 - 120 2
S response time (ms) -- 1008
% 0.8 | £
Q
g 06]
204 g
0.2 o
0 0
1400 | ' I I I sessions — 1%
1200 F servers 1 24
@ n 4 21
51000 4 18 g
% 800 [g 2
a 15 S
2 600 | {128
400 | ; s 19
200 |57 L 13
0 Y 1 1 1 1 I — 0
0 1 2 4 5 6

3
time (hours)

(b) Results of CRAMP with realistic load.

Figure 3.6: Results of VM provisioning experiment with the realistic load
pattern. In this experiment, CRAMP used half as many servers as ARVUE,
but it still provided similar performance.

100 A. Ashraf, B. Byholm, and I. Porres

Table 3.3: Results from VM provisioning experiments. The upper half of
the table contains results from the first experiment with the synthetic load
pattern, while the lower half contains results from the second experiment
with the realistic load pattern. Entries in bold are better according to the
evaluation criteria.

approach servers | loadavg. | loadmax | memayg, | MeMpyayx RTT . RTT ax
ARVUEgyntn 16 0.21 0.9 0.21 0.71 | 12.23 ms | 32.88 ms
CRAMPgy 1, 14 0.17 0.58 0.25 0.84 | 12.97 ms | 34.72 ms
ARVUE; e 16 0.25 0.9 0.27 0.71 | 12.63 ms 21.3 ms
CRAMP, ¢ 8 0.28 0.58 04 0.82 14.7 ms | 27.43 ms

period of no activity starts after the first peak of load. In the second peak,
both ARVUE and CRAMP showed similar results, where the error becomes
as low as 0.25. Finally, as the request rate sinks after the second peak of
load, the error grows further due to underutilization. This can be attributed
to the intentionally cautious policy for scaling down, which is explained in
Section 3.4 and ultimately to the lack of work. A more aggressive policy
for scaling down might work without introducing oscillating behavior, but
when using a third-party IaaS it would still not make sense to terminate a
VM until the current billing interval is coming to an end, as that resource
constitutes a sunk cost.

Error analysis of the second experiment that uses the realistic load pattern
can be seen in Figure 3.7b. CRAMP appears to have lower error than ARVUE
throughout most of the experiment, with the only exceptions being due to
underutilization.

3.5.2 Admission Control Experiments

This section presents experiments with admission control. The goal of these
experiments was to test our proposed admission control approach ACVAS [7]
and to compare it against an existing SBAC implementation [13], here re-
ferred to as the alternative approach. Asin the VM provisioning experiments,
the experiments in this section also used 100 simulated web applications of
various resource requirements. The experiments were conducted through
discrete-event simulations.

Design and Setup

We performed two experiments with ACVAS and the alternative approach.
The first admission control experiment used the synthetic load pattern, which

Multi-tier Web Applications 101

" ARVUE erfor

CRAMP error -------

4
time (hours)

(a) Synthetic load pattern experiment: error analysis.

1 T T T T

ARVUIE error
CRAMP error -------

0.8 [1

0.6 [

0.4

0 L
3
time (hours)

(b) Realistic load pattern experiment: error analysis.

Figure 3.7: CPU load average error analysis in the VM provisioning ex-
periments. In the first experiment, CRAMP appears to have higher error
because its results were mostly memory-driven. In the second experiment,
CRAMP had lower error than ARVUE, with the only exceptions being due
to underutilization.

102 A. Ashraf, B. Byholm, and I. Porres

was also used in the first VM provisioning experiment described in Sec-
tion 3.5.1. This workload was designed to scale up to 1000 concurrent ses-
sions in two peaks with a period of no activity between them. Similarly, the
second admission control experiment was designed to use the realistic load
pattern, which was also used in the second VM provisioning experiment in
Section 3.5.1. The sampling period k, the upper threshold for server load
average Cpyg, the upper threshold for server memory utilization Mg, the
application-server allocation policy, and the session-server allocation policy
were all same as in the VM provisioning experiments in Section 3.5.1.

Results and Analysis

In our previous work [7], we proposed a way of measuring the quality of an
admission control mechanism based on the trade-off between the number of
servers used and six important QoS metrics: zero overloaded servers, maxi-
mum achievable session throughput, zero aborted sessions, minimum deferred
sessions, zero rejected sessions and minimum average response time for all
admitted sessions. The results from the two approaches will be compared
based on these criteria.

Figures 3.8a and 3.8b present the results from the experiment with the
synthetic load pattern. A summary of the results is also available in the
upper half of Table 3.4. The prediction accuracy was high, the Root Mean
Square Error (RMSE) of the predicted CPU and memory utilization was
0.0163 and 0.0128 respectively. ACVAS used a maximum of 19 servers with
0 overloaded servers, 0 aborted sessions, 30 deferred sessions, and 0 rejected
sessions. There were a total of 8620 completed sessions with an average RTT
of 59 ms. Thus, ACVAS provided a good trade-off between the number of
servers and the QoS requirements. The alternative approach also used a
maximum of 19 servers, but with several occurrences of server overloading.
On average, there were 0.56 overloaded servers at all time with 0 aborted
sessions and 488 rejected sessions. A total of 9296 sessions were completed
with an average RTT of 112 ms. Thus, in the first experiment, the alternative
approach completed 9296 sessions compared to 8620 sessions by ACVAS, but
with 488 rejected sessions and several occurrences of server overloading.

Figures 3.9a and 3.9b show the results of the experiment with the realistic
load trace derived from access logs. The lower half of Table 3.4 shows that
ACVAS used a maximum of 16 servers with 0 overloaded servers, 0 aborted
sessions, 20 deferred sessions, and 0 rejected sessions. There were a total
of 8559 completed sessions with an average RTT of 59 ms. In contrast, the
alternative approach used a maximum of 17 servers with 3 occurrences of
server overloading. On average, there were 0.0046 overloaded servers at all

Multi-tier Web Applications 103

weighted CPU load average ——— 4 1.5 g‘
1.0 -
weighted memory utilization -- 112 E
e
2
<
E=J
o
e H
CPU load average —— 4 1.5
1.0 - i
memory utilization -- b g-
£
[
£
§oa | overloaded servers —— 720 £
§20 | response time (ms) ------- 4 6009
516 [4 480 E
S12 | 4 360 8
o c
o 8F -4 240 &
g 41 . e 120 @
0 : — — . — 0o "
1200 | sessions 4 28
| servers ------- 4 24
g1000 7777777777777 15 e
S 800 | Y o
7] el L 41 16 2
8 600 | ! {128
! @
®© 400 47 48
200 | 4" d4
0 L L 0
0 1 2 3 6 7
time (hours)
(a) Results of ACVAS with synthetic load.
weighted CPU load average —— 4 1.5 g‘
1.0 -
weighted memory utilization -- 112 E
2
5
©
2
CPU load avera;gg
memory utilization -- g-
£
[
€
Soa | overloaded servers —— { 700 2
%20 | response time (ms) ------- 4 6005
216 F i 1 480 £
812 P 4 3603
o8t . ST q240g
S 4k T e 120 @
0 T T T T N 0
1200 sessions —— - 28
» 1000 |- servers ------- 4 24
c B @
S 80fF TR 5 4]
% 600 - : i 3
@ 400 P S/ i
200 [.~ 7 4
0 Z 1 1 1
0 1 2

time (hours)

(b) Results of alternative approach with synthetic load.

Figure 3.8: Results of admission control experiment with the synthetic load
pattern. ACVAS performed better than the alternative approach in all as-
pects but session deferment and throughput.

104 A. Ashraf, B. Byholm, and I. Porres

Table 3.4: Results from admission control experiments. The upper half of
the table contains results from the first experiment with the synthetic load
pattern, while the lower half contains results from the second experiment
with the realistic load pattern. Entries in bold are better according to the
evaluation criteria.

approach servers | overl. | abort. def. | rej. | compl. | RT T,y
ACVASgynen 19 0 0 30 0 8620 59 ms
alternativesynin 19 0.56 0| N/A | 488 9296 112 ms
ACVAS,ca1 16 0 0 20 0 8559 59 ms
alternative eal 17 | 0.0046 0| N/A 55 8577 72 ms

time with 0 aborted sessions and 55 rejected sessions. There were a total of
8577 completed sessions with an average RTT of 72 ms. Thus, the alternative
approach used an almost equal number of servers, but it did not prevent them
from becoming overloaded. Moreover, it completed 8577 sessions compared
to 8559 sessions by ACVAS, but with 55 rejected sessions and 3 occurrences
of server overloading.

The results from these two experiments indicate that the ACVAS app-
roach provides significantly better results in terms of the previously men-
tioned QoS metrics. In the first experiment, ACVAS had the best results
in three areas: owerloaded servers, rejected sessions, and average RTT. The
alternative approach performed better in two areas: there were no deferred
sessions, as it did not support session deferment, and it had more com-
pleted sessions. In the second experiment, ACVAS performed better in four
aspects: number of servers used, overloaded servers, rejected sessions, and
average RTT. The alternative approach again showed better performance in
the number of completed sessions and in the number of deferred sessions. We
can therefore conclude that ACVAS performed better than the alternative
approach in both experiments.

The EMA-based predictor appears to be doing a good job on predicting
these types of loads. It remains unclear how the system reacts to sudden
drops in a previously increasing load trend. Such a scenario could temporarily
lead to high preference for predicted results, which are no longer valid.

A plot of the utilization error with the synthetic load pattern can be seen
in Figure 3.10a. Likewise, a plot of the utilization error with the realistic
load can be seen in Figure 3.10b. Again, we only depict the CPU load, as
it played the most significant part. The periods where ACVAS appears to
have higher error than the alternative approach are due to underutilization
amplified by ACVAS being more effective at keeping the average utilization

Multi-tier Web Applications 105

()
? weighted CPU load average 4152
s 0 {128
g weighted memory utilization -- i)
8 o9k
= o
E - 4 06 %
2 i =,
% . i 0.3 g
2 0 0

15 | CPU load average 4 15
S12t 10 - 412
@ memory utilization -- il
209 4098
Q306 e W T 406 £

0 0
£12 L overloaded servers 4 240 2
§10 | response time (ms) ------- 4 2007
- 8 -4 160.E
<6 {1209
< i - c
o4 - TN e 180 g
g 2 T Te-- .1 40 @

0 T T T T T, [
1400 | sessions 4 28

5 1200 servers ------- 1 5
21000 {20¢
g 80LF ; {16 2
@ 600 - s 1128
400 A 48
200 14
0 1 2 3 5 6
time (hours)
(a) Results of ACVAS with realistic load.
()
? weighted CPU load average 4152
& 10 - 12 &
g weighted memory utilization -- 1" g
< 3
b= 2
.g 0 =
2
15 | CPU load average =4 15
S12 10 - 1.2
c e memory utilization -- 1< =z
) g
© 5]
T 06 £
<03 :

0 0o _
g2 overloaded servers 4 240 2
%10 - response time (ms) ------- 4 200%
g 8L AN A 1 160 £
S 6N/ | SVARAN 22N 41208
Sap; v N e 4 80 ESL
L g g

0 T T T T n 0
1400 | sessions 4 28

o 1200 - servers ------- 1 24
51000 |- b g
‘3 800 |] g
3 600 [y e 3
400 .~]
200 E
0 Z 1 1 1 1
0 1 3 4

time (hours)

(b) Results of alternative approach with realistic load.

Figure 3.9: Results of admission control experiment with the realistic load
pattern. ACVAS performed better than the alternative approach in all as-
pects but session deferment and throughput.

106 A. Ashraf, B. Byholm, and I. Porres

down, as no servers became overloaded during this time. Overall, the results
are quite similar, as they should be, the only difference being the admission
controller.

3.6 Conclusions

In this chapter, we presented a prediction-based, cost-efficient VM provi-
sioning and admission control approach for multi-tier web applications. It
provides automatic deployment and scaling of multiple simultaneous web ap-
plications on a given IaaS cloud in a shared hosting environment. The pro-
posed approach comprises three sub-approaches: a reactive VM provisioning
approach called ARVUE, a hybrid reactive-proactive VM provisioning app-
roach called CRAMP, and a session-based adaptive admission control app-
roach called ACVAS. Both ARVUE and CRAMP provide autonomous shared
hosting of third-party Java Servlet applications on an laaS cloud. However,
CRAMP provides better responsiveness and results than the purely reac-
tive scaling of ARVUE. ACVAS implements per-session admission, which
reduces the risk of over-admission. Moreover, it implements a simple session
deferment mechanism that reduces the number of rejected sessions while
increasing session throughput. The proposed approach is demonstrated in
discrete-event simulations and is evaluated in a series of experiments involv-
ing synthetic as well as realistic load patterns.

The results of the VM provisioning experiments showed that both
ARVUE and CRAMP provide good performance in terms of average response
time, CPU load average, and memory utilization. Moreover, CRAMP pro-
vides significantly better performance in terms of number of servers. It also
had lower utilization error than ARVUE in most of the cases.

The evaluation and analyses concerning our proposed admission control
approach compared ACVAS against an existing admission control approach
available in the literature. The results indicated that ACVAS provides a good
trade-off between the number of servers used and the QoS metrics. In com-
parison with the alternative admission control approach, ACVAS provided
significant improvements in terms of server overload prevention, reduction of
rejected sessions, and average response time.

Future work includes implementing and testing the admission controller
on the prototype ARVUE PaaS [1, 11]. Furthermore, a case study of the
final ARVUE PaaS could yield real data from an actual business case. We
have been currently working on server consolidation approaches for web ap-
plications. Improved allocation through efficient consolidation should be
possible. Moreover, applying metaheuristic approaches [10, 20] to optimize

Multi-tier Web Applications

AGVAS error

Alternative error -------

w"w"’)”w

e, ,
06 Mgt

0.4

0.2

3
time (hours)

(a) Synthetic load pattern experiment: error analysis.

1 T T T T

ACVA'S error
Alternative error -------

time (hours)

(b) Realistic load pattern experiment: error analysis.

107

Figure 3.10: CPU load average error analysis in the admission control ex-
periments. In the first experiment, both approaches had a similar error plot.
However, in the second experiment, ACVAS appears to have lower error than
the alternative approach throughout most of the experiment, with the only
exceptions being due to underutilization.

108 A. Ashraf, B. Byholm, and I. Porres

cost-efficiency is also part of our ongoing research. However, optimal so-
lutions can be seen as a form of the bin-packing problem and is therefore
N P-complete [16].

Acknowledgments

This work was supported by an Amazon Web Services research grant. Adnan
Ashraf was partially supported by the Foundation of Nokia Corporation and
by a doctoral scholarship from the Higher Education Commission (HEC) of
Pakistan.

References

[1] T. Aho et al. “Designing IDE as a Service”. In: Communications of
Cloud Software 1 (2011), pp. 1-10.

[2] J. Allspaw. The Art of Capacity Planning: Scaling Web Resources.
O’Reilly Media, Inc., 2008. 1sBN: 0596518579, 9780596518578.

[3] J. Almeida et al. “Joint admission control and resource allocation in
virtualized servers”. In: J. Parallel Distrib. Comput. 70.4 (Apr. 2010),
pp. 344-362. 18SN: 0743-7315. DOI: 10.1016/j. jpdc.2009.08.009.

[4] M. Andreolini and S. Casolari. “Load prediction models in web-based
systems”. In: Proceedings of the 1st international conference on Per-
formance evaluation methodolgies and tools. valuetools ’06. New York,
NY, USA: ACM, 2006. 1sBN: 1-59593-504-5. DOI: 10.1145/1190095.
1190129.

[5] M. Andreolini, S. Casolari, and M. Colajanni. “Models and Frame-
work for Supporting Runtime Decisions in Web-Based Systems”. In:
ACM Transactions on the Web 2.3 (2008), pp. 1-43. 1sSN: 1559-1131.
DOI: 10.1145/1377488.1377491.

[6] D. Ardagna et al. “Service Provisioning on the Cloud: Distributed
Algorithms for Joint Capacity Allocation and Admission Control”.
In: Towards a Service-Based Internet. Ed. by E. Di Nitto and R.
Yahyapour. Vol. 6481. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, pp. 1-12.

REFERENCES 109

[7]

[13]

[15]

A. Ashraf, B. Byholm, and I. Porres. “A Session-Based Adaptive Ad-
mission Control Approach for Virtualized Application Servers”. In:
The 5th IEEE/ACM International Conference on Utility and Cloud
Computing. Ed. by C. Varela and M. Parashar. IEEE Computer So-
ciety, 2012, pp. 65-72.

A. Ashraf, B. Byholm, and I. Porres. “CRAMP: Cost-Efficient Re-
source Allocation for Multiple Web Applications with Proactive Scal-
ing”. In: 4th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). Ed. by T. W. Wiodarczyk, C.-
H. Hsu, and W.-C. Feng. IEEE Computer Society, 2012, pp. 581-586.

A. Ashraf et al. “Feedback Control Algorithms to Deploy and Scale
Multiple Web Applications per Virtual Machine”. In: 38th Furomi-
cro Conference on Software Engineering and Advanced Applications.
Ed. by V. Cortellessa, H. Muccini, and O. Demirors. IEEE Computer
Society, 2012, pp. 431-438.

C. Blum et al. “Hybrid metaheuristics in combinatorial optimization:
A survey”. In: Applied Soft Computing 11.6 (2011), pp. 4135 —4151.
ISSN: 1568-4946. DOI: 10.1016/j.asoc.2011.02.032.

B. Byholm. “An Autonomous Platform as a Service for Stateful Web
Applications”. MA thesis. Abo Akademi University, 2013.

X. Chen, H. Chen, and P. Mohapatra. “ACES: An efficient admission
control scheme for QoS-aware web servers”. In: Computer Communi-
cations 26.14 (2003), pp. 1581-1593. 1SsN: 0140-3664. poI: 10.1016/
S0140-3664(02)00259-1.

L. Cherkasova and P. Phaal. “Session-Based Admission Control: A
Mechanism for Peak Load Management of Commercial Web Sites”.
In: Computers, IEEE Transactions on 51.6 (2002), pp. 669-685. I1SSN:
0018-9340. DOI1: 10.1109/TC.2002.1009151.

T. C. Chieu et al. “Dynamic Scaling of Web Applications in a Virtu-
alized Cloud Computing Environment”. In: e-Business Engineering,
2009. ICEBE °09. IEEE International Conference on. 2009, pp. 281—
286. DOI: 10.1109/ICEBE.2009.45.

X. Dutreilh et al. “From Data Center Resource Allocation to Control
Theory and Back”. In: Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on. 2010, pp. 410-417. po1: 10.1109/CLQOU
D.2010.55.

110

[21]

[22]

[27]

(28]

A. Ashraf, B. Byholm, and I. Porres

M. R. Garey and D. S. Johnson. ““Strong” NP-Completeness Results:
Motivation, Examples, and Implications”. In: Journal of the ACM
25.3 (1978), pp. 499-508. 1sSN: 0004-5411. por: 10. 1145/ 322077 .
322090.

Google. App Engine. https://developers.google.com/appengine.
M. Gronroos. Book of Vaadin. fourth. Vaadin Ltd, 2011.

R. Han et al. “Lightweight Resource Scaling for Cloud Applications”.
In: Cluster Computing and the Grid, IEEE International Symposium
on (2012), pp. 644-651.

M. Harman et al. “Cloud engineering is Search Based Software En-
gineering too”. In: Journal of Systems and Software 86.9 (2013),
pp. 2225 —2241. 18SN: 0164-1212. DOI: http://dx.doi.org/10.
1016/ .jss.2012.10.027.

Y. Hu et al. “Resource provisioning for cloud computing”. In: Pro-
ceedings of the 2009 Conference of the Center for Advanced Studies
on Collaborative Research. CASCON ’09. New York, NY, USA: ACM,
2009, pp. 101-111.

C.-J. Huang et al. “Admission control schemes for proportional differ-
entiated services enabled internet servers using machine learning tech-
niques”. In: Expert Systems with Applications 31.3 (2006), pp. 458—
471. 18SN: 0957-4174. DOT: 10.1016/j.eswa.2005.09.071.

W. Igbal et al. “Adaptive resource provisioning for read intensive
multi-tier applications in the cloud”. In: Future Generation Computer
Systems 27.6 (2011), pp. 871-879. 1ssN: 0167-739X.

IRCache Project Squid Logs. http://www.ircache.net/.

H. H. Liu. Software Performance and Scalability: A Quantitative App-
roach. Wiley Publishing, 2009. 1SBN: 0470462531, 9780470462539.

S. Muppala and X. Zhou. “Coordinated Session-Based Admission
Control with Statistical Learning for Multi-Tier Internet Applica-
tions”. In: Journal of Network and Computer Applications 34.1
(2011), pp. 20-29. 1SsN: 1084-8045. poI: 10.1016/j . jnca.2010.
10.007.

OSGi Alliance. OSGi Service Platform Core Specification, Release /,
Version 4.2. AQute Publishing, 2010.

OSGi Alliance. OSGi Service Platform Enterprise Specification, Re-
lease 4, Version 4.2. AQute Publishing, 2010.

REFERENCES 111

[29]

[30]

[32]

33]

W. Pan et al. “Feedback Control-Based QoS Guarantees in Web Ap-
plication Servers”. In: High Performance Computing and Communi-
cations, 2008. HPCC ’08. 10th IEEE International Conference on.
2008, pp. 328-334. DOL: 10.1109/HPCC.2008. 106.

T. Patikirikorala et al. “A multi-model framework to implement self-
managing control systems for QoS management”. In: Proceedings of
the 6th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems. SEAMS ’11. New York, NY, USA:
ACM, 2011, pp. 218-227. 1SBN: 978-1-4503-0575-4.

Y. Raivio et al. “Hybrid Cloud Architecture for Short Message Ser-
vices”. In: Proceedings of the 2nd International Conference on Cloud
Computing and Services Science. Ed. by F. Leymann et al. SciTePress,
2012, pp. 489-500.

A. Robertsson et al. “Admission control for Web server systems -
design and experimental evaluation”. In: Decision and Control, 2004.
CDC. 43rd IEEE Conference on. Vol. 1. 2004, pp. 531-536. DOI: 10.
1109/CDC.2004.1428685.

Y. A. Shaaban and J. Hillston. “Cost-based admission control for
Internet Commerce QoS enhancement”. In: Electronic Commerce Re-
search and Applications 8.3 (2009), pp. 142-159. 1SSN: 1567-4223. DOL:
10.1016/j.elerap.2008.11.007.

W. Tarreau. HA Proxy. http://haproxy.lwt.eu/.

The Apache Software Foundation. Apache Felixz. http://felix.apa
che.org/site/.

B. Urgaonkar, P. Shenoy, and T. Roscoe. “Resource Overbooking
and Application Profiling in a Shared Internet Hosting Platform”.
In: ACM Trans. Internet Technol. 9.1 (Feb. 2009), pp. 1-45. 1SSN:
1533-5399. DOI: 10.1145/1462159.1462160.

W. Vogels. “Beyond Server Consolidation”. In: Queue 6.1 (Jan. 2008),
pp. 20-26. 1SSN: 1542-7730. DOI: 10.1145/1348583.1348590.

T. Voigt and P. Gunningberg. “Adaptive resource-based Web server
admission control”. In: Computers and Communications, 2002. Pro-
ceedings. ISCC 2002. Seventh International Symposium on. 2002. DOIL:
10.1109/ISCC.2002.1021682.

[39]

A. Wolke and G. Meixner. “TwoSpot: A Cloud Platform for Scaling
out Web Applications Dynamically”. In: Towards a Service-Based In-
ternet. Ed. by E. di Nitto and R. Yahyapour. Vol. 6481. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2010, pp. 13-24.
ISBN: 978-3-642-17693-7.

112

4 Proactive Virtual Machine Allocation for
Video Transcoding in the Cloud

Fareed Jokhio, Adnan Ashraf, Tewodros Deneke, Sébastien Lafond,
Ivan Porres, and Johan Lilius

Department of Information Technologies

Abo Akademi University, Turku, Finland

Email: {fjokhio, aashraf, tdeneke, slafond, iporres, jolilius}@abo.fi

Abstract—Video transcoding refers to the process of converting a digital
video from one compressed format to another. It is a compute-intensive
operation. Therefore, transcoding of a large number of simultaneous video
streams requires a large-scale distributed system. Moreover, to handle differ-
ent load conditions in a cost-efficient manner, the distributed system should
be dynamically scalable. Infrastructure as a Service (IaaS) clouds currently
offer computing resources, such as Virtual Machines (VMs), under the pay-
per-use business model, which can be used to create a dynamically scalable
cluster of video transcoding servers. Determining the number of VMs to
provision for a dynamic cluster is still an open problem. In this chapter, we
present a proactive VM allocation approach to scale video transcoding service
on a given laaS cloud. For better resource utilization, quality of service, and
cost-efficiency, we use video segmentation at the Group of Pictures (GOP)
level. The proposed approach is demonstrated in discrete-event simulations
and an experimental evaluation involving different load patterns. We also
present a prototype implementation of a distributed video transcoder based
on the message passing programming model and a dynamic load balancing
approach.

Keywords-Cloud computing, resource allocation, video transcoding.

113

114 F. Jokhio et al.

4.1 Introduction

The use of multimedia content is common in our life. It may consist of digital
images, videos, voice, or animation. The use of video is no longer limited to
TV-channels or cinema theaters. There are several user-friendly and inex-
pensive devices available such as cell phones, digital cameras, which can be
used to capture, manipulate and store digital videos. Electronics devices such
as digital computers are used to process video data very efficiently. Video
production is common nowadays and a large number of digital videos are
uploaded on YouTube! and other video hosting sites. To store and transmit
a digital video in a cost-efficient manner, video compression is used. Video
compression is a mature field and several video coding standards are avail-
able such as MPEG-4 [36] and H.264 [37]. However, end-user devices do
not support all video compression formats. Therefore, an unsupported video
format needs to be converted into another format, which is supported by
the target device. Converting a compressed video into another compressed
video is known as video transcoding [35]. There are different types of video
transcoding, such as bit-rate reduction in order to meet network bandwidth
availability, resolution reduction for display size adoption, temporal transcod-
ing for frame rate reduction, and error resilience transcoding for insuring high
Quality of Service (QoS) [13], [39].

Video transcoding involves decoding and encoding processes. It is a
compute-intensive process, usually performed at the server-side. It may
be done in real-time or in batch processing. However, for an on-demand
video streaming service, if the required video is not available in the desired
format, the transcoding needs to be done on-the-fly in real-time. One of
the main challenges of a real-time video transcoding operation is that it
must avoid over and underflow of the output video buffer, which temporarily
stores the transcoded videos at the server-side. The overflow occurs if the
video transcoding rate exceeds the video play rate and the capacity of the
buffer. Likewise, the buffer underflow may occur when the play rate exceeds
the transcoding rate, while the buffer does not contain enough frames either,
to avoid the underflow situation.

Video transcoding of a large number of video streams requires a large-
scale cluster-based distributed system. Moreover, to handle varying amounts
of load in a cost-efficient manner, the cluster should be dynamically scal-
able. Cloud computing provides theoretically infinite computing resources,
which can be provisioned in an on-demand fashion under the pay-per-use
business model [5]. Infrastructure as a Service (IaaS) clouds currently offer

Thttp://www.youtube.com/

Video Transcoding in the Cloud 115

computing resources, such as Virtual Machines (VMs), storage, and network
bandwidth [32], which can be used to create a dynamically scalable cluster
of video transcoding servers.

In a cloud environment, a video transcoding operation can be performed
in several different ways. For example, it is possible to map an entire video
stream on a dedicated VM. However, it requires a large number of VMs to
transcode several simultaneous streams. Moreover, transcoding of High Def-
inition (HD) video streams can take more time, which may violate the client-
side QoS requirements of desired play rate [10]. Another approach is to split
the video streams into smaller segments and then transcode them indepen-
dently of one another [21]. In this approach, one VM can be used to transcode
a large number of video segments belonging to different video streams. More-
over, video segments of one particular stream can be transcoded on multiple
VMs.

In this chapter, we present prediction-based dynamic resource allocation
and deallocation algorithms to scale video transcoding service on a given
laaS cloud in a horizontal fashion. The proposed algorithms allocate and
deallocate VMs to a dynamically scalable cluster of video transcoding servers.
We use a two-step load prediction method [2], which predicts a few steps
ahead in the future to allow proactive resource allocation. For cost-efficiency,
we share VM resources among multiple video streams. The sharing of the
VM resources is based on the video segmentation, which splits the streams
into smaller segments that can be transcoded independently of one another.
The proposed approach is evaluated in two simulation-based experiments
involving two different load patterns. The results show that it provides cost-
efficient resource allocation for a large number of simultaneous streams while
avoiding over and underflow of the output video buffer.

We also present the implementation of a distributed transcoder based
on the message passing programming model on top of an Amazon Elastic
Compute Cloud (EC2)? cluster. Among different methods of distributed
computing we have chosen to use Message Passing Interface (MPI)? because
of its maturity, support, open source nature, scalability, and ease of use.
MPI is a message passing interface for Multiple Instruction Multiple Data
(MIMD)* distributed memory concurrent computers and workstations [27].
In this programming model, a set of tasks that use their own local memory
during computation can be performed on the same physical machine as well
as across an arbitrary number of machines. Tasks exchange data through

2http://aws.amazon.com/ec2/
3http://www.mes.anl.gov /research/projects/mpi/
4http:/ /www.springerreference.com/docs/html/chapterdbid /311449.html

116 F. Jokhio et al.

communication channels by sending and receiving messages. This means
that data transfer usually requires cooperative operations to be performed
by each process. MPI provides a library consisting of a set of basic functions
that can be used to write parallel and distributed programs. The program-
mer is thus responsible and free to express all parallelism involved [16], [27].
To deploy the distributed video transcoding framework in a cloud, we se-
lected StarCluster®, which is used for cluster management. It is an open
source cluster computing tool-kit for Amazon EC2. The main purpose of
StarCluster is to automate overall process of building a cluster of VMs in
Amazon EC2, which can be used for parallel and distributed computing.

We proceed as follows. In Section 4.2, we describe video bit stream struc-
ture. Section 4.3 presents the system architecture of the proposed VM allo-
cation approach. Video segmentation is described in Section 4.4. Section 4.5
presents the proposed proactive VM allocation algorithms. Our load predic-
tion approach is detailed in Section 4.6. In Section 4.7, we introduce our
prototype implementation of MPI-based distributed video transcoder and
present our dynamic load balancing algorithm for video transcoding in cloud
computing. Section 4.8 presents simulation results of the proposed VM al-
location approach, while Section 4.9 presents results of the prototype imple-
mentation of our MPI-based distributed video transcoder and our dynamic
load balancing algorithm. Section 4.10 discusses important related works
and Section 4.11 presents conclusion.

4.2 Video Bit Stream Structure

A Video stream is made up of different types of compressed frames. The
video frames are organized into logical groups known as Group of Picturess
(GOPs) and sequences. As shown in Figure 4.1, a video sequence comprises
a sequence header and one or more GOPs. A GOP consists of different types
of frames such as I (intra), P (predicted), and B (bi-directional predicted)
containing all necessary information required to decode them.

Both I and P frames can be used as reference frames. However, an [
frame is an independent reference frame that does not require any other
reference frame in the decoding process. I-Frames have the highest quality,
but have the largest size. A GOP starts with an [frame, which is followed by
a number of P and B frames. Both P and B frames always require reference
frames in the decoding process [36]. The P-frames use information from
the previous I-Frames or P-frames to compress the frame. The B-frames

Shttp://star.mit.edu/cluster/

Video Transcoding in the Cloud 117

Sequence GOP GOP | e
Header
\\\7
\
Frame Header Frame Frame |
Tile/Slice Tile/Slice Tile/Slice | e
Header

Macroblock/ | Macroblock/
CodingUnit Coding Unit | e

—

MB/CU Header

Tile/Slice Block/ Block/
Header Transform Unit| Transform Unit

Figure 4.1: Structure of a video down to block level [36]

use information from both the previous and next I-Frame or P-Frames. B-
Frames are the smallest in size, but have the least quality.

Frame prediction is used to reduce the size of frames by taking into ac-
count the previous and future frames to further improve the efficiency of
compressed frames. Furthermore, a frame itself may be divided into smaller
blocks or slices with each slice being able to use frame prediction indepen-
dently of other slices.

A GOP in MPEG-4 can have from 0 to 3 B frames between successive
P frames. Usually, it is 2. The distance between successive I frames is N,
which includes both P and B frames. In many cases, the value of N is 12,
but it can be any value between 1 and a few hundreds.

Different kinds of frames also require a different amount of memory. Typ-
ically, I frames require the largest number of bytes to represent images, for
example 300 Kilobytes (KB). The P frames require less memory, for example
160 KB. The B frames require even less, for example 40 KB. The resolution
of a video stream is measured in pixels and is usually written as horizon-
tal x vertical, such as (1280 x 720). The frame-rate of a video is the number
of frames displayed in a second, usually 24 to 30 frames per seconds (fps).

Video coding standards use a YCbCr color space [12] with three different
components called luma (Y) and chroma (Cb, Cr). The luma component rep-
resents brightness while chroma components represents the color information.

118 F. Jokhio et al.

f Video requests/responses Legend
A 4 P Transcoded video streams -~ WiCesea
. |Bu_ffer — Control
Streaming Server Input video streams signals
"""")
A A 4
Video | | Video Transcoded jobs
Video Splitter : Merger
Repository o
_________________ .| Transcoding »
Video segments > Server 1
A\ A 4 A
P 1 i
Master Controller P G .opd N
Load Provisioner .
Balancer x A
A 4 A 4 v :
Config Load :
Predictor L Aj] Transcoding |
Server N

Video segments

Figure 4.2: System architecture of the proactive VM allocation approach

A picture is usually divided into smaller parts termed as macroblocks or cod-
ing units. The macroblocks or coding units are the basic building blocks
of video standards and the decoding of frames is performed at this level.
To compress a frame, different techniques are used at macroblock or coding
unit level such as, frame prediction in either spatial or temporal direction.
The smaller partitions of the macroblocks are termed as blocks or transform
units. The transform coding is performed at block level in various video
coding standards.

4.3 System Architecture

The system architecture of the distributed video transcoding in cloud com-
puting environment is shown in Figure 4.2. It consists of a streaming server,
a video splitter, a video merger, a video repository, a dynamically scalable
cluster of transcoding servers, a load balancer, a master controller, a load
predictor, and a cloud provisioner.

In our system, the end-users or clients may send requests for videos. These

Video Transcoding in the Cloud 119

requests arrive at the streaming server. The streaming server provides the
video streaming service. Streaming is a general term which means that the
data being transfered from one location to another can be used immediately.
In case of video streaming, a video is decoded and played as soon as enough
data has been transferred®.

To transfer multimedia contents (video and audio) over the Internet by
using streaming services such as Video Desk’, media streaming technology
is used, which can deliver the media contents in real-time. At the user end,
parts of a video are downloaded, decoded, and played. The video playing and
downloading happen at the same time. A buffer is used to place additional
video contents from the streaming server. The overall process is invisible
to the viewer. The streaming server works as a media servers which sends
streamed video to users connected through different networks. Since the
main focus of this research work is on video transcoding, we assume that the
streaming server is not a bottleneck.

The video streams in certain compressed formats are stored in the video
repository. The compressed videos can be either source videos or transcoded
videos. The source videos are the original videos and transcoded videos are
obtained from source videos after transcoding. The transcoded videos are
stored as long as it is cost-efficient to store them. The streaming server ac-
cepts video requests from users and checks if the required video is available in
the video repository. If it finds the video in the desired format and resolution,
it starts streaming the video. However, if it finds that the requested video
is stored only in another format or resolution than the one desired by the
user, it sends the video for segmentation and subsequent transcoding. Then,
as soon as it receives the transcoded video from the video merger, it starts
streaming the video.

The video splitter splits the video streams into smaller segments called
jobs, which are placed into the job queue. Due to inter-dependency among
different types of frames, video segmentation (splitting) can be performed at
certain points only. When splitting the video, the main issue is to perform
the segmentation of source video so that parts of video can be distributed
among transcoding servers. Section 4.4 discusses video segmentation in more
detail.

The load balancer employs a task assignment policy, which distributes
load on the transcoding servers. In other words, it decides when and to
which transcoding server a transcoding job should be routed. It maintains
a configuration file, which contains information about transcoding servers

Shttp://www.wimpyplayer.com/docs/faqs/docs/general streaming_definition.html
Thttp://www.videodesk.net/

120 F. Jokhio et al.

that perform the transcoding operations. As a result of dynamic resource
allocation and deallocation operations, the configuration file is often updated
with new information. The load balancer serves the jobs in First In, First Out
(FIFO) order and has only one input queue. The load balancer implements
the shortest queue waiting time policy, which selects a transcoding server with
the shortest queue waiting time. Our dynamic load balancing algorithm is
presented in Section 4.7.

The actual transcoding is performed by the transcoding servers. They
get compressed video segments, perform the required transcoding operations,
and return the transcoded video segments for merging. A transcoding server
runs on a dynamically provisioned VM. Each transcoding server processes one
or more simultaneous jobs. When a transcoding job arrives at a transcoding
server, it is placed into the server’s queue from where it is subsequently
processed.

The master controller implements prediction-based dynamic resource al-
location and deallocation algorithms, as described in section 4.5. For load
prediction, the master controller uses load predictor, which is elaborated in
section 4.6. The cloud provisioner refers to the cloud provisioner in an IaaS
cloud, such as the provisioner in Amazon EC2. It performs the actual lower
level tasks of starting and terminating VMs. The video merger merges the
transcoded jobs into video streams, which form video responses.

The system architecture is similar to our previous work on prediction-
based dynamic resource allocation for video transcoding in cloud comput-
ing [22]. However, in [22] the load balancer implements the shortest queue
length policy, while in this chapter it implements the shortest queue wait-
ing time policy, which provides improved performance. The shortest queue
length policy is based on the queue size alone. Therefore, it does not account
for the execution time of individual jobs in the queue. Whereas, the shortest
queue waiting time policy uses estimated execution time of individual jobs
in the queue to calculate the waiting time of new arriving jobs at the server
queue. In addition to the shortest queue waiting time policy, we introduce
some important enhancements to our VM allocation algorithms.

4.4 Video Segmentation

Distributed computing allows to speedup the transcoding process while main-
taining the same quality of video. Due to inter-dependency among different
types of frames, video segmentation can be performed at certain points only.
The main problem is to perform the segmentation of source video in such a
way that parts of the video can be distributed among transcoding servers.

Video Transcoding in the Cloud 121

Video streams
l Video 1 —
| Video 2 — g Video segments
=3
A | |1 1]
| Video 3 > £
2
Video 4 |_>

Figure 4.3: Video segmentation

Compressed video files contain different types of frames (I, P, B) which have
different compression rates and inter-dependencies among them. Therefore,
one can not split a given video at any particular frame or point. Among the
frame types, an I-frame is an independent frame that can be decoded with-
out any other reference frame. It is also used as a reference frame for other
frames. In a given video, a sequence of frames that constitute an I-frame
and a number of other B and P frames is called a GOP. GOPs are atomic
units that can be transcoded independently of one another. Therefore, for
efficient use of computing resources, we use video segmentation at the GOP
level.

Video segmentation of four video streams is shown in Figure 4.3. The
output of the video splitter consists of a number of jobs, where each job has
at least one GOP. The video splitter tries to manage segmentation in such
a way that each user gets a smooth video stream from the streaming server.
It takes into account the transcoding time and the play time of the video
segment. Once a video segment is sent for transcoding, the next segment of
the same stream is sent after some delay.

The delay between two jobs during segmentation is based on the play
time of a video segment and the number of transcoded video frames of the
stream in the output buffer. If the transcoded frames are below certain
predefined lower threshhold, the stream segmentation is performed with zero
delay. However, if the transcoded frames are above the threshold, the delay
for next video segment is set equal to the play time of previous job.

4.5 Proactive VM Allocation Algorithms

Under-utilization of computing servers in cloud computing is a common prob-
lem. Due to change in the load patterns at different times, there might be

122 F. Jokhio et al.

some over-provisioning of servers, which increases the overall cost [6], [31].
In addition, the over-utilization of resources is also not desirable due to high
response times. Therefore, automatic VM allocation is essential for cost and
performance efficiency [40]. In this section, the dynamic VM allocation and
deallocation algorithms for video transcoding in the cloud are presented. For
the sake of clarity, the concepts used in the algorithms and their notation
are summarized in Table 4.1.

The algorithms implement proactive control, which uses a two-step pre-
diction in which the load pattern of the system is tracked and then future
load pattern is predicted. The transcoding servers are added and removed
based on the predicted load and current throughput. Moreover, due to the
VM provisioning delay, a fixed minimum number of transcoding servers is
always maintained to provide an effective service. This is termed as the base
capacity Np.

On discrete-time intervals, the master controller obtains the play rate of
all video streams, and sums up the play rates of streams, to get the total
target play rate PR(¢;). It then obtains the video transcoding rate from
each transcoding server and calculates the total transcoding rate TR(t;).
Moreover, for proactive VM allocation, it uses load predictor to predict the
total transcoding rate of all transcoding servers TAR(tZ-) a few steps ahead in
the future.

The algorithms are designed to be cost-efficient while minimizing poten-
tial oscillations in the number of VMs [38]. This is desirable because, in
practice, provisioning of a VM takes a few minutes [8]. Therefore, oscilla-
tions in the number of VMs may lead to deteriorated performance. More-
over, since some contemporary laaS providers, such as Amazon EC2, charge
on hourly basis, oscillations will result in a higher provisioning cost. There-
fore, the algorithms counteract oscillations by delaying new VM allocation
operations until previous VM allocation operations have been realized [20].
Furthermore, for cost-efficiency, the deallocation algorithm terminates only
those VMs whose renting period approaches its completion.

4.5.1 VM Allocation Algorithm

The VM allocation algorithm is given as Algorithm 4.1. The first two steps
deal with the calculation of the target play rate PR(t;) of all streams and the
total transcoding rate T R(t;) of all transcoding servers. The algorithm then
obtains the predicted total transcoding rate TAR(ti) from the load predictor.
Moreover, to avoid underflow of the output video buffer that temporarily
stores transcoded jobs at the server-side, it considers the size of the output
video buffer Bg(t;). If the target play rate exceeds the predicted transcoding

Video Transcoding in the Cloud 123

Table 4.1: Summary of concepts and their notation

countoper(t;) over allocation count at discrete-time ¢;

S(t;) set of transcoding servers at t;

Sp(ti) set of newly provisioned servers at ¢;

Se(ti) servers close to completion of renting period at ¢;
Sie(ts) servers selected for termination at ¢;

PR(t;) sum of target play rates of all streams at time ¢;
TR(t;) total transcoding rate of all servers at time ¢;
TR(t;) predicted total transcoding rate at time ¢;
RT(s,t;) remaining time of server s at t;

V(t:) set of video streams at t;

Np(t;) number of servers to provision at t;

Np, (t:) number of servers to provision at ¢; based on queue length
Nr(t;) number of servers to terminate at t;

getPR() get PR(t;) from video merger

getTR(s) get transcoding rate of server s

getTR() get T'R(t;) from load predictor

calNp() calculate the value of Np(¢;)

calQNp() calculate the value of Np, (t;) based on queue length
cal Nt () calculate the value of Nr(¢;)

calRT (s,t;) calculate the value of RT(s,t;)

delay() delay function

provision(n) provision n servers

select(n) select n servers for termination

sort(S) sort servers S on remaining time

terminate(S) | terminate servers S

Cr over allocation count threshold

RTy remaining time upper threshold

RTY, remaining time lower threshold

MAXQLyr Maximum Queue length upper threshold

By, buffer size lower threshold in megabytes

Bs(t;) size of the output video buffer in megabytes

By buffer size upper threshold in megabytes

Np number of servers to use as base capacity
startUp server startup delay

avgQJobs average number of jobs in a server Queue
jobCompletion | job completion delay

rate while the buffer size Bg(t;) falls below its lower threshold By, the algo-
rithm chooses to allocate resources by provisioning one or more VMs. The
number of VMs to provision Np(t;) is calculated as follows

Np(t;) = —PR(ti;I;(ti)TR(ti) (4.1)

[S(ta)]

124 F. Jokhio et al.

The algorithm then provisions Np(t;) VMs, which are added to the cluster
of transcoding servers. To minimize potential oscillations due to unnecessary
VM allocations, the algorithm adds a delay for the VM startup time. Fur-
thermore, it ensures that the total number of VMs |S(¢;)| does not exceed the
total number of video streams |V (¢;)|. The algorithm adjusts the number of
VMs to provision Np(t;) if |S(t;)| + Np(t;) exceeds |V (¢;)|. This is desirable
because the transcoding rate of a video on a single VM is usually higher than
the required play rate.

The VM allocation algorithm also takes into account the current load on
servers. It checks the queue lengths of servers and if the average number
of jobs in the queues is above a predefined maximum upper threshold, it
provisions one or more servers. The number of VMs to provision Np, (t;) is
calculated as follows

avgQ@.Jobs -‘ (4.2)

Nrg(t:) = [MAXQLUT

4.5.2 VM Deallocation Algorithm

The VM deallocation algorithm is presented in Algorithm 4.2. The main ob-
jective of the algorithm is to minimize the VM provisioning cost, which is a
function of the number of VMs and time. Thus, it terminates any redundant
VMs as soon as possible. Moreover, to avoid overflow of the output video
buffer, it considers the size of the output video buffer Bs(t;). After obtaining
the target play rate PR(¢;) and the predicted total transcoding rate TAR(tZ-),
the algorithm makes a comparison. If TR(t;) exceeds PR(t;) while the buffer
size Bg(t;) exceeds its upper threshold By, it may choose to deallocate re-
sources by terminating one or more VMs. However, to minimize unnecessary
oscillations, it deallocates resources only when the buffer overflow situation
persists for a predetermined minimum amount of time.

In the next step, the algorithm calculates the remaining time of each
transcoding server RT(s,t;) with respect to the completion of the renting
period. It then checks if there are any transcoding servers whose remaining
time is less than the predetermined upper threshold of remaining time RTy,
and more than the lower threshold of remaining time RT},. The objective is
to terminate only those servers whose renting period is close to completion,
while excluding any servers that are extremely close to the completion of
their renting period and therefore it is not cost-efficient to terminate them
before the start of the next renting period. If the algorithm finds at least one

Video Transcoding in the Cloud 125

Algorithm 4.1. VM allocation algorithm

1: while true do
2 Np(tz) =0, NPQ(tz) =0
3. PR(t;) := getPR()
5. for seS(t;) do
6 TR(t;) := TR(t;) + getTR(s)

7 end for

8 TR(t;) := get TR(TR(L;))

9: if TR(t;) < PR(t;) A Bs(t;) < By, then
10: Np(t,‘) = cale()

11: end if

12: if avgQJobs > M AXQLyr then

13: NPQ (tz) = CalQNp()

14: end if

15: Np(t7) = Np(fl> + NPQ (fz)

16: if |[S(¢)| + Np(t;) > |V (¢;)| then

17 Np(h) = [VIE) — |S()]

18: end if

19: if Np(t;) > 1 then

20: Sp(t;) := provision(Np(t;))
21: S(t;) == S(t:) U Sy(t:)

22: delay(startUp)

23: end if

24: end while

such server S,(t;), it calculates the number of servers to terminate Nr(t;) as

TR(t;) — PR(¢;
NT(ti) = ’V (;R(ti) ()
St

— N (4.3)

Then, it sorts the transcoding servers in S.(t;) on the basis of their remaining
time, and selects the servers with the lowest remaining time for termination.
The rationale of sorting of servers is to ensure cost-efficiency by selecting the
servers closer to completion of their renting period. A VM that has been
selected for termination might have some pending jobs in its queue. There-
fore, it is necessary to ensure that the termination of a VM does not abandon
any jobs in its queue. One way to do this is to migrate all pending jobs to
other VMs and then terminate the VM [8]. However, since transcoding of
video segments takes relatively less time to complete, it is more reasonable

126 F. Jokhio et al.

Algorithm 4.2. VM deallocation algorithm

1: while true do

2. PR(t;) := getPR()

4. for seS(t;) do

5: TR(t;) :==TR(t;) + getTR(s)

6: end for

7. TR(t;) := getTR(TR(L;))

8 if TR(t;) > PR(t;) A Bs(t;) > By A countoper(t;) > Cr then
9: for seS(t;) do

10: RT'(s,t;) := cal RT (s, 1;)

11: end for

12: Se(ti) == {VseS(t;)|RT(s,t;) < RTy A RT(s,t;) > RTy}
13: if |Sc(¢;)] > 1 then

14: Nr(t;) :== calNp()

16: if Nr(t;) > 1 then

17: sort(S.(t;))

18: Si(t;) := select(Nr(t;))
20: delay(j0bCompletion)
21: terminate(Sy(t;))

22: end if

23: end if

24: end if

25: end while

to let the jobs complete their execution without requiring them to migrate
and then terminate a VM when there are no more running and pending jobs
on it. Therefore, the deallocation algorithm terminates a VM only when
the VM renting period approaches its completion and all jobs on the server
complete their execution. Finally, the selected servers are terminated and
removed from the cluster.

4.6 Load Prediction

The existing load prediction models for web-based systems, such
as [2], [3], [34], can be adapted to predict transcoding rate of the transcoding
servers a few steps ahead in the future. Andreolini and Casolari [2] proposed
a two-step approach to predict future load behavior under real-time con-

Video Transcoding in the Cloud 127

straints. The approach involves load trackers that provide a representative
view of the load behavior to the load predictors, thus achieving two steps.

A load tracker (LT) filters out noise in the raw data to yield a more reg-
ular view of the load behavior [2]. Tt is a function LT(S,(¢;)) : R* — R,
which inputs a measure s; monitored at time t;, and a set of previously
collected n measures, that is S,(t;) = (si—n, ..., s;), and provides a repre-
sentation of the load behavior /; at time ¢; [2]. A sequence of LT values
yields a regular view of the load behavior. There are different classes of LT,
such as simple moving average (SMA), exponential moving average (EMA),
and cubic spline (CS) [3]. More sophisticated (time-series) models often re-
quire training periods to compute the parameters and/or off-line analyses [2].
Likewise, the linear (auto) regressive models, such as ARMA and ARIMA,
may require frequent updates to their parameters [2], [34]. Therefore, in our
approach [7], [22], the load predictor implements an LT based on the EMA
model, which limits the computation delay without incurring oscillations and
computes an LT value for each measure with high prediction accuracy.

The load predictor (LP) is a function LPh(Z(tZ—)) : R? — R, which inputs
a sequence of LT values Ly(t;) = lig, ...,; and outputs a predicted future
value at time ¢;,p,, where h > 0 [2]. The LP is characterized by the prediction
window h and the past time window ¢. Andreolini and Casolari [2] and
Saripalli et al. [34] used linear regression of only two LT values, which are
the first /;_, and the last ; values in the past time window. Ashraf et al. 7]
and Jokhio et al. [22] used simple linear regression model [28], which takes
into account all LT values L,(t;) in the past time window. The LP of the LT
in this approach is based on a straight line defined as

l=" +mt (44)

where 7y and ~y; are called regression coeflicients, which can be estimated at
runtime based on the LT values [7], [28].

4.7 MPI-Based Distributed Video Transcoder

Our distributed video transcoder is based on the open source FFMPEG®
library. We have modified the original transcoder to execute on multiple
machines. The extension is based on MPI, where a set of processes each
running a single transcoder, are made to collaborate and transcode a set of
streams more efficiently. The MPI programming model allows programmers
to explicitly specify the parallel processing in a given system. Unlike other

8http://www.ffmpeg.org/

128 F. Jokhio et al.

frameworks like Hadoop, which is designed for a specific set of problems(i.e.
batch processing), MPI provides programmers with flexibility in expense of
some programming overhead.

Figure 4.4 shows the architecture of the MPI-based video transcoder for
multiple streams. Each active incoming stream is segmented continuously
and stored in a job queue of one of the transcoding servers. Load balancing
is performed dynamically depending on an estimated queue waiting time of
a segment on each transcoding server. The estimated waiting time of a new
segment on a given transcoding server is calculated by dividing the number
of frames that are currently in its queue with the average transcoding rate
of the server (see Algorithm 4.3). The manager sends the next segment
to a transcoding server with the smallest estimated queue waiting time. A
header containing the stream ID, segment ID, a transcoding parameter, and
number of frames in the segment is attached to each segment. This header
is used to identify each segment in the system and make load balancing
decisions. The total number of transcoding servers is decided by the manager.
In our distributed transcoder, every server has its own ID and the work is
routed according to these IDs. In Figure 4.4, the ID of the manager is 0.
It implements the proposed dynamic load balancing algorithm. Moreover,
it contains the video splitter and the video merger. The manager invokes
video splitter before sending transcoding jobs to the transcoding servers.
Each transcoding server takes a segment from its queue, parses the segment
header to get the transcoding parameters, transcodes the segment, and sends
back the transcoded segment to the manager. The manager then invokes the
video merger to merge the transcoded segments into output streams. The
impact of the dynamic load balancing algorithm is compared with a static
round-robin approach in Section 4.9.

4.8 Simulation Results of VM Allocation

Software simulations are often used to test and evaluate new algorithms in-
volving complex environments [11]. We have developed a discrete-event sim-
ulation for the proposed VM allocation approach. The simulation is written
in the Python programming language and is based on the SimPy simulation
framework [26].

4.8.1 Experimental Design and Setup

We considered two different synthetic load patterns in two separate exper-
iments. Load pattern 1 in experiment 1 consists of two load peaks, while

Video Transcoding in the Cloud 129

Manager Transcoding Servers

Input Streams 0. 0O4a @

e e o [S J 0.0 @
o -~ oog | | o.oa Q) 5
i Video Splitter H
Video Merger ---------- 0.0 @

0

0
Output Streams : 0:
[I o :
o .. 0OOod

Figure 4.4: MPI-based distributed video transcoder

Algorithm 4.3. Dynamic load balancing

while true do
selected_server = transcoding_servers.get(0)
smallest_queue_time = TIMFE_MAX

for transcoding_server in transcoding_servers do
transcoding_server— > frames

1:

2

3

4

& queue-time = transcoding_server— > fps
6 if queue_time < smallest_queue_time then
7 smallest_queue_time = queue_time

8 selected_server = transcoding_server

9: end if

10: end for

11: segment = queue— > take()

12: send(segment, selected_server)

13: end while

load pattern 2 in experiment 2 has six load peaks. For simplicity, the renting
period was assumed to be 600 seconds. The remaining time upper threshold
RTy was 60 seconds, while the remaining time lower threshold RT; was 12
seconds. The Load Tracker (LT) and lp parameters were as follows: n = 15,
q = 30, and h = 120.

The experiments used both Standard Definition (SD) and HD video
streams. At the time of writing this book chapter, 10% of YouTube’s videos
are available in HD, while YouTube has more HD content than any other

130 F. Jokhio et al.

video hosting site [1]. However, the ratio of HD versus SD is expected to
increase in the near future. Therefore, the load generation assumed 70% SD
and 30% HD video streams. The video segmentation was performed at the
GOP level. The segmentation produced video segments, which were sent to
the transcoding servers for execution. For HD videos, the average size of a
video segment was 75 frames with a standard deviation of 7 frames. Likewise,
for SD videos, the average size of a segment was 250 frames with a standard
deviation of 20 frames. The total number of frames in a video stream was in
the range of 15000 to 18000.

The desired play rate for a video stream is often fixed: 30 fps for SD
videos and 24 fps for HD videos. Whereas, the transcoding rate depends
on the video contents, such as, frame resolution, type of video format, type
of frames, and contents of blocks. Different transcoding mechanisms also
require different times.

In our experiments, the maximum transcoding rate for SD videos was
assumed to be four times of its play rate. We further assumed that the
transcoding rate is always higher than the play rate of all video streams.
Similarly, the minimum transcoding rate for SD videos was assumed to be
double of its play rate. Since HD videos require more computation, the
maximum transcoding rate for an HD video was assumed to be double of the
play rate, with the minimum transcoding rate at 1.5 times the play rate.

The objective of experiment 1 was to simulate a relatively normal load. It
was designed to generate a load representing a maximum of 200 simultaneous
video streams in two different load peaks. In the first peak, the streams were
ramped-up from 0 to 200, while adding a new stream every 20 seconds.
After the ramp-up phase, the number of streams was maintained constant
for 1 hour and then ramped-down to 100 streams.

The second peak ramped-up from 100 streams to 200 streams, while
adding a new stream every 30 seconds. The ramp-up phase was followed
by a similar constant phase as in the first peak. Then, the ramp-down phase
removed all streams from the system.

Experiment 2 was designed to simulate the load pattern of a highly vari-
able video demand. It generated a load representing a maximum of 280
simultaneous video streams consisting of six different load peaks. In the first
peak, the streams were ramped-up from 0 to 170, while adding a new stream
every 30 seconds. Then, in the second peak from 110 to 250, while adding
a new stream every 20 seconds. Likewise, 210 to 280, 215 to 250, 120 to
200, and 100 to 170, respectively, in the third, fourth, fifth, and sixth peak.
The stream ramp-up rate was 1 new stream per 30 seconds. Each ramp-
up phase was followed by a ramp-down phase. Finally, the last ramp-down
phase removed all streams from the system.

Video Transcoding in the Cloud 131

g 12000 |- predicted transcoding rate (TR) —— 7 12000 _
+=10000 [target play rate (PR) ------- < 10000 ﬁ
£ 8000 [4 8000 L
E 6000 < 6000 %
2 4000 4 4000 o
o o
£ 2000 | 4 2000 &
0 = 0
12000 - actual transcoding rate (TR) ——— 7 12000 _
ﬁ10000 o target play rate (PR) ------- - 10000 ﬁ
o 8000 [- 8000 E
';6 6000 4 6000 &
2 4000 - 4 4000 &
® 2000 [4 2000 &
0 0
150 | transcoding jobs (video segments)
125 |
« 100 [

N T
video streams

240
number of servers -------

200

[%2]

E 160 160 &
>

2120 120 5

@ 80 80 *

40

o
S

time (hours)

Figure 4.5: Experiment 1 results: relatively normal load

4.8.2 Results and Analysis

In both Figures 4.5 and 4.6, the number of servers plot shows dynamic VM
allocation for the cluster of transcoding servers. The transcoding jobs plot
represents the total number of jobs in the system at a particular time in-
stance. It includes the jobs in execution at the transcoding servers and the
jobs that were waiting in the queues. The target play rate plot shows the
sum of target play rates of all video streams in the system. Likewise, the ac-
tual transcoding rate plot represents the total transcoding rate of all servers,
while the predicted transcoding rate plot shows results of the load prediction.
As described in Section 4.5, the VM allocation decisions were mainly based
on the target play rate, the predicted transcoding rate, and the queue length
of servers.

Figure 4.5 presents results from experiment 1. The results are also sum-
marized in Table 4.2. Experiment 1 used a maximum of 93 transcoding
servers for a maximum of 200 simultaneous streams. Moreover, a total of
4596 streams consisting of approximately 5 x 10° transcoding operations and
7 x 107 video frames were completed in 4 hours and 38 minutes. The re-
sults indicate that the resource allocation algorithms with the sharing of the
VM resources among multiple video streams resulted in a reduced number

132 F. Jokhio et al.

Table 4.2: Results from proactive VM allocation experiments. Experiment
1 uses relatively normal load, while experiment 2 uses highly variable load.
The results include maximum number of servers used, maximum and average
number of transcoding jobs or segments, maximum and average play rate
(PR), and maximum and average transcoding rate (TR).

experiment | servers | jobs,y, | jobs;ax PRavg. PRiax TRave. TRmax
1 109 44.84 95 | 3597.42 fps | 5670 fps | 3496.48 fps | 7683.34 fps
2 150 40.74 122 | 3273.61 fps | 7818 fps | 3446.19 fps | 9234.23 fps

of servers as compared with the number of video streams which reduces VM
provisioning cost. The resource de-allocation algorithm takes into account
the servers remaing renting time. A server is terminated only when it is near
its completion of renting period, which avoids unnecessary oscillations in the
number of VMs.

The results show that the actual transcoding rate was always close to
the target play rate. This was desirable to avoid over and underflow of the
output video buffer in the system, as discussed in Section 4.5. Although the
actual transcoding rate was sometimes slightly above or below the target play
rate, the proactive resource allocation helped to ensure that the cumulative
number of transcoded frames was always greater than the cumulative number
of played frames.

Figure 4.6 presents results from experiment 2. Table 4.2 also contains a
summary of the results. It used a maximum of 120 transcoding servers for
a maximum of 290 simultaneous streams. Moreover, a total of 7241 streams
consisting of approximately 8 x 10° transcoding operations and 1 x 10® video
frames were completed in 6 hours and 54 minutes. Although the number of
streams was fluctuating rapidly, the algorithms provided a sustainable service
with fewer VMs, while minimizing oscillations in the number of servers and
avoiding the over and underflow of the output video buffer.

4.9 Evaluation of MPI-Based Distributed Video
Transcoder

In this section, we describe the experimental setup, the results obtained,
and their analysis from our prototype implementation of the MPI-based dis-
tributed video transcoder. The results are focused on the effect of load bal-
ancing algorithms on the utilization of transcoding servers. Therefore, provi-
sioning of the transcoding servers is done statically before each experiment.

Video Transcoding in the Cloud 133

’3\12000 I predicted transcoding rate (TR) —— 7 12000 _
+=10000 [target play rate (PR) ------- 1 10000§
g + 4 8000 £
3 - 4 6000 &
o |53
k) 3 4 4000 &
o + 4 2000 &
= : 0
__ 12000 actual transcoding rate (TR) ——— 7 12000 _
810000 | target play rate (PR) ------- g 10000§
3 4 8000 &
- 4 6000 &
+ 4 4000 &
3 4 2000 &
= 0
150 | transcoding jobs (video segments) g
0 T T T - T
300 | video streams -4 300
250 | number of servers ------- 1 250
[%2]
£200 |- 1 200§
£150 - {1508
%100 e - e - 11008
50 - 4 s0
O 1 1 1 1 1 _ 0
0 1 2 3 5

time (hours)

Figure 4.6: Experiment 2 results: highly variable load

4.9.1 Experimental Design and Setup

Our main task was to investigate performance in terms of total processing
time of distributed video transcoding in cloud computing with dynamic load
balancing. We setup a homogeneous and a heterogeneous test environment
in the cloud using StarCluster. The StarCluster is an open source cluster
computing tool-kit for Amazon EC2. It has been designed to automate and
simplify the process of building, configuring, and managing clusters of VMs
suited for distributed and parallel computing applications and systems on
Amazon EC2.

The homogeneous test cluster consist of a stream manager and a maxi-
mum of 14 transcoding servers. The stream manager is assigned the task of
splitting, merging, and scheduling of video segments. All the nodes in this
cluster are m1.small instances from Amazon EC2. The m1.small instance
is a VM with 1.7 GB memory and one virtual core running 32 bit Ubuntu
11.10 on AMD 2218H E. The m1.small instance is the default instance in the
Amazon EC2 and is not optimized for anything in particular. Furthermore,
the instances are selected from the same availability zone (i.e eu-west-1a).
Running virtual cloud instances from the same availability zone ensures a
more homogeneous network connection in the cluster.

134 F. Jokhio et al.

The Heterogeneous test cluster consists of a maximum of 14 transcoding
servers and a stream manager. Half nodes in the cluster are m1.small in-
stances from Amazon EC2 cloud. The other half instances in the cluster are
cl.medium instances. The cl.medium is a VM with 1.7G B memory and two
virtual core running 32 bit Ubuntu 11.10 on Intel £5—2650 at 2 GHz. In con-
trast to the basic m1.small instance, the cI.medium instance has two cores
and is optimized for speed. Furthermore, the instances are selected from two
different availability zones (i.e eu-west-1la and eu-west-1c), which are located
apart form each other. Running virtual cloud instances from different avail-
ability zone might lead to a more heterogeneous network connection in the
cluster.

The aim of of doing the experiment on a heterogeneous clusters is mo-
tivated by the concept of job affinity [24], which states that some jobs may
run significantly faster on nodes of a particular instance than others. Hence,
it is important to know the job/instance type relationship and and design
the load balancing algorithm accordingly.

To perform transcoding in the distributed environment, we have modi-
fied an existing open source transcoder FFMPEG with Message Passing Pro-
gramming Model [27]. The first process with rank 0 is assigned the task of
splitting, scheduling, and merging input video streams. The other processes
with rank 1 to 14 are assigned the task of transcoding. The manager first
splits incoming video streams at GOP level and uses the static or dynamic
load balancing methods explained in Section 4.7. Depending on the sched-
uler decision, the manager sends video segments to a selected transcoding
server’s queue. The task of each transcoding server is to pick a task from
their queue and perform the transcoding job till a termination signal is sent
from the stream manager.

To perform different experiments in a cluster-based environment, we se-
lected various video sequences having different number of frames. Character-
istics of those video sequences such as length, size, total number of frames,
and resolution are given in Table 4.3. All video sequences have a frame rate
of 24 fps.

In this experiment we have restricted ourselves to using few streams as the
focus is to only understand and compare the the effect of job load balancing
approaches on the throughput of a distributed transcoding system.

4.9.2 Results and Analysis

We used both SD and HD video sequences in our experiments. Table 4.3
shows characteristics of video sequences, such as, size of video sequence in
Mega Bytes, number of frames, and resolution. The total transcoding time

Video Transcoding in the Cloud 135

Table 4.3: Characteristics of video sequences

Video Size Frames | Resolution
Sintel HD 251 MB | 21312 1280x720
Elephants Dream HD | 162 MB | 15690 1280x720
Big Buck Bunny HD | 115 MB | 14315 1280720
Sintel SD 48 MB | 21312 854x480
Elephants Dream SD | 34 MB 15690 854x480
Big Buck Bunny SD 30 MB 14315 854x480

with different number of transcoding servers in a heterogeneous cloud cluster
for Sintel HD, Elephants Dream HD, Big Buck Bunny HD, and for multiple
streams with two HD and two SD simultaneous streams is shown in Fig-
ures 4.7a~d. Likewise, transcoding time with different number of servers in a
homogeneous Cloud cluster for Sintel HD, Elephants Dreams HD, Big Buck
Bunny HD, and for multiple streams with two HD and two SD simultaneous
streams is shown in Figures 4.7e-h.

Figure 4.7a-d shows the total transcoding time for static round-robin
and our proposed dynamic load balancing over a varying number of servers.
In all cases, the performance gain accounts to about 45% except the case
where there is only one transcoding node and the scheduling overhead matters
significantly.

Figure 4.7e-h shows the result of applying the static and dynamic schedul-
ing algorithms specified in Section 4.7 on a cluster of homogeneous transcod-
ing servers. In this case, the performance gain from using the proposed
dynamic load balancing algorithm only accounts to about 10 — 12%, except
the cases when there is only one or two transcoding nodes resulting in a
significant scheduling overhead. This result is also expected due to the fact
that the experiment is done in a homogeneous platform and the performance
gain is only due to the fact that video streams have different computational
loads on different segments.

Figure 4.7d and Figure 4.7h show the results for the performance of the
proposed dynamic scheduling algorithm against the static one when there
are four simultaneous streams in the system. We selected the first two HD
and two SD videos from Table 4.3 to test the multiple streams setup. As
can be noticed from these figures, the gap between the performance of the
dynamic and static schedulers slightly increased due to the non-homogeneity
introduced by the Central Processing Unit (CPU) demand difference among
HD and SD video streams.

136 F. Jokhio et al.

1200 ¢ 2400 ¥
1000 b multiple_streams_static —+— | 2000 multiple_streams_static —+— |
ultiple_streams_dynamic ---x--- multiple_streams_dynamic ---x---
- 800 g 21600 -
d GE) 600 B h ©1200 ~
= 400 X] = 800 [“w. E
200 Fan NN g 400 |- N e
0 e 800 —
300 L. elephant_dreams_static —+— | N elephant_dreams_static —+—
/‘f\kelephant_dreams_dynamic - - 600 |\ elephant_dreams_dynamic ---x---
0 @
¢ 2% g ©400 4
£ £
=100 N . =200 = i
—+—q
X ~»><*”x\;x X—‘%\X”T:Hﬂ_#¥_‘7
0 — 0 —
400 sintel_static —+— 1600 sintel_static —+— o
sintel_dynamic ---x--- \ sintel_dynamic ---x---
2300 g 51200 | -
b 2200 . f o g0k x 1
100 S ~ 400 g
o e X e
- 2]
big_buck_bunny_static —+— \ big_buck_bunny_static —+—
200 ¥ ig_buck_bunny_dynamic ---x--- 600 |\ big_buck_bunny_dynamic ---x---
0 X « \
a o e MO 7
£100 | £300 i
Ko 150 % 4
1 3 5 7 9 1 13 1 3 5 7 9 11 13
number of transcoding servers number of transcoding servers

Figure 4.7: MPI-based distributed video transcoder results. Figures a-d show
the total transcoding time with different number of transcoding servers in a
heterogeneous cloud cluster for Sintel HD | Elephants Dream HD, Big Buck
Bunny HD, and for multiple streams. Similarly, Figures e-h show the results
in a homogeneous cloud cluster for Sintel HD, Elephants Dream HD, Big
Buck Bunny HD, and for multiple streams.

4.10 Related Work

Distributed video transcoding with video segmentation was proposed in [21]
and [23]. In these works, video segmentation was performed at the GOPs
level. Jokhio et al. [21] presented bit rate reduction video transcoding using
multiple processing units. The paper discussed computation, parallelization,
and data distribution among computing units. In [23], different video seg-
mentation methods were analyzed to perform spatial resolution reduction
video transcoding. The paper compared three possible methods of video seg-
mentation. In both papers, video transcoding was not performed in the cloud
and the VM allocation problem was not addressed. In contrast, the main fo-
cus of this work is on VM allocation and deallocation algorithms. Huang et
al. [19] presented a cloud-based video proxy to deliver transcoded videos for
streaming. The main contribution of their work is a multilevel transcoding

Video Transcoding in the Cloud 137

parallelization framework. They used Hallsh-based and Lateness-first map-
ping to optimize transcoding speed and to reduce transcoding jitters. The
performance evaluation was done on a campus cloud testbed and the commu-
nication latency between cloud and video proxy was neglected. Li et al. [25]
proposed cloud transcoder, which uses a compute cloud as an intermediate
platform to provide transcoding service. Both papers do not discuss the VM
allocation problem for video transcoding in cloud computing.

The existing works on dynamic VM allocation can be classified into two
main categories: Plan-based approaches and control theoretic approaches.
Plan-based approaches can be further classified into workload prediction ap-
proaches and performance dynamics model approaches. One example of the
workload prediction approaches is Ardagna et al. [4], while TwoSpot [38],
Hu et al. [18], Chieu et al. [14], Igbal et al. [20] and Han et al. [17] use a
performance dynamics model. Similarly, Dutreilh et al. [15], Pan et al. [29],
Patikirikorala et al. [30], and Roy et al. [33] are control theoretic approaches.
One common difference between all of these works and our proposed app-
roach is that they are not designed specifically for video transcoding in cloud
computing. In contrast, our proposed approach is based on the important
VM allocation metrics for video transcoding service. Moreover, the proposed
approach is cost-efficient as it uses fewer VMs for a large number of video
streams and it counteracts possible oscillations in the number of VMs that
may result in higher provisioning costs.

Ardagna et al. [4] proposed a distributed algorithm for managing Soft-
ware as a Service (SaaS) cloud systems that addresses capacity allocation
for multiple heterogeneous applications. The resource allocation algorithm
takes into consideration a predicted future load for each application class
and a predicted future performance of each VM, while determining possible
Service-Level Agreement (SLA) violations for each application type. The
main challenge in the prediction-based approaches is in making good pre-
diction models that should provide high prediction accuracy under real-time
constraints. For this, we use a two-step prediction approach, which limits
the computation delay without incurring oscillations, while providing high
prediction accuracy.

TwoSpot [38] aims to combine existing open source technologies to sup-
port web applications written in different programming languages. It sup-
ports hosting of multiple web applications, which are automatically scaled
up and down in a horizontal fashion. However, the scaling down is decentral-
ized, which may lead to severe random drops in performance. For example,
when all controllers independently choose to scale down at the same time.
Hu et al. [18] proposed a heuristic algorithm that determines the server allo-
cation strategy and job scheduling discipline which results in the minimum

138 F. Jokhio et al.

number of servers. They also presented an algorithm for determining the
minimum number of required servers, based on the expected arrival rate,
service rate, and SLA. Chieu et al. [14] presented an approach that scales
servers for a particular web application based on the number of active user
sessions. The main problem with this approach is in determining suitable
threshold values on the number of user sessions. Igbal et al. [20] proposed
an approach for adaptive resource provisioning for read intensive multi-tier
web applications. Based on response time and CPU utilization metrics, the
approach determines the bottleneck tier and then scales it up by provisioning
a new VM. Scaling down is supported by checking for any over-provisioned
resources from time to time. Han et al. [17] proposed a reactive resource
allocation approach to integrate VM-level scaling with a more fine-grained
resource-level scaling. In contrast, the proposed approach provides proactive
VM allocation, where the VM allocation decisions are based on the impor-
tant video transcoding metrics, such as video play rate and server transcoding
rate.

Dutreilh et al. [15] and Pan et al. [29] used control theoretic models for
designing resource allocation solutions for cloud computing. Dutreilh et al.
presented a comparison of static threshold-based and reinforcement learning
techniques. Pan et al. used Proportional-Integral (PI) controllers to provide
QoS guarantees. Patikirikorala et al. [30] proposed a multi-model framework
for implementing self-managing control systems for QoS management. Roy
et al. [33] presented a look-ahead resource allocation algorithm based on the
model predictive control. A common characteristic of the control theretic
approaches is that they depend upon performance and dynamics of the un-
derlying system. In contrast, the proposed approach does not require any
knowledge about the performance and dynamics of the transcoding servers.

4.11 Conclusion

In this chapter, we presented proactive VM allocation algorithms to scale
video transcoding service in a cloud environment. The proposed algorithms
provide a mechanism for creating a dynamically scalable cluster of video
transcoding servers by provisioning VMs from an IaaS cloud. The prediction
of the future user load is based on a two-step load prediction method, which
allows proactive VM allocation with high prediction accuracy under real-time
constraints. For cost-efficiency, we used segmentation of video streams, which
splits a stream into smaller segments that can be transcoded independently of
one another. This helped us to perform video transcoding of multiple streams
on a single server. The proposed VM allocation approach is demonstrated

REFERENCES 139

in a discrete-event simulation. The evaluation and analysis considered two
different synthetic load patterns in two separate experiments. Experiment
1 used a relatively normal load, while experiment 2 used a highly variable
load. The results show that the proposed approach provides cost-efficient VM
allocation for transcoding a large number of video streams, while minimizing
oscillations in the number of servers and avoiding over and underflow of the
output video buffer.

We also presented a prototype implementation of a MPI-based distributed
video transcoder and a dynamic load balancing algorithm for video transcod-
ing in cloud computing. Experimental results from the MPI implementation
show that the distributed transcoding approach along with the dynamic load
balancing scheme decreases the total transcoding time up to 45% for a het-
erogeneous set of servers and up to 12% for homogeneous environments.

Future work includes implementing an admission controller to prevent
transcoding servers from becoming overloaded. We have been currently work-
ing on a stream-based admission control approach for video transcoding in
cloud computing [9]. Furthermore, a computation and storage trade-off strat-
egy for video transcoding in cloud computing and using realistic load patterns
for experimental evaluation are also part of our ongoing work.

Acknowledgments

This work was supported by an Amazon Web Services research grant. Fareed
Jokhio and Adnan Ashraf were partially supported by the Foundation of
Nokia Corporation and by doctoral scholarships from the Higher Education
Commission (HEC) of Pakistan.

References

[1] 35 Mind Numbing YouTube Facts, Figures and Statistics Infographic.
2012/05/23. URL: http://www . jeffbullas . com/2012/05/23/
35-mind - numbing - youtube - facts - figures-and-statistics-
infographic/.

[2] M. Andreolini and S. Casolari. “Load prediction models in web-based
systems”. In: Proceedings of the 1st international conference on Per-
formance evaluation methodolgies and tools. valuetools '06. New York,
NY, USA: ACM, 2006. 1sBN: 1-59593-504-5. DOI: 10.1145/1190095.
1190129.

140

F. Jokhio et al.

M. Andreolini, S. Casolari, and M. Colajanni. “Models and Frame-
work for Supporting Runtime Decisions in Web-Based Systems”. In:
ACM Transactions on the Web 2.3 (2008), pp. 1-43. 1SSN: 1559-1131.
DOI: 10.1145/1377488.1377491.

D. Ardagna et al. “Service Provisioning on the Cloud: Distributed
Algorithms for Joint Capacity Allocation and Admission Control”.
In: Towards a Service-Based Internet. Ed. by E. Di Nitto and R.
Yahyapour. Vol. 6481. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, pp. 1-12.

M. Armbrust et al. “A view of cloud computing”. In: Commun. ACM
53.4 (Apr. 2010), pp. 50-58. 1SSN: 0001-0782. DOI: 10.1145/1721654.
1721672.

M. Armbrust et al. Above the Clouds: A Berkeley View of Cloud Com-
puting. Tech. rep. UCB/EECS-2009-28. EECS Department, Univer-
sity of California, Berkeley, 2009. URL: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2009/EECS-2009-28 . html.

A. Ashraf, B. Byholm, and I. Porres. “A Session-Based Adaptive Ad-
mission Control Approach for Virtualized Application Servers”. In:
The 5th IEEE/ACM International Conference on Utility and Cloud
Computing. Ed. by C. Varela and M. Parashar. IEEE Computer So-
ciety, 2012, pp. 65-72.

A. Ashraf et al. “Feedback Control Algorithms to Deploy and Scale
Multiple Web Applications per Virtual Machine”. In: 38th Furomi-
cro Conference on Software Engineering and Advanced Applications.
Ed. by V. Cortellessa, H. Muccini, and O. Demirors. IEEE Computer
Society, 2012, pp. 431-438.

A. Ashraf et al. “Stream-Based Admission Control and Scheduling for
Video Transcoding in Cloud Computing”. In: 15th IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CC-
Grid). 2013.

N. Bjork and C. Christopoulos. “Transcoder architectures for video
coding”. In: Consumer Electronics, IEEE Transactions on 44.1
(1998), pp. 88 —98. 1ssN: 0098-3063. DOI: 10.1109/30.663734.

R. N. Calheiros et al. “CloudSim: a toolkit for modeling and simu-
lation of cloud computing environments and evaluation of resource
provisioning algorithms”. In: Software: Practice and FExperience 41.1
(2011), pp. 23-50. 1sSN: 1097-024X.

REFERENCES 141

[12]

[13]

[14]

[15]

[19]

D. Chai and A. Bouzerdoum. “A Bayesian approach to skin color
classification in YCbCr color space”. In: TENCON 2000. Proceedings.
Vol. 2. 2000, 421-424 vol.2. DOI: 10.1109/TENCON.2000.888774.

S. F. Chang and A. Vetro. “Video Adaptation: Concepts, Technolo-
gies, and Open Issues”. In: Proceedings of IEEE 93.1 (Jan. 2005),
pp. 148-158. URL: http://dx.doi.org/10.1109/JPROC. 2004 .
839600.

T. C. Chieu et al. “Dynamic Scaling of Web Applications in a Virtu-
alized Cloud Computing Environment”. In: e-Business Engineering,
2009. ICEBE °09. IEEE International Conference on. 2009, pp. 281—
286. DOI: 10.1109/ICEBE.2009.45.

X. Dutreilh et al. “From Data Center Resource Allocation to Control
Theory and Back”. In: Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on. 2010, pp. 410-417. po1: 10.1109/CLOU
D.2010.55.

Gropp, W., Lusk, E., and Skjellum, A. Using MPI, Portable Parallel
Programming with the Message Passing Interface. MIT Press.

R. Han et al. “Lightweight Resource Scaling for Cloud Applications”.
In: Cluster Computing and the Grid, IEEE International Symposium
on (2012), pp. 644-651.

Y. Hu et al. “Resource provisioning for cloud computing”. In: Pro-
ceedings of the 2009 Conference of the Center for Advanced Studies
on Collaborative Research. CASCON ’09. New York, NY, USA: ACM,
2009, pp. 101-111.

Z. Huang et al. “CloudStream: Delivering high-quality streaming
videos through a cloud-based SVC proxy”. In: INFOCOM 2011. 30th
IEEFE International Conference on Computer Communications, Joint
Conference of the IEEE Computer and Communications Societies,
10-15 April 2011, Shanghai, China. IEEE, 2011, pp. 201-205. DOL:
http://dx.doi.org/10.1109/INFCOM.2011.5935009.

W. Igbal et al. “Adaptive resource provisioning for read intensive
multi-tier applications in the cloud”. In: Future Generation Computer
Systems 27.6 (2011), pp. 871-879. 1ssN: 0167-739X.

F. Jokhio et al. “Bit Rate Reduction Video Transcoding with Dis-
tributed Computing”. In: Parallel, Distributed and Network-Based
Processing (PDP), 2012 20th Euromicro International Conference on.
2012, pp. 206 —212. poI: 10.1109/PDP.2012.59.

142

[22]

[23]

[25]

[26]

F. Jokhio et al.

F. Jokhio et al. “Prediction-Based Dynamic Resource Allocation for
Video Transcoding in Cloud Computing”. In: Parallel, Distributed and
Network-Based Processing (PDP), 21st Euromicro International Con-
ference on. 2013.

F. A. Jokhio et al. “Analysis of video segmentation for spatial reso-
lution reduction video transcoding”. In: Intelligent Signal Processing
and Communications Systems (ISPACS), 2011 International Sympo-
stuml. 2011, 6 pp.

G. Lee, B.-G. Chun, and H. Katz. “Heterogeneity-aware resource
allocation and scheduling in the cloud”. In: Proceedings of the 3rd
USENIX conference on Hot topics in cloud computing. HotCloud’11.
Portland, OR: USENIX Association, 2011, pp. 4-4. URL: http://d1.
acm.org/citation.cfm?id=2170444.2170448.

Z. Li et al. “Cloud Transcoder: Bridging the Format and Resolution
Gap between Internet Videos and Mobile Devices”. In: The 22nd ACM
Workshop on Network and Operating Systems Support for Digital Au-
dio and Video. ACM, 2012. 1SBN: 978-1-4503-0752-9/12/06.

N. Matloff. A Discrete-Event Simulation Course Based on the SimPy
Language. University of California at Davis, 2006. DOI: http://he
ather .cs.ucdavis. edu/~matloff/simcourse.html. URL: http:
//heather.cs.ucdavis.edu/~matloff/simcourse.html.

Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard. Knoxville, TN: University of Tennessee, June 1995.

D. Montgomery, E. Peck, and G. Vining. Introduction to Linear Re-
gression Analysis. Wiley Series in Probability and Statistics. John
Wiley & Sons, 2012. 1SBN: 9780470542811.

W. Pan et al. “Feedback Control-Based QoS Guarantees in Web Ap-
plication Servers”. In: High Performance Computing and Communi-
cations, 2008. HPCC' ’08. 10th IEEE International Conference on.
2008, pp. 328-334. DOI: 10.1109/HPCC.2008.106.

T. Patikirikorala et al. “A multi-model framework to implement self-
managing control systems for QoS management”. In: Proceedings of
the 6th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems. SEAMS ’11. New York, NY, USA:
ACM, 2011, pp. 218-227. 1SBN: 978-1-4503-0575-4.

[31]

[32]

[33]

M. Pawlish, A. S. Varde, and S. A. Robila. “Cloud computing for
environment-friendly data centers”. In: Proceedings of the fourth in-
ternational workshop on Cloud data management. CloudDB ’12. Maui,
Hawaii, USA: ACM, 2012, pp. 43-48. 1SBN: 978-1-4503-1708-5. DOTI:
10.1145/2390021.2390030. URL: http://doi.acm.org/10.1145/
2390021.2390030.

J. Rhoton and R. Haukioja. Cloud Computing Architected: Solution
Design Handbook. Recursive Press, 2011. 1SBN: 9780956355614.

N. Roy, A. Dubey, and A. Gokhale. “Efficient Autoscaling in the
Cloud Using Predictive Models for Workload Forecasting”. In: Cloud
Computing (CLOUD), 2011 IEEFE International Conference on. 2011,
pp. 500 —=507. por: 10.1109/CLOUD.2011.42.

P. Saripalli et al. “Load Prediction and Hot Spot Detection Models
for Autonomic Cloud Computing”. In: Utility and Cloud Computing
(UCC), 2011 Fourth IEEE International Conference on. 2011, pp. 397
—402. Dor: 10.1109/UCC.2011.66.

A. Vetro, C. Christopoulos, and H. Sun. “Video transcoding architec-
tures and techniques: an overview”. In: Signal Processing Magazine,
IEEFE 20.2 (2003), pp. 18 —29. 1sSN: 1053-5888. DOI: 10.1109/MSP.
2003.1184336.

J. Watkinson. The MPEG Handbook: MPEG-1, MPEG-2, MPEG-/4.
Broadcasting and communications. Elsevier/Focal Press, 2004. 1SBN:
9780240805788.

T. Wiegand, G. J. Sullivan, and A. Luthra. “Draft ITU-T recommen-
dation and final draft international standard of joint video specifica-
tion”. In: Technical Report. 2003.

A. Wolke and G. Meixner. “TwoSpot: A Cloud Platform for Scaling
out Web Applications Dynamically”. In: Towards a Service-Based In-
ternet. Ed. by E. di Nitto and R. Yahyapour. Vol. 6481. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2010, pp. 13-24.
ISBN: 978-3-642-17693-7.

J. Xin, C.-W. Lin, and M.-T. Sun. “Digital Video Transcoding”. In:
Proceedings of the IEEE 93.1 (2005), pp. 84 —97. 1ssN: 0018-9219. DOTI:
10.1109/JPROC. 2004 .839620.

Y. Yazir et al. “Dynamic Resource Allocation in Computing Clouds
Using Distributed Multiple Criteria Decision Analysis”. In: Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on.
2010, pp. 91-98. DOI: 10.1109/CLOUD. 2010. 66.

143

144

5 Hadoop in Large Scale Data Analytics for
Bioinformatics

Matti Niemenmaa!, André Schumacher!, Keijo Heljanko!, Aleksi Kallio?,
and Eija Korpelainen?

!Department of Information and Computer Science

Aalto University, Espoo, Finland

Email: matti.niemenmaa+-cloudbook@iki.fi, schumach@icsi.berkeley.edu,
keijo.heljanko@aalto.fi

2CSC — IT Center for Science
Espoo, Finland
Email: aleksi.kallio@csc.fi, eija.korpelainen@csc.fi

Abstract—Due to the rapidly increasing data amounts in the bioinformat-
ics world, new approaches to analytics are needed. Solving so-called Big
Data problems, wherein the data sets are infeasible to work with on a
lone computer, requires software that can perform distributed computing in
warehouse-scale clusters with up to tens of thousands of nodes. Hadoop is a
collection of such software, with a core consisting of the Hadoop MapReduce
scalable distributed computing platform and the Hadoop Distributed File
System, HDFS. We explain the principles underlying Hadoop MapReduce
and HDFS as well as certain prominent higher-level interfaces to them: Pig,
Hive, and HBase. We overview the current state of Hadoop usage in bioin-
formatics before briefly introducing our Hadoop-BAM and SeqPig projects:
Hadoop-BAM is primarily a library with support for manipulating common
bioinformatics data formats in Hadoop MapReduce, and SeqPig is based on
the high-level Pig system and can be used directly by non-developers.

Keywords-Hadoop, analytics, bioinformatics, Big Data, warehouse-scale,
MapReduce, Pig, Hive, HBase, Hadoop-BAM, SeqPig.

145

146 M. Niemenmaa et al.

5.1 Introduction

Data volumes nowadays are increasing to the point that many individual
data sets are too large to be analysed, or even stored, on a single computer.
Such data sets are known as Big Data, and can arise in several contexts.
Examples include Internet searches, financial analytics, and various fields
of science. Notably many Big Data problems can be found in the field of
bioinformatics. A number of them are due to recent advances in sequencing:
the task of determining the base composition of e.g. DNA, possibly going as
far as finding the entire genome of an organism.

In the case of DNA, the number of base pairs or bp, the building blocks of
genomic information, that can be sequenced per unit cost has been growing
at an exponential rate for over two decades, doubling approximately every 19
months [115]. This alone would have caused Big Data issues sooner or later.
However, the growth rate suddenly increased around the year 2005, due to
the emergence of techniques known as high-throughput sequencing or HTS
(a.k.a. next-generation sequencing or NGS). HTS has resulted in the process
speeding up to the point that the cost has now been halving approximately
every five months [115]. As an example of current speeds, Pireddu, Leo, and
Zanetti [98] claim that their “medium-sized” DNA sequencing laboratory can
create 4-5 TB of data every week. At the high end, BGI, “one of the largest
producers of genomic data in the world”, generates 6 TB of data daily [75].
For comparison, the largest currently available hard drives are 4 TB in size.

Exponential growth due to technological advances is not unusual in the
computing world. Consider the following three “laws”:

e Moore’s law: the number of components in integrated circuits with
minimum cost per component doubles every year [84]. Later amended
to a doubling every two years without the minimum cost aspect [83],
and commonly quoted as 18 months [119]. Together with Dennard
scaling [46], Moore’s law has meant that processing power has doubled
at essentially the same rate.

e Butters’ law (of photonics): the cost of transmitting one bit over an
optical network halves every nine months [102].

e Kryder’s law, which was never given as a prediction, merely an obser-
vation: areal storage density of hard disk drives had been increasing
at a greater rate than the rate of processor improvement according to
Moore's law [127].

Note, however, that none of the above growth rates, corresponding respec-
tively to increases in processing power, network speed, and storage capacity,

Hadoop in Large Scale Data Analytics for Bioinformatics 147

1,000,000 F 100,000,000

NGS (bp/$)
Doubling time 5 months r10,000,000
100,000 ¥

[1,000,000

10,000 ¥
Hard disk storage (MB/$) 100,000
Doubling time 14 months

1,000 3 £10,000

[1000

Disk storage (Mbytes/$)

100 ¥

($/dq) Burousnbas YN

Pre-NGS (bp/$)
Doubling time 19 months F100

0 . S S I S 0.1
1990 1992 1994 1996 1998 2000 2003 2004 2006 2008 2010 2012
Year

Figure 5.1: Historical trends in storage prices versus DNA sequencing costs.
Reproduced from the work of Stein [115].

are even close to as fast as the current speed at which sequencing is improv-
ing. See Figure 5.1 for a clarifying plot comparing trends in storage and
sequencing costs from 1990 to 2009. (For comparing the actual values in-
stead of only the overall trends, one must know the size of a base pair, which
depends on the storage format: for example, a single base is stored in 4 bits
in BAM files and 8 bits in SAM files [111], excluding compression.) Note
that the source of the plot describes Kryder’s law as a doubling every 14
months, significantly more optimistic than more recent studies showing that
the period is about 25 months [66]. Nevertheless, storing sequencing data on
a hard disk is, or will soon be, actually more expensive than generating the
data [115], making its storage an increasingly difficult task. Discarding all
but the most informative parts may be the only long-term option.

Storage feasibility is only part of the picture: like any kind of raw data,
sequencing data also needs to be analysed in order for it to be of any use.
Clearly, if there is too much data for even its storage to be possible, its
analysis is equally infeasible. This magnitude of data classifies sequence
data analysis as a Big Data problem.

For a problem to qualify as a Big Data problem, attempting to solve it
with a single computer should result in one or both of the following:

148 M. Niemenmaa et al.

e The computer has too slow a processor or too little memory to be able
to perform the needed computations in a reasonable amount of time.
Waiting for better hardware will not help, because the data growth
outpaces Moore’s law.

e The computer does not have enough disk space to store the data sets
on which computations are to be performed. Waiting for larger disk
drives will not help, because the data growth outpaces Kryder’s law.

Therefore, in order to solve Big Data problems, lone computers are insuf-
ficient. Distributed computing is required, i.e. having multiple networked
computers working together in computer clusters. Ideally, the clusters used
have been specialized for the task at hand, thus making them effectively
warehouse-scale computers [18].

Traditionally, distributed software has been created by developing com-
munication protocols specific to the application, using primitives provided by
e.g. the Message Passing Interface (MPI) [23], the PVM framework [117] or,
in the data communications domain, the Erlang programming language [15].
At this level, implementing the necessary functionality correctly is diffi-
cult, especially if the software is to be run not only in small clusters but
on warehouse-scale computers, with hundreds to tens of thousands of net-
work nodes. Realizing high performance in such an environment is especially
complicated. In addition, fault tolerance becomes a necessity, because the
probability of hardware failure is too high to ignore [43].

To ensure that warehouse-scale distributed software can work at high
performance and not worry about hardware failure, a framework specifically
designed for that use case is necessary. One such framework was developed
by Google [52]: MapReduce [45] coupled with GFS (the Google File Sys-
tem) [50]. Together, they provide fault tolerance both for computations and
data: most hardware failures neither interrupt running processes nor cause
data loss.

The implementations of the MapReduce system and GFS were not made
publicly accessible, leading to the creation of Hadoop [5], an open source
implementation of the same ideas. Hadoop has since expanded to become a
collection of software related to scalable distributed computing.

Unfortunately, there exist problems for which MapReduce’s computa-
tional model is far from ideal. MapReduce is specifically optimized for
throughput over latency, which makes it a poor fit for interactive use. Inter-
active analysis tasks arise when users are not well acquainted with the data
sets concerned and must thus ezplore them with repeated queries, either nar-
rowing down areas of interest or requesting more information according to

Hadoop in Large Scale Data Analytics for Bioinformatics 149

newly realized needs. MapReduce’s typical ten-second job startup time [95,
132] guarantees that most users will shift their focus before a computation
completes, slowing down this exploratory process [26]. Interactive tasks are
increasingly prevalent in sequencing data analysis [33], making frameworks
designed with latency in mind desirable. Low latency is a more difficult goal
to reach than high throughput [44, 94], but nevertheless such systems do
exist. Two notable ones are Spark [134] and Impala [63], which is based on
the design of Google’s Dremel [80].

This Chapter proceeds as follows. In Section 5.2 the background and
details of MapReduce are explained in detail. Next, Section 5.3 covers the
Hadoop project and some notable high-level frameworks based on it. Sec-
tion 5.4 surveys the current state of Hadoop in bioinformatics and presents
two sets of tools we have developed that enable using Hadoop to manipu-
late and analyse sequencing data. Finally, Section 5.5 provides some closing
remarks.

5.2 MapReduce

Applying warehouse-scale computing to Big Data problems is not as simple
as setting up the hardware. Programming for a warehouse-scale computer
is a far more complex task than programming for a small cluster, which in
itself is more challenging than programming for e.g. a typical desktop system.
This is especially the case when performance is a concern, since effectively
utilizing all available resources involves co-ordinating several hardware and
software layers. Examples of things to keep in mind are the complex memory
hierarchy, heterogeneous hardware, failure-prone components, and network
topology [18]: all in addition to the complexity of implementing the core of
the application itself. As such it is no surprise that programming frameworks
that ease the burden on the developer of warehouse-scale applications have
been created. MapReduce [45] is one such framework, including automatic
handling for data distribution and fault tolerance.

MapReduce is intended especially for working with large data sets, i.e.
Big Data. As such it is also intended for warehouse-scale computers, which
means that in order to be practical, it must be able to tolerate hardware
failure. Even with unrealistically reliable servers with a mean time between
failures (MTBF) of 30 years, if there are 10000 servers in a cluster, it will
experience on average one failure every day [18]. This makes fault tolerance
in software not only useful, but a practical necessity. In addition, it allows
for a better price/performance tradeoff by using relatively unreliable, cheaper
hardware [19]. MapReduce has been designed with this in mind: it provides

150 M. Niemenmaa et al.

efficiently fault tolerant computations and is intended to be used together
with certain file systems that provide fault tolerant data storage.

At its simplest level, MapReduce is a programming model for transform-
ing data: the programmer need only specify two functions—the Map and
Reduce functions—and the input data, and based on this information the
corresponding output can be computed in a functional manner. Because of
this, the model also allows for a simple strategy for fault tolerance: as re-
executing a function will result in the same output, e.g. all computations on
a failed computer can trivially be re-executed on another computer, as long
as the input data is still available. The MapReduce model allows for easy
parallelization (demonstrated in Section 5.2.1) and is relatively simple to
program for, making it an attractive choice for distributed computing. How-
ever, the term “MapReduce” in a distributed computing context is generally
understood as meaning more than just the abstract programming model: it
includes the associated implementation that handles scheduling the compu-
tation efficiently and dealing with machine failures during execution.

The original MapReduce implementation [45] was developed internally
at Google and has not been released to the public. The current de facto
open source implementation of MapReduce is Apache Hadoop [5], which
will be discussed in Section 5.3. Hadoop’s existence makes MapReduce an
attractive choice as a distributed computation model because Hadoop is well
established, having seen use in a variety of fields with good results. (See
Section 5.3 for detailed information.)

MapReduce is not perfect, though: its programming model can be con-
sidered too rigid for various tasks. PACT [2] has been explicitly designed
as an extension of MapReduce with the ability to express more complex op-
erations. Spark [134] instead emphasizes data re-use: MapReduce does not
intrinsically allow re-using intermediate results. If such re-use is desired, it
must be done by manually saving and loading the corresponding data, which
can incur needless 1/O and serialization overheads. In spite of these limi-
tations, however, the MapReduce model continues to see use across a wide
variety of applications.

In the following Sections we will discuss the MapReduce programming and
execution model in detail before delving into the file system that MapReduce
is typically paired with. The information on MapReduce is based completely
on the works of Dean and Ghemawat [45] and White [130].

5.2.1 Execution Model

Conceptually, the execution model of MapReduce consists only of applying
the Reduce function to the grouped results of the Map function. However,

Hadoop in Large Scale Data Analytics for Bioinformatics 151

practical distributed MapReduce frameworks complicate the process: they
specify more steps and implement them in certain ways to ensure that good
performance and fault tolerance are achieved. Below, we first briefly explain
the simpler, conceptual model, and then consider the principles that underlie
the warehouse-scale implementations.

The type signatures of the two user-specified functions form a concise
description of the conceptual MapReduce execution model. See the follow-
ing, where k is short for “key” and v for “value”, the subscripts serve to
differentiate the types, and the superscripts m > 0, n > 0, and p > 0 denote
differing list lengths:

Map : (ky,v1) — (ko,v2)™
Reduce @ (ko,vy) — o}

As can be deduced from the type signatures, a MapReduce computation takes
a sequence of key-value pairs as input, on which it performs the following
tasks:

1. The Map function is applied to each key-value pair in the input, out-
putting any number of new key-value pairs for each one.

2. Each key in the output from the previous step is paired with all the
values that were associated with that key.

3. The Reduce function is applied to each pair in the result of the pairing
in the previous step. The resulting list of data forms the final output.

To clarify the process, consider the following simple example, where the
task consists of taking as input a set of documents and outputting, for each
word encountered, the set of documents it was found in. Here the input
type could be e.g. (ki,v1) = (document-name, contents) for each document.
The Map function would go through the contents, outputting pairs of type
(ka,v2) = (word,document-name). Thus the Reduce function receives as
input pairs of the form (word, document-name™), which is precisely the set
we are interested in. The final output v} would depend on the exact format
in which the output is desired, but could be e.g. a string (just one string, i.e.
p = 1) of the form "word",'"document-1-name",'"document-2-name",...
for each word.

While the above description is sufficient for implementing a basic Map-
Reduce framework, fully distributed systems for warehouse-scale computers
such as Google’s MapReduce implementation and Apache Hadoop are more
complex and perform the steps in a very specific way. See Figure 5.2 for a
graphical overview of MapReduce execution on such a system.

152 M. Niemenmaa et al.

Map tasks

Input:

Uﬁ,vly\
(kl,vl)*‘ }(kbw)*‘

Figure 5.2: Distributed MapReduce execution with four map tasks and three
reduce tasks. k; and v; denote key type ¢ and value type j respectively. The
asterisk superscripts denote unknown list lengths.

Distributed MapReduce is structured as a master-slave system. The mas-
ter node (known in Hadoop as the jobtracker and predefined as a specific node
for the whole cluster) allocates workers for different parts of the computa-
tion and co-ordinates communication between them. The slaves (known in
Hadoop as tasktrackers) are the nodes that actually read the input data, run
the Map and Reduce functions, and write the output data. Each slave node
provides a number of map and reduce slots for running the two different
functions. For a computation or job, typically the user selects the number
of reduce tasks to be performed while the MapReduce system automatically
determines the number of map tasks. The full execution process is as follows:

1. Split This step is performed solely on the master. The input files are
conceptually split into chunks: a set of splits, i.e. tuples that identify
sequential parts in the input files, is created. These splits are typically
tens of megabytes in size, often corresponding to the block size of the
file system in use (see Section 5.2.2). Based on this the master creates
a map task for each split and assigns as many of them as it can to
separate map slots, which are started up and begin running.

2. Map Each map task involves reading the corresponding input split,
forming key-value pairs of the data therein, and handing them to the
Map function for processing. These intermediate key-value pairs are
written to local disk, sorted by key, and partitioned: differentiated
based on which reduce task they belong to. The default partitioning is

Hadoop in Large Scale Data Analytics for Bioinformatics 153

based on simply assigning each key k to the reducer h(k) mod R where
h is a hash function [65] and R is the number of reduce tasks.

3. Combine This is an optional step that essentially runs the Reduce
function on the partitioned output of the Map function directly as
part of the map task. While a custom Combine function can be given,
typically Reduce is used as-is. This use requires that it be commutative
and associative. Note that since combining can reduce the map task’s
output size, it is performed before writing the partitions to local disk,
as long as the task has enough available memory for in-memory sorting
and partitioning. This way, fewer I/O operations are performed.

4. Shuffle The map tasks communicate the locations of their partitioned
outputs to the master node. It then notifies the corresponding reduce
tasks (starting them up in reduce slots as required) that new data is
available. The reduce tasks read the data from the local disks of the
nodes where the data was written—note that this may be the same node
on which the reduce task itself is running, in which case no network
communication is required. When a reduce task has received all of its
input data, it sorts it so that it is grouped by key.

5. Reduce Each reduce task iterates over its sorted sequence of key-
value pairs, passing each unique key and corresponding sequence of
values to the Reduce function. The output from it is written directly
to the output file of the reduce task, which is one of the final output
files generated by the MapReduce computation.

The end result is a set of output files, one from each reduce task. They
are not automatically combined to a single file because that is not always
necessary: they could be used as-is as inputs for another MapReduce job,
for example. It is also possible to run a map-only job in which only the Map
function is used, with the map tasks’ output forming the output for the entire
computation.

Fault tolerance in this kind of a fully distributed MapReduce system is
fairly simple to implement. The master node periodically pings the slaves,
assuming them to have failed if it does not receive a response in time. In-
progress tasks on failed nodes are rescheduled and eventually restarted. Com-
pleted map tasks are also rescheduled, but completed reduce tasks are not:
the input and output files are assumed to be on a shared storage system,
separate from the local disks that are used for storing the intermediate out-
put from map tasks. Thus, if a node with a completed map task whose
output has not yet been sent to a reduce task fails, the map task needs to

154 M. Niemenmaa et al.

be restarted, but if a node with a completed reduce task fails, nothing needs
to be done. This way worker failure is fully accounted for, which is impor-
tant for long-running jobs at warehouse scale. In contrast, master failure is
deemed unlikely since it requires a specific node to fail, and is not handled
at all, making the master a single point of failure.

Sometimes worker nodes may have unexpectedly poor performance due
to e.g. faulty hardware. This results in stragglers: members of the last few
map or reduce tasks which take a particularly long time to complete, holding
up the whole computation. A key optimization in MapReduce systems, that
of speculative or backup execution, was designed to mitigate this problem.
After all tasks have been started, if some tasks have been running for a
relatively long time and seem to be progressing (performing I/O of key-
value pairs) relatively slowly, the master attempts to reschedule those same
tasks on different nodes. When a task is successfully completed, any other
executing duplicates of that task are stopped. Speculative execution does
not significantly affect the resources used by a job but can offer significant
speedups.

Since tasks can run multiple times as well as be restarted at any point, the
Map and Reduce (and Combine) functions should be free of side effects: pure
functions of their input values. Only then is it guaranteed that all the output
of a fully distributed MapReduce system is equivalent to a single sequential
execution of the program. In the face of nondeterministic user-supplied func-
tions, the output of each reduce task may correspond to a different sequential
execution. Whether this inconsistency is a problem in practice depends on
the application.

5.2.2 Distributed File System

MapReduce is traditionally paired with a specific distributed file system, de-
signed for large files and streaming access patterns. For Google’s MapReduce
that file system is GFS (the Google File System) and for Hadoop it is HDFS
(the Hadoop Distributed File System). Both share similar design principles
and implementation strategies, which will be covered in the remainder of this
section. Information on GFS in this section is based on the work of Ghe-
mawat, Gobioff, and Leung [50] and information on HDFS is based on the
book by White [130], except where otherwise indicated.

GFS and HDFS are both, like MapReduce, master-slave systems. The
master node (known in Hadoop as the namenode) keeps track of file meta-
data and the state of the slaves, and the slave nodes (known in Hadoop as the
datanodes) are responsible for all data storage and communication. Repli-
cation is used to provide fault tolerance: each block is stored on multiple

Hadoop in Large Scale Data Analytics for Bioinformatics 155

slaves—three by default. For simplicity reasons [79] the master node is a
single point of failure, though HDFS’s secondary namenode can limit data
loss in case of catastrophic master node failure.

When using MapReduce, the slave nodes should be used to run Map-
Reduce workers as well, allowing MapReduce to take advantage of data lo-
cality for map tasks. This is done by scheduling map tasks on nodes where
the data for that task’s split is stored, or, failing that, on nodes that are
nearby in terms of the network topology. Replication is advantageous here
as well as for fault tolerance, since it improves the odds of being able to
schedule a task on a node that has the corresponding split’s data available
locally. Note that it is possible to run a MapReduce job on GFS and HDFS
without any of the input data being sent across the network.

A major design principle of both GFS and HDFS is to support large
files efficiently. “Large” in this context means at least 100 megabytes, but
typically several gigabytes, and up to terabytes. In contrast, small files are
assumed to be rare, and so are not optimized for at all. This is very much
the opposite of what file systems are traditionally optimized for [51], which
is one of the main reasons that GFS and HDFS are typically paired with
MapReduce; they are both intended for large files.

Another important design principle of GFS and HDFS is the emphasis
on write-once, read-many operation and streaming reads: written files are
assumed to be modified rarely if at all, and workloads are expected to include
reading entire files or at least significant portions of them. Random reads
and writes are not optimized for—in fact, HDFS does not support random
writes at all. This lack of arbitrary modifications makes implementing repli-
cation much simpler, and the philosophy of large reads makes bandwidth far
more important than latency. Once again, this ties in with the way Map-
Reduce works, but it is also a more generally helpful restriction for scalable
storage architectures: for example, the lowest layer of the Windows Azure
Storage [25] system has the same limitation.

A notable result of these design decisions is that the block size of both
GFS and HDFS is unusually large: 64 megabytes. (HDFS does allow chang-
ing this, but reducing it to usual file system block sizes would be self-
defeating.) This reduces overhead related to metadata management, mainly
by drastically reducing the amount of metadata: compared to a more tra-
ditional 4 KB block size and assuming a large enough file, 16 384 times less
blocks have to be kept track of. Thus metadata can be kept fully in the
memory of the master, making metadata operations fast and enabling easy
rebalancing (replica distribution) and garbage collection. Keeping metadata
in memory has a drawback, however: now the capabilities of the master limit
the number of files that can be stored [79]. Another benefit of large block

156 M. Niemenmaa et al.

sizes is that if the time to read a full block is much greater than the physical
disk seek time, reading a file consisting of multiple arbitrarily distributed
blocks operates close to the disk’s sequential read rate.

5.3 Hadoop

Apache Hadoop [5, 130] was originally conceived as a nameless part of the
Nutch [10] Web search engine, implementing open source versions of Map-
Reduce [45] and the Google File System (GFS) [50] for its own purposes, in
the Java programming language [54]. Yahoo! [133] soon began contributing
to the project, at which point these components were separated, forming the
Hadoop project, named after Doug Cutting’s (the creator) child’s toy ele-
phant. At around the same time, Hadoop began to be hosted by the Apache
Software Foundation [122], giving it the full name “Apache Hadoop”. Since
then, Hadoop has grown to become a collection of related projects, two of
which are the original MapReduce and file system components: Hadoop Map-
Reduce and HDFS (the Hadoop Distributed File System).

For most of Hadoop’s history, the MapReduce component has been the
only computational framework supported in Hadoop. Tasks running on other
systems, e.g. MPI [23], have not been able to be scheduled on Hadoop clus-
ters. This has meant that the machines in a cluster should be configured
to run only one class of tasks, such as Hadoop MapReduce jobs or MPI
processes. Otherwise, one node may have several computationally intensive
tasks running at once, possibly resulting in resource starvation issues such as
running low on memory or disk space, which may in turn cause all tasks on
the node to fail. On the other hand, the traditional solution of partitioning
the cluster by framework can lead to poor resource utilization, with some
machines remaining completely idle while there is work to do, just because
they have been configured for a different framework. Apache Mesos [9, 59]
is a cluster manager with cross-framework scheduling, solving this problem
more effectively. The current beta releases of Hadoop include their own sim-
ilar system, called YARN (Yet Another Resource Negotiator [128]) [6, 57,
85], also known as NextGen MapReduce or MapReduce 2.0. In addition to
cross-framework scheduling, YARN also removes the concept of map and re-
duce slots from MapReduce slave nodes, instead dynamically allocating map
and reduce tasks according to what is most needed at the time. YARN takes
over some of the cluster management responsibilities currently handled by
Hadoop MapReduce, allowing other computational frameworks to effectively
co-exist within Hadoop.

Several companies offer their own distributions of Hadoop, for which they

Hadoop in Large Scale Data Analytics for Bioinformatics 157

also provide commercial support. The most notable ones are Cloudera [34],
Hortonworks [61], and MapR [74]. They are naturally all major contributors
to Hadoop, but have their own extensions as well. Hortonworks’s distribution
is the only one with support for running on Windows Server. Their contribu-
tions are also particularly noteworthy for their Stinger Initiative [113], which
involves improving the performance of the Hive project, which is presented
in Section 5.3.2. Cloudera Impala [63] is a distributed query engine meant
for interactive use, as opposed to MapReduce’s emphasis on throughput.
MapR’s distribution provides fault tolerance for the master in both Map-
Reduce and HDFS: the jobtracker is restarted on failure and the namenode
is fully distributed. MapR is also unique in that it does not use HDFS; a
complete rewrite in the C++ programming language [116], whose interface
is nevertheless compatible with HDF'S, is used instead.

Usage of Hadoop within an organization is unlikely to encompass the
entire range of Hadoop-related projects. Some may not even use the Map-
Reduce component, due to the existence of other computational engines and
YARN. One thing, however, is common to almost all users of any part of
Hadoop: HDFS. The amount of data an organization has stored in HDF'S is
an indication both of how much the organization uses Hadoop and of what
kinds of data volumes Hadoop has been used for. For demonstration pur-
poses, the following is a sample of HDFS usage, co-incidentally all from the
year 2010:

e Facebook [47] stored 15 PB of data with 60 TB being added daily,
and with compression reducing the space usage to 2.5 PB and 10 TB
respectively [123].

e Yahoo! had over 82 PB of data among over 25000 servers split into
clusters of about 4000 [101] servers each.

o Twitter [126] had “(soon) PBs of data”, with 7 TB of new data coming
in every day [129].

Presumably these data volumes have only increased since then.

The previous Section already detailed MapReduce and HDFS. In the fol-
lowing Sections we will instead discuss three prominent open source projects
related to Hadoop, each offering its own higher-level abstraction on top of
Hadoop MapReduce and HDFS. Pig offers a high-level language for express-
ing MapReduce programs, Hive provides a data management and query-
ing system using an SQL-like language implemented with MapReduce, and
HBase allows scalable random access into a key-value store in HDFS.

158 M. Niemenmaa et al.

5.3.1 Pig

Apache Pig [11, 91], originally developed by Yahoo!, is a high-level interface
to MapReduce, providing a custom query language for bulk data manipu-
lation called Pig Latin. It is compiled into a sequence of MapReduce com-
putations which are executed on Hadoop. Pig drastically lowers the bar of
using Hadoop MapReduce, giving users a richer pool of primitives they can
use to describe their computations and not requiring them to implement it
in Java, a far more low-level programming language than Pig Latin. This
can greatly simplify development and maintenance, improving programmer
productivity. Similarly, Pig can be used as a high-level way of implementing
a so-called Extract, Transform, and Load (ETL) pipeline [112].

Pig treats all data as relations. Relations are defined as bags (multisets)
of tuples. The fields in the tuples can be simple values like integers or strings,
but also complex like key-value mappings or even other bags and tuples—
arbitrary nesting is allowed. Tuples in a relation are not constrained in
any way: they can have different numbers of fields as well as different field
types in the same position. It is possible, however, to define a schema which
specifies a common type for the tuples in a relation. Without a schema, Pig
infers a “safe” type for every field (such as double-width floating point for
all numbers), which can cause performance to suffer.

The data model is similar to that used by traditional relational database
systems [38] but more flexible. The lack of a defined ordering is particularly
useful for MapReduce processing, as it does not restrict the partitioning
strategy (how map outputs are spread among the reducers) in any way. In
addition, allowing arbitrary nesting can simplify operations compared to only
having flat tables, especially if they are normalized [42], since all data can
be kept in one relation instead of having to perform join operations when
needed.

Pig Latin has several commands for working with relations, and more are
being added as development proceeds. The following list is incomplete but
representative:

e LOAD and STORE interact with external storage, respectively reading
and writing relations.

e Standard embarrassingly parallel commands: FOREACH transforms ev-
ery tuple in a relation and FILTER selects tuples from a relation based
on a condition.

e Commands related to ordering and equality: ORDER BY performs sort-
ing, RANK adds fields describing sort order but preserves the existing
order, and DISTINCT removes duplicates.

Hadoop in Large Scale Data Analytics for Bioinformatics 159

e Grouping: GROUP a.k.a. COGROUP, which can be applied to more than
one relation at a time.

e Joins: CROSS and JOIN can be used to respectively form the Cartesian
product or any kind of inner or outer join [55, 114] of two or more
relations.

Most commands can utilize functions to specify their exact effects. For ex-
ample, FOREACH could be used as FOREACH r GENERATE f(x) where r is a
relation, £ a function, and x a field contained in the tuples of r. The result
of the command is a relation containing 1-tuples whose values are given by
the function f on the field x of each tuple in r. There are many built-in func-
tions, including arithmetic operators as well as aggregating functions such as
COUNT, which computes the number of tuples in the given relation.

Clearly, these operations by themselves are much more expressive than the
MapReduce model, but Pig Latin can also be extended by users. While the
command set cannot be changed without modifying Pig itself, new functions
can easily be added. Furthermore, the flexibility of the data model means
that all user-defined functions can be used in any function-using command
without restriction, unlike e.g. in Hive where SELECT clauses only allow using
scalar functions.

Pig has been widely adopted. In June 2009 at Yahoo!, 60% of ad-hoc and
40% of production Hadoop MapReduce jobs came through Pig, and further
increases in Pig usage were expected [48]. A cross-industry study performed
in 2012 showed three out of seven analysed clusters having significant Pig
usage, one of which was observed to have had over 50% of MapReduce jobs
submitted via Pig [33]. LinkedIn [72] uses Pig both for user-facing data set
generation and for analytics [16]. The reported runtime increase when using
Pig instead of hand-written MapReduce has ranged from a factor of 1.3 [112]
to 1.5, but it has improved significantly over time and is likely to continue to
do so [48]. This level of performance loss seems to be acceptable in practice:
consider that Twitter was using “almost exclusively” Pig for its analytics in
2011 [71].

5.3.2 Hive

Apache Hive [8, 124, 125] is a data warehouse system built on top of Hadoop:
essentially, it is a high-level interface to both MapReduce and the backend
storage system, which is typically HDFS, but can also be HBase (see Sec-
tion 5.3.3). Hive enforces a structural view, very similar to traditional rela-
tional database systems [38], of the data sets it handles. They are queried

160 M. Niemenmaa et al.

and manipulated using a language similar to SQL [28, 55, 114] called HiveQL,
which is translated to MapReduce computations. Hive was originally devel-
oped by Facebook; later, Google created a very similar warehousing solution
called Tenzing [32]—a rare example of outside ideas being incorporated so
directly at Google, instead of the other way around.

Hive’s data model is based on tables, akin to those used in relational
databases. Records of data are stored in rows, which are split among a set of
typed columns, which are in turn defined in a schema. A row may have a null
value in any column, but each row in a table always has the same amount of
columns. Possible column types include primitive types such as integers and
strings as well as complex types: arrays, key-value mappings, and product
and sum types called structs and unions.

All metadata about the tables managed by Hive is catalogued in the
metastore. The existence of the metastore, i.e. keeping track of persistent
metadata about data sets, is what makes Hive a data warehouse system
as opposed to purely computational systems such as Pig. The metastore re-
members all tables and all information about them; primarily their schemata.
Because it is randomly accessed, the metastore is not stored in HDFS. In-
stead, a traditional relational database is used.

Various settings for performance tuning may be applied to tables in Hive.
Tables can be partitioned on certain columns, so that rows with the same
combination of the partitioned columns’ values are stored together. Parti-
tions may furthermore be bucketed, which is another layer of partitioning
based on the hash of a single column. Table rows can also be stored in sorted
order. When using HDF'S storage, tables map directly to directories, par-
titions to subdirectories of the table’s directory, and buckets to files in the
partitions’ directories.

Notably, even though Hive manages storage of tables, it does not rely
on any particular file format. As long as the contents of each file can be
serialized for storage and deserialized (using a Java class called a SerDe) for
manipulation in HiveQL according to the table’s schema, the files comprising
the data of one table can even be in completely different storage formats.

Hive supports indezing on table columns, a classical strategy for speeding
up query operations in databases. The trade-off is that the index takes
up some additional storage space and modifications become slower as the
index needs to be updated. Considering that Hive’s main use case, data
warehousing, consists of managing very large and mostly immutable data
sets, the slowdown is irrelevant and the amount of space taken by the index is
likely to be negligible, whereas the query speedup is likely to be very welcome.
Hive currently provides two kinds of indices: one that identifies HDF'S blocks
for the rows corresponding to a given key, and a bitmap index [29] that also

Hadoop in Large Scale Data Analytics for Bioinformatics 161

identifies which rows in the blocks are populated with that key.

HiveQL currently has two kinds of data manipulation statements: LOAD,
which simply copies data files into the appropriate HDFS directory of the
table, and INSERT, which writes the results of a SELECT clause into a table
while performing appropriate format conversions. LOAD is an optimization,
relying on the user to make sure that the file is usable in the table as-is, lest
the table end up in an unusable state. INSERT is more flexible, as it can insert
into more than one table at once and compute the partitioning dynamically.
There are no other manipulation statements: HiveQL currently has no way
of updating or deleting rows. This makes sense given that rows are typically
stored as-is in files in HDFS.

Querying in HiveQL is done with the SELECT statement, like in SQL.
Various clauses to modify the statement’s behaviour are supported, as in
any modern SQL system. The following is a sample of what is available:

e WHERE selects only rows for which a given condition is true.

DISTINCT removes duplicates from the result.
e GROUP BY groups data by the given columns’ values.

e Sorting clauses: ORDER BY and SORT BY, the latter of which only guar-
antees sorting the output of each reduce task, thereby forming a par-
tially ordered result. ORDER BY performs a global sort, but its current
implementation is poor: all data is sent to a single reduce task for sort-
ing [60]. This issue is to be fixed for the next version of Hive, which
has not yet been released at the time of writing.

e Combining results of multiple selections in one query with UNION ALL.

e Joins: the various forms of JOIN can compute any form of inner or outer
join [55, 114] of two or more tables, as well as the Cartesian product.

All in all the functionality available is very similar to that offered by Pig
Latin, though HiveQL is not quite as flexible due to Hive’s stricter data
model. Nevertheless, just like Pig Latin, HiveQL can also be extended by
users via user-defined functions. Hive users can define three kinds of func-
tions: ordinary ones, which simply transform one row into another and are
therefore always run within map tasks; table-generating functions, which can
transform one row into multiple rows; and aggregation functions, which can
combine multiple rows together and thus are run in reduce tasks.

Hive also has support for creating views based on SELECT queries. Views
are essentially named queries that are saved in the metastore, which can

162 M. Niemenmaa et al.

themselves be queried just like tables can. Conceptually, when a view is
queried, the result of the view’s defining query is computed, and then the
original query is evaluated on that result. In practice, the two queries may
first be combined into a single one which is executed directly on the tables
used.

Hive has seen wide adoption. As the originator of Hive, Facebook is
naturally a heavy user, with over 20 000 tables and several petabytes of data
in a Hive cluster in 2010 [123]. LinkedIn uses primarily Hive and Pig for its
internal analytics [16]. A cross-industry study performed in 2012 showed four
out of seven analysed Hadoop clusters having significant Hive usage, three of
which had 50% of their MapReduce jobs, sampled over time periods ranging
from days to months, submitted via Hive [33].

As Hive is used especially for analytics, the fact that it makes use of
the purely throughput-optimized MapReduce as a computational backend
has been considered problematic. In an interactive setting the startup costs
of a Hadoop MapReduce job are not necessarily insignificant, as they can
even dominate the execution time of short computations [95]. Google has
also recognized this limitation of MapReduce, creating its own interactive
SQL-like query system called Dremel [80]. Two notable freely available
Hive-compatible systems that do not use MapReduce and are tailored for
exploratory analysis have been created: Shark [132], which is based on
Spark [134], and Impala [63]. Apache Drill [4] and Apache Tez [12, 120]
are other interactivity-oriented efforts, but are still in early stages of devel-
opment.

5.3.3 HBase

Apache HBase [7] is an open source version of Google’s Bigtable [30]: essen-
tially a distributed data storage system, enabling random read-write access to
individual records in Big Data sets. This is a key advantage over MapReduce,
which only provides streaming access. In addition, as bulk operations on
HBase tables can be performed using Hadoop MapReduce, no functionality
is lost by relying on HBase instead of HDF'S for data storage—though perfor-
mance is lower than using HDFS directly. HBase was originally conceived by
Powerset as a foundation for their natural language search engine [49]; though
the engine never materialized, HBase continues to be developed under the
Apache Software Foundation.

HBase provides sorted three-dimensional lookup tables in a manner sim-
ilar to traditional relational database engines, but with a much simpler data

Hadoop in Large Scale Data Analytics for Bioinformatics 163

model, namely:
(row : string, column : string, version : int64) — string

In other words, each data value, or cell, in a table is uniquely identified
by a row, column, and version, of which the rows, columns, and values are
simply arbitrary byte strings while versions are 64-bit integers—typically
timestamps. Data is sorted first by row, then by column, and finally by
version, with later versions coming first in the sort order. This simple model
allows scaling by just adding more nodes, without having to worry about
maintaining the complex invariants required by relational databases [121,
130].

HBase has a very simple interface to tables, consisting of only four oper-
ations (excluding metadata-related functionality):

1. Get: reads a row, possibly with further limitations to specific columns
and/or versions.

2. Put: writes a row, either creating a new one or overwriting an existing
one.

3. Delete: removes a row.

4. Scan: iterates over a sequential range of rows, returning one at a time
to the user.

This limited set of functionality makes HBase’s essential nature as a key-value
store evident: HBase itself does not provide the more complicated operations
that are typically found in database systems, such as joins. As previously
mentioned, however, Hive can use HBase as a storage backend, allowing that
kind of functionality to be used on data stored in HBase.

As MapReduce handles scheduling computations on a distributed system,
so does HBase take care of distributing the data it stores among the available
nodes. Tables in HBase are automatically partitioned into sequences of rows
called regions, which can be distributed among the HBase servers, aptly
called regionservers. This spreads out computational load on the table as
well as the data itself, enabling large tables to utilize the entire cluster’s
storage space.

HBase naturally also includes fault tolerance, which is mostly reliant on
a reliable storage system, typically provided by HDFS. As with MapReduce
and HDFS, it is based on a master-slave architecture where the master only
co-ordinates the slaves and monitors their health. The aforementioned re-
gionservers are the slaves in an HBase cluster. Unlike MapReduce and HDFS,

164 M. Niemenmaa et al.

HBase provides fault tolerance for the master node: this is facilitated by us-
ing ZooKeeper [13], a co-ordination service based on the Zab algorithm [64]
(similar but not identical to the classic Paxos [67]). ZooKeeper is used to
make sure that only one master is active at any given time, and also to store
various metadata about the cluster.

Fault tolerance on the regionservers requires some work due to the method
used to implement write operations. For performance, writes (including mod-
ifications and deletions) are performed on in-memory caches called Mem-
Stores (in Bigtable, memtables) and only flushed periodically, to HDF'S files
called StoreFiles or HFiles (corresponding to the Bigtable SSTables, short
for Sorted String Tables [79]). Data loss is prevented by also logging writes
to HDFS: when a regionserver fails, its log is replayed by all replacement re-
gionservers (i.e. all servers that are assigned any region that was previously
assigned to the failed server), bringing them up to date.

Recall that HDFS does not allow modifying files. Thus, whenever a
regionserver decides to flush a MemStore to HDFS, it creates a new StoreFile
for the cache’s contents. Read operations must, in the worst case, consult
the MemStore as well as all StoreFiles. As data is kept in sorted order,
e.g. reads requesting only the latest version of a record might need to con-
sult only the MemStore, but in the worst case, a read operation involves
traversing the whole MemStore as well as all StoreFiles before the appro-
priate values to return are found. To prevent having to consult too many
StoreFiles, they are periodically merged into a single StoreFile in a process
called major compaction. At this point, all deletions are also fully handled:
when a cell that is not currently in the MemStore is deleted, the delete oper-
ation is merely noted in a marker called a tombstone and eventually flushed,
but the supposedly deleted cell still persists in the older StoreFiles. The cell
is actually removed from storage only during a major compaction: it and the
corresponding tombstone are not written into the final, merged StoreFile.
Minor compactions, in which only a subset of the StoreFiles are merged and
deletions are not processed, also occur occasionally.

Figure 5.3 provides a graphical overview of how operations in HBase affect
the different kinds of state. In summary:

1. Write operations, including additions, modifications, and deletions, are
logged and then applied to the MemStore.

2. The MemStore is eventually flushed, creating a new StoreFile.

3. StoreFiles are eventually merged together into a single StoreFile during
a minor or major compaction.

Hadoop in Large Scale Data Analytics for Bioinformatics 165

New merged
StoreFile

// Bl
vl
L New
Loz Lo " StoreFi .
! StoreFile | StoreFile | | StoreFile

Memory

MemStore

Figure 5.3: HBase state and operations. “Read” includes both single-row
reads and scans and “Write” includes single-row additions or modifications
as well as deletions. The boundary between HDFS and the MemStore is
shown as a dotted line.

4. Read operations access all StoreFiles and the MemStore.

Since StoreFiles are written only when flushing or compacting, the
amount of records written at a time is typically quite large. Therefore com-
pression can be utilized more effectively than in systems that simply append
or modify existing files: each StoreFile can be compressed as a whole at its
creation time, resulting in a better compression ratio than could otherwise
be achieved. Additionally, as major compactions are usually run when the
HBase cluster is not under heavy load, it is possible to apply a relatively
resource-intensive but effective compression algorithm on a large amount of
data at once, improving compression ratios even further.

Having to read from several HDFS files for every read operation would
be prohibitively slow. Hence, to speed up reads, regionservers cache parts
of StoreFiles as well as individual lookup results, and allow using Bloom
filters [22] to quickly exclude StoreFiles from being considered for a query.
Bigtable tests by Chang et al. [30] show that despite these efforts, random-
access reads are approximately an order of magnitude slower than similarly
random writes, and sequential reads can be either significantly slower or
faster than sequential writes. Results from the Yahoo! Cloud Serving Bench-
mark [39] have demonstrated similar behaviour in HBase: in 2010, HBase
dominated the competition in write-heavy workloads, but was comparatively
slow in performing read operations.

166 M. Niemenmaa et al.

Facebook has used HBase heavily with positive results: in 2011, Face-
book’s HBase clusters consisted of thousands of nodes implementing various
applications, including real-time messaging among millions of users [1, 24].
Several other industrial users of HBase exist [58], but none have (or have
published information about) notably large cluster sizes or data volumes.

5.4 Hadoop in Bioinformatics

The field of bioinformatics contains a large number of Big Data problems, es-
pecially in sequencing data analysis. The tools offered in the Hadoop project
have been heavily used in implementing various solutions, although other
systems—mainly the Message Passing Interface, MPI [23]—have been the
method of choice for some projects [118].

A task that has seen a significant amount of attention is sequence align-
ment or mapping: similarity search between two or more sequences in order
to estimate either the function or genomic location of the query sequence.
Alignment is an important part of almost any analysis process. As such, it
is not surprising that much effort has been spent in developing efficient and
scalable alignment methods.

CloudBurst [106] and CloudAligner [86] are examples of sequence align-
ers based on Hadoop MapReduce. CloudAligner is notable in that it uses
map-only jobs to achieve greater performance. The publication that pre-
sented the Hadoop-based CloudBLAST [77] compared it against a similar
MPT implementation, mpiBlast [41], finding that CloudBLAST performed
up to approximately 30% better and was simpler to develop and maintain.
Many MPI-based aligners [14, 82, 103] have nevertheless been created.

Alignment tools often include other features, either as additional utilities
or because they are intended for some specific analysis for which alignment is
only a subtask. The following examples all use Hadoop MapReduce for scal-
ability. Seal [98, 99] provides an aligner which includes postprocessing, such
as duplicate read removal. Crossbow [69], Myrna [68], and SeqInCloud [81]
implement sequence alignment as part of their specific analysis pipelines.

Sequence alignment is, of course, not the only analysis task in bioin-
formatics for which Hadoop has been utilized. The SeqWare Query En-
gine [90] uses HBase to implement a database for storing sequence data.
MR-Tandem [100] carries out protein identification in sequence data using
MapReduce. CloudBrush [31] and Contrail [105] use MapReduce in per-
forming a process called de novo assembly: assembly of previously unknown
genomes from sequence data. SAMQA [104] detects metadata errors in se-
quence data files, using MapReduce for parallelization.

Hadoop in Large Scale Data Analytics for Bioinformatics 167

Finally, some projects provide support facilities, making it easier for their
users to implement the complete analysis pipelines. The Genome Analysis
Toolkit (GATK) [78] is one example. It is based on the MapReduce model
but does not use Hadoop, instead running on a custom engine and having a
separate wrapper for distributed computing called GATK-Queue [17]. The
aforementioned Seal project, while focused on alignment, presents its func-
tionality as a set of tools that can have other uses as well. Cloudgene [107]
is a platform providing a graphical user interface for executing bioinformat-
ics applications based on Hadoop MapReduce, with support for several of
the tools mentioned here. BioPig [89] is a Pig-based framework containing
various useful functions, including wrappers for some other commonly used
applications.

We have developed two supporting tool sets of our own, offering useful
functionality that was not previously available. Hadoop-BAM is a library
providing file format support along with some useful command-line tools.
SeqPig is a higher-level interface in Pig including special functionality for
sequence data analysis. They are presented in the following two Sections.

5.4.1 Hadoop-BAM

Hadoop-BAM [56, 87, 88] is a library written in the Java programming lan-
guage, providing support for using Hadoop MapReduce to manipulate se-
quencing data in various common file formats. Currently the formats sup-
ported are all of the following:

e Sequence Alignment/Map or SAM as well as its binary representation,
Binary Alignment/Map or BAM [70, 111]. Originally only BAM was
supported, giving Hadoop-BAM its name.

e Variant Call Format or VCF and its binary representation, Binary Call
Format or BCF [21, 40].

e The format originally created for the FASTA set of tools [96], which is
nowadays known as the “FASTA format” or simply FASTA.

e FASTQ [37], a simple extension to the FASTA format.

e QSEQ [27], a file format that is output directly by some sequencing
instruments.

Hadoop-BAM has both input and output support for all the above formats
apart from FASTA, which can only be input.

168 M. Niemenmaa et al.

32 Ideal

Sort

Mean speedup

1 L L L L L
1 2 4 8 16 31

Worker count

Figure 5.4: Speedup observed when sorting a 50.7 GiB BAM file with
Hadoop-BAM.

Command line tools for some tasks commonly performed on SAM and
BAM files are also included in Hadoop-BAM, similarly to the SAMtools [70]
software package. One such tool can sort and merge SAM and BAM files
using MapReduce, which is an important preprocessing step e.g. for visual-
ization [92] and can benefit greatly from parallelization using MapReduce.
Testing it on a 50.7 GiB BAM file, we have observed near-linear scaling when
using a Hadoop cluster with up to eight slave nodes: see Figure 5.4. The
reduced speedup thereafter can be attributed to the relatively small file size
leading to quite little data being allocated to each worker node. The machines
used in this experiment consisted of the following components each: two six-
core Intel Xeon X5650 processors clocked at 2.67 GHz; 48 GB of DDR3-1066
main memory; 4x QDR Infiniband network connections (40 Gbit/s theoreti-
cal throughput); and about 830 GB of usable local disk space, striped across
two 7200 RPM hard disk drives. Significant comparisons to other software
were not performed, as none implement sorting BAM files in HDFS. How-
ever, as a simple baseline, the single-threaded sort command of SAMtools
was tested; operating on local disk on the same hardware, it was over twice
as slow as the single-slave Hadoop MapReduce job.

Hadoop in Large Scale Data Analytics for Bioinformatics 169

BAM input support is a common desire due to the complexity of the BAM
format, as explained in detail in the Section below. Hadoop-BAM is thus
often used mainly for its BAM-related functionality. The Seal project do-
nated FASTQ and QSEQ format support to Hadoop-BAM, and later began
using Hadoop-BAM for SAM and BAM as well. SeqInCloud’s genome anal-
ysis pipeline incorporates Hadoop-BAM for BAM input. SAMQA relies on
Hadoop-BAM for reading both SAM and BAM. Cloudgene contains Hadoop-
BAM’s sorting tool among its set of supported applications. ADAM [76] uses
Hadoop-BAM to convert FASTA, SAM, and BAM files to the Parquet [93]
format, which has been designed for efficient processing in Hadoop.

BAM Splitting Implementation

The primary issue with file format support in Hadoop MapReduce is that
files must be splittable: disjoint parts of the file must be assignable to dif-
ferent map tasks. Depending on the file format, this can be fairly simple or
extremely complicated. In the case of BAM files, the binary encoding alone
makes implementing splittability complex, and the layer of compression that
is applied on top of the encoding adds some further difficulty. This Section
explains the implementation found in Hadoop-BAM.

Hadoop’s default file splitting simply divides the input evenly into parts,
each part having approximately the same byte length. Due to the nature of
the input format, this cannot be relied upon: having a record-oriented file
be split along the middle of a record is problematic, since then that record
cannot be handled on either side of the split. Typically, it is possible to work
around the issue using a simple technique shown in Algorithm 5.1.

Algorithm 5.1. Typical way of reading records from a part of a split file.

: pos <0
if this is not the first split then
skip input until the beginning of a record
pos < pos + amount of data skipped
end if
while pos < end of this split do
r < record at pos
handle r
pos < pos + length(r)
end while

—
=

Unfortunately, for BAM files the implementation of line 3 is somewhat
complex due to the binary format and the BGZF (“Blocked GNU Zip For-

170 M. Niemenmaa et al.

mat” according to some non-authoritative sources [35, 36]) compression ap-
plied on top of it. Two stages of heuristic guesswork are required: one must
find, first, the BGZF block containing the position where the split begins;
and second, the beginning of the next record, or alignment, in BAM.

The first task is easier: BGZF does have, at the start of each block,
four bytes with guaranteed values as well as more later on, as can be seen in
Table 5.1. Note that the two magic numbers are composed of multiple shorter
fields, but they can be considered as units for the purposes of Hadoop-BAM.
Recognizing a BGZF block using solely these numbers would unfortunately
not work, since nothing prevents a sequence of bytes conforming to these
requirements from showing up within the compressed data as well: there is
a low probability of treating unrelated data as a BGZF block. Practically
speaking, the likelihood of just finding the identifier bits is very low, let
alone an otherwise valid-looking block with a correct CRC-32 [97] hash of
the uncompressed contents. Even in this ridiculously unlikely situation, the
probability of treating the input incorrectly can be further reduced: when
the “block” eventually terminates, it is most likely not followed by data that
can be again interpreted as a valid BGZF block. Upon noticing this, one can
backtrack past the misleading data and search for the next BGZF block.

Table 5.1: The format of one block in the BGZF format. All integers are
little-endian.

Description Type Value
BGZF block magic number uint32 0x04088b1f
Modification time uint32

Extra flags uint8 bit 2 is set
Operating system identifier uint8

Length of extra subfields (XLEN) uint16 at least 6

Extra subfields
Other extra subfields
BGZF extra field magic number uint16 0x4342
BGZF extra field length uint16 2
Total block size minus 1 (BSIZE) uint16
Other extra subfields

Compressed data uint8[BSIZE —
XLEN —19]

CRC-32 of uncompressed data uint32

Length of uncompressed data uint32

The method of determining whether an arbitrary byte sequence appears
to be a valid BGZF block, based on the information in Table 5.1, is presented

Hadoop in Large Scale Data Analytics for Bioinformatics 171

in Algorithm 5.2. The CRC-32 hash is not checked at this guessing stage,
since that would involve unpacking the data and thus is a relatively expensive
operation. Instead, the check can be performed later, when the data is
actually used.

Algorithm 5.2. Guessing whether a BGZF block starts at the given posi-
tion.
Require: bpos, the position to examine
1 if read(bpos,4) # 0x04088blf then {Incorrect magic number: not a
BGZF block.}

2: return false

3: end if

4: subpos < bpos + 12 {The offset where the extra subfields begin.}

5: subend <— subpos+read(bpos+10,2) {Add the value of the XLEN field.}
6: while subpos < subend do

7. magic < read(subpos, 2)

8: slen < read(subpos + 2,2)

9: subpos < subpos + 4 + slen
10: if magic # 0x4342V slen # 2 then {This is not the BGZF extra field.}
11: continue
12: end if
13: while subpos < subend do {Skip over the rest of the extra subfields.}
14: slen < read(subpos + 2, 2)
15: subpos < subpos + slen + 4
16: end while
17: return subpos = subend {XLEN must be exact for this to be a valid

gzip block.}
18: end while {No BGZF extra field found.}
19: return false

The second issue, that of finding the next alignment, is somewhat more
problematic since BAM records have no clear identifying features. Fortu-
nately, various fields cross-reference each other enough that in practice, some
guesswork succeeds.

The following constraints hold on the fields of the BAM record format,
displayed in Table 5.2. n_ref is not a field in each alignment; it is the number
of reference sequences and can be found at the beginning of the BAM file.

1. block_size > 32+ 1 _read name + 4 -n_cigar op + (3-1.seq+ 1) /2

2. The reference IDs are —1 or in the range [0,n_ref):
—1 <refID<nref A —1 <next_refID <n_ref

172 M. Niemenmaa et al.
Table 5.2: The format of the fields of one alignment in the BAM format.
All integers are little-endian. Fields which are not used by the algorithms
presented here are marked as ignored.

Field name Description Type
block_size Record length minus 4 int32
refID Reference sequence ID int32
pos 0-based co-ordinate int32
1 read name Length of read name uint8
mapq Mapping quality (ignored) uint8
bin Bin number (ignored) uint16
ncigar op Length of cigar uint16
flag Flags bit field (ignored) uint16
1_seq Length of decoded seq int32
next_refID refID of next fragment int32
next_pos pos of next fragment int32
tlen Template length (ignored) int32
read_name Name, null-terminated uint8[1l_read name]
cigar CIGAR string (ignored) uint32[n_cigar_op]
seq Sequence data (ignored) uint8[(1_seq+1)/2]
qual Quality (ignored) uint8[1l_seq]
Auxiliary data until block size is filled (all ignored)
tag Identifier (ignored) uint8[2]
val_type Type specifier (ignored) uint8
value Value (ignored) depends on
val_type

3. The positions are —1 or non-negative: pos > —1 A next_pos > —1

4. Null-termination of read name: read name[l_read name — 1] =0

By using all of these constraints together, one can detect BAM alignments
with sufficient accuracy. Pseudocode for this is not given explicitly here, as
it is a simple matter of reading integers at constant offsets from each other
and performing the comparisons listed above.

Algorithm 5.3 gives a more detailed account of how the splitting can be
made to work in all its complexity, with the help of Algorithm 5.2 and an
equivalent algorithm for BAM records based on the above constraints.

The bulk of the algorithm is the while loop on lines 8-24. Having found a
partially validated BAM record, it is fed to a fully featured BAM decoder in
order to verify its validity fully (lines 9-11). One can then continue looping
through BAM records without any further guessing. The if on lines 13-23
handles advancing to the next BGZF block. Note the increment of b: b is
the number of BGZF blocks that have been traversed from start to finish.

Hadoop in Large Scale Data Analytics for Bioinformatics 173

Algorithm 5.3. Reading BAM records from a part of a split file.

1: pos < cpos < 0

2: if this is not the first split then

3: for all pos € apparent BGZF block positions in the split do

4: POSq <— pPoOSs

5 for all cpos € apparent BAM record positions in the block at pos

do

6: CPOS(y <— Cpos

7 b+ 0

8: while pos < end of this split and b < 2 do

9: if the data at (pos, cpos) does not form a valid BAM record

then

10: continue at line 5 with posy and next cpos

11: end if

12: cpos cpos + length(r)

13: if cpos > block size then

14: pos < position of next block after the one at pos
15: cpos < 0

16: if the data at pos does not form a valid BGZF block then
17: if pos > 26 then

18: input file is invalid or data corruption occurred
19: end if

20: continue at line 3 with next pos

21: end if

22: b<—0b+1

23: end if

24: end while

25: POS <— PoSy

26: CPOS <— CpoSsy

27: goto 31

28: end for

29: end for
30: end if

31: while pos < end of this split do
32: 1 < BAM record at (pos, cpos)
33: handle r

34: advance (pos, cpos) by length(r)
35: end while

174 M. Niemenmaa et al.

The number two on line 8 is the number of BGZF blocks that should be fully
deciphered before accepting that the appropriate location to start reading
from has indeed been found. When that occurs, the while loop ends and the
code proceeds to read records as usual, now that the position to start from
is known.

On line 17, the 2'¢ is one past the maximum allowed compressed size of
a BGZF block. This limitation can be clearly seen in Table 5.1: it arises
due to the fact that the BSIZE field is a 16-bit unsigned integer. Since the
input is fully composed only of such blocks, if the algorithm travels past that
much space without finding a satisfactory block, something has clearly gone
wrong.

BCF Splitting Implementation

The BCF format is highly similar to the BAM format, in that it consists of a
binary encoding that is not trivially splittable with a layer of compression on
top. One difference is that compression is not mandatory in BCF, but this
does not have a significant effect on splitting: it only makes finding the start
of the compressed block an optional instead of a mandatory step. Since the
compression used in BCF is the same BGZF format as used in BAM files,
that step will not be discussed in this Section. Only the features unique to
BCF are discussed.

The binary layout of BCF records is shown in Table 5.3. The constraints
and redundancies exploited in Hadoop-BAM are listed below. n. and n
refer to information found in the BCF header: the length of the chromosome
dictionary and the number of samples, respectively.

1. The record length is sensible: 1_shared + 1_indiv > 32
2. The chromosome dictionary index is valid: CHROM > 0 A CHROM < n,.

3. The positions and the two signed counts are nonnegative: POS > 0 A
n_info > 0 An_allele >0

4. The sample count matches to the value in the header: n_sample = n,

5. The ID field should have a sensible type encoding and a reasonable
length. Here iy and i; refer to the first two bytes of ID; [refers to the
decoded length of the string, whose encoded size depends on ig and i;
and & is a bitwise AND. The two constraints are as follows:

(a) ip & 0x0f = 0x07

Hadoop in Large Scale Data Analytics for Bioinformatics 175

Table 5.3: The format of the fields of one record in BCF. All integers are
little-endian and floating point values are in the IEEE 754 [62] format. int
(when not followed by a bit width), str, and vec refer to the custom typed
encodings used in BCF and not detailed here. Fields which are not used by
the algorithms presented here are marked as ignored. Note that the “BCF2
site information encoding” table in the specification [21] has QUAL in an
incorrect position.

Field name Description Type

1 shared Length from CHROM to end of INFO uint32

1 indiv Total length of genotype fields uint32
CHROM Chromosome dictionary index int32

POS 0-based co-ordinate int32

rlen Projected record length (ignored) int32

QUAL Quality (ignored) float32
n_info Number of INFO pairs int16
n_allele Number of REF+ALT records int16
n_sample Number of values in each genotype field uint24
n_fmt Number of genotype fields (ignored) uint8

ID Identifier(s) str
REF+ALT Sequence strings (ignored) strln_allele]
FILTER Filter dictionary indices (ignored) vec

INFO Additional information (ignored) vec[n_info]

n_fmt genotype fields (all ignored)

fmt_key Identifier (ignored) int

fmt_type Type specifier (ignored) uint8, optional
int

fmt_values n_sample values (ignored) depends on
fmt_type

(b) If 4y & 0xf0 = 0xf0, then:

(i, & 0x0f) € [1, 3]
Al>15A1<1_shared — (32 +n_allele+ 2-n_info)

Based on the above it is possible to find candidate locations: positions where
a BCF record is likely to begin. A decoding test is then performed starting at
each such location; once a certain number of records have been successfully
read, it is assumed that the location was valid and should be used for the
actual computation. An error at any point during decoding means that
the next position should be tried. Thus the algorithm for BCF is essentially
equivalent to Algorithm 5.3, with the two differences being that finding BGZF

176 M. Niemenmaa et al.

blocks is optional and, of course, BCF records are detected and validated
instead of BAM records.

5.4.2 SeqPig

While Hadoop-BAM gives developers the opportunity to create custom
Hadoop MapReduce applications for sequencing data with control over every
aspect of processing, SeqPig [108, 109, 110] is a high-level interface based on
Pig. With SeqPig, as long as the application can be adequately described
in Pig Latin, development is simpler and does not require familiarity with
MapReduce or Java.

SeqPig provides almost the same file format functionality as current
Hadoop-BAM, lacking only VCF and BCF: all of SAM and BAM, FASTA
(read-only), FASTQ, and QSEQ are supported. All data and metadata in
these formats can be loaded for manipulation in Pig Latin. In addition, Se-
qPig includes user-defined functions for several useful operations specific to
sequencing data. Thanks to Pig, all processing can take place scalably using
Hadoop MapReduce.

The unrelated BioPig project naturally shares the advantages of Pig with
SeqPig. The differences between the two lie in their provided bioinformatics-
specific functionality. In terms of file formats, BioPig supports only FASTA
and FASTQ—although, unlike SeqPig, it has output support for FASTA.
Otherwise, the sets of user-defined functions provided by SeqPig and BioPig
are intended for very different concerns in sequencing data analysis. For this
reason, one may wish to use SeqPig and BioPig together, and due to Pig’s
simple data model, this is highly straightforward.

As a publication that describes SeqPig more fully is currently in submis-
sion [109], we regretfully cannot provide further details of SeqPig here.

5.5 Closing Remarks

Traditional approaches to data analytics are insufficient when dealing with
Big Data. Methods that are not specifically designed with Big Data in mind
do not scale in any of a number of ways. Most approaches simply do not
function on warehouse-scale computers, being designed only for desktop-like
systems. Some approaches become prohibitively slow when the data volumes
involved grow too large, while others cannot operate effectively at the ware-
house scale e.g. due to not being able to work around the highly probable
hardware failures. Solving a Big Data problem requires awareness of many
such issues.

Hadoop in Large Scale Data Analytics for Bioinformatics 177

Part of the problem is the need for a warehouse-scale computer, which are
expensive both to construct and to keep running. Existing traditional clus-
ters likely do not consist of nodes that have enough local hard disk drives for
Hadoop to work efficiently. For example, Cloudera recommends from 0.5 to
1.5 drives per CPU core [73]. They also tend to have computers containing
relatively expensive “server-grade” hardware such as hardware RAID con-
trollers [20]. Therefore the price/performance advantage of Hadoop storage
over traditional NAS/SAN storage, made possible by HDFS’s software-level
handling of fault tolerance, is not realized. Furthermore, bioinformaticians
often have mostly idle clusters due to fluctuating usage patterns [115]. Nowa-
days, it is fortunately possible to provision computational resources on de-
mand via services such as Amazon Elastic Compute Cloud [3], Windows
Azure [131], Google App Engine [53]. This form of so-called “cloud comput-
ing” may be the best option when a complete warehouse-scale computer is
not affordable or when its resources would momentarily not be fully utilized.
However, transferring data sets to remote clusters can impose additional
costs.

Once one has the hardware, one requires the appropriate software to make
it useful and turn it into an actual solution to a Big Data problem. Hadoop
provides a framework on which such solutions can be easily constructed.
While originally intended for Web search data processing at Nutch and later
Yahoo!, it has been shown to be an appropriate “hammer” for many other
Big Data “nails”. Bioinformatics, thanks to high-throughput sequencing in
particular, has many Big Data problems for which Hadoop is a good fit,
leading to the development of several applications capable of dealing with
them. We contributed with Hadoop-BAM, originally primarily to enable
scalable processing of the complicated BAM format, and later to consolidate
bioinformatics-related file format support in one library.

Of course, not everyone is a programmer capable of using Hadoop to solve
Big Data problems: analysts should not be expected to write a new Hadoop-
using program every time they wish to query their data sets in a new way.
Thus, more accessible approaches are needed. For Hadoop, they are provided
by systems such as Pig and Hive, but the domain-specific part must still be
created by software developers. SeqPig is our offering to those who wish to
analyse Big Data sets of sequencing data in a relatively high-level language.

Further challenges remain in the Big Data world, however. Major ones
are interactivity and real-time analysis, as Hadoop’s primarily computational
platform, MapReduce, is not well suited to latency-sensitive work such as
interactive exploratory querying of data sets. Impala and Spark (and its
high-level Hive-compatible companion, Shark) are two solutions, neither of
which has yet been applied to bioinformatics. Interactivity is becoming more

178

M. Niemenmaa et al.

and more desirable in sequencing data analysis [33], so the lack of appropriate
Big Data tooling is a glaring omission. Plenty of research remains to be done
in this field: Big Data is here to stay and data sets are only growing larger.

Acknowledgements

The funding of the Cloud Software Program of Digile funded by the Finnish
Funding Agency for Technology and Innovation Tekes, and the Academy of
Finland (project 139402) is gratefully acknowledged.

References

[1]

A. S. Aiyer et al. “Storage Infrastructure Behind Facebook Messages:
Using HBase at Scale”. In: IEEE Data Fng. Bull. 35.2 (2012), pp. 4-
13. URL: http://sites.computer.org/debull/A12june/facebook.
pdf.

A. Alexandrov et al. “MapReduce and PACT - Comparing Data Par-
allel Programming Models”. In: Proceedings of the 14th Conference
on Database Systems for Business, Technology, and Web (BTW).
BTW 2011. Kaiserslautern, Germany: GI, 2011, pp. 25-44. ISBN: 978-
3-88579-274-1. URL: https://stratosphere.eu/sites/default/
files/papers/ComparingMapReduceAndPACTs_11.pdf.

Amazon FElastic Compute Cloud. Amazon Web Services, Inc. URL:
https://aws.amazon.com/ec2/.

Apache Drill. The Apache Software Foundation. URL: https://incu
bator.apache.org/drill/.

Apache Hadoop. The Apache Software Foundation. URL: https://
hadoop.apache.org.

Apache Hadoop NextGen MapReduce (YARN). Version 2.1.0-beta.
2013. URL: https://hadoop . apache . org/docs/r2.1.0-beta/
hadoop-yarn/hadoop-yarn-site/YARN.html.

Apache HBase. The Apache Software Foundation. URL: https://
hbase.apache.org.

Apache Hive. The Apache Software Foundation. URL: https://hive.
apache.org.

Apache Mesos. The Apache Software Foundation. URL: https://
mesos.apache.org.

REFERENCES 179

[10]
11]
12]
13]

[14]

Apache Nutch. The Apache Software Foundation. URL: https://
nutch.apache.org.

Apache Pig. The Apache Software Foundation. URL: https://pig.
apache.org.

Apache Tez. Hortonworks Inc. URL: https : //hortonworks . com/
hadoop/tez/.

Apache ZooKeeper. The Apache Software Foundation. URL: https:
//zookeeper . apache.org.

E. de Araujo Macedo et al. “Hybrid MPI/OpenMP Strategy for Bi-
ological Multiple Sequence Alignment with DIALIGN-TX in Het-
erogeneous Multicore Clusters”. In: IPDPS Workshops. IEEE, 2011,
pp. 418-425. 1SBN: 978-1-61284-425-1. DOI: 10.1109/IPDPS. 2011 .
169.

J. L. Armstrong. “The Development of Erlang”. In: ICFP. Ed. by S.
L. P. Jones, M. Tofte, and A. M. Berman. ACM, 1997, pp. 196-203.
ISBN: 978-0-89791-918-0. DOI: 10.1145/258948.258967.

A. Auradkar et al. “Data Infrastructure at LinkedIn”. In: ICDE. Ed.
by A. Kementsietsidis and M. A. V. Salles. IEEE Computer Society,
2012, pp. 1370-1381. 1SBN: 978-0-7685-4747-3. DOI: 10.1109/ICDE.
2012.147. URL: http://ieeexplore.ieee.org/xpl/mostRecentls
sue. jsp7punumber=6226952.

G. V. der Auwera. Overview of Queue. Broad Institute. URL: https:
//www.broadinstitute.org/gatk/guide/article?id=1306.

L. A. Barroso, J. Clidaras, and U. Hlzle. The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Ma-
chines. Second edition. Synthesis Lectures on Computer Architec-
ture. Morgan & Claypool Publishers, July 2013. por: 10 . 2200 /
S00516ED2V01Y201306CAC024.

L. A. Barroso, J. Dean, and U. Hélzle. “Web Search for a Planet: The
Google Cluster Architecture”. In: IEEE Micro 23.2 (2003), pp. 22-28.
DOI: 10.1109/MM.2003.1196112.

L. A. Barroso and U. Holzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture. Morgan & Claypool Publishers,
2009. por: 10.2200/300193ED1V01Y200905CACO06.

180

[21]

[23]

[24]

[25]

M. Niemenmaa et al.

BCF (Binary VCF) version 2. Tech. rep. Version 2.1. URL: http:
//www.1000genomes . org/wiki/analysis/variant-call-format/
bcf-binary-vcf-version-2.

B. H. Bloom. “Space/Time Trade-offs in Hash Coding with Allowable
Errors”. In: Commun. ACM 13.7 (1970), pp. 422-426. DOL: 10.1145/
362686 .362692.

“MPI: A Message Passing Interface”. In: SC. Ed. by B. Borchers and
D. Crawford. The MPI Forum. IEEE Computer Society / ACM, 1993,
pp. 878-883. ISBN: 978-0-8186-4340-8. DOI: 10.1145/169627.169855.

D. Borthakur et al. “Apache Hadoop Goes Realtime at Facebook”.
In: Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’11. Athens, Greece: ACM, 2011,
pp. 1071-1080. 1SBN: 978-1-4503-0661-4. DOI: 10 . 1145/1989323 .
1989438.

B. Calder et al. “Windows Azure Storage: a Highly Available Cloud
Storage Service with Strong Consistency”. In: SOSP. Ed. by T. Wob-
ber and P. Druschel. ACM, 2011, pp. 143-157. 1SBN: 978-1-4503-0977-
6. DOI: 10.1145/2043556.2043571.

S. K. Card, G. G. Robertson, and J. D. Mackinlay. “The information
visualizer, an information workspace”. In: CHI. Ed. by S. P. Robert-
son, G. M. Olson, and J. S. Olson. ACM, 1991, pp. 181-186. ISBN:
978-0-89791-383-6. DOI: 10.1145/108844.108874.

CASAVA v1.8 User Guide. lllumina, Inc. 2011. URL: http://biowul
£ .nih.gov/apps/CASAVA_UG_15011196B. pdf.

D. D. Chamberlin and R. F. Boyce. “SEQUEL: A Structured English
Query Language”. In: SIGMOD Workshop, Vol. 1. Ed. by R. Rustin.
ACM, 1974, pp. 249-264. DOL: 10.1145/800296.811515.

C. Y. Chan and Y. E. Ioannidis. “Bitmap Index Design and Eval-
uation”. In: SIGMOD Conference. Ed. by L. M. Haas and A. Ti-
wary. ACM Press, 1998, pp. 355-366. 1SBN: 978-0-89791-995-1. DOI:
10.1145/276304.276336.

F. Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data”. In: OSDI. USENIX Association, 2006, pp. 205-218.

Y .-J. Chang et al. “De Novo Assembly of High-Throughput Sequenc-
ing Data with Cloud Computing and New Operations on String
Graphs”. In: Cloud Computing (CLOUD), 2012 IEEE 5th Interna-
tional Conference on. 2012, pp. 155-161. DOI: 10.1109/CLOUD.2012.
123.

REFERENCES 181

[32]

[33]

[40]

[41]

B. Chattopadhyay et al. “Tenzing. A SQL Implementation On The
MapReduce Framework”. In: PVLDB 4.12 (2011), pp. 1318-1327.
URL: http://www.vldb.org/pvldb/vol4/p1318-chattopadhyay.
pdf.

Y. Chen, S. Alspaugh, and R. H. Katz. “Interactive Analytical Pro-
cessing in Big Data Systems: A Cross-Industry Study of MapReduce
Workloads”. In: PVLDB 5.12 (2012), pp. 1802-1813. URL: http://
v1ldb.org/pvldb/vol5/p1802_yanpeichen_v1db2012.pdf.

Cloudera, Inc. URL: http://www.cloudera. com.

R. Cnovas and A. Moffat. “Practical Compression for Multi-
Alignment Genomic Files”. In: Computer Science 2013 (ACSC 2013).
Ed. by B. Thomas. Vol. 135. CRPIT. Adelaide, Australia: ACS,
2013, pp. 51-60. URL: https : / / crpit . com / confpapers /
CRPITV135Canovas.pdf.

P. Cock. “BGZF - Blocked, Bigger & Better GZIP!” In: Blasted Bioin-
formatics!? (Nov. 8, 2011). URL: http://blastedbio.blogspot .
com/2011/11/bgzf-blocked-bigger-better-gzip.html.

P. J. A. Cock et al. “The Sanger FASTQ file format for sequences
with quality scores, and the Solexa/Illumina FASTQ variants”. In:
Nucleic Acids Research 38.6 (2010), pp. 1767-1771. por: 10.1093/
nar/gkp1137.

E. F. Codd. “A Relational Model of Data for Large Shared Data
Banks”. In: Commun. ACM 13.6 (1970), pp. 377-387. DOT: 10.1145/
362384 .362685.

B. F. Cooper et al. “Benchmarking Cloud Serving Systems with
YCSB”. In: SoCC. Ed. by J. M. Hellerstein, S. Chaudhuri, and M.
Rosenblum. ACM, 2010, pp. 143-154. 1SBN: 978-1-4503-0036-0. DOI:
10.1145/1807128.1807152.

P. Danecek et al. “The variant call format and VCFtools”. In:
Bioinformatics 27.15 (2011), pp. 2156-2158. Dpo1: 10 . 1093 /
bioinformatics/btr330.

A. E. Darling, L. Carey, and W. chun Feng. “The Design, Imple-
mentation, and Evaluation of mpiBLAST”. In: ClusterWorld. (2003).
2003.

C. J. Date. Date on Database: Writings 2000-2006. Apress, 2006.
ISBN: 978-1-59059-746-0.

182

[43]

M. Niemenmaa et al.

J. Dean. “Designs, Lessons and Advice from Building Large Dis-
tributed Systems”. 2009. URL: https://www . cs . cornell . edu/
projects/ladis2009/talks/dean-keynote-1ladis2009.pdf.

J. Dean and L. A. Barroso. “The Tail at Scale”. In: Commun. ACM
56.2 (2013), pp. 74-80. DOL: 10.1145/2408776.2408794.

J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: OSDI. 2004, pp. 137-150.

R. Dennard et al. “Design of Ion-Implanted MOSFET’s with Very
Small Physical Dimensions”. In: Solid-State Circuits Society Newslet-
ter, IEEE 12.1 (2007), pp. 38-50. 1sSN: 1098-4232. DOI: 10.1109/N-
SSC.2007.4785543.

Facebook. URL: https://www.facebook. com.

A. Gates et al. “Building a High-Level Dataflow System on top of
Map-Reduce: The Pig Experience”. In: PVLDB 2.2 (2009), pp. 1414—
1425. URL: http://www.vldb.org/pvldb/2/v1db09-1074.pdf.

L. George. HBase: The Definitive Guide. Random Access to Your
Planet-Size Data. O'Reilly, 2011, pp. [-XXVII, 1-522. 1SBN: 978-1-
449-39610-7.

S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google file system”.
In: SOSP. Ed. by M. L. Scott and L. L. Peterson. ACM, 2003, pp. 29—
43. 1SBN: 1-58113-757-5.

D. Giampaolo. Practical File System Design with the Be File System.
Morgan Kaufmann, 1999. 1SBN: 978-1-55860-497-1. URL: http://www.
nobius.org/~dbg/practical-file-system-design.pdf.

Google. URL: https://www.google.com.

Google App Engine. URL: https://developers.google.com/appen
gine/.

J. Gosling et al. The Java Language Specification, Java SE 7 Edition.
Addison-Wesley Professional, Feb. 2013. 1sBN: 978-0-1332-6022-9.

J. R. Groff, P. N. Weinberg, and A. J. Oppel. SQL: The Complete
Reference. Third Edition. McGraw-Hill Osborne Media, Aug. 2009.
ISBN: 978-0-0715-9255-0.

Hadoop-BAM. URL: http://sf.net/projects/hadoop-bam/.

Hadoop YARN. Hortonworks Inc. URL: https://hortonworks . com/
hadoop/yarn/.

REFERENCES 183

[58]

[59]

Hbase/PoweredBy. URL: https://wiki.apache.org/hadoop/Hbase/
PoweredBy.

B. Hindman et al. “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center”. In: NSDI. Boston, MA, USA: USENIX
Association, Apr. 2011, pp. 295-308. 1SBN: 978-931971-84-3. URL: h
ttps://www.usenix.org/legacy/events/nsdill/tech/full _
papers/Hindman_new. pdf.

[HIVE-1402] Add parallel ORDER BY to Hive. Apache Software
Foundation, 2010. URL: https : // issues . apache . org/ jira/
browse/HIVE-1402.

Hortonworks Inc. URL: http://www.hortonworks. com.

“IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-
2008 (2008), pp. 1-70. DOI: 10.1109/IEEESTD.2008.4610935.

Introducing Impala. Cloudera, Inc. URL: http://cloudera . com/
impala/.

F. Junqueira, B. Reed, and M. Serafini. “Zab: High-performance
broadcast for primary-backup systems”. In: Dependable Systems Net-
works (DSN), 2011 IEEE/IFIP j1st International Conference on.
2011, pp. 245-256. DOI: 10.1109/DSN.2011 .5958223.

D. E. Knuth. The Art of Computer Programming, Volume III: Sorting
and Searching. Addison-Wesley, 1973. 1SBN: 978-0-201-03803-3.

M. Kryder and C. S. Kim. “After Hard Drives What Comes Next?”
In: Magnetics, IEEE Transactions on 45.10 (2009), pp. 3406-3413.
ISSN: 0018-9464. pOI: 10.1109/TMAG.2009.2024163

L. Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput.
Syst. 16.2 (1998), pp. 133-169.

B. Langmead, K. Hansen, and J. Leek. “Cloud-scale RNA-sequencing
differential expression analysis with Myrna”. In: Genome Biology 11.8
(2010), R83. 1sSN: 1465-6906. pOI: 10.1186/gb-2010-11-8-1r83.
PMID: 20701754.

B. Langmead et al. “Searching for SNPs with cloud computing”. In:
Genome Biology 10.11 (2009), R134. 1sSN: 1465-6906. DOI: 10.1186/
gb-2009-10-11-r134. PMID: 19930550

H. Li et al. “The Sequence Alignment/Map format and SAMtools”.
In: Bioinformatics 25.16 (2009), pp. 2078-2079. DOIL: 10.1093/bioin
formatics/btp352.

184

[71]

M. Niemenmaa et al.

J. Lin, D. Ryaboy, and K. Weil. “Full-text Indexing for Optimizing
Selection Operations in Large-Scale Data Analytics”. In: Proceedings
of the second international workshop on MapReduce and its applica-
tions. MapReduce ’11. San Jose, California, USA: ACM, 2011, pp. 59—
66. 1SBN: 978-1-4503-0700-0. DOI: 10.1145/1996092.1996105.

LinkedIn. URL: https://www.linkedin. com.

A. Loddengaard. Clouderas Support Team Shares Some Basic Hard-
ware Recommendations. Mar. 2010. URL: http://blog. cloudera.
com/blog/2010/03/ clouderas - support - team - shares - some -
basic-hardware-recommendations/.

MapR Technologies, Inc. URL: http://www.mapr. com.

V. Marx. “Biology: The big challenges of big data”. In: Nature
498.7453 (June 2013). Technology Feature, pp. 255-260. 1SSN: 0028-
0836. DOT: 10.1038/498255a.

M. Massie. ADAM: Datastore Alignment Map. URL: https://githu
b.com/massie/adam/.

A. M. Matsunaga, M. O. Tsugawa, and J. A. B. Fortes. “Cloud-
BLAST: Combining MapReduce and Virtualization on Distributed
Resources for Bioinformatics Applications”. In: eScience. IEEE Com-
puter Society, 2008, pp. 222-229. DOIL: 10.1109/eScience.2008.62.

A. McKenna et al. “The Genome Analysis Toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing data”. In:
Genome Research 20.9 (2010), pp. 1297-1303. por: 10.1101/gr.
107524 .110.

M. K. McKusick and S. Quinlan. “GFS: Evolution on Fast-forward”.
In: Queue 7.7 (Aug. 2009), 10:10-10:20. 1SSN: 1542-7730. DOL: 10.
1145/1594204.1594206.

S. Melnik et al. “Dremel: Interactive Analysis of Web-Scale Datasets”.
In: PVLDB 3.1 (2010), pp. 330-339. URL: http://www. comp.nus.
edu.sg/~v1db2010/proceedings/files/papers/R29.pdf.

N. M. Mohamed, H. Lin, and W.-c. Feng. “Accelerating Data-
Intensive Genome Analysis in the Cloud”. In: 5th International Con-
ference on Bioinformatics and Computational Biology (BICoB). Hon-
olulu, Hawaii, USA, Mar. 2013. URL: http://synergy.cs.vt.edu/
pubs/papers/nabeel-bicobl3-genome-analysis-cloud.pdf.

REFERENCES 185

[82]

[87]

[91]

92]

A. Montanola, C. Roig, and P. Hernédndez. “Pairwise Sequence Align-
ment Method for Distributed Shared Memory Systems”. In: PDP.
IEEE Computer Society, 2013, pp. 432-436. 1SBN: 978-1-4673-5321-2.
DOI: 10.1109/PDP.2013.69.

G. Moore. “Progress in digital integrated electronics”. In: FElectron
Devices Meeting, 1975 International. Vol. 21. 1975, pp. 11-13.

G. E. Moore. “Cramming more components onto integrated circuits”.
In: Electronics 38.8 (Apr. 1965).

A. Murthy. “Apache Hadoop YARN Background and an Overview”.
In: (Aug. 7, 2012). URL: https://hortonworks.com/blog/apache-
hadoop-yarn-background-and-an-overview/.

T. Nguyen, W. Shi, and D. Ruden. “CloudAligner: A fast and full-
featured MapReduce based tool for sequence mapping”. In: BMC' Re-
search Notes 4.1 (2011), p. 171. 1SsN: 1756-0500. DOI: 10.1186/1756-
0500-4-171. PMID: 21645377. URL: http://www.biomedcentral.
com/1756-0500/4/171.

M. Niemenmaa. Interactivity for Big Data: Preprocessing genomic
data with MapReduce. Bachelor’s Thesis. May 4, 2011. URL: http:
//users.ics.aalto.fi/mniemenm/online-papers/niemenmaa-
thesis-b.pdf.

M. Niemenmaa et al. “Hadoop-BAM: directly manipulating next gen-
eration sequencing data in the cloud”. In: Bioinformatics 28.6 (2012),
pp. 876-877. DOI: 10.1093/bioinformatics/bts054.

H. Nordberg et al. “BioPig: A Hadoop-based Analytic Toolkit for
Large-Scale Sequence Data”. In: Bioinformatics (2013). DOL: 10.109
3/bioinformatics/btt528.

B. D. O’Connor, B. Merriman, and S. F. Nelson. “SeqWare Query
Engine: storing and searching sequence data in the cloud”. In: BMC
Bioinformatics 11.5-12 (2010), S2. por: 10.1186/1471-2105-11~
S12-S82.

C. Olston et al. “Pig latin: A not-so-foreign language for data process-
ing”. In: SIGMOD Conference. Ed. by J. T.-L. Wang. ACM, 2008,
pp. 1099-1110. 1sBN: 978-1-60558-102-6.

S. Pabinger et al. “A survey of tools for variant analysis of next-
generation genome sequencing data”. In: Briefings in Bioinformatics
(2013). DOI: 10.1093/bib/bbs086.

Parquet: Columnar Storage for Hadoop. URL: http://parquet.io.

[99]

[100]

[101]

[102]

[103]

[104]

M. Niemenmaa et al.

D. A. Patterson. “Latency lags bandwith”. In: Commun. ACM 47.10
(2004), pp. 71-75.

A. Pavlo et al. “A comparison of approaches to large-scale data anal-
ysis”. In: SIGMOD Conference. Ed. by U. Cetintemel et al. ACM,
2009, pp. 165-178. 1SBN: 978-1-60558-551-2.

W. R. Pearson and D. J. Lipman. “Improved tools for biological se-
quence comparison”. In: Proc. Natl. Acad. Sci. USA 85.8 (Apr. 1988),
pp. 2444-2448. PMID: 3162770.

W. W. Peterson and D. T. Brown. “Cyclic Codes for Error Detection”.
In: Proceedings of the IRE 49.1 (1961), pp. 228-235. 1ssN: 0096-8390.
DOI: 10.1109/JRPROC. 1961 .287814.

L. Pireddu, S. Leo, and G. Zanetti. “MapReducing a Genomic Se-
quencing Workflow”. In: Proceedings of the second international work-
shop on MapReduce and its applications. MapReduce '11. San Jose,
California, USA: ACM, 2011, pp. 67-74. 1SBN: 978-1-4503-0700-0. DOT:
10.1145/1996092.1996106.

L. Pireddu, S. Leo, and G. Zanetti. “SEAL: a distributed short read
mapping and duplicate removal tool”. In: Bioinformatics 27.15 (2011),
pp. 2159-2160. DOI: 10.1093/bioinformatics/btr325.

B. Pratt et al. “MR-Tandem: parallel X!Tandem using Hadoop Map-
Reduce on Amazon Web Services”. In: Bioinformatics 28.1 (2012),
pp. 136-137. DOI: 10.1093/bioinformatics/btr615.

B. Reed. “Hadoop @ Yahoo! an admin’s perspective”. 2010. URL: ht
tp://wwu.cs.duke.edu/smdb10/_files/toc_data/SMDB/panel/
reed.pdf.

C. Reynolds. “As We May Communicate”. In: SIGCHI Bull. 30.3
(July 1998), pp. 40—44. 1sSN: 0736-6906. DOI: 10.1145/565711.5657
14.

S. Rezaei, M. Monwar, and J. Bai. “Performance Comparison of MPI-
Based Parallel Multiple Sequence Alignment Algorithm Using Single
and Multiple Guide Trees”. In: Cognitive Informatics, 2006. ICCI
2006. 5th IEEE International Conference on. Vol. 1. 2006, pp. 595—
600. DOT: 10.1109/COGINF.2006.365552.

T. Robinson et al. “SAMQA: error classification and validation of
high-throughput sequenced read data”. In: BMC Genomics 12.1
(2011), p. 419. 1sSN: 1471-2164. DOI: 10.1186/1471-2164-12-419.
PMID: 21851633.

REFERENCES 187

[105]

[106]

[107]

[108]

[109]

[110]
[111)

[112)

[113]

[114]

[115]

[116]

[117]

M. Schatz et al. Contrail: Assembly of Large Genomes using Cloud
Computing. URL: http://sourceforge.net/apps/mediawiki/cont
rail-bio/.

M. C. Schatz. “CloudBurst: highly sensitive read mapping with Map-
Reduce”. In: Bioinformatics 25.11 (2009), pp. 1363-1369. por: 10.
1093/bioinformatics/btp236.

S. Schonherr et al. “Cloudgene: A graphical execution platform for
MapReduce programs on private and public clouds”. In: BMC' Bioin-
formatics 13 (2012), p. 200. DOI: 10.1186/1471-2105-13-200.

A. Schumacher et al. “Scripting for large-scale sequencing based on
Hadoop”. In: EMBnet.journal 19.A (2013). URL: http://journal.
embnet .org/index.php/embnetjournal/article/view/628.

A. Schumacher et al. “SeqPig: simple and scalable scripting for large
sequencing data sets in Hadoop”. 2013. Submitted.

SeqPig Manual. URL: http://seqpig.sf.net.

Sequence Alignment/Map Format Specification. Tech. rep. Ver-
sion 321{786. The SAM/BAM Format Specification Working Group,
May 29, 2013. URL: http://samtools . sourceforge .net/SAMv1.
pdf.

W. Shang, B. Adams, and A. E. Hassan. “Using Pig as a data prepara-
tion language for large-scale mining software repositories studies: An
experience report”. In: Journal of Systems and Software 85.10 (2012),
pp. 2195-2204. DOI: 10.1016/j . jss.2011.07.034.

SQL-in-Hadoop : The Stinger Initiative. Hortonworks Inc. URL: http
s://hortonworks. com/stinger/.

L. O. for Standardization. ISO/IEC 9075:1992. Information technology
-- Database languages -- SQL. Geneva, Switzerland, 1992. URL: http:
//www.iso.org/iso/catalogue_detail.htm?csnumber=16663.

L. Stein. “The case for cloud computing in genome informatics”. In:
Genome Biology 11.5 (2010), p. 207. 1SSN: 1465-6906. DOI: 10.1186/
gb-2010-11-5-207. PMID: 20441614.

B. Stroustrup. The C++ Programming Language. Fourth edition.
Addison-Wesley Professional, May 2013. 1SBN: 978-0-3215-6384-2.
V. S. Sunderam. “PVM: A Framework for Parallel Distributed Com-

puting”. In: Concurrency - Practice and Experience 2.4 (1990),
pp. 315-339. DOI: 10.1002/cpe.4330020404.

188

[118]

[119]

[120]
[121]

[122]
[123]

[124]

[125]

[126]
[127]

[128]

[129]
[130]

[131]

M. Niemenmaa et al.

R. C. Taylor. “An overview of the Hadoop/MapReduce/HBase frame-
work and its current applications in bioinformatics”. In: BMC' Bioin-
formatics 11.5-12 (2010), S1. por: 10.1186/1471-2105-11-812-S1.

Excerpts from A Conversation with Gordon Moore: Moores Law. Intel
Corporation, 2005. URL: ftp://download. intel . com/museum/Mo
ores_Law/Video-Transcripts/Excepts_A_Conversation_with_
Gordon_Moore.pdf.

Tez. The Apache Software Foundation. URL: http://tez. incubator.
apache.org/.

The Apache HBase Reference Guide. The Apache Software Founda-
tion. URL: https://hbase.apache.org/book.html.

The Apache Software Foundation. URL: https://www.apache.org.

A. Thusoo et al. “Data Warehousing and Analytics Infrastructure at
Facebook”. In: SIGMOD Conference. Ed. by A. K. Elmagarmid and
D. Agrawal. ACM, 2010, pp. 1013-1020. 1SBN: 978-1-4503-0032-2. DOT:
10.1145/1807167.1807278.

A. Thusoo et al. “Hive — A Petabyte Scale Data Warehouse Using
Hadoop”. In: ICDE. Ed. by F. Li et al. IEEE, 2010, pp. 996-1005.
ISBN: 978-1-4244-5444-0. DOI: 10.1109/ICDE.2010.5447738.

A. Thusoo et al. “Hive - A Warehousing Solution Over a Map-Reduce
Framework”. In: PVLDB 2.2 (2009), pp. 1626-1629. URL: http://
www.vldb.org/pvldb/2/v1db09-938.pdf.

Twitter. URL: https://twitter.com.

C. Walter. “Kryder’s Law”. In: Scientific American 293 (2 2005),
pp. 32-33. DOIL: 10.1038/scientificamerican0805-32.

J. K. Waters. “Apache Hadoop Community Promotes YARN -- But
Don’t Call it MapReduce 2”. In: WatersWorks (Aug. 15, 2012). URL:
http://adtmag.com/blogs/watersworks/2012/08/apache-yarn-
promotion.aspx.

K. Weil. “Hadoop at Twitter”. 2010. URL: http://www.slideshare.
net/kevinweil /hadoop-at-twitter-hadoop-summit-2010.

T. White. Hadoop: The Definitive Guide. MapReduce for the Cloud.
O’Reilly, 2009, pp. I-XIX, 1-501. 1SBN: 978-0-596-52197-4.

Windows Azure. Microsoft Corporation. URL: www . windowsazure .
com.

[132]

[133]
[134]

R. Xin et al. “Shark: SQL and Rich Analytics at Scale”. In: CoRR
abs/1211.6176 (2012). arXiv: 1211.6176 [cs.DB].

Yahoo! URL: http://wuw.yahoo.com.

M. Zaharia et al. “Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing”. In: NSDI. San Jose,
CA, USA: USENIX Association, Apr. 2012, pp. 15-28. 1SBN: 978-
931971-92-8. URL: https://www.usenix.org/system/files/confe
rence/nsdil2/nsdi12-final138.pdf.

189

190

6 Performance Testing in the Cloud Using
MBPeT

Fredrik Abbors, Tanwir Ahmad, Dragos Truscan, and Ivan Porres
Department of Information Technologies

Abo Akademi University, Turku, Finland

Email: {fredrik.abbors, tanwir.ahmed, dragos.truscan, ivan.porres}@abo.fi

Abstract—We present a model-based performance testing approach using
the MBPeT tool. We use of probabilistic timed automata to model the user
profiles and to generate synthetic workload. The MBPeT generates the load
in a distributed fashion and applies it in real-time to the system under test,
while measuring several key performance indicators, such as response time,
throughput, error rate, etc. At the end of the test session, a detailed test
report is provided. MBPeT has a distributed architecture and supports load
generation distributed over multiple machines. New generation nodes are
allocated dynamically during load generation. In this book chapter, we will
present the MBPeT tool, its architecture, and demonstrate its applicability
with a set of experiments on a case study. We also show that using abstract
models for describing the user profiles allows us quickly experiment different
load mixes and detect worst case scenarios.

Keywords-Performance testing, model-based testing, MBPeT, cloud.

6.1 Introduction

Software testing is the process of identifying incorrect behavior of a system,
also known as revealing defects. Uncovering these defects, typically, consists
of running a batch of software tests (test suite) against the software itself.
In some sense, a second software artefact is built to test the primary one.
This is normally referred to as functional testing. A software test compares
the actual output of the system with the expected output for a particular

191

192 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

known input. If the actual output is the same as the expected output the
test passes, otherwise a test fails and a defect is found. Software testing
is also the means to assess the quality of a software product. The fewer
the defects found during testing, the higher the quality is of that software
product. However, not all software defects are related to functionality. Some
systems may stop functioning or may prevent other users to access the system
simple because the system is under a heavy workload with which it cannot
cope. Performance testing is the means of detecting such errors.

Performance testing is the process of determining how a software system
performs in terms of responsiveness and stability under a particular workload.
The purpose of the workload is that it should match the expected workload
(the load that normal users put on the system when using it) as closely as
possible. This can be achieved by running a series of tests in parallel, but
instead of focusing on the right output the focus is shifted towards measuring
non-functional aspects, i.e. the time between input and output (response
time) or number of requests processed in a second (throughput).

Traditionally, performance testing has been conducted by running a num-
ber of predefined scenarios (or scripts) in parallel. One drawback to this
approach is that real users do not behave as static scripts. This can also lead
to certain paths in the system being left untested or that certain caching
mechanisms in the system kick in due the repetitiveness of the test scripts.

Software testing can be extremely time consuming and costly. In 2005,
Caper Jones - chief scientist of Software Productivity Research in Mas-
sachusetts - estimated that as much as 60 percent of the software work in
the United States was related to detecting and fixing defects [1]. Another
drawback is that software testing, as well as performance testing, involves
tedious manual work when creating test cases. A software system typically
undergoes a lot of changes during its lifetime. Whenever a piece of code is
changed, a test has to be updated or created to show that the change did
not break any existing functionality or introduce any new defects. This adds
more time and cost to testing. In the case of performance testing this implies
that one has to be able to benchmark quickly and effectively to check if the
performance of the system is affected by the change of the code.

Research effort have be put into solving this dilemma. One of the most
promising techniques is Model-Based Testing (MBT). In MBT, the central
artefact is a system model. The idea is that the model represents the behav-
ior or the use of the system. Tests are then automatically generated form
the model. In MBT the focus has shifted from manually creating tests to
maintaining a model that represents the behavior of the system. Due to the
fact that tests are automatically generated from a model, MBT copes better
with changing requirements and code than traditional testing. Research has

Performance Testing in the Cloud Using MBPeT 193

shown that MBT could reduce the total testing costs with 15 percent [8].
MBT has mostly been targeted towards functional testing, however, there
exist a few tools that utilizes the power of MBT in the domain of perfor-
mance testing. In our research we make use of the advantages of MBT in
our performance testing approach.

MBPeT is a Python-based tool for performance testing. Load is generated
from probabilistic timed automata (PTA) models describing the behavior of
groups of virtual users. The models are then executed in parallel to get a
semi-random workload mix. The abstract PTA models are easy to create and
update, facilitating quick iteration cycles. During the load generation phase,
the tool also monitors different key performance indicators (KPIs) such as
response times, throughput, memory, CPU, disk, etc. The MBPeT tool has a
distributed architecture where one master node controls several slave node or
load generator. This facilitates deployment to a cloud environment. Besides
monitoring, the tool also produces a performance test report at the end of
the test. The report contains information about the monitored KPIs, such as
response times, throughput etc, but also graphs showing how CPU, memory,
disk, network utilization varied during a performance test session.

The rest of the report is structured as follows: we briefly enumerate
several related works in the following section. Then, is Section 6.3, we briefly
describe the load generation process. In Section 6.4, we give an overview of
the architecture of the tool. In Section 6.5, we describe how the workload
models are created and discuss the probabilistic timed automata formalism.
In Section 6.6, we discuss the performance testing process in more detail.
In Section 6.7, we present a auction web service case study and a series of
experiments using our tool. Finally, in Section 6.8 we present our conclusions
and discuss future work.

6.2 Related Work

There exist a plethora of commercial performance testing tools. In the fol-
lowing, we briefly enumerate couple of popular performance testing tools.
FABAN is an open source framework for developing and running multi-tier
server benchmarks [18]. FABAN has a distributed architecture meaning load
can be generated from multiple machines. The tool has three main com-
ponents: A harness - for automating the process of a benchmark run and
providing a container for the benchmark driver code, a Driver framework -
provides an API for people to develop load drivers, and an Analysis tool - to
provide comprehensive analysis of the data gathers for a test. Load is gen-
erated by running multiple scripts in parallel. JMeter [19] is an open source

194 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Java tool for load testing and measuring performance, with the focus on web
applications. Jmeter can be set up in a distributed fashion and load is gener-
ated from manually created scenarios that are run in parallel. Httperf [6] is
a tool for measuring the performance of web servers. Its aim is to facilitate
the construction of both micro and macro-level benchmarks. Httperf can be
set up to run on multiple machines and load is generated from pre-defined
scripts. LoadRunner [7] is a performance testing tool from Hewlett-Packard
for examining system behavior and performance. The tool can be run in a
distributed fashion and load is generated from pre-recorded scenarios.

Recently several authors have focused on using models for performance
analysis and estimation, as well as for load generation. Barna et al., [2]
present a model-based testing approach to test the performance of a trans-
actional system. The authors make use of an iterative approach to find
the workload stress vectors of a system. An adaptive framework will then
drive the system along these stress vectors until a performance stress goal
is reached. They use a system model, represented as a two-layered queuing
network, and they use analytical techniques to find a workload mix that will
saturate a specific system resource. Their approach differs from ours in the
sense that they use a model of the system instead of testing against a real
implementation of a system.

Other related approaches can be found in [16] and [15]. In the former, the
authors have focused on generating valid traces or a synthetic workload for
inter-dependent requests typically found in sessions when using web appli-
cations. They describe an application model that captures the dependencies
for such systems by using Extended Finite State Machines (EFSMs). Com-
bined with a workload model that describes session inter-arrival rates and
parameter distributions, their tool SWAT outputs valid session traces that
are executed using a modified version of httperf [12]. The main use of the
tool is to perform a sensitivity analysis on the system when different param-
eters in the workload are changed, e.g., session length, distribution, think
time, etc. In the latter, the authors suggest a tool that generates represen-
tative user behavior traces from a set of Customer Behavior Model Graphs
(CBMG). The CBMG are obtained from execution logs of the system and
they use a modified version of the hitperf utility to generate the traffic from
their traces. The methods differ from our approach in the sense they both
focus on the trace generation and let other tools take care of generating the
load/traffic for the system, while we do on-the-fly load generation from our
models.

Denaro [4] proposes an approach for early performance testing of dis-
tributed software when the software is built using middleware components
technologies, such as J2EE or CORBA. Most of the overall performance of

Performance Testing in the Cloud Using MBPeT 195

such a system is determined by the use and configuration of the middleware
(e.g. databases). They also note that the coupling between the middleware
and the application architecture determines the actual performance. Based
on architectural designs of an application the authors can derive application-
specific performance tests that can be executed on the early available mid-
dleware platform that is used to build the application with. This approach
differs from ours in that the authors mainly target distributed systems and
testing of the performance of middleware components.

6.3 The Performance Testing Process

In this section we are briefly going to describe the steps of the performance
testing process. A more detailed description is given in Section 6.6.

6.3.1 Model Creation

Before we start generation load for the system we first have to create a
load profile or a load model that describe the behavior of the users. Since
we can not have a model for each individual user we have to create one or
several models that represent the behavior for a larger group of users. These
models describe how a groups of virtual users (VUs) behave and they are
simplified models of how a real users would behave. Section 6.5 gives more
details of how the models are constructed. Essentially, we use probabilistic
timed automata (PTA) to specify user behavior which describe in an abstract
way the sequence of actions a VU can execute against the system and their
probabilistic distribution.

6.3.2 Model Validation

Once the models have been created they are checked for consistency and cor-
rectness. For instance, we check that the models have a start and end point,
that there are no syntactical errors in the models, and that the probabilities
and actions have been defined correctly. Once the models have been checked
by the MBPeT tool we start generating load for the system under test (SUT).

6.3.3 Test Setup

Before we can actually start generating load we need to set up everything
correctly so that the MBPeT can connect to the SUT and generate the ap-
propriate amount of load. To do that one have to fill in a settings file. This
file contains e.g., the IP-address of the SUT, what load models to use, how

196 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

many parallel virtual users to simulate, ramp up period, and the duration of
the performance test. The MBPeT tool needs this information in order to
be able to generate the right amount of load.

The tester also needs to implement an adapter for the tool. Every SUT
will have its own adapter implementation. The purpose of the adapter is
to translate the abstract actions found in the model into concrete actions
understandable by the SUT. In case of a web page, a browse action would
need to be translated into a HTTP GET request.

6.3.4 Load Generation

Once everything is set up, load generation begins. The MBPeT tool generates
load from the models by starting a new process for every simulated user.
Inside that process load is generated by executing the PTA model. For more
details please see Section 6.6.2. Please see Section 6.5.2 for more information

on PTAs.

6.3.5 Monitoring

During the load testing phase the MBPeT tool monitors the traffic sent on
the network to the SUT. The tool monitors the throughput and response
time for every action sent to the system. If there is a possibility to connect
to the SUT remotely, the MBPeT tool can also monitor the utilization of the
CPU, memory, network, disk, etc. This information can be very useful when
trying to identify potential bottlenecks in the system. Once the test run is
complete and all information is gathered, the tool will create a test report.

6.3.6 Test Reporting

The test report contains information about the parameters monitored during
the performance test. It gives statistical values of the mean and max response
time for individual actions and displays graphs that show how the repones
time varied over time when the load increases. If the tool can be connected
remotely to the SUT, the test report will also show how the CPU, memory,
and disk was utilized over time when the load was applied to the SUT. Both of
these sources of information can be helpful when trying to pin the a potential
bottleneck in the system.

Performance Testing in the Cloud Using MBPeT 197

6.4 MBPeT Tool Architecture

MBPeT has a distributed architecture. It consists of two types of nodes: a
master node and slave nodes. A single master node is responsible of initiating
and controlling multiple remote slave nodes, as shown in Figure 6.1. Slave
nodes are designed to be identical and generic, in a sense that they do not
have prior knowledge of the SUT, its interfaces, or the workload models. That
is why for each test session, the master gathers and parses all the required
information regarding the SUT and the configuration for each test session
and sends that information to all the slave nodes. Once all slaves have been
initialized, the master begins the load generation process by starting a single
slave while rest of the slaves are idling.

Slave
Node1l

Adapter

Slave
Node 2

Adapter

Master
Node

Adapter

SUT

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Slave
NodeN

Adapter

Figure 6.1: Distributed architecture of MBPeT tool

6.4.1 The Master Node

The internal architecture of the master node is shown in Figure 6.2. It
contains the following components:

Core Module

The core module of the master node controls the activities of other modules
as well as the flow of information among them. It initiates the different
modules when their services are required. The core module takes as input
the following information and distributes it among all the slave nodes:

198 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

| Master Node |
—)l Model Validator |

Slave Controller 1

User Input
. Slave node 1
Configuration Core :
Slave Controller N E
-!R—ESt i Test Report
epol
User Output P Creator
N Slave node N
—

Trace
File
N
Resource
utilization at SUT

Figure 6.2: Master Node

User-
Resource
Data Base

User DB

1. User Models: PTA models are employed to mimic the dynamic behav-
ior of the users. Each case-study can have multiple models to represent
different types of users. User models are expressed in DOT language

[5].

2. Test Configuration: It is a collection of different parameters, that are
defined in a Settings file, which is a case-study specific. A Settings
file specifies the necessary information about the case-study and this
information is later used by the tool to run the experiment. There
are some mandatory parameters in the Settings file, which have been
listed below with the brief description. These parameters can also be
provided as command-line arguments to the master node.

(a) Test duration: It defines the duration of a test session in seconds.

(b) Number of users: It specifies the maximum number of concurrent
users for a test session.

(¢) Ramp: The ramp period is specified for all types of users. It can
be defined in two ways. One way is to specify it as a percentage

Performance Testing in the Cloud Using MBPeT 199

160

120 j(
100 Jf
- / N\ /
ol / \ /

wl] _/

20 ’{
o

0 100 250 400 480 580

Figure 6.3: Example ramp function

of the total test duration. For example, if the objective of the
experiment is to achieve the given number of concurrent users
within the 80% of total test duration, then the ramp value would
be equal to 0.8. Then, the tool would increase the number of
users at a constant rate, in order to achieve the given number of
concurrent users within the ramp period.

The ramp period can also be defined as an array of tuples. For
instance the ramp function depicted in Figure 6.3, as illustrated in
the Listing 6.1. A pair value is referred to as a milestone. The first
integer in a milestone describes the time duration in seconds since
the experiment started and the second integer states the target
number of concurrent users at that moment. For example, the
fourth milestone in the Listing 6.1, that is (400, 30), indicates that
at 400 seconds the number of concurrent users should be 400, and
thus starting from the previous milestone (100, 30) the number
of concurrent users should drop linearly in the interval 250-400
seconds. Further, a ramp period may consist of several milestones
depending upon the experiment design. The benefit of defining
the ramp period in this way is that the number of concurrent
users could increase and decrease during the test session.

Listing 6.1: Ramp section of Settings file

p————— Ramp Period
ramp_list = [(0, 0), (100, 100), (250, 100),
(400, 30),(480, 30), (580, 150), ...]

200 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

(d) Monitoring interval: It specifies how often a slave node should
check and report its own local resource utilization level for satu-
ration.

(e) Resource utilization threshold: It is a percentage value which de-
fines the upper limit of local resource load at the slave node. A
slave node is considered to be saturated if the limit is exceeded.

(f) Models folder: A path to a folder which contains all the user
models.

(g) Test report folder: The tool will save the test report at this given
path.

In addition to mandatory parameters, the Settings file can contain
other parameters, which are related to a particular case-study only.
For example, if a SUT is a web server then the IP address of the web
server would be an additional parameter in the Settings file.

3. Adapter: This is a case-study specific module which is used to commu-
nicate with SUT. This module translates each action interpreted from
the PTA model into a form that is understandable by the SUT, for
instance a HTTP request. It also parses the response from the SUT
and measures the response time.

4. Number of Slaves: This number tells the master node how many slave
nodes that are participating in the test session.

Two test databases are used by MBPeT: a user database and a user
resource database. The user database contains all the information regarding
users such as usernames, passwords or name spaces. In certain cases, the
current state of the SUT must be captured, in order to be able to address
at load generation time data dependencies between successive requests. As
such, the user resource database is used to store references to the resources
(e.g. files) available on the SUT for different users. The core module of the
master node uses an instance of the test adapter to query the SUT and save
that data in the user resource database.

Further, the core module remotely controls the Dstat! tool on SUT via
SSH protocol. Dstat is a tool that provides detailed information about the
system resource utilization in real-time. It logs the system resources utiliza-
tion information after every specific time interval, one second by default. The
delay between each update is specified in the command along with the names
of resources to be monitored. This tool creates a log file in which it appends

Thttp://dag. wieers.com/home-made/dstat/

Performance Testing in the Cloud Using MBPeT 201

a row of information for each resource column after every update. The log
file generated by the Dstat tool is used as basis for generating the test report,
including graphs on how SUT’s KPIs vary during the test session.

Model Validation Module

The Model Validator module validates the load models. It performs different
numbers of syntactic checks on all models and generates a report.This report
gives error descriptions and the location in model where the error occurred.
A model with syntax anomalies could lead to inconclusive results. Therefore
it is important to ensure that the all given models are well-formed and no
syntax mistakes have been made in implementing the models. Examples of
couple of validation rules are:

e Each model should have an initial and a final state
e All transitions have either probabilities or actions
e The sum of probabilities of transitions originating from a location is 1.

e All locations are statically reachable

Slave Controller Module

For each slave node there is an instance of SlaveController module in the
master node. The purpose of the SlaveController module is to act as a bridge
between slave nodes and the core master process and to control the slave
nodes until the end of the test. The benefit of this architecture is to keep the
master core process light and active, and more scalable. The SlaveController
communicates with master core process only in few special cases, so that the
core process could perform other tasks instead of communicating with slave
nodes. Moreover, it also increases the parallelism in our architecture, all the
SlaveControllers and the master’s core processes could execute in parallel on
different processor cores. Owning to the efficient usage of available resources,
the master can perform more tasks in less period of time. A similar approach
has been employed at the slave node, where each user is simulated as an
independent process for the performance gain.

Test Report Creation Module

This module performs two tasks: Data Aggregation and Report Creation. In
the first task, it combines the test results data from all slaves into an internal
representation. Further, it retrieves the log file generated by the Dstat tool

202 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

from the SUT via Secure File Transfer Protocol (SFTP). The second task of
this module is to calculate different statistical indicators and render a test
report based on the aggregated data.

6.4.2 The Slave Node

Slave nodes are started with one argument, the IP-address of the master
node. The Core module opens the socket and connects to the master node
at the given IP-address with the default port number. After connecting with
the master node successfully, it invokes the Load Initiator module.

| Slave Node |
Master node Resource
Monitor
Core
LIS
Master Reporter
Node

| Load Generator |—| UserSimulator |

| Adapter I

Figure 6.4: Slave Node

Load Initiation Module

The Load Initiator module is responsible for initializing the test setup at
the slave node as well as storing the case-study and model files in a proper
directory structure. It receives all the information from the master node at
initialization time.

Performance Testing in the Cloud Using MBPeT 203

Model Parser Module

The Model Parser module reads the PTA model into an internal structure.
It is a helper module that facilitates the UserSimulator module to perform
different operations on the PTA model.

Load Generation Module

The purpose of this module is to generate load for the SUT at the desired
rate, by creating and maintaining the desired number of concurrent virtual
users. It uses the UserSimulator module to simulate virtual users where each
instance of UserSimulator presents a separate user with unique user ID and
session. The UserSimultor utilizes the Model Parser module to get the user’s
action from the user model and uses the Adapter module to perform the
action. Then it waits for a specified period of time (i.e. the user think time)
before performing the next action, which is chosen based on the probabilistic
distribution.

Resource Monitoring Module

The Resource Monitor module runs as a separate thread and wakes up regu-
larly after a specified time period. It performs two tasks every time it wakes
up: 1) checks the local resource utilization level and saves the readings, 2) cal-
culates the average of resource utilizations over a certain number of previous
consecutive readings. The value obtained from the second task is compared
with resource utilization threshold value, defined in the test configuration.
If the calculated average is above a set threshold value of 80 percent, then
it means that the slave node is about to saturate and the master will be
notified. When a slave is getting saturated, its current number of generated
users is kept constant, and additional slaves will be delegated to generate the
more load.

Reporter Module

All the data that has been gathered during the load generation is dumped
into files. The Load Generator creates a separate data file for each user;
it means that the total number of simulation data files would be equal to
the total number of concurrent users. In order to reduce the communication
delay, all these data files are packed into a zip file, and sent to the master at
the end of the test session.

204 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

®® & MBPeT

Ei;'tﬂ;slerl Start Load Ge'we'at\ml Settings | Quit |AV§‘ Response Time: 0.15
Project folder fIBPET branch 2/MBPeT/case studies/ Browse | 57
Test duration [100 (seconds) Number of slaves: [1 =

Number of users: [10

Master Log:

validating user models ...

Master is listening for 1 slave(s}..

Master is waiting for all slaves to be initialized ...
Slave 0 is initialized.

All slaves are initialized.

Slave 0 starts load generation

Figure 6.5: Main window of the GUI

6.4.3 Graphical User Interface

The MBPeT tool can be run both in command line and via a graphical user
interface (GUI) as shown in Figure 6.5. Feature-wise the GUI is almost
identical to the command-line version except for two features:

e The GUI implements the number of users as a slider function. This
implies that the number of parallel user can be increased and decreased
in real time using the slider, as an alternative to predefining a ramp
function at beginning of the test session;

e The average response observed by all slave nodes is plotted in real-
time. The response time graphs can be configured to display either
one average response time plot for all actions (as currently depicted in
Figure 6.5) or one average response time plot for each individual action
type.

Additionally, from the GUI, one can specify basically all the test session
settings previously described in Section 6.4.1

6.5 Model Creation

In this section we will introduce the load models used for generating load
and describe how they are constructed. We will also in theory describe how

Performance Testing in the Cloud Using MBPeT 205

load is generated from these models.

6.5.1 Workload Characterization

Traditionally, performance analysis starts first with identifying key perfor-
mance scenarios, based on the idea that certain scenarios are more frequent
than others or certain scenarios impact more on the performance of the sys-
tem than other scenarios. A performance scenario is a sequence of actions
performed by an identified group of users [13]. In some cases, key perfor-
mance scenarios can consist of only one action, for example ”browse”, in the
case of a web-based system. In the case of Amazon online store, examples
of key performance scenarios could be: searching for a product, then adding
one or more products into the shopping cart and finally pay for them. In the
first example, only one action is sent to the system, namely ”browse”. In
the second example, several actions would have to be sent to the server, e.g.
"login”, "search”,”add-to-cart”,” checkout”, etc.

In order to build the workload model, we start by looking and analyzing
the requirements and the system specifications, respectively. During this
phase we try to get an understanding of how the system is used, what are
the different types of users, and what are the key performance scenarios
that will impact most on the performance of the system. A user type is
characterized by the distribution and the types of actions if performs.

The main sources of information for workload characterization are: Ser-
vice Level Agreements (SLAs), system specifications and standards, and
server execution logs [11]. By studying these sources we identify the inputs of
the system with respect to types of transactions (actions), transferred files,
file sizes, arrival rates, etc. following the generic guidelines discussed in [3]. In
addition, we extract information regarding the KPIs, such as the number of
concurrent users the system should support, expected throughput, response
times, expected resource utilization demands etc. for different actions under
a given load.

We use the following steps in analyzing the workload:

1. Identify the actions that can be executed against the system.

(a) Analyze what are the required input data and output data for each
action. For instance, what is the request type, its parameters, etc.

(b) Identify dependencies between actions. For example, a user can
not execute a logout action before a login action.

2. Identify what classes (types) of users execute each action

206 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

3. Identify the most relevant user types.
4. Define the distribution of actions that is performed by each user type.
5. Define an average think time per action for each user type.

Table 6.1 shows an example of a user type specification, its actions, action
dependencies, and think time ordered in a tabular format. Based on this
information we build a workload model described as a probabilistic timed
automata or PTA.

Action | Dependency User Type 1 User Type 2
Think time | Frequency | Think Time | Frequency

ax ty fi ta fa
as a t3 I3

as ay ta fa
ay as ts fs

as o 123 fe tr fz
ag as ts fs

Table 6.1: Example of user types and their actions

6.5.2 Workload Modeling Using PTA

The results of the workload characterization are aggregated in a workload
model similar to the one in Figure 6.6, which mimics the real workload un-
der study. One such workload model is created for each identified user type.
Basically, the model will depict the sequence of actions a user type can per-
form and their arrival rate, as a combination of the probability that an action
is executed and the think time of the user for that action. In addition, we
also identify the user types and their probabilistic distribution. A concrete
example will be given in Section 6.7.

All the information that is extracted from the previous phase is aggre-
gated in a workload model which is describes as a probabilistic timed au-
tomaton (PTA). A PTA is similar to a state machine in the sense that a
PTA consists of a set of locations connected with each other via a set of
transitions. However, a PTA also include the notion of time and probabil-
ities. Time is modeled as an invariant clock constraint on transitions and
increase at the same rate as real time.

A probabilistic timed automaton (PTA) is defined [9] as T = (L,C,inv,
Act, E, 0) where:

e q set of locations L;

Performance Testing in the Cloud Using MBPeT 207

e a finite set of clocks C;

e an invariant condition inv : L — Z;

e finite set of actions Act;

e an action enabledness function F : L x Act — Z;

e q transition probability function § : (L x Act) — D(2¢ x L).

In the above definitions, Z is a set of clock zones. A clock zone is a set
of clock values, which is a union of a set of clock regions. A is a proba-
bilistic transition function. Informally, the behavior of a probabilistic timed
automaton is as follows: In a certain location I, an action a can be chosen
when a clock variable reaches its value with a certain probability if the action
is enabled in that location [. If the action a is chosen, then the probability of
moving to a new location !’ is given by 0[L,a](C’,I), where C’ is a particular
set of clocks to be reset upon firing of the transitions. Figure 6.6 gives an
example of a probabilistic timed automata.

The syntax of the automata is as follows: Every transition has an initial
location and an end location. Each location is transitively connected from the
initial location. The transitions can be labeled with three different values: a
probability value, an action, and a clock. The probability indicates the chance
of that transition being taken. The action describes what action to take when
the transition is used, and the clock indicates how long to wait before firing
the transition. Every automaton has an end location, depicted with a double
circle, that will eventually be reached. It is possible to specify loops in the
automaton. It is important to notice that the sum of the probabilities on all
outgoing transitions from a given location must be equal to 1. For example,
consider location 2 in Figure 6.6: for the PTA to be complete the following
must apply: pl + p2 +p3 =pd +pdH = 1.

6.6 Performance Testing Process

In this section we describe the performance testing process. Figure 6.7 shows
the three steps involved in the process. In the following, we will discuss the
three steps in more detail.

6.6.1 Test Setup

Every test run starts with a test setup. In each test setup, there is one master
node that carries out the entire test session and generates a report. The

208 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

CO

IX=r]. Jactionl() / p0 /X=0

5
pl p2 p3
.//—3 /_4_ X =15/ action5()/ p4/ X=0
T O P

3(t5 / action6() / p5 /X=0

\
_

X=t6 / action7() / X=0

Figure 6.6: Example of a probabilistic timed automaton.

X=t2 / action2() / X=0| X=t3/ acnon30 X=0 ‘(—tﬁl— actiend() / X/
\ \4(_7;__/.
C

user only interacts with the master node by initializing it with the required
parameters (mentioned in the Section 6.4.1) and getting the test report at
the end of the test run. The parameter given to the master is the project
folder. This folder contains all the files needed for load generation, such as
the adapter code, the settings file (if command line mode is used) and other
user specific files.

The adapter file and the settings file are the most important. The adapter
files explains how the abstract actions found in the load models are translated
to concrete actions. The settings file contain information about the test
session, such as the location of the load models, IP-address to the SUT, the
ramp function, test duration, etc. The same information can also be set from
the GUI via the Settings button, see Figure 6.8. In here, the user is required
to enter the same information as given in the settings file. Additionally, the
path to the adapter file and the load models have to be given.

As one may notice in Figure 6.8, the user has the option of defining an
average think time for the models and its standard deviation. If these options
are used, the individual think time specified in the models for each action

Performance Testing in the Cloud Using MBPeT 209

Master Node Slave Node SuUT

- Test Setup
Start Master with
parameters

Read Test configuration

and Case-study files

Initialize the test Database|

Parse & Validate
user models

Slaves discovery and . o
| Initialization lf*)l Connected with Master l—)[Load Initialization l

Slaves Initiali

Invoke Resource Monitoring Resource
monitor at SUT usage

l Load Generation

on a idle slave and local resource load

.

Start Load Generation 4,[Slave node generates load & monitor KPIs

Notify Master

Slave node maintains | [if (local_resource_load > threshold)]
current level

l (if (time > test_duration)]

Gather Data from slaves
I and terminate idle slaves [‘Ise"d test Data to Ma“e"l

Terminate Resource Send resource usage
monitor log
Master produce test report|

Test Reporting

Figure 6.7: MBPeT tool activity diagram

will be ignored and the one specified in the GUI will be used.

Once the required information has been given, the master node sets up the
test environment. After that, it invokes the Model Validator. This module
validates the syntax of user models. If the validation fails, it gives the user
a choice whether the user wants to continue or not to load generation. If
the user decides to continue or the validation was successful, then the master
enters into the next phase.

6.6.2 Load Generation

Load is generated for the models based on the same principles as described in
section 6.5.2. The load generation is based on a deterministic choice with a
probabilistic policy. This introduces certain randomness into the test process

210 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Models folder: | Jhome/selab/PeT/branches/MBPeT_branch_2/MBPeT/case_studies Browse
Source folder: | Jhome/selab/PeT/branches/MBPeT_branch_2/MBPeT/local_media Browse
Test report folder: l!PeTn‘branchesIMBPeT_branch_ZIMBF‘echase_studiesff" <+ [test_reports Browse
Think time: | 5 = (seconds)

Standard deviation: | 2 = (seconds)

Target response time: Import actions

Ramp list:

ramp_list = [(0,1), (60}10), (100,0)]

oK | Apply Cancel

Figure 6.8: Settings window of the GUI

and that can be useful for uncovering certain sequences of actions which may
have a negative impact of the performance. Such sequences would be difficult
or maybe impossible to discover if static test scripts are used, where a fixed
order of the actions is specified, and repeated over and over again. Every
PTA has an ezit location which will eventually be reached. By modifying
the probability for the ezit action, it is possible to adjust the length of the
test.

The attributes of PTA models make them a good candidate for modeling
the behavior of VUs, which imitate the dynamic behavior of real users. Ac-
tions in the PTA model corresponds to an action which a user can send to
the SUT and the clocks present the user think time. In our case, the PTA
formalism is implemented using the DOT notation.

Load is generated from these models by executing an instance of the model
for every simulated VU. Whenever a transition with an action is fired, that
action is translated by the MBPeT tool and sent to the SUT. This process is
repeated and run in parallel for every simulated user throughout the whole
test session. During load generation, the MBPeT tool monitors the SUT the
whole time.

Performance Testing in the Cloud Using MBPeT 211

6.6.3 Test Reporting

After each test run the MBPeT tool generates a test report based on the
monitored data. It is the slave nodes that are responsible for the monitoring
and they report the values back to the master node which later creates the
report.

Every slave node will monitor the communication with the SUT and
collecting the data needed for test report. The slave node will start a timer
every time and action is sent to the system. When a response is received,
the timer is stopped and the response code together with the action name
and response time is stored. This data is later sent to the master node which
will aggregate the data and produce a report.

The slave node will also monitor its own resources so it does not get
saturated and becomes the bottleneck during load generation. The slave
node monitors is own CPU, memory, and disk utilization and sends the
information to the master node. The master node the data is plotted in
graphs and included in the test report.

It is the test report creation module of the master node that is responsible
for creating test report. This module performs two tasks: aggregating data
received from the slave nodes and creating a test report. Data aggregation
consists of combining data received from the slave nodes together into and
internal representation. Based on the received data, different kinds of statis-
tical values are computer, e.g. mean and max response times, throughput,
etc. Values such as response time and throughput plotted as graphs so the
tester can see how the different values varies over time. Figures of the test
report will later be shown throughout Section 6.7.

The final task of the test report creation module is to render all the values
and graphs into a report. The final report is rendered as a HTML document.

6.7 Experiments

In this section we will describe a set of experiments carried out with the
MBPeT tool on a case study. The system tested in the case study is an
HTTP based auction web service.

6.7.1 YAAS

YAAS is a web application and a web service for creating and participating
in auctions. An auction site is a good example of a service offered as a web
application. It facilitates a community of users interested in buying or selling
diverse items, where any user including guest user can view all the auctions

212 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

and all authenticated users, except seller of an item, can bid on the auction
against other users.

The web application is implemented in Python language using the
Django? web-framework. In addition to HTML pages, YAAS also has a
RESTful [10] web service interface. The web service interface has various
APIs to support different operations, including:

Browse API It returns the list of all active auctions.
Search API It allows to search auctions by title.
Get Auction This API returns an auction against the given Auction-ID.

Bids It is used to the get the list of all the bids have been made to a
particular auction.

Make Bid Allows and authenticated user to place a bid on a particular
auction.

6.7.2 Test Architecture

A setup of the test architecture can be seen in Figure 6.9. The server runs an
instance of the YAAS application on top of an Apache web server. All nodes
(master, slaves, and the server) feature an 8-core CPU, 16GB of memory,
1Gb Ethernet, 7200 rpm hard drive, and Fedora 16 operating system. The
nodes were connected via a 1Gb ethernet over which the data were sent.

A populator script is used to generate input data (i.e., populate the test
databases) on both the client and server side, before each test session. This
ensures that the test data on either sides is consistent and easy to rebuild
after each test session.

6.7.3 Load Models

The test database of the application is configured with a script to have 1000
users. Each user has exactly one auction and each auction has one starting
bid.

In order to identify the different type of users for the YAAS application,
we have used the AWStats® tool. This tool analyzes the Apache server access
logs to generate a report on the YAAS application usage. Based on that
report, we discovered three types of users; aggressive, passive and non-bidder.

2https:/ /www.djangoproject.com/
3http://awstats.sourceforge.net

Performance Testing in the Cloud Using MBPeT 213

[ormiatar |
| Populator |
Server
Slave
Ethernet
Slave |
Master Node 2 Apache
Node —
Monitoring tools
Slave |
Node N
Dstat

Figure 6.9: A caption of the test architecture

X=3/ exil() [X:=0

8
X=3/ exit() / X:=0

Figure 6.10: Aggressive User type model

X=3/ exit() / X:=0

Figure 6.11: Passive User type model

214 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

Action Dependency Aggressive User Passive User Non-Bidder User
Think time | Frequency | Think Time | Frequency | Think Time | Frequency

search() 4 0,40 4 0,40 4 0,40
browse() 3 0,60 3 0,60 3 0,60
browse() browse(),search() 5 0,10 3 0,10 3 0,10
get_auction() | browse(),search() 5 0,87 5 0,87 5 0,87
exit() browse(),search() 3 0,03 3 0,03 3 0,03
browse() get_auction() 5 0,05 5 0,05 5 0,05
get_bids() get_auction() 3 0,75 3 0,75 3 0,75
exit() get_auction() 3 0,20 3 0,20 3 0,20
browse() get_bids() 5 0,20 5 0,20 5 0,60
bid() get_bids() 3 0,50 3 0,30

exit() get_bids() 3 0,30 3 0,50 3 0,40
get_bids() bid() 3 0,30 3 0,45

browse() bid() 4 0,20 4 0,25

exit() bid() 3 0,50 3 0,30

Table 6.2: Think time and distribution values extracted from the AWStats
report

X=3 / exit() / X:=0

X=3/ exit() / X:=0

Figure 6.12: Non-bidder User type model

Table 6.2 shows the think time and distribution of actions for the three
different types of users.

For each user type, a load model was created as describe in section 6.5.
The aggressive type (Figure 6.10) of users describes those users, who make
bids more frequently as compared to other types of users. The passive users
(Figure 6.11) are less frequent in making bids, see for instance the locations
14 or 18 in the referred figures. The third type of users are only interested
in browsing and searching for auctions instead of making any bids and are
known as non-bidders (Figure 6.12). The root model of the YAAS applica-
tion, shown in Figure 6.13, describes the distribution of different user types.

Performance Testing in the Cloud Using MBPeT 215

Based on the AWStats analysis, we determined that the almost 30% of total
users who visited the YAAS, were very frequently in making bids, whereas
rest of 50% users made bids occasionally. The rest of the users were not
interested in making bids at all. This distribution is depicted by the model
in Figure 6.13.

0.2/ non-bidder_user [0.3/ aggressive_user Y).5/ passive_user

Figure 6.13: YAAS Root model

The models of all these user types were provided to the MBPeT tool to
simulate them as virtual users. For example, the model of an aggressive user
type, shown in Figure 6.10, shows that the user will start from the location
1, and from this location the user will select either browse or search action
based on a probabilistic choice. Before performing the action, the slave will
wait for the think time corresponding to the selected action. Eventually, the
user will reach the final location (i.e. location 20) by performing the exit
action and terminate the current user session. Similarly, the other models of
passive and non-bidder user type have the same structure but with different
probabilities and distribution of actions.

6.7.4 Experiment 1

The goal of this experiment was to set the target response time for each
action and observe at what point the average response time of the action
exceed the target value. The experiment ran for 20 minutes. The maximum
number of concurrent users was set to 300 and the ramp up value was 0.9
that the tool would increase the number of concurrent users with the passage
of time to achieve the value of 300 concurrent users when the 90% of test
duration time has been passed.

The resulting test report has various sections, where each section presents
the different perspective of the results. The first section, shown in Figure
6.14, contains the information about the test session including, test started
time, test duration, target number of concurrent of users, etc. The Total

216 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

HHHHHHHHHEHHE Master Stats #HEHHHHHHT

This test was executed at: 2013-07-01 16:54:47
Duration of the test: 20 min

Target number of concurrent users: 300

Total number of generated users: 27536

Measured Request rate (MRR): 27.68 req/s
Number of NON-BIDDER_USER: 6296 (23.0)%
Number of AGGRESSIVE_USER: 9087 (33.0)%
Number of PASSIVE_USER: 12153 (44.0)%
Average number of action per user: 91 actions

Figure 6.14: Test Report 1 - Section 1: General information

i AVERAGE/MAX RESPONSE TIME per METHOD CALL #####HHH###

NON-BIDDER_USER (23.0 %)|[PASSIVE_USER (44.0 %)|(AGGRESSIVE_USER (33.0 %)
Method Call Average (sec) Max (sec) || Average (sec) || Max (sec) Average (sec) Max (sec)
GET_AUCTION(ID) 3.04 23.95 2.85 23.67 2.93 24.71
BROWSE() 5.44 21.25 5.66 21.7 5.68 21.29
GET_BIDS(ID) 3.59 27.37 3.63 25.8 3.65 24.87
BID(ID,PRICE,USERNAME,PASSWORD)|(0.0 0.0 8.26 33.44 8.11 36.84
SEARCH(STRING) 3.36 12.86 3.26 15.84 3.47 15.79

Figure 6.15: Test Report 1 - Section 2: Average and Maximum response time
of SUT per action or method call

number of generated users in the report describes that the tool had simulated
27536 numbers of virtual users. The Measured Request Rate (MRR) depicts
the average number of requests per second which were made to the SUT
during the load generation process. Moreover, it also shows the distribution
of total number of user generated which is very close to what we have defined
in the root model (Figure 6.13). This section is useful to see the summarized
view of the entire test session.

In the second section of the test report, we could observe the SUT perfor-
mance for each action separately, and identify which actions have responded
with more delay than the others, and which actions should be optimized to
increase the performance of the SUT. As from the table in Figure 6.15, it
appears that the action BID(ID, PRICE, USERNAME, PASSWORD) has
larger average and maximum response time than the other actions. The non-
bidder users do not perform the BID action that is why we have zero response
time in the column of NON-BIDDER USER against the BID action.

Section three (shown in Figure 6.16) of the test report presents a com-
parison of the SUTs desired performance against the measured performance.
As we had defined the target response time for each action in the test config-

Performance Testing in the Cloud Using MBPeT 217

AVERAGE/MAX RESPONSE TIME THRESHOLD BREACH per METHOD CALL

Action Target Response TimeNON-BIDDER_USER|[PASSIVE_USER AGGRESSIVE_USER |Verdict H
Average Max || Average Max Average Max Average Max e
(secs) (secs) |[users (secs)|| users (secs) |[users (secs)||users (secs)|[users (secs) | users (secs) Pass/Fail
GET_AUCTION(ID) 2.0 4.0 70 251) |[84(299.0) [70 251) |05 (341.0) |[70 250)][05 (341.0) |[Failed
BROWSE() [4.0 8.0 34(299) |07 (345.0) [[84 (299) [[113 (403.0)|[84 (299) |[113 (403.0) |[Failed
GET_BIDS(ID) 3.0 6.0 34(298) |[112(402.0)[[83 (296) |[112 (402.0)[[96 (344) |[112 (401.0) |[Failed
BID(ID,PRICE, USERNAME,PASSWORD)||5.0 10 Passed Passed 97 (346) |[113 (405.0)|[112 (402) |[135 (483.0) |[Failed
SEARCH(STRING) 3.0 6 95 341) [[134 479.0)|[06 (342) [[112 402.0)[[83 (296) [[133 (476.0) [Failed

Figure 6.16: Test Report 1 - Section 3: Average and Maximum response time
of SUT per action or method call

uration, in this section we could actually observe how many concurrent users
were active when the target response time was breached. The table in this
section allows us to estimate the performance of current system’s implementa-
tion. For instance, the target average response time for the GET_AUCTION
action was breached at 250 seconds for the aggressive type of users, when
the number of concurrent users was 70. Further, this section demonstrates
that the SUT can only support up to 84 concurrent users before it breaches
the threshold value of 3 seconds for GET_BIDS action for the passive type
of users. In summary, all the actions in Figure 6.16 have breached the tar-
get response time except the BID action in NON-BIDDER _USER column
because non-bidder users do not bid.

Figures 6.17 and 6.18 display the resource load at the SUT during load
generation. These graphs are very useful to identify which resources are
being utilized more than the others and limiting the performance of SUT.
For instance, it can be seen from Figure 6.17 that after 400 seconds the CPU
utilization was almost equal to 100% for the rest of the test session, it means
that the target web application is CPU-intensive, and it might be the reason
of large response time.

Figure 6.19 illustrate that the response time of each action for the aggres-
sive user type increases proportionally to the number of concurrent users.
The figure also points out which actions response time is increasing much
faster than the other actions and require optimization. Similar patterns was
observed for the two other user types: passive users and non-bidder, respec-
tively.

For example the response time of action BID(ID, PRICE, USERNAME,
PASSWORD) for aggressive and passive user types increases more rapidly
than the other actions. It might be because the BID action involves a write
operation and in order to perform a write operation on the database file, the

218

F. Abbors, T. Ahmad, D.

Truscan, and I. Porres

[—= v

— Physical Memory.

— ramp function

+ Actual number of users]

100 - 300
4250
_8of
E
UJ
5 4
g -2003
v 60f -
j=a) o
ﬁ ;
=] 1150 o
g g
3 40f =
2 |
@ _---~"7100
201 e
PR 50
DO N 200 400 600 800 1000 12(?0

test duration (sec)

Figure 6.17: Test Report 1 - SUT CPU and memory utilization

— Network received bytes.
— Network sent bytes

— Disk read bytes
—— Disk write bytes

— ramp function

 Actual num of users

25 ‘ ‘ ‘ : ‘
300
20}
{250
n
150 1200
= g
z s
g 1150 &
10} £
=
{100
o5}
{50
00— 200 00 600 800 1000 2200

test duration (sec)

Figure 6.18: Test Report 1 - SUT network and disk utilization

SQLite* database has to deny the all new access requests to the database
and wait until all previous operations (including read and write operations)

have been completed.

Section four of the test report provides miscellaneous information about

4http://www.sqlite.org/

Performance Testing in the Cloud Using MBPeT 219

— ramp function — Drowse() — bid(id,price,usemame, password) — searchistring)
— get_auction(id) — get_bidstid)

300

250 | 1
/\\ / 112

200 | /

1501

number of concurrent users
response time (sec)

50

0 200 400 600 800 1000 12&)0
test duration (sec)

Figure 6.19: Test Report 1 - Response time of aggressive user type per action

the test session. For example, the first erroneous response was recorded
at 520 seconds (according to Figure 6.20) and at that time the tool was
generating load at the maximum rate, that is 1600 actions/seconds, shown
in Figure 6.21. Similarly, Figure 6.20 displays that there was no error until
the number of consecutive users exceeded 150, after this point errors began
to appear and increased steeply proportional to the number of consecutive
users.

A further deep analysis of the test report showed that the database could
be the bottleneck. Owning to the fact a sqlite database has been used for
this experiment, the application has to block the entire database before some-
thing can be written to it. It could explain the larger response time of BID
actions compared to other actions. This is because the web application had
to perform a write operation to the database in order to execute the BID
action. Further, before each write operation, sqlite creates a rollback jour-
nal file, an exact copy of original database file, to preserve the integrity of
database [17]. This could also delay the processing of a write operation and
thus cause a larger response time.

6.7.5 Experiment 2

In the second experiment, we wanted to verify the hypothesis, which we
proposed in the previous experiment: database could be the performance bot-
tleneck. We ran the second experiment for 20 minutes with the same test

220 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

— ramp function — get_auctionid) — ot _bids(id) searchistring)
— exit(— browse() — bid(id.price,username. password)

300 - 100
250
@ 180
3
2
2
52001 .
5 T
o o
g L
S 150} E
‘S w
9]
=]
E 100}
2
s0f
DO 200 400 600 800 1060 12&’0
test duration (sec)
Figure 6.20: Test Report 1 - Error rate
[= Tumber of actions —— amp fanction T AcUA number of uEers
1800 - - - - -
1600 | 300
1400 | 1250
1200}
w
s 1200 5
2 3
3 1000 3
— =}
o e
[L
g so0f 1150 2
E 2
= 600}
4100
00 f
150
200f
o ‘ ‘ ‘ . ‘ 9
() 200 200 600 300 1000 1200

test duration (sec)

Figure 6.21: Test Report 1 - Average number of actions

configuration of the previous experiment. However, we did make one mod-
ification in the architecture. In the previous experiment, the SQLite 3.7
was used as database server, but in this experiment, it was replaced by the
PostgreSQL 9.1 °. The main motivating factor of using the PostgreSQL

Shttp://www.postgresql.org

Performance Testing in the Cloud Using MBPeT 221

HAHHRHHHHHHHEHHE Master Stats #HHHHHHHHHHHEH

This test was executed at: 2013-07-01 17:37:38
Duration of the test: 20 min

Target number of concurrent users: 300

Total number of generated users: 35851

Measured Request rate (MRR): 39.21 req/s
Number of AGGRESSIVE_USER: 11950 (33.0)%
Number of NON-BIDDER_USER: 7697 (21.0)%
Number of PASSIVE_USER: 16204 (45.0)%
Average number of action per user: 119 actions

Figure 6.22: Test Report 2 - Section 1: global information

— ramp function — get_auction(ia) — get_bids(id) search(string)
— exit() — browse() — bid{id.price,username, password)

300 | 100

250
80

200
-60

1501

number of concurrent users
Error Rate

50

0 200 400 600 800 1000 12(90
test duration (sec)

Figure 6.23: Test Report 2 - Error rate

database is that it supports the better concurrent access to the data than
the SQLite. The PostgreSQL database uses the Multiversion Concurrency
Control (MVCC) model instead of simple locking. In MVCC, different locks
are acquired for the read and write operations, it means that the both oper-
ations can be performed simultaneously without blocking each other [14].

In the section 1 of Test report 2 (Figure 6.22) shows that the Measured
Request Rate (MRR) increased by 42%. Additionally, each user performed
averagely 30% more actions in this experiment.

Similarly in the second section (Figure 6.24), the average and maximum
response time of all action decreased by almost 47%. Moreover, the error
rate section (Figure 6.23) depicts that there was no error until the number

222 F. Abbors, T. Ahmad, D. Truscan, and I. Porres

#i###HH# AVERAGE/MAX RESPONSE TIME per METHOD CALL ######H###

AGGRESSIVE_USER (33.0 %)|[PASSIVE_USER (45.0 %) NON-BIDDER_USER (21.0 %)
Method Call Average (sec) Max (sec) || Average (sec) || Max (sec) Average (sec) Max (sec)
\GET_AUCTION(ID) 1.18 | 15.58 1.1 15.95 125 15.8
IBROWSE() 4.99 23.61 5.13 23.47 5.23 23.6
\GET_BIDS(ID) 1.51 15.25 1.54 15.56 1.63 15.02
BID(ID,PRICE,USERNAME,PASSWORD)|(3.25 18.65 3.25 18.37 0.0 0.0
SEARCH(STRING) 1.48 14.66 1.54 14.83 1.43 15.43

Figure 6.24: Test Report 2 - Section 2: Average and Maximum response time
of SUT per action or method call

— ramp function — browse() —— bid(id,price,username, password) — searchistring)
— get_auction(id) — get_bidsiid)

10

300

250

200

number of concurrent users
response time (sec)

50

12(?0

o 200 400 600 800 1000
test duration (sec)

Figure 6.25: Test Report 2 - Response time of aggressive user type per action

of concurrent users was below 182, that is 21% more users than the last
experiment.

Figure 6.25 shows that the response time of aggressive type of users is
decreased by 50% approximately in comparison with the previous experi-
ment in Figure 6.19. In summary, all of these indicators suggest significant
improvement in the performance of SUT.

6.8 Conclusions

In this chapter, we have presented a tool-supported approach for model-based
performance testing. Our approach uses PTA models to specify the prob-
abilistic distribution of user types and of actions that are executed against

REFERENCES 223

the system.

The approach is supported by the MBPeT tool, which has a distributed
scalable architecture, targeted to cloud-based environments allowing it to
generate load at high rates. The tool generates load in online mode and
monitors different KPIs including the resource utilization of the SUT. It can
be run both in command line and in GUI mode, respectively. The former
facilitates the integration of the tool in automated test frameworks, whereas
the latter allows the user to interact with the SUT and visualize in real-time
its performance depending on the number of concurrent users.

Using our modeling approach, the effort necessary to create and update
the user profiles is reduced. The adapter required to interface with the SUT
has to be implemented only once and then it can be reused. As shown in the
experiments, the tool allows quick exploration of the performance space by
trying out different load mixes. In addition, preliminary experiments have
shown that the synthetic load generated from probabilistic models has in
general a stronger impact on the SUT compared to static scripts.

We have also showed that the tool us sufficient enough in finding per-
formance bottlenecks and that the tool can handle large amounts of parallel
virtual users. The tool benefits from its distributed architecture in the sense
that it can easily be integrated in a cloud environment where thousands of
concurrent virtual users need to be simulated.

Future work will be targeted towards improving the methods for creating
the user profiles from historic data and providing more detailed analysis of
the test results. So far, the MBPeT tool has been used for testing web
services however, we plan also to address also web applications, as well as
other types of communicating systems.

References

[1] Ashlish Jolly. Historical Perspective in Optimising Software Testing
Efforts. 2013. URL: http://www.indianmba.com/Faculty_Column/
FC139/£c139.html.

[2] C. Barna, M. Litoiu, and H. Ghanbari. “Model-based performance
testing (NIER track)”. In: Proceedings of the 33rd International Con-
ference on Software Engineering. ICSE '11. Waikiki, Honolulu, HI,
USA: ACM, 2011, pp. 872-875. 1SBN: 978-1-4503-0445-0. DOI: 10.
1145/1985793.1985930.

224

[10]

[11]

[12]

[13]

F. Abbors, T. Ahmad, D. Truscan, and I. Porres

M. Calzarossa, L. Massari, and D. Tessera. “Workload Characteriza-
tion Issues and Methodologies”. In: Performance Fvaluation: Origins
and Directions. London, UK, UK: Springer-Verlag, 2000, pp. 459-481.
ISBN: 3-540-67193-5.

G. Denaro, A. Polini, and W. Emmerich. “Early performance testing
of distributed software applications”. In: Proceedings of the 4th inter-
national workshop on Software and performance. WOSP ’04. Redwood
Shores, California: ACM, 2004, pp. 94-103. 1SBN: 1-58113-673-0. DOTI:
10.1145/974044.974059

E. Gansner, E. Koutsofios, and S North. Drawing draphs with dot. On-
line at http://www.graphviz.org/Documentation/dotguide.pdf. 2006.
URL: http://www.graphviz.org/Documentation/dotguide.pdf.

Hewlett-Packard. hitperf. retrieved: October, 2012. URL: http://www.
hpl.hp.com/research/linux/httperf/httperf-man-0.9.txt.

HP. HP LoadRunner. 2013. URL: http://www8 .hp.com/us/en/
software-solutions/software.html?compURI=1175451\#.URz7wq
Wou8E.

ITEA 2. ITEA 2 D-MINT project result leaflet: Model-based testing
cuts development costs. 2013. URL: http://www . itea2 . org/pro
ject /result/download/result/55197file=06014\ _D\ _MINT\
_Project_Leaflet_results_oct_10.pdf.

M. Jurdzinski et al. “Concavely-Priced Probabilistic Timed Au-
tomata”. In: Proc. 20th International Conference on Concurrency
Theory (CONCUR’09). Ed. by M. Bravetti and G. Zavattaro.
Vol. 5710. LNCS. Springer, 2009, pp. 415-430.

L. Richardson and S. Ruby. RESTful Web Services. O’Reilly Media.
2007.

D. A. Menasce and V. Almeida. Capacity Planning for Web Services:
metrics, models, and methods. 1st. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2001. 1sBN: 0130659037.

D. Mosberger and T. Jin. “httperfa tool for measuring web server per-
formance”. In: SIGMETRICS Perform. Eval. Rev. 26.3 (Dec. 1998),
pp. 31-37. 18sN: 0163-5999. pDoOI: 10 . 1145/ 306225 . 306235. URL:
http://doi.acm.org/10.1145/306225.306235.

D. C. Petriu and H. Shen. “Applying the UML Performance Profile:
Graph Grammar-based Derivation of LQN Models from UML Speci-
fications”. In: Springer-Verlag, 2002, pp. 159-177.

[16]

[17]
[18]

[19]

PostgreSQL. Concurrency Control. retrieved: March, 2013. URL: htt
p://www.postgresql.org/docs/9.1/static/mvcc-intro.html.

G. Ruffo et al. “WALTy: A User Behavior Tailored Tool for Eval-
uating Web Application Performance”. In: Network Computing and
Applications, IEEE International Symposium on 0 (2004), pp. 77-86.
DOIL: http://doi.ieeecomputersociety.org/10.1109/NCA.2004.
1347765.

M. Shams, D. Krishnamurthy, and B. Far. “A model-based approach
for testing the performance of web applications”. In: SOQUA °06: Pro-
ceedings of the 3rd international workshop on Software quality assur-
ance. Portland, Oregon: ACM, 2006, pp. 54-61. 1SBN: 1-59593-584-3.
DOL: http://doi.acm.org/10.1145/1188895.1188909.

SQLite. File Locking And Concurrency In SQLite Version 3. retrieved:
March, 2013. URL: http://www.sqlite.org/lockingv3.html.

Sun. Faban Harness and Benchmark Framework. 2013. URL: http:
//java.net/projects/faban/.

The Apache Software Foundation. Apache JMeter. Retrieved: Octo-
ber, 2012. URL: http://jmeter.apache.org/.

225

226

7 Cloud Communication Service

Michael Cochez!, Sami Helin?, and Jiawen Chen’

!Department of Mathematical Information Technology
University of Jyvaskyld, P.O. Box 35 (Agora), 40014, Jyviskyld, Finland
Email: michael.cochez@jyu.fi, jiawen.chen@student.jyu.fi

ZSteeri Oy
Tammasaarenkatu 5,00180, Helsinki, Finland
Email: sami.helin@steeri.fi

Abstract—Cloud computing has opened the path to more on-line service
oriented business models. Customers are interacting with enterprises’ digital
systems trough a multitude of interfaces. We regard each of these possible
interfaces as a communication channel. When an organization owns multi-
ple systems with each its own communication channels, a user might get a
fragmented experience and use of the channels is likely sub-optimal. From
our past research we will summarize a basis for a communication framework
and how measuring quality of the semantic models in that framework can
be achieved. Then we give a compact overview of techniques we proposed to
process the knowledge extracted from high velocity communication streams,
i.e. Big Knowledge, using a system which borrows concepts from biologi-
cal evolution. From our current research focus, we present techniques which
should help to reach a good user experience. We mainly look at how we could
filter out unwanted messages and how we could make recommendations to
users who might be interested in certain types of messages. Finally, we will
suggest user interfaces for the proposed solutions.

Keywords-Cloud computing, communication, semantic web, big knowledge.

227

228 M. Cochez, S. Helin, and J. Chen

7.1 Introduction

In this chapter we present the current state of the achievements in the Cloud
Communication Service business case which is part of the Cloud Software
Program [12]. The results presented here summarize prior published work
and extend it with our current efforts.

The idea behind the Cloud Communication Service (CSS) is to solve prob-
lems which arise when communication oriented cloud services interact with
customers and other systems. The components needed for this communica-
tion are typically replicated amongst the different systems which are in use
by an organization. These components often work strictly in parallel, not
allowing for any flow of information from the one to the other. The overall
result is that the systems will not make efficient use of the available com-
munication channels and the customer will realize this fragmentation when
interacting with the company. One example could be a customer who has
bought a new smart phone. When this person contacts the help desk with
a certain problem at a later point, it would be helpful if the person who
answers this request can help with knowledge about previous interactions.
It would also be beneficial to know, or not have to care about, the way this
customer prefers to be contacted. A broader analysis of the problem and
potential benefits of solving it was given by Nagy [14], we will summarize its
main points below. During previous research we have also devised a basic
multi-channel communication framework for solving part of above mentioned
challenges. [13] In parallel, we have started to build a model for evaluation
of the quality of the ontologies used in this system. [6] We also worked on
a way to extract the core information from the stream of data, which the
system has to process at high velocity. [10] In this chapter we will give an
integrated view on these parts and extend with our current work on human
interaction.

The chapter is structured as follows: first, we introduce a business sce-
nario in which the Cloud Communication Service would function. Then we
give an overview of the past work followed by our current efforts. Finally,
we present some of the user interfaces which were developed for the Cloud
Communication Service.

7.2 Business Scenarios

In modern society, on-line shopping and cooperating are major trends in busi-
ness. To buyers, it brings plenty of benefits, such as convenience and lower
prices due to increased global competition. To companies, on-line shopping

Cloud Communication Service 229

stimulates the activities of business, which can now sell on the global market
to customers who were unreachable before. The on-line trade has however
introduced a new challenge, namely the lack of communication and compre-
hension towards customers. For example, certain buyers do not plan to buy
more as a single item from your web shop. In a face-to-face situation, the
shopkeeper could advise the customers other related products or guide them
to relevant services. This is more difficult in an on-line sale and many com-
panies have spent great effort towards the delivery of targeted advertisement,
often based on customer preferences and shopping history.

Further, customer buying processes have evolved to utilize the modern
variety of channels available. This has made understanding customers and
providing consistent customer service and communication more challenging.
When thinking about the interaction with customers, they must be put at
the core. Then, the channel and content selection has to be based on the
individuals’ profile which includes their settings and history of previous inter-
actions. One of the goals is to reduce negative emotional effects to customers,
such as these caused by trash mail.

An example scenario of a dynamic and customer focused communication
would be a shopper wanting to buy a new TV. He is a member of an electronic
retail chain’s customer program. He then seeks information on the store
website and downloads a brochure. Then he goes on and asks for referrals
from social media websites. During the purchase process he starts receiving
more TV focused ads in the newsletter and promotional discounts. The
on-line website gets personalized for a more convenient shopping experience
around topics of interest. And if he finally decides to go to store to make the
actual purchase, he also receives suggestions relevant to his needs. After the
purchase process he receives a simple feedback query from the company by
SMS asking the customer about his experience with service and whether he
would promote the shop to his friends.

In this example case, the complete buying process was made relevant with
coordinated utilization of several channels:

1. Social Communication website followers
2. Surfing on-line on the web shop

3. An SMS notification

4. A newsletters via electronic or postal mail

We suggest that to achieve consistent multichannel customer dialog the
company should:

230 M. Cochez, S. Helin, and J. Chen

e manage content for multiple channels; ranging from encountering the
customer in person to digital channels with varying capabilities,

e split the content to atomic pieces for it to be possible to dynamically
draw the finally delivered content based on the customer needs and
channel choice,

e understand customer behavior and interaction in different channels to
coordinate customer contacts and generate customer insights,

e instead of providing a set of static messages draw relevant content
blocks to match customer interaction points, and

e measure how well different operations help to reach the goals set by the
company.

These topics map to research questions related to:

e automated understanding of messages to increase the throughput in
the system without losing quality,

e Big data related issues when trying to understand and measure behav-
ior,

e the definition of a communication framework including messaging, pro-
file management, and content and channel selection,

e Recommender Systems to handle dynamic content creation which ben-
efits from similar tasks in the history of the system.

The research and development effort in cloud communication service tries to
address these challenges. Some research results regarding these topics can
be found in the next sections.

7.3 Past work

Up till now three main facets have been investigated. First, we created a
framework to handle the complexity of the communication system. This
framework is summarized in subsection 7.3.1. Then, we looked at how we
can define quality of an ontology which is one of the building blocks for the
framework. This effort is described in subsection 7.3.2. Finally, a book chap-
ter [10] about evolving knowledge ecosystems for big data understanding was
published. That chapter encompasses several facets related to this research
topic. An overview of these topics can be found in subsection 7.3.3.

Cloud Communication Service 231

7.3.1 Framework

The results of the main effort towards solving some of the issues of the multi-
channel communication problem can be found in the framework paper by
Nagy [13]. At the current moment there is no complete implementation of
the framework. Rather, the theoretical framework is used as a guideline for
further extension of the current implementation described in section 7.5.

An overview of the framework can be seen in Figure 7.1. The structure
consists of two main building blocks. The first one, the knowledge base,
is depicted in the grayed box and is divided in several ontology fragments
and sub-knowledge bases. The second one, the message conversion engine, is
responsible for handling incoming and outgoing messages.

The ontology in the knowledge base is subdivided in 5 parts: the customer
ontology to model users and the way they can be contacted, the action on-
tology used for the description of high level goals, the message ontology used
for the classification of messages, the commodity ontology used to described
goods and services, and finally the channel ontology used for classifying chan-
nels and their properties. These ontologies are defined as part of the frame-
work. The article identifies that the ontology can be expanded depending on
specific business needs. Further arguments for the use of ontologies from the
original framework proposal [13] include:

Expressiveness: When using ontologies it is possible to represent the con-
cepts of the framework and the ones from the business domain using
the modeling language. Ontologies also allow for later extension when
the business needs change.

Soundness and completeness: Several languages for ontologies have been
formalized. These formalizations include ways to deduce new infor-
mation from existing facts. This deduction, also called reasoning, is
sound, i.e., correct and also complete, i.e., all facts which can be found
will be found.

Computational complexity: The sound and complete reasoning happens
with a reasonable computation complexity.

Tool support: There are several mature tools available for ontology design,
management and reasoning.

The message conversion engine first converts messages templates into
abstract messages. A message template is like a blueprint for a message and
contains placeholders for information which the engine will fill. The engine
then chooses a destination channel and the abstract message is converted to
a concrete message with a structure depending on the destination channel.

232 M. Cochez, S. Helin, and J. Chen
4 R
Customer Action Message Commodity Channel
ontology ontology ontology ontology ontology
-] - - -
-
= — = - =
Customer DB Action DB~ Message KB Commodity KB Channel KB
MesseD Message conversion abstract message concrete message
template = a GIEN = g E= g = @ <
_ Channels Customer
Figure 7.1: Multi-channel communication framework overview (Picture

credit: Michal Nagy)

7.3.2 Quality of an Ontology

When creating an ontology, there are numerous ways of defining its quality.
The main contribution of the work performed in the frame of the Cloud Com-
munication Service is that it states the finding of an ontology with the highest
quality possible as a Context-dependent dynamic multi-objective optimiza-
tion problem. [6] A minor contribution is the recognition of fuzzy ontologies
as a way to state inexact knowledge.

First, we discussed different features of an ontology as can be found in
the literature. These features include coverage, cohesion, and coupling which
are metrics representing how well concepts and relations between them are
covered, how well concepts in the ontology belong together, and how strong
the linking between this and external ontologies is, respectively.

These features can be measured from a given, possibly fuzzy, ontology.
When the features are combined with the context in which the ontology is
used, it is possible to state a quality of the ontology. The context comprises
many factors. Examples include the performance when used in a system,
the memory needed, how easy it is to scale the ontology, and how well it
integrates into frameworks and interfaces.[1]

Next, the article shows that the quality of an ontology can not always
be considered to have a single dimension only. This because of the fact that
there is no total order on the quality of an ontology in a context. Therefore,
it is necessary to consider the search for an optimal ontology for a given
context as a multi-objective optimization problem.

The article then defines the optimization problem as follows:

First, opt'(F(t)) was denoted to be the optimization problem with func-
tion F'(t); and constraints F'(t),. Let C be the set of contexts, O be the set of

Cloud Communication Service 233

ontologies and @ be the set of qualities. Now we can define the optimisation
as:

Definition The function sol is the solution of the context-dependent dy-
namic multi-objective problem of finding an optimal ontology for a given
context < sol : C'— O and sol(c) = opt'(F(c))

Where F (C) = (O — Q) a function which maps the context ¢ to a function
which incorporates the context when evaluating the quality of an ontology
and its associated domain.

7.3.3 Cloud Communication System as a Big Data
Problem

When the Cloud Communication System is used to handle the complete flow
of information in an organization, the amount of data handled becomes such
that it will he hard to process with current technology. However, we would
like our system to even make sense of all the data it processes. Hence, we
arrive in the field of Big Data analytics. According to Fisher et al. [11]
“Fundamentally, big data analytics is a workflow that distills terabytes of
low-value data (e.g., every tweet) down to, in some cases, a single bit of
high-value data (Should Company X acquire Company Y? Can we reject the
null hypothesis?). The goal is to see the big picture from the minutia of our
digital lives.”

Our previous work [10] looked at how to solve the problem of handling
streams of tokens arriving at high rate and altogether representing a huge
amount of data. The system described in this chapter is a concrete example
of such a system. In the following subsections we will, based on the previous
work, describe the balance between volume and velocity, how big data can
lead to big knowledge, and how a system inspired by the mechanisms of
natural evolution could provide a solution.

Volume vs. Velocity

Volume, the size of the data, and velocity, the amount of time allowed for its
processing are clearly the main factors when talking about Big Data. Both of
them manifest themselves when a high number of messages has to be handled
within a reasonable time. When the system tries to extract information or
knowledge from the data it does this effectively if no important facts are
overlooked, i.e the analysis is complete, and the facts found are useful further
inference, i.e they are expressive and granular. The ratio of the effort the

234 M. Cochez, S. Helin, and J. Chen

system spends on finding a given result to its utility can be interpreted as the
efficiency of the system. Note that when one tries to improve the effectiveness
of the system, the computational complexity will be increased and hence the
efficiency of the system might drop. Hence, if we would like to make a deeper
analysis of the message stream, we would have a less efficient system.

Big Knowledge

When we have a vast amount of data and try to extract all knowledge from
it, we might end up with an unmanageable amount. From that observation
we identified some aspects which should be taken into account while working
with Big Data. We called this approach 3F+3Co which stands for Focusing,
Filtering, and Forgetting + Contextualizing, Compressing and Connecting.
It should be noted here that these terms are not novel in the sense that they
have been used in different domains and interpretations, see for example [8].
We gave an occasionally overlapping meaning to each of these terms in the
context of Big Data analysis as follows.

Focusing is mainly concerned with the order in which the data is processed.
An optimal focus will only scan the data which is absolutely needed to
come to an answer for the question which is at hand and will hence lead
to a higher efficiency. This facet will most likely play a less significant
role in the messaging system since the data is arriving continuously and
hence the focus will most likely be on the information which freshly
arrives to the system.

Filtering is ignoring anything which is, hopefully, not of importance for
future analysis. We use hopefully since deciding whether information is
relevant or not can in most cases not be done with a hundred percent
certainty. One way to filter is to only focus on specific features of the
data, which also reduces the variety and complexity of the data. Similar
to the focusing perspective, it is not possible to make the filter upfront
since it is not feasible to accurately guess the future data.

Forgetting is a further step from filtering where data or knowledge derived
from it is completely removed from the system. This trashing can
remove potentially valuable information. It is very difficult to decide
which part of the data can be removed. In the work which we did
around Evolutionary Knowledge Systems (see section 7.3.3), we use
the technique of “forgetting before storing ”. This means that there
has to be reason before anything is stored at all in the knowledge base.

Cloud Communication Service 235

Contextualizing comprises not only the change of sense of statements in
different contexts, but also judgments, assessments, attitudes, and sen-
timents. There are various facets which contribute to the context of
data. Examples include the origin of the data, the tools used, and the
place in which the result will be used.

Compressing stands for both lossy and lossless compression. Where lossy
compression is similar to Forgetting which was discussed above. The
lossless compression might be very effective because the high amount
of data leads to a high probability that repetitive or periodical patterns
are present.

Connecting can be done if information is added to an already existing body
of data. The whole body is build incrementally. The benefit of linking
the data before processing it further is that data and knowledge mining,
knowledge discovery, pattern recognition, etc can be performed more
effectively and efficiently. A good example of this connecting used for
building an index of the world wide web can be found in [16].

Evolving Knowledge Ecosystems

When messages arrive to the CCS, the system tries to forward messages,
which is still in abstract form, to the correct receivers over the preferred
channel. These includes both inbound and outbound messages. The ac-
tual content is, however, likely to evolve over time due to many external
factors. Examples include the variation in activity of customers or the com-
pany using the system, the economical situation, the season, and so on. To
anticipate these changes the CSS should be able to change its inner work-
ing, if possible automatically. In the chapter [10] we proposed an Evolving
Knowledge Ecosystem which is able to adapt to changes in the environment.
This Ecosystem would, when implemented, assist in the understanding of
the external world. It should, again, be noted that the proposed system is
more general as the parts which could be used in the CCS. In this section,
however, the focus will be on the relevant parts.

The core idea behind the Ecosystem is that

The mechanisms of knowledge evolution are very similar to
the mechanisms of biological evolution. Hence, the methods and
mechanisms for the evolution of knowledge could be spotted from
the ones enabling the evolution of living beings.

Starting from this idea, we derived that we could model the knowledge evo-
lution inside the system using ideas from natural evolution. One of the core

236 M. Cochez, S. Helin, and J. Chen

ideas is that, similar to the idea of natural selection proposed by Darwin [7],
knowledge which is more fit for its environment, has a higher chance to sur-
vive as less fit knowledge. The environment here is formed by the incoming
information to the system. The following concepts, borrowed from mod-
ern evolutionary biology, were further elaborated in relation to the system
which processes a stream fo incoming messages. They are also illustrated in
Figure 7.2.

Knowledge organism (KO) are the components which carry all knowledge
in the system. They are an analog to living beings in nature.

Environment is the place where the KO reside. The environment is limited
in resources and hence only KO which can consume the resources avail-
able can survive in the given place of the environment. These places
are called environmental contexts.

Knowledge genome is the part of the KO which represents its termino-
logical component, also called Terminological Box or TBox [15].

Knowledge body is the assertional component of the KO. It is similar to
a ABox [15] with an ontology from the knowledge genome.

Knowledge tokens are influences from the environment, comparable to
mutagens in evolutionary biology. These mutagens come either from
analysis of the message streams or are excreted by a KO. They can
then subsequently be consumed by a KO if that KO has capability to
consume it, i.e. has a knowledge body which has enough similarity to
the token.

Morphogenesis is a change in the knowledge body of a KO caused by the
consumption of knowledge tokens.

Mutation is a change in the knowledge genome of a KO, which in most
cases, leads to a change in the knowledge body.

Recombination is a process in which two or more KOs are combined into
a new KO. This entity has a knowledge genome composed of parts of
the parents. The newly created KO might be, but is not necessarily,
more fit to the environment than any of its parents.

Excretion is a process by which a KO can expose of parts of its knowledge
body or genome. These unused parts will be placed in back in the
environment.

Cloud Communication Service 237

Mutagen

KO

| | Perception | |

[Trowwenor] |

o]
[Treommn] |

| | Communication |

Sensor Input

Figure 7.2: A Knowledge Organism: functionality and environment. Small
triangles of different transparency represent knowledge tokens in the environ-
ment consumed and produced by KOs. These knowledge tokens may also
referred to as mutagens as they may trigger mutations. (Picture credit: [10])

7.4 Human Interaction

As we mentioned above, the 3F, focusing, filtering, and forgetting, was used
earlier in different contexts. One of them is the context of management [8]
where the terms are used as techniques to cope with the information overload
which many people experience in our modern society. We did not investigate
how much information the Cloud Communication System can send to its
users before they would get a negative feeling about the system or perhaps
about the company using it, which more of a social science topic. (See for
instance [2]) We however want to look at how we can reduce the amount of
times the user is contacted by the system, leading to a reduction of the load
on humans interacting with it.

We looked into several techniques which have been used in other fields
before. In the following subsections, these are described in the context of the
system we are designing. First, we look from the perspective of Information
Filtering and Recommender systems. Then we discuss filtering techniques
which can be applied. The overall idea is that the CCS filters content out
when it is irrelevant and merges what is related.

238 M. Cochez, S. Helin, and J. Chen

7.4.1 Information Filtering and Recommender Sys-
tems

Generally speaking, Information Filtering (IF) is a technique which could be
used to automatically remove or add information according to preferences or
behaviors. An IF system could be used to perform tasks like the creation
of abstracts, the classification of information, and summarization. Also, IF
primarily deals with unstructured or semistructured data, its most common
use case is the classification of e-mail. [3] An Information Filtering system
has a mediator role between the resources and its users.

There are several issues which could be solved using Information Filtering,
like for instance finding a good route for messages which pass trough the
system, removal of unwanted messages like spam, and the classification of
messages based on their meta-data.

Recommender systems are a specific type of Information Filtering systems
which can, given a set of items, propose other related items. This type of IF
has been proposed in the mid-"90s [18] and is commonly used to offer on-line
shoppers suggestions based on their shopping history and what other similar
customers bought. Another example is the articles proposed to readers in
accordance with the interests set on their profile page. In our system we
could use this type of system finding related messages which could be merged
together, finding users with similar interest to target messages correctly, and
finding users with similar requests or history in order to correctly route a
new incoming request in an optimal way. The framework which we proposed
in section 7.3.1 uses semantic storages for all data in the system. Using
recommender systems in combination with this kind of data stores has been
studies in [19].

Information Filtering and specifically Recommender Systems can use sev-
eral filtering techniques. They can be roughly divided into Content-based
Information Filtering, which takes mainly the content of an individual item
into account while filtering, and Collaborative Information Filtering, which
looks at similar context for the query, like for instance users with similar
interests as the current user. There are also approaches which combine both
techniques. A good introduction to the topic can be found in [17]. These two
classes of filtering techniques are further elaborated in the next subsections.

7.4.2 Content-based Information Filtering

Content-based Information Filtering uses mainly attribute of items while
searching for recommendations. For example, if a visitor of the NBA.com
website has read a number of articles related to the Lakers basketball team,

Cloud Communication Service 239

then the system could suggest articles from the database which are tagged
with the ‘Lakers’ tag.

A content-based filtering system often uses a search profile which contains
characteristics of the interests, in other words, it tries to relate properties of
items with factors found in the search context. In our message merging case,
we could use this technology to filter incoming and outgoing message. The
incoming messages could be filtered based on similarity with customer profiles
in the database and when an outgoing message is sent to a more abstract
receiver, we could limit the actual reception to the interested parties only.
Most likely, these use cases would also benefit from collaborative filtering
described in the next section.

7.4.3 Collaborative Filtering

Collaborative information filtering offers suggestions according to similarity
between users and items. Software like email, calendar and social bookmark-
ing often make use of this type of techniques. [4]

Traditionally, collaborative filtering is used to gather and analyze infor-
mation from users’ behaviors instead of using properties from items, in other
words, it is utilized to measure similarity between items by taking other users’
preferences and actions in relation to the items into account. [17] For exam-
ple, collaborative filtering could be explained as follows. If the preferences
or characteristics of a single user X are similar to the ones of the members of
a user group A, then the system will to recommend items to user X if they
have been appreciated, i.e. bought, used, read, and so on, by the members
of the group A. In our Cloud Communication Service, the message merging
will probably benefit from the use of this technique. We could, for instance,
add or propose users to groups and decide what the content of a message is
about based on similarity between its sender and other users of the system.

7.4.4 Knowledge Based Recommendation

Recommender systems are usually classified into categories based on the
technique used. Besides the content based and collaborative type introduced
above, there is another type, namely, the knowledge based recommender sys-
tem. This type of recommender system firstly sets up a knowledge foundation
which consists of a model of the processed items.

This model can, for instance, consist of users, business items, etc. The
system then makes recommendations through reasoning with the data com-
bined with the model. If, for instance, users and items are matched or certain
requirements are fulfilled then matching items are proposed.[5] According

240 M. Cochez, S. Helin, and J. Chen

to [9] Knowledge based recommendation should be preferred in marketing
over other recommender systems. Some features of this type of recommender
system include

1. Simplicity: a large amount of data is not necessarily required in the
knowledge based type.

2. Quickness: new users with a detailed personal profile could receive
recommendations at once.

3. Humanity: the system knows what the user needs and why the user
needs this item.

A concrete example would be a system which matches users with products
which are for sale in a web shop. A new customer fills a short questionnaire
during his registration on the website. From these data preferences are ex-
tracted and stored in a profile in the database. This step is called data
collection. Next, there is the knowledge foundation. This knowledge founda-
tion will contain the products and their associated tags. The tags are given
in accordance with the products’ attributes and popularity.

With the Knowledge Foundation and the profile information in place it
is possible to generate recommendations for the customer. This recommen-
dation process is often augmented with the visiting record of the customer.

7.5 Implementation and User Interfaces of the Cloud
Communication System

As mentioned in the introduction, the primary goal of the cloud software
program is to improve the performance of the Finnish industry. Therefore,
in parallel with the efforts to create scientific artifacts related to the business
case, we also worked on a concrete implementation of at least part of the
ideas. The scientific parts, including the theoretical framework, described
above are used as guideline for further extension.

In this section we show some of the user interfaces for channel preference
management and multichannel communication coordination which are in use
in the application which is under development at Steeri Oy.

An abstract overview of the components of the service are depicted in
Figure 7.3. The framework described in section 7.3.1 overlaps greatly with
the service presented here. A short description of its key elements follows.

The Outbound communication service enables dynamic content creation.
It is also used to set channel specific tracking mechanisms. In section 7.4.1

Cloud Communication Service 241

Outbound communication
service: send messages
through api call

Dialog planning tools:
pluggable tools to extend
communication service

(define content and
process)

Inbound communication
service: retrieve messages

o) and relate to
Dialog planning tools Communication service context/process

o™

Channel
implementations

SMTP/IMAP
Mule server
ESB
SMS/MMSs.
Gateway

Outbound

Content service
service**

(transport
n

and
connector \
support,

mappings)

Dialog planning
service

Inbound communication
service'

Social
media apps
Business
apps
(CRM,SFA..)

Mule ESB: communication Tracking service:
[] bus for channel communication, response
integrations and behavior tracking

Business rule service

‘Tracking service

Channel implementations:
integration to ESB or

communication service
interface implementation

Figure 7.3: Overall architecture

information filtering and recommender systems were discussed. These tech-
nologies aim at improving the experience the customer gets from the Out-
bound communication service.

The Inbound communication service maps the incoming communication
to the right customers and communication rules. It is in this component
where the techniques described in sections 7.3.3 can be used in the future.
The automatic recognition of the meaning of the messages could improve the
handling efficiency and its correctness.

The Mule Enterprise Service Bus (ESB) ' and Channel implementations
are technical tools for implementing the set of interaction channels. Thus,
they play a key role in the service, but contain only little or no logic at
all from the communication perspective. The logic resides at the level that
understands the customer behavior, communication rules and is able to relate
the dialog conducted to a specific set of company goals and plans.

To be able to orchestrate the communication with the customer a set of
dialog planning and coordination tools has been devised. The key part of

Thttp:/ /www.mulesoft.org/

242 M. Cochez, S. Helin, and J. Chen

?

e I8 1908
i I

tietokantaa "Big datan” mahdollisuuksien
avaamiseksi. Lue [543 =>

Procass data on chip - notin RAM

Steerin asiantuntiiaioukka kasvaa _—
&7 Edit: € New g Hide! X Delete 253

Paa Edit this element by clicking on it jamaan Steerin myyntia ja markkinointia Satu Koivulehdon
aii ella Paavo jatkaa tyoskenielya kesken olevissa

asiékaspmjekteissamme Monica Nyman-Korhonen téydentda uutena kasvona myynti- ja
markkinointitimiamme

/oimakkaan kasvun myota olemme vahvistaneet asiantuntijajoukkoamme palkkaamalla liség osaamista ja
uusia kasvoja myos muihin timeinimme. Meilla tyoskentelee nyt lahes 70 ammattilaista asiakkaidemme
asiakkuudenhallinnan kehittamiseksi

Al niin ${henkilo_etunimi}, tdmékin uutiskirje on toteutettu ja
lahetetty iSteer Dialog ratkaisullamme. iSteer Dialog on tuote

»
joka integroituu osaksi Salesforce.com tai Oracle Siebel - G‘)
kayttdliittymaasi ja tekee mahdolliseksi saumattoman Steeruunuﬂ
asiakasohjelmien hallinnan ja asiakaskokemuksen
rakentamicen Tuotictn ratkaicimmme =

Figure 7.4: Defining web content from content blocks

these tools is the Content service, which enables writing channel independent
and specific content blocks. The Content blocks relate to specific objectives
the company has for its communication. They can, for example, provide
offers for customers, inform about new services, or suggest ways of utilizing
purchased products. The actual implementation could range from a short
text message delivered to the mobile phone to a full story on how to present
the information in a phone call. A user interface for the definition of web
content for a Content Block is shown in Figure 7.4.

Using the Business rule service the company can define communication
plans, i.e. it can create rules about situations in which it wants to take
actions and define which customers should be involved. An example of how
a business rule could be created can be found from Figure 7.5. These rules
can be applied upon actions and communication from the customer or they
can be instigated by goals the company wants to proceed in general.

The dialog planning service provides means for defining the multichannel
communication process. It connects business rules and content together, and
also enables the definition of the steps in the communication process. Each
step may have its own rules. An interface for editing the communication
steps can be seen in figure 7.6. Different actions can be performed depending
on the communication channel as shown in the screenshot in Figure 7.7.

The dialog planning service also provides tools for customer preference
management and managing communication rules from a specific customers
point of view. Managing customer preferences may take place on channel

Cloud Communication Service 243

@, Six months as a registered customer - no transactions

Logooo

@ Query Info

» Query Phases

\ + Add 1 A Person Created date @ThisMonth-6
1 bl Remove 0 + Add Criteria Purchase Transaction Amount >0
Add new criteria *
v List - A, R A
Add new criteria by clicking 'criteria name'
v Extra Operations » Person in Resultset
» Person Street address
- Blocking Lists » Person Member
» Person Mobile phone
Manage blockings * Person Mailing address
Remove customers who have deny ema ~ 2rsen Respansible Salesman
» Person Email address
Remove customers whose email addreg b Person Event Participation
+ Remove IPSS employees (-1) » Person Personalization
Remove members who have deny email 22@2: :::DEV —
Person Changed date
Person Created date
Person Day of birth
Person EmailAllowedChanged
Person FaceBook
Person FirstNames
Person Full Hame o

Figure 7.5: Interface for the query phase of a business rule. This query
consists currently of two phases: In the first phase all persons which have
been created 6 months ago (@ThisMonth-6) are added to the result set. In
the second phase all persons who have a transaction amount greater as 0 are
removed.

level and based on the type of communication topics one is interested in.
The customer is responsible for prioritizing topics of interest and opting in
to optional customer care processes. Customers also have the possibility to
cancel their subscription to mailings they do no longer which to receive.

Communication plans are run at a scheduled interval. As a result, it is
possible to show which customers will receive which information based on
their current profile and behavior, as well as the communication rules. As
in shown in Figure 7.8, it is possible to see which planned actions would
be targeted to which customers in the future. Furthermore, it is possible
to define rules for managing future conflicts like for instance overwhelming
the customer with too many messages, possibly handling conflicting offers in
different channels, etc. . . This is illustrated in Figure 7.9. The techniques used
here are concrete examples of the methods for filtering and recommendation
described in section 7.4.

244 M. Cochez, S. Helin, and J. Chen

Interaction Templates e Ideraction Templite Interaction Temetates Help (7
detion ideraction Tempiate bame Order Action Message Condition Frevious inferstion Next Inaraction
I et on) camg Mo [Contact Flrthamal. our company is vary ntersstes of your satitaction o the product delhery.
it] Dl i you satistied Plasse answerfo this message simply by entering ¥ or W Tharks!
marssall N hanis to th
i 7 Receive v B oustoma satisaction
Edit 1 Dol g
Lusiomat iepliss 1o bs £t eustomer cptisactian SRR for the
Edit Do SislamaL 2 Recaive N Atuigason for
it pey S2cthan e 3 Gand Thankyoul Wa appraciats you a5 3 vary important customar.
sk reason forthe e are vy somy that you are ot safisfied. Could you please tell us what went wrang. Please reply fo Customer replisstobe Thankforthe
SO reatiataction @ 9o iz message, unsatisied. unsatisiaction reason,
Cumtomat iapliss he Ihanktortns
40t DO rstitaction reazen @ Recaive unzatistastion reazon
Thask for th an o gung TROr fortalling be o we chould hawe done our job Befier Yaur 3ccount roprezentative will contact o rapliss th
FANIPE Lygsan ou 3000 1o alve this case. Thatks fo1 yaut co-operation] unsatisfadion a0

Figure 7.6: An interaction template for different communication steps and
conditions

[PoTR Customers Mate Surveys Analysis TargetGroups Queries Programs Events Corflicts
B Addto Event
> ~ Search Actions
& Dataview
@ Emai @Help
@ Meeting Soarch Text A seach @ Clar
& o Show my Actions only
& Printed mail You can use search criteria like Action subject, channel, responsible.
® sus 826 hits using search word
% Craate New
= Survey o[m o (503
& Web Senvice Call Channel & Subject & [vTe e Target Group Name
4 Campaign DaddtoBrent Imoitaucu koulutukseen Normal imoittaudu koulutukseen
& Customer Care Model uney Wember Suvey Propose Offer Memberquery
2 cent & callout Soita ja tidustele tianne Propose Offer Soita ja tiedustele tilanne
Tenetuloa iSteer Dialog -tiaisuuteen! Propose Offer Asiakkaat - Etela-Suomi
B import List @email 9 Po:
& Vet DAditoEvent limoitaudu - Diiog ick offnt Normal noitans - Dislon kick ifint
& Materi {imeitiauda - Disloa lick offint
@Emai Kitos iimoitauturmisestal Propase Offer
Q Query
@Emai Aasian vinrea kuita - suomalaisen metsateknologian uusi mahdolisuus. Propose Offer Asiakkat - Etela. Suomi
= Web Form
Kitos ostosta - akivol etusi Propose Offer iphonen ostaneet
= C sus po:
L @Emai Elokuu 2013 - Some Propose Offer Loppinen
Typo
@1 @Email ‘Steeri autta hyodyntamasn Big Datan mahdollisuudet Propose Offer Steeri-Uutiskirje-19082013

o] o] s (5083

Figure 7.7: Defining actions to different channels

A& Best offer to

H ¥e

One customer: you R

e customer:__ w7 (& o

ville.
= - L N
o Come and
= ; @ check our
— ._ s offers!
Check this offer rqmmnes
@ ville! a — (; Thank you for
~—— - = your purchase!
— o N
\
@ Welcome to be
our customer 2 How we can
h help you ville?
o - .
: 4 @ © orer
G Happy Birthday g
. ville! \
STEERI ——
6/2012 /2012 1/2013 3/2013 6/2013 /2013

Figure 7.8: Future communication view from one customer’s perspective

Cloud Communication Service 245

nflicted Tasks

Conflict Rule Al M = |

Task Start Date
| one masperveer

Task End Date | No more than 2 tasks per year

One task per week to Location ',

Period
—_

Target

Search Clear
To Clear the All Input Fields.

onits Group By Conflict Rule Name

SConflict Rule Name | Start Date Channel e Subject Target Action Subject | Program Name

No saved criteria

Figure 7.9: Conflict manager UI for managing communication hygiene rules

7.6 Conclusion

Enterprises have often a multitude of systems in place to communicate with
internal and external partners, like customers, students, and employees. The
communication is usually fragmented over these systems and it is hard to
obtain an integrated communication experience. In order to get closer to this
target, we proposed the Cloud Communication System (CCS). This system,
which is delivered as a SAAS, uses cloud computing technologies and has
been elaborated in the frame of the Cloud Software Program.

In this chapter we presented some of our previous research topics. First
we showed a general framework for the communication system which uses a
semantic data storage to integrate the data which flows trough the system.
Then, we discussed how the finding of an ontology with an optimal quality
can be defined. This ontology would be stored in the semantic data storage
as defined in the framework. Finally we discussed the CCS as a Big Data
problem which works on streams of data with a high velocity and propose an
Evolving Knowledge Ecosystem to manage the data stream. The knowledge
which the system collects from this stream should be kept within feasible
limits. We proposed several approaches to limit the amount of stored knowl-
edge which we refer to as 3F'+3Co. This abbreviation stands for by focusing,
filtering, and forgetting + Contextualizing, Compressing and Connecting.
The core idea behind the Evolving Knowledge Ecosystem is that we can
use methods similar to the mechanics of biological evolution for managing
knowledge which dynamically changes over time, i.e. which evolves.

From our current research focus we showed our work on human interac-
tion with the system by showing how research in Information Filtering and

246 M. Cochez, S. Helin, and J. Chen

Recommender Systems can help us to solve specific problems in the CCS. In
the last section we showed a selection of user interfaces for the management
of communication.

Acknowledgments

This chapter was written as a part of our activities in the Cloud Software
Program organized by the Strategic Centre for Science, Technology and In-
novation in the Field of ICT (TiViT Oy) and is financially supported by
the Finnish Funding Agency for Technology and Innovation (TEKES). We
would further like to thank the technical staff of Steeri Oy for their excellent
work in implementing the first prototypes and the members of the Industrial
Ontologies Group (IOG) of the university of Jyvéskyla for their support in
the research. We would also like to thank the reviewer for helpful comments
and improvement suggestions.

References

[1] T. Aruna, K. Saranya, and C. Bhandari. “A Survey on Ontology
Evaluation Tools”. In: Process Automation, Control and Computing
(PACC), 2011 International Conference on. 2011, pp. 1 =5. DOI: 10.
1109/PACC.2011.5978931.

[2] D. Bawden and L. Robinson. “The dark side of information: over-
load, anxiety and other paradoxes and pathologies”. In: Journal of
information science 35.2 (2009), pp. 180-191.

[3] N.J. Belkin and W. B. Croft. “Information filtering and information
retrieval: two sides of the same coin?” In: Communications of the
ACM 35.12 (1992), pp. 29-38.

[4] T. Bogers and A. Van den Bosch. “Collaborative and content-based
filtering for item recommendation on social bookmarking websites”.

In: Submitted to CIKM 9 (2009).

[5] R. Burke. “Hybrid recommender systems: Survey and experiments”.
In: User modeling and user-adapted interaction 12.4 (2002), pp. 331-
370.

[6] M. Cochez and V. Terziyan. “Quality of an Ontology as a Dynamic
Optimisation Problem”. In: ICT in Education, Research and Indus-
trial Applications: Integration, Harmonization and Knowledge Trans-
fer (2012), p. 249.

REFERENCES 247

(9]

[10]

[12]

[13]

[16]

C. Darwin. “On the origins of species by means of natural selection”.
In: London: Murray (1859).

D. Dean and W. Caroline. “Recovering from information overload”.
In: McKinsey Quarterly. organization practice (Jan. 2011). URL: ht
tp://www.mckinsey.com/insights/organization/recovering_
from_information_overload.

D. DellAglio, I. Celino, and D. Cerizza. “Anatomy of a Semantic Web-
enabled Knowledge-based Recommender System”. In: Proceedings of
the 4th international workshop Semantic Matchmaking and Resource
Retrieval in the Semantic Web, at the 9th International Semantic Web
Conference. 2010.

V. Ermolayev et al. “Big Data Computing”. In: Big Data Computing.
Ed. by R. Akerkar. Taylor & Francis group - Chapman and Hall/CRC,
to appear in September 2013. Chap. Towards Evolving Knowledge
Ecosystems for Big Data Understanding.

D. Fisher et al. “Interactions with big data analytics”. In: interactions
19.3 (May 2012), pp. 50-59. 1ssN: 1072-5520. DOI: 10.1145/2168931.
2168943. URL: http://doi.acm.org/10.1145/2168931.2168943.

J. Jarvinen. Cloud Software Program. http://www.cloudsoftware
program.org/cloud-software-program Last accessed on May 31,
2013.

M. Nagy. “A Multi-channel Communication Framework”. In: ICT
i Education, Research, and Industrial Applications. Springer, 2013,
pp. 72-88.

M. Nagy. “On the Problem of Multi-Channel Communication”. In:
ICT in Education, Research and Industrial Applications: Integration,
Harmonization and Knowledge Transfer (2012), p. 128.

D. Nardi and R. J. Brachman. “The description logic handbook:
theory, implementation, and applications”. In: The description logic
handbook: theory, implementation, and applications. Ed. by F. Baader
et al. Cambridge: Cambridge University Press, 2003. Chap. An intro-
duction to description logics, pp. 1-40.

D. Peng and F. Dabek. “Large-scale Incremental Processing Using
Distributed Transactions and Notifications”. In: Proceedings of the
9th USENIX Symposium on Operating Systems Design and Imple-
mentation. 2010.

[17]

[18]

A. Rajaraman and J. D. Ullman. In: Mining of massive datasets.
Cambridge University Press, 2011. Chap. Recommendation Systems,
pp. 277-309.

F. Ricci, L. Rokach, and B. Shapira. “Introduction to recommender
systems handbook”. In: Recommender Systems Handbook. Springer,

2011, pp. 1-35.

C.-N. Ziegler. “Semantic Web Recommender Systems”. In: Current
Trends in Database Technology - EDBT 2004 Workshops. Ed. by W.
Lindner et al. Vol. 3268. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2005, pp. 78-89. 1SBN: 978-3-540-23305-3. DOI: 10.
1007/978-3-540-30192-9_8. URL: http://dx.doi.org/10.1007/
978-3-540-30192-9_8.

248

8 HTMLS5 in Mobile Devices — Drivers and
Restraints

Antero Juntunen, Eetu Jalonen, and Sakari Luukkainen
Department of Computer Science and Engineering

Aalto University, Espoo, Finland

Email: {antero.juntunen, eetu.jalonen, sakari.luukkainen} @aalto.fi

Abstract—Application stores have played a crucial role in the proliferation of
applications for smartphones and other mobile devices. However, web-based
mobile applications are challenging the application store model by allowing
developers to directly reach the end users. These web-based applications are
enhanced by the HTML5 standard, which provides additional capabilities for
the use of developers and brings the performance of mobile web applications
closer to that of native applications. In this chapter, we analyze the potential
of HTML5 and identify drivers and restraints that affect the future of the
technology.

Keywords-HTMLS5, application store, web application.

8.1 Introduction

Today’s mobile phone landscape is increasingly dominated by smartphones
with advanced computing capabilities and features. Smartphone sales sur-
passed feature phone (normal phone) sales for the first time in the second
quarter of 2013, with smartphone sales accounting for almost 52% of all mo-
bile phone sales worldwide [24]. In the United States, the number of smart-
phone users already exceeded the number of feature phone users in May 2012,
with two thirds of new users choosing smartphones [35]. Currently, the ma-
jority of smartphones are sold in emerging markets, with Asia/Pacific which
are forecasted account for 65% of all smartphone sales in 2013 [29]. This
increase in the technical capabilities of mobile phones has coincided with a

249

250 A. Juntunen, E. Jalonen, and S. Luukkainen

proliferation of applications available on these devices. In fact, the main sell-
ing point of mobile phones has changed from the hardware capabilities of the
devices to the applications they can run. A significant reason for the abun-
dance of mobile applications has been the emergence of application stores.
Application stores have simplified the process of finding and installing the
applications for the end users, increasing the demand for mobile applications.
In addition, a more open policy by device manufacturers has allowed small
developers and hobbyists to develop and publish their applications for mobile
devices, thus increasing the supply of mobile applications.

The application store model works with native mobile applications, which
are downloaded into the user’s mobile phone and stored and executed locally.
Native applications can fully use the capabilities of the mobile devices, re-
quire no Internet connectivity, and can be distributed through the application
store, leading to increased visibility among the end users. However, there are
certain problems with the native application model. First, the mobile space
is fragmented and native applications are tied to a specific platform (such as
Apple’s i0S or Google’s Android). As a result, a mobile developer targeting
a larger user base has to create applications for many different operating
systems (OS), significantly increasing the time and resources required in ap-
plication development. Moreover, fragmentation is an issue even within a
single OS, as new versions of an OS may not support old applications. Sec-
ond, application developers are tied to the revenue sharing terms set by the
application store provider. These terms (typically a 70/30 % split for the
developer) may not be suitable for all developers and all applications. Third,
while the performance of mobile devices has increased, native applications
are still limited by the constraints of the devices such as limited computing
resources and battery power.

These issues can be partially addressed by using web-based mobile appli-
cations instead of native applications. OS fragmentation can be addressed
if the user can access the web-based application through a standard mobile
browser, forgoing the need for the developer to tailor the application to each
platform. Web-based applications can also bypass the revenue sharing con-
straints of application stores, with the developer establishing a direct billing
relationship with the end user. In addition, the Mobile Cloud Computing
(MCC) model can help address the hardware limitations of mobile devices by
running a part of the computation in the cloud. MCC can be used with pure
web applications [31] or with native applications, the processing of which is
partly offloaded into the cloud [30]. MCC is also sometimes used to describe
a mobile device cloud [39], in which mobile devices form a cloud by pooling
their resources.

Web-based mobile applications are enhanced by the HTML5 standard,

HTMLS5 in Mobile Devices — Drivers and Restraints 251

which provides some of the features from traditional desktop-style software
to the browser. HTMLS5 is currently being developed by two standards bod-
ies, the Worldwide Web Consortium (W3C) [49] and the Web Hypertext
Application Technology Working Group (WHATWG) [27]. Both standards
are still in a draft stage, with the WHATWG standard being the more fast-
changing or fluid of the two. Support for HTML5 is predicted to grow from
336 million mobile phones with HTML5 browsers sold in 2011 to one billion
sold devices in 2013 [42], while further estimates put the number of mobile
phones with HTML5 browsers in 2016 to 2.1 billion devices [1]. Among
notable recent developments for the HTML5 technology is Mozilla’s new op-
erating system for mobile devices called Firefox OS [33], which has HTML5
and web technologies at its core. There are no native applications in Firefox
OS, because all applications in the operating system are web applications.

In this chapter, we used exploratory research to examine the HTML5
technology and evaluate its potential. Our research goal was to identify
drivers and restraints that affect the technology evolution of HTMLS5.

We based our work on general literature of HTML5, which was chosen
by identifying academic articles focusing on HTML5 and mobile applications
from databases ScienceDirect, ACM Digital Library, ProQuest ABI/Inform
Complete, IEEE Xplore Digital Library, JSTOR, EBSCO Business Source
Complete, and Google Scholar. Due to the scarcity of academic articles ad-
dressing HTML5 and mobile applications, we supplemented this material
with an expert interview with a representative of a large European mobile
network operator and with a more general web search. In order to avoid
becoming overwhelmed with the available data, we used our own research
framework as a research focus [16], basing the research framework on rele-
vant existing business literature. We analyzed the literature using the re-
search framework, which allowed us to classify the data within the different
dimensions of the framework. These dimensions were then compared with
the research target, which produced the drivers and restraints of HTML5
under each dimension.

The remainder of the chapter is structured as follows: Section 8.2 de-
scribes the framework and its theoretical background and Section 8.3 provides
an overview of the HTML5 technology and Firefox OS. We analyze HTML5
using the framework in Section 8.4, summarize and discuss the results in
Section 8.5, and give our conclusions in Section 8.6.

252 A. Juntunen, E. Jalonen, and S. Luukkainen
8.2 Theoretical Background

8.2.1 Technology Evolution

Industries evolve through a sequential development of technology cycles.
These cycles are initiated by technological discontinuities [4] that emerge
through scientific advance or through a unique convergence of existing com-
plementary technologies, which eventually substitutes existing products [3].
At some point, diminishing returns begin to surface as the technologies start
to reach their limits and new, substitute technologies emerge [4]. The threat
of substitute products depends on several factors including relative price,
new features and added value, performance, and switching costs [38].

The success of many new entrants has lead to coining a phenomenon
called the ”attackers’ advantage”. This term refers to those new entrants who
are better than the incumbents in developing and commercializing emerging
technologies because the new entrants are smaller in size, have limited path-
dependent history, and are not commitment to the value networks of the
previous technology [10, 23]. New entrants can be successful despite the
incumbents’ greater resources and experience with the existing technology.
However, industries have barriers to entry, which protect the profit levels
of the incumbents and hinder the market entry of new entrants. Barriers
to entry are unique to each industry and include factors such as cost advan-
tage, economies of scale, brand identity, switching costs, capital requirements,
learning curve, regulation, access to inputs or distribution, and proprietary
products [38].

Christensen [9] states that the incumbents improve their technological
performance on an existing trajectory and finally exceed even the most de-
manding customers’ needs. Simultaneously, new, more cost-effective tech-
nologies are developed by new entrants, first for the needs of the customers
of other industries. These new technologies start to increase their market
share among less-demanding customer segments and will later enter the ex-
isting mainstream market. Christensen refers to these technologies and the
related innovations as 'disruptive’, which can be seen as an extension to the
concept of technological discontinuity. Similar to technological discontinu-
ities, disruptive innovations significantly change the current market struc-
tures, customer usage patterns, and value propositions. If the markets of
disruptive technologies develop fast, new entrants gain advantages due to
economies of scale. If the development is slower, the incumbents will have
more time to react on the new entrants.

Rogers [40] considers the most important factor affecting innovation dif-
fusion to be the relative advantage (price and performance) over competing

HTMLS5 in Mobile Devices — Drivers and Restraints 253

technology substitutes. Among other factors highlighted by Rogers, triala-
bility relates to how easily the product can be experimented with. Easy tri-
alability for the early adopters enhances the diffusion of an innovation. This
is also supported by Gaynor [26], who emphasizes the importance of experi-
mentation, especially in times of great market uncertainty and Thomke [48],
who stresses the role of experimentation with new technologies.

The product platform is a concept that allows a company to build a
series of related products around a set of common components [32]. An in-
dustry platform differs from a product platform in that these components
are likely to come from different companies called complementors and that
the industry platform has relatively little value to users without these com-
plements [25]. Eisenmann, Parker, and Van Alstyne [17] define platforms
as products or services that bring together two distinct groups of users in
two-sided markets. They consider four different roles in platform-mediated
networks: demand-side platform users (end users), supply-side platform users
(complementors), platform providers (users’ primary point of contact with
the platform), and platform sponsors (who determine access to platform) [18].
Platform openness can differ for each role, leading to varying strategies for
managing openness.

8.2.2 Research Framework

Based on the above literature review on technology evolution, we created the
following framework for the empirical part of this study. The most impor-
tant factors affecting the technology evolution of HTML5 are summarized in
Table 8.1. The ’Added value’ category emphasizes the value of the HTML5
technology over existing solutions and focuses on the viewpoints of the main
actors end users and application developers. Relevant theoretical concepts
in this dimension are added value [38] and relative advantage [40]. "Ease of
experimentation’ concentrates on the ability of developers to adopt HTML5
and to use the technology to create new applications and services. Relevant
theoretical concepts include trialability [40] and experimentation [26, 48].
The category 'Complementary technologies’ examines supporting tech-
nologies, which can be especially important in the emergence of technologi-
cal discontinuities [3] and in the case of platforms [18, 25]. "Incumbent role’
focuses on the roles of major incumbent actors, including device manufactur-
ers, mobile OS providers and mobile network operators. This dimension can
be especially relevant when considering the effect of new entrants [23] on the
market, particularly in the case of disruptive innovations [9]. "Technological
performance’ compares the performance of HTML5 to substitutes, which re-
lates to the concept of a sufficient level of performance [38, 40]. The chosen

254 A. Juntunen, E. Jalonen, and S. Luukkainen

Table 8.1: Research Framework

Dimension Meaning

Added value The relative advantage over existing technolo-
gies

Ease of experimentation The threshold of end users or third parties (de-

velopers) to experiment with new services
Complementary technologies | The interdependence between complementary

technologies
Incumbent role The product strategy of existing players
Technological performance The performance or capability of the technol-
ogy

categories were considered especially useful for a developing technology and
the categories arose from both the literature on technology evolution and
HTMLS5.

8.3 Technology Overview

8.3.1 HTMLS5

HTMLS5 is both an evolution of the previous HTML version, but also a re-
sponse to the change in the way that content is used and viewed on the
web. Application developers providing multimedia-rich and interactive ser-
vices have previously relied on solutions provided by third parties, primarily
Adobe Flash, and to a lesser extent, Microsoft Silverlight. HTML5 stan-
dardizes some of the core aspects of the previously mentioned technologies,
allowing the browser to directly provide those features without the need for
additional drivers or plug-ins. These new capabilities also bring HTML5-
based solutions closer to the traditional realm of desktop or native appli-
cations, thus lowering the barrier between the traditional and web-based
solutions [44].

Although HTMLS5 is a standard itself, it is also used as a blanket term for
other related technologies such as Cascading Style Sheets version 3 (CSS3)
and JavaScript (JS). Roughly speaking, HTML5 is used for content, CSS3
for presentation and JS for defining the behavior of the other two.

Table 8.2 contains a selection of the most relevant features when consid-
ering using HTML5 on mobile devices.

Mobile applications built on HTML5 usually rely on different frameworks
for cutting down development time and cost. In general, these frameworks
can roughly be divided by the input they take and the end product they pro-

HTMLS5 in Mobile Devices — Drivers and Restraints 255

Table 8.2: HTML5 Features [50]

Feature Comment

Multimedia <wideo> and <audio> tags, support for both
media formats without 3rd party plug-ins.
Hardware integration | Access to mobile device features such as GPS,
accelerometer, microphone, camera, etc.

Device adaptation Modifying the page based on the device’s
screen size, keyboard type, etc.

User interactions Support for touch and speech interaction, also
haptic feedback (vibration).

Data storage Data can be stored offline within the browser

or on the underlying filesystem, though there
is also a simple key-value based database.
Network Cross-domain requests with XML Http Request.
Server-Sent Events or Push Events for send-
ing data to HTML5 applications even when
the page is not active on the browser. Web-
Socket [21] allows for more efficient data trans-
fer, based on a TCP stream (two-way).
Widgets HTML5 applications can be run off-line with
the ApplicationCache feature, but also shared
as archive files that can be unpacked and de-
ployed in the same way as more traditional
applications as per the W3C Widgets family
of specifications.

duce. Basic mobile HTML5 frameworks such as LungoJS, jgMobi, Sencha,
Jo and others use HTML5, CSS3, and JavaScript, but also offer added library
functions that help in the development of the application. The end product
is a page, site, application, or any other target the developers were aiming
for that is then usually run inside a web browser on the targeted platforms.

PhoneGap is similar to the previously mentioned frameworks, but instead
of running applications within the browser of the device, PhoneGap [37] out-
puts a stand-alone application for the selected and supported mobile plat-
forms. The source is HTML5 and it can include parts of other HTML5
frameworks, JavaScript libraries, or even native code. The end result is an
application that runs inside browser view that in turn runs inside the afore-
mentioned PhoneGap stand-alone application or container.

Titanium SDK [5] is another step towards native applications from Phone-
Gap, as its only input is JavaScript that is then cross-compiled to the selected
mobile platforms. The output is platform-specific code and the end result is
in a sense a true native application. The limitation of this approach is that

256 A. Juntunen, E. Jalonen, and S. Luukkainen

Better (Expected) Performance

Native
HTMLS > Application
Basic HTMLS PhoneGap Titanium SDK
Framework
HTML5 HTML5
JavaScript
CSS3 CSS3
JavaScript JavaScript
Y Y ¥
Browser PhoneGap
HTMLS5 Browser View
CsS3 HTML5 Native
Application
JavaScript CSS3
Framework JavaScript

Figure 8.1: HTML5 Frameworks Input/Output and Application Scale.

the framework is restricted to the libraries provided by Appcelerator.

Figure 8.1 displays the inputs and outputs of the different frameworks,
and shows how these frameworks fit into the scale between HTML5 applica-
tions and native applications.

8.3.2 Firefox OS

Firefox OS is a mobile device operating system built on the Linux kernel
and it uses a Gecko-based runtime engine to run Open Web Applications
built purely on HTML, CSS and Javascript [33]. By leveraging the web
as an application platform, the hope is that developers would not have to
write the same application several times for multiple platforms, but only

HTMLS5 in Mobile Devices — Drivers and Restraints 257

once for the web with the possibility to install that application for offline
use on an end user device. All applications on the Firefox OS platform are
web applications, which means the term native application on this platform
becomes moot.

Firefox OS interfaces with device hardware and external services through
Web APIs. These APIs are the same ones used by the system applications,
so in theory every aspect of the operating system is available to external
applications as well, though device vendor or other restrictions may apply.
Overall, Firefox OS is highly modifiable and as a platform it is convergent to
its cousin, the Firefox browser. Applications written for the Firefox browser
should run with little or no modifications on Firefox OS as well.

8.4 Analysis

In this section, we apply the research framework of Table 8.1 to HTMLS5.
Section 8.4.1 examines the added value provided by HTML5 to both devel-
opers and end users, while Section 8.4.2 evaluates the ease of experimentation
with HTML5 from the point of view of third-party application developers. In
Section 8.4.3, we analyze the role of complementary technologies, and Sec-
tion 8.4.4 examines the role of incumbent actors such as application store
providers. Finally, Section 8.4.5 examines the technological performance of
HTML5-enabled applications.

8.4.1 Added Value

End users can benefit from web-based applications and HTML5 in several
ways. First, the users do not need to manually install or update their ap-
plications, as is the case with native applications. Because web applications
use the mobile browser as the run-time environment, the user always has ac-
cess to the newest version of the application without explicit installation or
update [45]. Second, users who have multiple devices such as mobile phones,
tablets, and laptops on several platforms may have to use different applica-
tions on different devices. Web-based applications can offer a unified user
experience regardless of the device or platform used.

Third, HTML5 provides both platform-specific and custom user inter-
faces depending on the device in question or the needs of the application.
Applications developed directly for a certain phone model by leveraging its
native programming interfaces and programming model can have a better
usability than traditional web applications. Native applications can take a
stronger advantage of the user interface controls such as certain gestures on

258 A. Juntunen, E. Jalonen, and S. Luukkainen

touch screen devices and the placement of control buttons around a display
in keypad-operated mobile phones. In addition, users may not be comfort-
able in using and installing applications the user interface of which greatly
differs from the rest of the mobile device, thus creating confusion. However,
HTML5-enabled applications can offer better interactivity for the user and
more closely mimic the behavior of native applications. In addition, many
JavaScript frameworks provide Ul elements designed to imitate the look and
feel of native applications of a particular platform. For example, HTML5-
enabled applications can be designed not to look like web pages by disabling
the traditional web page elements such as tabs, URLs, and back/forward
buttons [46].

Fourth, web applications normally require a network connection to func-
tion properly, but HTML5 provides offline data caching, which enables appli-
cations to be developed to function at least partially even when the connec-
tion is unavailable. In addition, the application can also function completely
offline and to only exchange data with the host server when required.

In addition to end users, developers can benefit from HTML5-enabled
and web-based applications in multiple ways. First, web applications can
help overcome the fragmentation of the mobile space. Application devel-
opers only need to develop one web application that will be used through
the browser rather than provide applications for each platform they want
to target. This cross-platform development not only significantly reduces
application development costs, but precludes the need to have the program-
ming expertise necessary to develop an application for each platform. One
major driver for the development of web technologies has always been the
interoperability of different operating systems and computer architectures,
thus making it a natural choice for developing applications for the heteroge-
neous mobile environment. Increasing diversification and uncertainty about
the future direction of the mobile operating system market may drive more
developers to adapt web technologies in developing their applications.

Second, developers may find it financially lucrative to challenge the rev-
enue sharing terms of the applications store monopolies. With the application
store providers typically retaining 30% of the application revenues, develop-
ers may wish to bypass the application store and sell the application directly
to the end users. This approach has been used by content providers such
as Financial Times, who withdrew their application from Apple’s AppStore
and launched an HTML5-enabled application [14], eventually resulting in
increased revenue and more subscribers [41].

HTMLS5 in Mobile Devices — Drivers and Restraints 259

8.4.2 Ease of Experimentation

The trialability or ease of experimentation of HTML5 depends on how easy it
is for application developers to start using the technology and how HTML5
affects the software development process. First, use of HTML5 builds on
existing knowledge with web technologies such as JavaScript, meaning that
web developers should be comfortable moving to HTML5. In general, web
development is considered more economical and faster than traditional soft-
ware development as the technologies and tools are usually easier to start
with than their native counterparts. With web development, the results of
your work are almost immediately visible, unlike native development where
more additional code and effort is needed to produce notable results. This
all leads to a lower threshold for HTML5-based software development and
increases the ease of experimentation of the technologies in question.

Second, some of the intrinsic advantages of running applications on the
web include the ease of deployment as well as the speed and ease of up-
dating the applications. Application stores are typically vendor-locked to
their respective operating systems, which means that developers have to first
develop, compile, and submit the application to the store before it can be
downloaded by the users. On the other hand, a web application is usually
distributed as source code that the browser interprets, resulting in a more dy-
namic process. Code can be updated on the fly, with users downloading the
changes while they are using the application. Thus, the process of software
deployment is greatly hastened. For more popular applications, this means
having the necessary server hardware and bandwidth to host your applica-
tion, instead of relying on an application store’s hosting service, a trade-off
between the ease of deployment and the ease of upkeep [11].

Most of the intrinsic advantages of web development should apply to
Firefox OS as well, but as the operating system is relatively new there are
unfortunately some platform-specific concerns to address. These are mainly
related to the fact that the roots of Firefox OS are in the Firefox browsers
for desktop computers, but Firefox OS is intended to run on more restricted
devices. This had lead to some changes, for example in the way files are
handled. On the other hand, due to the way Firefox OS applications are built,
the development tools for it and general web development are practically
identical. As an innate benefit, the Firefox OS application should translate
to a generic web application for other mobile devices with little extra work.
Naturally the reverse, transforming an existing application to a Firefox OS
one, is also possible.

260 A. Juntunen, E. Jalonen, and S. Luukkainen

8.4.3 Complementary Technologies

As was already mentioned in section 3, HTMLS5 is a blanket term for several
related web standards and technologies, and HTML5 together with CSS3 and
JavaScript represent the complete package or idea that is HTML5. Under-
neath the surface there are several related APIs to provide the multitude of
functionalities that are currently available on mobile devices, but ultimately
it is up to the browser to implement these standards. A listing of how mobile
browsers support different HTML5 features is available on the web [22] and
no mobile browser offers complete as of September 2013. Adequate browser
support is a prerequisite for HTML5 adoption and the dichotomy with the
platform vendors is that of native applications versus web applications. The
platform vendors are striving for a strong ecosystem around their respec-
tive platforms, but the ultimately correct path is still unclear. The level of
support they want to provide for the two options, native applications and
browsers/HTML5, is a balancing act.

8.4.4 Incumbent Role

The current native application market is mainly controlled by the platform
vendors and their ecosystems, the largest two being Google (Android) and
Apple (10S) [28]. Their respective native application stores are the primary
way in which users on these platforms find, download, and update their appli-
cations. As native applications already have access to the hardware features
of the devices through a multitude of APIs, platform vendors also provide
help and documentation on using these features as well as the necessary soft-
ware tools to develop the applications. The only limiting factor for developers
with this model is the vendor lock-in caused by the vendors themselves.

The problem of how to cross-develop applications for multiple platforms
and ecosystems has been left unanswered and this opening is something
HTML5-based solutions are able to exploit. The wide variety of HTML5-
based frameworks allow for solutions based on it to adapt to a fairly large
number of situations. Even if a particular method of application deploy-
ment might prove in the long run to be unsuccessful, it is more likely that a
large quantity of the development already done can be transferred to another
application, minimizing the amount of waste in development.

One of the main benefits of the application store model comes from the
simplicity of monetizing applications, but at the same time it ties down the
application developer, both technically and legally. To be able to publish in
an application store, the application developer has to follow the guidelines
set by the store and also accept the 70/30 % revenue split. With HTMLS5,

HTMLS5 in Mobile Devices — Drivers and Restraints 261

the application itself can be hosted as a traditional website, but it can also
be deployed as a more traditional application, via a mobile platform vendor’s
application store, or in some cases even by simply downloading it from a web-
site. This wider set of options for deployment for the applications publisher
might be a key factor in switching over to HTML5.

The areas where HTMLS5 is lagging behind its native competitors are per-
formance, ease of use, and added value. The performance aspect is viewed
in detail in Section 8.4.5 , but the ease of use and added value factors have
to also be addressed. If the benefit proposal is clearly biased in the favor
of the application developer, that is, the user experience of an HTML5 ap-
plication compared to a native application would only be marginally better,
the same or even worse, then the user has very little incentive to switch over
from an existing native application unless forced. For new services with no
existing native applications the situation might be simpler, but overall, if the
HTMLS5 user experience cannot reach the level of native applications, it can
be considered a serious hindrance for its wider adoption on mobile devices.

Although many Mobile Network Operators (MNOs) have launched their
own application stores, these initiatives have gained little success compared
with those of handset manufacturers or operating system providers. More-
over, because MNOs normally provide subsidized handsets for numerous plat-
forms, creating and maintaining an application store for each platform can
be costly. With web-based applications opening up the application store
model, MNOs may be able to reach new relevance by mediating between
content providers, advertisers, and end users. MNOs could bring value to
these actors by helping users find relevant applications, and by providing
application developers with more flexible billing models and revenue sharing
than current application store providers. In addition, MNOs could utilize
their access to anonymous user data like device type, location, and behav-
ioral data to better target applications for users. Similarly, because HTML5
uses the client-server paradigm, such applications are well suited for utilizing
open APIs offered by MNOs [12]. These APIs can provide developers with
additional capabilities such as user location, billing, and SMS messaging [31]
while fitting seamlessly to the client-server paradigm of HTML5.

Mozilla’s Firefox OS has the potential to drive the proliferation of
HTML5-enabled applications if it becomes a viable alternative platform to
Android, i0S, Windows Phone, and other platforms. Several MNOs have
taken an active role in developing the operating system and they see poten-
tial benefits in the Firefox OS platform. These benefits include the openness
of the platform, the ability to substantially contribute to its development,
and the customizability of the operating system. Among other actors, MNOs
can also develop their own applications for Firefox OS, including NFC appli-

262 A. Juntunen, E. Jalonen, and S. Luukkainen

cations, which unlike in iOS or Android, can access the secure element from
the browser. Another key actor related to Mozilla is Google, which provides
the majority of Mozilla’s funding in exchange for Mozilla setting Google as
the default search engine in Firefox browsers [43]. This currently mutually
beneficial relationship could change in the future, if Firefox OS were to have
an effect on Android’s market share. It is possible that even if Firefox OS
cannot attain a substantial market share, it could have a significant positive
impact on the development of mobile browsers and the proliferation of mobile
web applications. This could ultimately lead to the mobile web application
model overtaking the application store model in popularity.

8.4.5 Technological Performance

As previously mentioned, HTML5 is still a work in progress, even though
some of the new features it defines have already been implemented in cer-
tain browsers. Problems with mobile use include the adaptation of the web
applications view to the quirks of the particular platforms conventions, con-
sidering for example the extra buttons on an Android device compared to
an 10S device. Browser compatibility is another issue, as not all browsers
treat the same piece of code in the same way. Browser performance must
also be taken into account, as the browser itself adds another layer of com-
plexity between the application and the hardware. Even though there has
been progress in the last few years on the execution speeds of JavaScript on
browsers compared to native code, JavaScript still has to be downloaded,
parsed, and only then can it be executed, adding a time penalty.

There are a few frameworks available to address some of the issues, such
as the previously mentioned PhoneGap and Titanum SDK. Both frameworks
allow access to most of the internal APIs of their supported mobile platforms,
but provide them in a platform-independent way for cross-platform develop-
ment and deployment. As Firefox OS is essentially a web browser, it also
suffers from the same issues as all other browsers when running HTML5 ap-
plications. Fortunately, performace improvements to the Javascript runtime
engine for the Firefox browser should also translate downstream into Fire-
fox OS (cross-platform improvement). These frameworks, HTML5, Firefox
OS, and web-based applications in general exchange application execution
smoothness and responsiveness for flexibility and a more universal deploy-
ment scheme when compared to native applications.

HTMLS5 in Mobile Devices — Drivers and Restraints 263

Table 8.3: Drivers and restraints of HTML5H

Dimension Driver Restraint

Added value Cross-platform com- | User experience com-
patibility (D1) pared to native apps

(R1)

Ease of experimen- | Cheaper, more flexible

tation development and de-
ployment (D2)

Complementary Browser support (R2)

technologies

Incumbent role No reliance on re- | Infrastructure and

strictive policies (D3), | marketing expenses
Flexible revenue mod- | (R3)

els (D4)
Technological per- Performance compared
formance to native apps (R4)

8.5 Summary of Results and Discussion

8.5.1 General Results

In our analysis, we identified several factors that act as both drivers and
restraints to the diffusion of HTML5. Table 8.3 displays these drivers and
restraints and how they relate to the theoretical framework dimensions pre-
sented in Table 8.1.

The added value [38] or relative advantage of HTML5 over substitutes [40]
is crucial for the success of the technology. In the case of HTML5, the
most important driver in this dimension is cross-platform compatibility (D1),
which allows developers of mobile web applications to more easily target
various mobile platforms, thus minimizing the negative effects of mobile OS
fragmentation. On the other hand, the end user benefits of HTML5 and
web applications are somewhat limited and the user experience (R1) of these
applications can, in fact, be inferior compared to native applications.

Ease of experimentation [26, 48] or trialability [40] in this context refers to
the ability of mobile developers to adopt HTML5 and to develop applications
using HTML5. An important driver is the cheaper and more convenient
development of HTML5 applications (D2) compared to native applications.
In addition, the deployment of these applications is much more flexible, and
the developers can choose to use different HTML5 frameworks (see Figure
8.1), allowing them to tailor the application deployment to their needs (D2).

Complementary technologies can play an important role in the emergence

264 A. Juntunen, E. Jalonen, and S. Luukkainen

of technological discontinuities [3] and in the case of platforms [18, 25]. In
the context of HTMLS5, the most important complementary technology is
mobile browsers, and their support for HTML5, which is still incomplete
(R2). The crucial issue is the incentives that mobile browser providers have
in developing the browsers and the effectiveness of browser standardization.

The role and actions of incumbents is important in determining what
effect new entrants can have on the market [23], especially in the case of
disruptive innovations [9]. In the case of HTML5 and web applications,
the most important incumbents are the current application store providers
or platform vendors, such as Google and Apple. Their current restrictive
policies on application approval (D3) and revenue sharing (D4) can function
as an incentive for developers to move to HTML5 and web applications.
On the other hand, the platform vendors provide an infrastructure for the
deployment of applications and a marketing venue for application developers,
which would not be available for pure web applications (R3).

A sufficient level of performance [38,; 40] of HTMLS5 is a precondition for
the success of the technology. Mobile web technologies, such as the execution
of Javascript in browsers, have seen considerable progress, but mobile web
applications still suffer from a performance gap compared to native applica-
tions (R4), which can in part lead to a worse user experience. However, these
performance issues can partly be reduced by opting for a hybrid solution be-
tween native and web applications, using frameworks such as PhoneGap.

Not all the drivers and restraints presented in Table 8.3 are necessarily
relevant to all kinds of actors in the value network of HTML5 applications.
Table 8.4 evaluates the importance of the drivers and restraints of HTML5 for
three different actors: large ”enterprise” developers, small developers which
can mean small companies or individual developers, and end users. Cross-
platform compatibility (D1) is especially important for small developers, who
may not have the resources or skill sets necessary to develop their application
for multiple platforms. Enterprise developers typically have the capability to
target multiple platforms, but they can still receive substantial savings from
the cross-platform support of HTML5 applications. In addition, end users
can benefit from a more unified user experience by having access to the same
application on multiple platforms.

Cheaper and more flexible development and deployment of applications
(D2) is relevant to all developers, but especially to smaller developers who
can easily start to utilize web development tools and practices. Being able
to bypass the rigid policies and revenue models of applications stores (D3,
D4) can be particularly important for enterprise developers, allowing them
more freedom to experiment with different pricing models and giving them
the opportunity to retain more of their revenues. Smaller developers may

HTMLS5 in Mobile Devices — Drivers and Restraints 265

Table 8.4: Drivers and restraints of HTML5 for different actors

Drivers / Restraints Enterprise | Small De- | End users
Develop- velopers
ers
D1: Cross-platform compatibil- | Medium High Medium
ity
D2: Cheaper, more flexible de- | Medium High N/A
velopment and deployment
D3: No reliance on restrictive | High Medium N/A
policies
D4: Flexible revenue models High Low N/A
R1: User experience compared to | High High High
native apps
R2: Browser support Medium High Medium
R3: Infrastructure and market- | Low High N/A
ing expenses
R4: Performance compared to | High High High
native apps

find it more beneficial to utilize the application store model, which limits
the infrastructure and marketing expenses they have to face (R3). Thus, the
application store model offers an easier way to monetize applications, espe-
cially for smaller developers. The importance of browser support (R2) highly
depends on the application in question and whether it uses browser capabil-
ities that are not equally well supported among all mobile browsers. Small
developers may be quicker to seek a competitive advantage by utilizing new
browser features, which may be supported differently in different browsers.
The user experience (R1) and performance (R4) of HTML5 applications can
be considered very important to end users and, by extension, to all develop-
ers who consider these factors as key elements in the value offerings of their
applications.

8.5.2 Practical Examples

The adoption of new technologies can be accelerated by the example of suc-
cessful products or services using these technologies. For technologies aimed
at end users, so-called "killer applications” can be instrumental in driving
end-user adoption. However, because HTML5 benefits mostly developers
and not end users, examples of successful HTML5-enabled applications are
more likely to be relevant in demonstrating the benefits of the technology for
developers.

266 A. Juntunen, E. Jalonen, and S. Luukkainen

The following real-life examples highlight some of the drivers mentioned
in Table 8.3 and provide a quick overview of how HTML5 has and currently
is impacting the mobile application market.

e (D3) Grooveshark offers a HTML5 client [19], as the native mobile ap-
plication was pulled from both Google’s and Apple’s application stores
due to ongoing legal issues [8] between Grooveshark and the music
labels EMI, Sony, Universal, and Warner.

e (D1, D2) OpenAppMkt [36] is a marketplace for mobile HTML5 appli-
cations, with a client available for iOS and Android.

e Mozilla’s Firefox Marketplace is the de facto web application store for
the whole Firefox platform [34]. It also has installable applications
for desktop operating systems, although these applications are running
inside a separate Gecko runtime engine process.

e (D3, D4) Financial Times completely switched from the AppStore to
an HTML5-based application [14].

e (D1, D2) According to PhoneGap [37] and Titanium SDK [5], several
companies and other groups, such as the Wikimedia Foundation, eBay,
and NBC, have released applications built on their frameworks.

e (D1) Facebook [20], Amazon (Kindle Cloud Reader) [2], and Drop-
box [15] all offer HTML5-based applications for services for which they
also provide native mobile applications.

e Firefox OS is a practical example of two distinct factors. First, it shows
the extent to which HTML5 and web technologies can be utilized, i.e.
they can be used as a mobile operating system. Second, the cross-
platform web-application support between the Firefox Browser, Firefox
Browser for Android and Firefox OS demonstrates the viability of the
web as an application platform.

The examples presented in the list above do not all rely on a particular
benefit that HTML5 provides, but accentuate the multitude of new oppor-
tunities the technology brings. Financial Times, for example, has taken the
route of removing its application completely from Apple’s AppStore, while
Facebook has done the opposite and deepened its relation with Apple’s mo-
bile operating system, iOS [6]. Facebook’s iOS application used to be a
HTML5 solution wrapped as a native application, but the company released

HTMLS5 in Mobile Devices — Drivers and Restraints 267

a completely new native i0S application [13] written in Objective-C in Au-
gust 2012, citing "when it comes to platforms like iOS, people expect a
fast, reliable experience and our iOS app was falling short.” Although a sin-
gle application moving away from HTML5 might not be that significant, it
highlights the fact that HTML5 still has issues to solve, mainly related to
performance. In December 2012, Sencha released their own HTML5 mobile
Facebook client, Fastbook. Sencha claims that their HTML5 client compares
favorably in regards to performance and usability with Facebook’s own native
client [7].

What Facebook and Financial Times have in common is that they both
provide a viable HTML5-based application for their service. In the case of
Facebook, the HTML5-based mobile version of Facebook [20] is used as a
tool to reach a wider audience, that is, users that are not using native mobile
applications for one reason or another. From the perspective of Financial
Times, HTMLS5 is used as a replacement for a native application because of
the restrictive policies of a single platform provider [41], as Financial Times
does provide an Android application [47].

The HTML5 mobile application stores by Mozilla and OpenAppMkt
present an attempt to create a cross-compatible application store for all com-
patible mobile platforms (Open Web Applications). The number of potential
customers is naturally higher than in any platform-specific store, but at the
same time they suffer from a much larger pool of differing hardware and
software combinations. Ensuring an adequate user experience for so many
different devices will undoubtedly require more resources, negating a part of
the easier development aspect of HTML5 but fully taking advantage of the
technology’s cross-platform capabilities.

PhoneGap and Titanium SDK both offer an enticing solution to the native
versus web-application question. Developers can, to a varying degree, use the
same codebase for both versions and leave out native development altogether.
In addition, the switching cost on the developers’ side to either version in the
future is minimal compared to fully porting a native application to HTML5
or vice versa.

8.6 Conclusions

Although HTML5 applications are not equal in performance levels of native
applications, the lower cost and cross-platform availability of a web applica-
tion might prove crucial for vendors or organizations looking to support the
largest number of customers possible, without writing platform-specific im-
plementations of their application. Political or financial decisions to opt out

268 A. Juntunen, E. Jalonen, and S. Luukkainen

of the mobile platform vendors’ ecosystems can also motivate companies and
individuals to directly adopt HTML5 and web-based applications. Which
actor or actors would provide the largest push away from native applications
and towards HTML5 remains to be seen.

Mobile browser support for HTML5 features is a key factor in the diffusion
of the technology, and efforts to adopt and integrate HTML5 standards into
a growing number of browsers are ongoing. For certain types of applications,
HTML5 will surely be a viable option, but at the same time it is unknown
if platform vendors would simply halt the development of their own mobile
application platforms and let web applications take over.

Firefox OS is an operating system that has no comparable "native ap-
plications” when compared to Android, iOS, or Windows Phone. It relies
entirely on web applications, thereby elevating the web browser to an oper-
ating system. However, there are still open questions regarding the overall
viability of a browser as an operating system as well as application perfor-
mance and end-user acceptance of such a platform. Hopefully, in the near
future, Firefox OS will provide a real-world case study into the extent to
which web technologies can be extended on mobile devices, and whether it is
a viable alternative for most users when compared to more traditional mobile
operating systems and their ecosystems.

The final issue is that of end user preference, in which the largest obstacle
comes from the fact that if HTML5 cannot offer a level of usability and added
value that users currently receive from native applications, then there is no
pull from their part to adopt the technology. A level of parity is needed,
which requires support from the platform and hardware vendors to open
up their systems for the browsers to utilize with HTML5. Taking all this
into consideration, performance still remains a key issue, with the native
applications having the advantage. However, the performance gap between
native and HTML5 applications is shrinking, and the performance of HTML5
applications is already suitable for many end user needs.

To summarize, if the application vendor’s main requirements currently
are either performance or easy monetization, native applications might be
more enticing. If low initial capital expenditure and a wide cross-platform
market share are key issues, HTML5 applications are the more attractive
choice.

In this chapter, we provided an initial analysis on how HTML5 affects
different actors in the mobile phone ecosystem. In the future, more research
is needed to clarify the effect of HTML5 especially on the role of mobile
network operators and on the potential impact of Firefox OS in the mobile
market.

REFERENCES 269

References

1]

ABI Research. 2.1 Billion HTML5 Browsers on Mobile Devices by
2016 says ABI Research. July 2011. URL: http://www.abiresearch.
com/press/3730-2.1+Billion+HTML5 +Browsers+on+Mobile +
Devices+by+2016+says+ABI+Research (visited on 09/15/2013).

Amazon.com, Inc. Kindle Cloud Reader. 2013. URL: https://read.
amazon.com/about (visited on 09/15/2013).

P. Anderson and M. L. Tushman. “Technological Discontinuities and
Dominant Designs: A Cyclical Model of Technological Change”. In:
Administrative Science Quarterly 35.4 (Dec. 1990), pp. 604—633. ISSN:
00018392.

P. Anderson and M. L. Tushman. “Technology Cycles, Innovation
Streams and Ambidextrous Organizations”. In: Managing Strategic
Innovation and Change. New York: Oxford University Press, 1997.

Appcelerator Inc. Titanium SDK | Mobile App Development. 2013.
URL: http://www.appcelerator.com/titanium/titanium-sdk/
(visited on 09/15/2013).

Apple Inc. Apple Previews i0S 6 With All New Maps, Siri Features,
Facebook Integration, Shared Photo Streams € New Passbook App.
June 2012. URL: https://www.apple.com/pr/library/2012/06/
11Apple-Previews-i08-6-With-All-New-Maps-Siri-Features-
Facebook-Integration-Shared-Photo-Streams—-New-Passbook-
App.html (visited on 09/15/2013).

J. Avins and J. Nguyen. The Making of Fastbook: An HTMLS5 Love
Story. Dec. 2012. URL: http://www.sencha.com/blog/the-making-
of-fastbook-an-html5-1love-story (visited on 09/15/2013).

BBC News. EMI terminates Grooveshark streaming deal. Apr. 2012.
URL: http://www.bbc.co.uk/news/technology-17610811 (visited
on 09/15/2013).

C. M. Christensen. The Innovator’s Dilemma: When New Technolo-
gies Cause Great Firms to Fail. Boston: Harvard Business School
Press, 1997.

270

[10]

[11]

[19]

A. Juntunen, E. Jalonen, and S. Luukkainen

C. M. Christensen and R. S. Rosenbloom. “Explaining the attacker’s
advantage: Technological paradigms, organizational dynamics, and
the value network”. In: Research Policy 24.2 (Mar. 1995), pp. 233-
257. 1SSN: 0048-7333. DOI: 10 . 1016 / 0048 - 7333(93) 00764 - K.
URL: http://www.sciencedirect . com/science/article/pii/
004873339300764K (visited on 12/10/2011).

L. Corral et al. “Evolution of Mobile Software Development from
Platform-Specific to Web-Based Multiplatform Paradigm”. In: Pro-
ceedings of the 10th SIGPLAN symposium on New ideas, new
paradigms, and reflections on programming and software. ONWARD
"11. New York, NY, USA: ACM, 2011, 181183. 1SBN: 978-1-4503-0941-
7. DOIL: 10.1145/2048237.2157457. URL: http://doi.acm.org/10.
1145/2048237.2157457 (visited on 06/10/2012).

M. Crossey. HTMLS - The Catalyst for Network as a Service? 2012.
URL: http://www. telco2.net/blog/2012/07/html5_- _the_
catalyst_for_netwo.html (visited on 09/14/2013).

J. Dann. Under the hood: Rebuilding Facebook for iOS. Aug. 2012.
URL: https://www.facebook.com/notes/facebook-engineering/
under-the-hood-rebuilding-facebook-for-ios/1015103609175
3920 (visited on 09/16/2013).

K. Doctor. F'T Declares Independence (from Apple) Day. June 2011.
URL: http://newsonomics.com/ft-declares-independence-from
-apple-day/ (visited on 09/15/2013).

Dropbox. Dropbox Mobile HTMLS5 Client. URL: https://m.dropbox.
com (visited on 09/15/2013).

K. M. Eisenhardt. “Building Theories from Case Study Research.” In:
Academy of Management Review 14.4 (Oct. 1989), pp. 532-550. ISSN:
03637425. DOI: 10.5465/AMR.1989.4308385.

T. Eisenmann, G. Parker, and M. W. V. Alstyne. “Strategies for
Two-Sided Markets”. In: Harvard Business Review 84.10 (Oct. 2006),
pp- 92-101. 18SN: 00178012.

T. R. Eisenmann, G. Parker, and M. W. V. Alstyne. “Opening Plat-
forms: How, When and Why?” In: SSRN eLibrary (Aug. 2008). URL:
http : //papers . ssrn . com/ sol3/papers . cfm? abstract _id=
1264012 (visited on 09/05/2012).

Escape Media Group. Grooveshark Mobile. URL: http://html5.gro
oveshark.com/ (visited on 09/15/2013).

REFERENCES 271

[20]
[21]

[22]

[26]

[27]

[28]

Facebook. Facebook Mobile HTMLS5 Client. 2013. URL: https://m.
facebook.com/ (visited on 09/15/2013).

I. Fette and A. Melnikov. The WebSocket Protocol. Dec. 2011. URL:
https://tools.ietf.org/html/rfc6455 (visited on 09/15/2013).

M. Firtman. Mobile HTMLS5 compatibility on iPhone, Android, Win-
dows Phone, BlackBerry, Firefoxr OS and other mobile devices. En-
glish. Sept. 2013. URL: http : / / mobilehtml5 . org/ (visited on
09/20/2013).

R. N. Foster. Innovation: The Attacker’s Advantage. New York: Sum-
mit Books, 1986.

Gartner, Inc. Gartner Says Smartphone Sales Grew 46.5 Percent in
Second Quarter of 2013 and Exceeded Feature Phone Sales for First
Time. Aug. 2013. URL: http://www.gartner . com/newsroom/id/
2573415 (visited on 09/15/2013).

A. Gawer and M. A. Cusumano. Platform Leadership: How Intel, Mi-
crosoft, and Cisco Drive Industry Innovation. 1st. Harvard Business
Review Press, Apr. 2002. 1SBN: 1578515149.

M. Gaynor. Network services investment guide: maximizing ROI in
uncertain times. Indianapolis, Indiana: Wiley Publishing, 2003.

I. Hickson. HTML Living Standard. Sept. 2013. URL: http://www.
whatwg . org/specs/web-apps/current-work/multipage/ (visited
on 09/15/2013).

IDC. Apple Cedes Market Share in Smartphone Operating System
Market as Android Surges and Windows Phone Gains, According
to IDC. Aug. 2013. URL: http://www . idc . com/ getdoc . jsp?
containerId=prUS24257413 (visited on 09/15/2013).

IDC. Smartphones Ezpected to Grow 32.7% in 2018 Fueled By Declin-
ing Prices and Strong Emerging Market Demand, According to IDC.
June 2013. URL: http://www.idc.com/getdoc. jsp?containerId=
prUS24143513 (visited on 09/15/2013).

A. Juntunen, M. Kemppainen, and S. Luukkainen. “Mobile Compu-
tation Offloading - Factors Affecting Technology Evolution”. In: 2012
International Conference on Mobile Business. Delft, The Netherlands,
June 2012. URL: http://aisel.aisnet.org/icmb2012/9.

272

[31]

32]

A. Juntunen, E. Jalonen, and S. Luukkainen

A. Juntunen et al. “Innovation in Mobile Clouds - Analysis of an
Open Telco Application”. In: CLOSER 2011 - 1st International Con-
ference on Cloud Computing and Services Science. Noordwijkerhout,
The Netherlands, May 2011.

M. H. Meyer and J. M. Utterback. “The Product Family and the
Dynamics of Core Capability”. English. In: Sloan Management Review
34.3 (1993), p. 29. 1SsN: 0019848X. URL: http://search.proquest.
com.libproxy.aalto.fi/docview/224965799/abstract/138F9D73
F246CD524D0/197accountid=27468 (visited on 09/05/2012).

Mozilla Developer Network. Firefor OS. Sept. 2013. URL: https://d
eveloper.mozilla.org/en-US/docs/Mozilla/Firefox_0S (visited
on 09/15/2013).

Mozilla Foundation. Firefoxr Marketplace. 2013. URL: https://marke
tplace.firefox.com/ (visited on 09/15/2013).

Nielsen. Smartphones Account for Half of all Mobile Phones, Dom-
inate New Phone Purchases in the US | Nielsen Wire. Mar. 2012.
URL: http://blog.nielsen.com/nielsenwire/online_mobile/
smartphones - account - for — half - of - all - mobile - phones -
dominate - new - phone - purchases - in - the - us/ (visited on
09/15/2013).

OpenAppMkt. OpenAppMFkt. 2011. URL: http://openappmkt . com/
(visited on 09/15/2013).

PhoneGap. PhoneGap | About. 2013. URL: http://phonegap . com/
about (visited on 09/14/2013).

M. E. Porter. Competitive Advantage. New York: Free Press, 1985.

M. Raatikainen et al. “Towards Mobile Device Cloud”. In: Commu-
nications of the Cloud Software 1.1 (2011).

E. M. Rogers. Diffusion of Innovations. 5th. New York: Free Press,
2003.

J. Saba. FT Web-based app more popular than app sold in Apple store.
Sept. 2011. URL: http://www.reuters.com/article/2011/09/22/
us-ft-idUSTRE78L49Q20110922 (visited on 09/13/2013).

Strategy Analytics. One Billion HTML5 Phones to be Sold Worldwide
in 2013. Dec. 2011. URL: http://www . strategyanalytics . com
/default . aspx ?mod = pressreleaseviewer &a0=5145 (visited on

09/15/2013).

[43]

[46]

K. Swisher. Google Will Pay Mozilla Almost $300M Per Year in
Search Deal, Besting Microsoft and Yahoo. Dec. 2011. URL: http://
allthingsd.com/20111222/google-will-pay-mozilla-almost-
300m - per - year - in - search - deal - besting -microsoft - and -

yahoo/ (visited on 09/15/2013).

A. Taivalsaari and T. Mikkonen. “The Web as an Application Plat-
form: The Saga Continues”. In: Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO Conference on. Sept.
2011, pp. 170 —174. DOT: 10.1109/SEAA.2011.35.

A. Taivalsaari et al. “The Death of Binary Software: End User Soft-
ware Moves to the Web”. In: Creating, Connecting and Collaborating
through Computing (C5), 2011 Ninth International Conference on.
Jan. 2011, pp. 17 —23. po1: 10.1109/C5.2011.9.

Telco 2.0 Research. HTML5: market impact and telco strategies. Sub-
Hub Site. May 2012. URL: http://www . telco2research . com/
articles/EB_HTML5-what-does-it-mean-for-telcos_Summary
(visited on 09/15/2013).

The Financial Times Ltd. Financial Times - The new FT app for
Android. 2011. URL: http://apps . ft.com/android/ (visited on
09/15/2013).

S. Thomke. Ezperimentation Matters. Boston, MA: Harvard Business
School Press, 2003.

W3C. HTML5, W3C Candidate Recommendation 6 August 2013.
Aug. 2013. URL: http: //www . w3 . org/TR/html5/ (visited on
09/15/2013).

W3C. Standards for Web Applications on Mobile: current state and
roadmap. Sept. 2013. URL: http://www.w3.org/Mobile/mobile-
web-app-state/ (visited on 09/15/2013).

273

274

9 Collaborative Coding Environment
on the Web: A User Study

Antti Nieminen, Janne Lautamaéki, Terhi Kilamo,

Jarmo Palviainen, Johannes Koskinen, and Tommi Mikkonen
Department of Pervasive Computing

Tampere University of Technology

Email: {antti.h.nieminen, janne.lautamaki, terhi.kilamo,
jarmo.palviainen, johannes koskinen, tommi.mikkonen}@tut.fi

Abstract—Today, techniques made popular by Web 2.0 enable massive co-
operation of online users. In the spirit of Google Docs, where multiple editors
can cooperate in real time to craft a single document, we believe that it is
only a matter of time before software development takes the step towards
real-time collaborative online editing and development instead of artificially
forced interleaving implemented in version control. First, to study the dif-
ferent aspects of this approach, we have implemented a web-based collabora-
tive programming environment that extends the capabilities of a code editor
with numerous features commonplace in social media. Second, to gain the
developers perspective to real-time collaborative development, we arranged a
week-long experiment where participants composed a web application using
our environment and report the results here. Towards the end of the chapter,
we discuss the lessons we have learned about real-time collaborative software
development. Furthermore, we list the features that developers find essential
in such a system as well as compare our results with other reported research.

Keywords—Software development, online collaboration, user study.

9.1 Introduction

Today, software is being developed by teams of programmers who may be
globally distributed, work in dissimilar environments and come from various

275

276 A. Nieminen et al.

backgrounds. Contemporary development approaches such as pair program-
ming along with other extreme programming practices [2], global software
engineering [13] and collaborative software development [14] illustrate this
trend. However, while the main designs and principal guidelines are often
crafted in a collaborative fashion in meetings of different kinds, the final
design of software artifacts that will later be compiled and run are usually
designed and written by individual developers, working in relative isolation
from one another and with limited face-to-face or any types of contact. With
such an approach, it is not surprising that communication among the devel-
opers has been considered a problem for over two decades [23].

Recently, various fields of industry as well as consumer applications are
experiencing a paradigm shift towards web-based systems. Web 2.0 allows
online collaboration beyond any previous expectations, making the web the
first truly global platform for cooperation and collaboration. Fundamentally,
Web 2.0 technologies combine two important characteristics, collaboration
and interaction. The former refers to the “social” aspects that allow a vast
number of people to collaborate and share the same data, applications, and
services over the Web. The second, equally important aspect of such tech-
nologies is that they enable building web services that behave much like
desktop applications with the added benefit that the user does not have to
install any software on their computer; any device with a web browser can
be used to access the applications. We believe that these two properties
are paving the way towards shifting software development to the web. Ex-
amples of such systems include Cloud9 IDE!, Eclipse Orion?, GitHub?® and
Codeanywhere?. From these premises, we have implemented a web-based
real-time collaborative software development environment, CoRED, that has
been introduced from the technical perspective in [17, 19].

In this chapter, we evaluate collaborative software development with a
number of developers who jointly compose a web application using CoRED.
With CoRED, several developers can access and modify the same code base
in parallel, with no need to use separate version control, following the spirit
of real-time collaborative software such as Google Docs. The contribution of
this chapter is the introduction of the developers’ view to the collaborative
browser based integrated development environments (IDE), including both
the experiment setup as well as the most important lessons we have learned
during the experiment.

The rest of this chapter is structured as follows. In Section 9.2, we in-

https://c9.i0/
?http://www.eclipse.org/orion/
Shttps://github.com
4https://codeanywhere.net/

Collaborative Coding Environment on the Web: A User Study 277

troduce our collaborative web-based development environment. In Section
9.3, we define the research approach and the experiment setup. Section 9.4
presents the data collected and introduces the main results we have learned
from the experiment. Section 9.5 further discusses the research questions
with discussion and lessons learned. Future work is presented in Section
9.6. Section 9.7 covers work related to our research, and finally, Section 9.8
concludes the chapter.

9.2 Collaborative Development: The CoRED App-
roach

Moving a software development environment to the web has at least two ma-
jor benefits. First, developers get rid of the process of installing, configuring
and updating the environment for developing, testing, running, and debug-
ging the applications; everything is readily available on the web. Second,
the web can enhance collaboration and communication. Most developers are
already familiar with using various co-operation tools on the web. Integrat-
ing such tools into the development environment can make the collaboration
more tightly combined with the process of writing code.

Previously, we have introduced our proof-of-concept system CoRED [17,
19]. In addition to editing the code in real-time collaboration, developers are
able to communicate with each other using means familiar from social media.
The architecture of our system is typical for a web application. While the
client side running inside the browser enables interactions with the system,
most of the business logic of the system runs on the server back-end. Our
system is implemented with the Vaadin [10] framework. Vaadin provides user
interface components, implemented as Google Web Toolkit [22] widgets, that
are integrated with the server-side Java® code. With this approach, Vaadin
applications can be written entirely in Java. The Vaadin framework takes
care of connecting the server-side Java code to the user interface components
loaded into the browser.

The architecture of CoRED is illustrated in Figure 9.1. The client side
contains an open source Ace code editor®. Ace is implemented in JavaScript,
wrapped in our system inside a GW'T component which in turn communicates
with the server using HTTP communication channels provided by Vaadin.
Other IDE components are implemented in a similar way, some of which are
provided by the standard Vaadin package while others are developed by us or
other 3rd party developers. Furthermore, the server-side code utilizes Java

Shttp://www.java.com
Shttp://ace.ajax.org

278 A. Nieminen et al.

CoRED
Editor component
‘ Ace ‘ ~ Other IDE
code editor components
1k
‘ Editor client-side ' Client-side)
Engine Engine

A ’/ ‘ Client
\ I Server

‘ Editor server-side i ‘ Server-side
engine < ‘ engine
\ ‘/
\
JDK 3rd party Java libraries

Figure 9.1: The architecture of CoRED

Development Kit for parsing and compiling Java code, and other 3rd party
libraries for various tasks. For a more detailed description of the system, the
reader is referred to [17, 19].

Figure 9.2 shows a screenshot of a CORED project that is currently edited
by two developers. On the left sidebar there is a list of files in the project
(marker with number 1), a deploy button (2), and an avatar of each collabo-
rator currently viewing the project (3). In the bottom left corner, there is a
chat box for communication (4). Most of the screen space is reserved for the
source file under edit. On the right, the users that view the file are shown (5).
Additionally, the cursor positions as well a possible text selection of other
users is shown within the opened file. The more rarely used features are ac-
cessible via the menubar on the top of the screen. A video clip demonstrating
the main capabilities is available at http://cored.cs.tut.fi.

CoRED offers various features to support software development, most of
which are familiar from traditional desktop IDEs. In addition, some features
geared towards collaboration exist. Next, we briefly list the most relevant
facilities.

Collaborative Coding Environment on the Web: A User Study 279

-2 tweetmeme - CoRED x

<« € | [anttivirtuallypreinstalled.com/cored#tweetmeme/TweetmemeApplication.java b ﬁ

[Project Java | & User | Annoying popups

Tweetmemespplication.java >2>
- S A
B Files %6 Layout .addComponent (appTitle);
97 layout .adacomponent (topPansl) ;
¥ Java source Files -
¥ HttpUtil.java 99 getMainitindow (). setContent (1ayout);
+ MemeGeneratol 100 H
¥ MiniDauth.java 101
€ TweetmemeApplication.: 182
T 103 public static void setInstance(Twee ication application)
[4Add New
184§
165 i{getInstance() == null) e 6l (R ®
105 - €
£/ Deploy Application 167 currentapplication. set(applicat
108 ¥ X Remove note
109 } |Antti Nieminen: how to do this?
18 BB b
11 public static TueetmemeApplication getl
m2-
13 return el plication.get();
114 H
15 —
- 116 private void createMeme(string text) antomon
antti joined ure ¢
antt left 7 Bus string treet = tuit 2NNy T
Antti Nieminen 119 meme. createMeme (tweet)
op deployed 120 showPicture(tueet); ‘ ‘
http: //anttivin installed. cor| 121 // TODO: return the meme (url to the img, and...? anything elsel|_
13560725166377debugrestartappli ﬁ; P i oid showPictume(sint)
T private void showPicture(String meme_url)
s Joined 24-
vis joine 4 125 Enbedded emb = new Embedded(“TweetiemePicture”, new ExternalResc |
- heto < 126 emb. setType(Embedded. TYPE_TMAGE) ;
[l | 127 emb.setwidth(*18e%") ; il
Antti Nieminen: 128 sasi] v

Figure 9.2: Screenshot of CoRED

Project support. In CoRED, projects are used to constitute compilable
and runnable systems, similarly to many IDEs. Upon entering the CoRED
web page, the user can select to join any of the projects that are currently
under development.

Error checking, suggestions and code completions. Another feature seen
also in many installable IDEs is the ability of CoORED to pinpoint Java errors
in the code. In addition, the editor suggests possible code completions. The
suggestions can be invoked in two ways, by using a special key combination
or by typing a dot after, e.g., an interface or an object name.

Single click deployment. The developer can compile and deploy the
project with a single click. The deployed system will be available online
as a service, and a related URL (uniform resource locator) is provided to the
user to test the system.

User identity. In order to have meaningful identities for users, it is possi-
ble to log in using a Facebook” account or a Gravatar® avatar. In addition,
a guest login with a simple nickname is available.

Collaborative editing. To enable users to edit the code in real-time col-

"http://facebook.com
8http://gravatar.com

280 A. Nieminen et al.

laboration, we have used the Differential Synchronization algorithm by Neil
Fraser[7]. It is a robust collaborative editing algorithm with open source im-
plementations available on several languages, including Java and JavaScript.

Pop up notes and chat. Besides editing the text itself, the users have the
option to augment the code with pop up notes in a fashion normally associ-
ated with text rather than code. The goal of these facilities is to allow the
separation of comments that are related to the actual code, and discussions
that developers have over a particular solution. Users can place notes into
the code (number 6 in Figure 9.1), and view the related discussion (number
7 in Figure 9.1) by moving the cursor on top of the note. In addition to the
inline notes, CoRED also offers a project-wide chat.

Code locking. In CoRED, a single editor can lock a portion of the code
for exclusive editing. For example, if a user wanted to make changes to a
specific function without anybody interfering, he/she could lock a function
by selecting the function and clicking a “Lock for me” button. After locking,
the locked area cannot be modified by other users until it is released by the
developer who originally locked the area.

9.3 Experiment

We set out to study how developers approached CoRED and real-time col-
laborative software development through an empirical experiment [1, 15]. In
addition to the experiment that ran as a week long code camp, personal
opinion surveys [16] on the participants’ background and experiences were
conducted. During the experiment we also conducted interviews and recorded
development data into log files. Also, to get preliminary feedback on CoRED,
two short proof-of-concept sessions were held before the actual code camp as
precaution for latent problems in the setup.

9.3.1 Research Questions

The main motivation for the experiment was to get a developer’s view to
real-time collaborative coding and to evaluate how well CORED would work
when developing a web application in small developer teams. Additionally,
there was a need to identify the features developers find necessary in real-time
collaborative development environment.

The research questions of the study were:

Q1 How do developer teams use a collaborative IDE such as CoRED?

Q2 What features do developers expect from a real-time collaborative IDE?

Collaborative Coding Environment on the Web: A User Study 281

To find answers to @1, an experiment where teams of computer science
students used CoRED to develop web applications was set up. Section 9.3.3
discusses the experiment setup in more detail. Additional data was gathered
through personal opinion surveys (pre- and post-camp surveys and individual
interviews) discussed further in Section 3.4. Section 9.4 answers to Q1 by
presenting data from surveys, log files and interviews. Combined with the
participants exposure to real-time collaborative programming, the interviews
and surveys also provided answers for)2, presented in Section 9.5.

9.3.2 Proof-of-concept Session

In order to manage risks, two short proof-of-concept sessions were conducted
before the actual experiment. The purpose of the sessions was to validate
the ability of our installation to support the planned number of developers
and to find possible fatal bugs or deficiencies in CoRED in order to get
any such issues fixed before the code camp. The proof-of-concept session
was held twice, on consecutive days, as a part of a Web Services course
at Tampere University of Technology. The participants, 11 on each session,
were undergraduate software engineering students, allowed to split freely into
groups of 1-3 people. The students familiarized themselves beforehand with
the very basics of the underlying application platform Vaadin. The session
consisted of a brief introduction, an hour of programming, and a small survey.
The assigned task was to insert deleting functionality to an existing REST-
based image search client.

After the session, many participants were happy about the easy access to
IDE without installation, simplicity of deployment of applications, and the
work being immediately available for other group members to see. Some con-
sidered CoRED to be a good tool for pair programming while some thought
that it is probably only suitable for developing small applications.

No critical flaws that would prevent the conduction of the experiment
came up during the proof-of-concept session. Anyhow, the participants re-
ported deficiencies such as the lack of multiple editor views open at the same
time, no indication that another person is editing the same file, and Java
error checking not working in all cases. Fixing all these problems required
no changes for the architecture and therefore we were able to fix them before
the code camp, although the last one only partly: the user still may need to
manually press a ”compile all” button in some rare cases. Other comments
about CoRED addressed the general immaturity of the tool, lack of IDE
features such as ”go to method definition” option and lack of proper debug
support. These problems were not addressed for the code camp version of
CoRED. For the sake of answering the research questions and not wanting

282 A. Nieminen et al.

Day | Activity

1 Camp starts. Lectures on the tools and the REST architecture. The teams
form and start designing their project.

2 Development starts. Teams use CoRED and are encouraged to work in the
same classroom.

3 Development continues. As a short experiment, each team chooses a suitable,

socially adept person to act as the project leader. The rest of the team is
randomly assigned onto a different project for two hours. The project leaders
are located into a separate room from which they communicate with their
newly formed team by using CoRED.

4 Distributed development. The developers can choose their working environ-
ment freely and are encouraged to leave the classroom.

5 The teams finalize their projects. Presentations of the finished applications
are given.

Table 9.1: Daily activities during the code camp

to let our own assumptions on developer needs to influence the study too
much, we found it best to leave these points open for the code camp and let
the experiment to bring light to where CoRED needs to be matured.

9.3.3 Experiment Setup

In order to extend the amount of data to analyze, we organized a one-week
(December 17th to 21st 2012) code camp for implementing a web application
using CoRED. The task for students was to design and implement a Vaadin
application that utilizes one or more external RESTful [6] APIs of their
choice. Table 9.1 presents the flow of the entire camp and the daily alterations
that were made to keep the participants’ motivation up and to make sure
they put the collaborative features of CoRED to full use.

A total of 23 students participated on the first day of the code camp.
Out of these, 19 students completed their group project and wrote the re-
quired assignment for passing the course. The size of the groups varied from
two to four. As the code camp ran during an exam week and right before
the Holidays four students dropped out during the first days of the camp.
We were able enquire a couple of them for reasons for dropping out, and
they mentioned lack of time and personal issues as the main reasons for not
finishing the camp.

All the groups were able to produce a working web application, although
some of the groups had to leave out certain features they had originally
planned. Among the projects produced during the code camp was a system
that generates funny meme pictures based on keywords or phrases, utilizing

Collaborative Coding Environment on the Web: A User Study 283

Day | Survey or interview

1 Survey for investigating background knowledge, preconceptions and expecta-
tions

4-5 Six volunteers were picked and interviewed about their experiences in collab-
orative coding and CoRED

5 A survey for examined the gained knowledge, experiences from CoRED and
the different collaborative programming experiences

Table 9.2: Surveys and interviews made during the code camp

APIs of Twitter® and Meme Generator’. Some of the other projects gener-
ated personal pony themed home pages, allowed users to share and browse
old exam questions, or view venue information and other data provided by
Foursquare'!.

9.3.4 Surveys

During the camp, the participants filled several surveys listed in Table 9.2.
Furthermore, the participants got a delegated anonymization code that they
used throughout the camp when filling surveys or taking part in an interview.
The codes allowed us to track the evolution of the participants’ knowledge.
The objective of the before and end of the camp surveys was to moni-
tor if the participants felt that they have learned something or gained new
knowledge during the code camp, as well as to get feedback from the system
and collaborative way of working. Interviews were used to get more informal
feedback and for probing issues the participants wanted to emphasize.

9.4 Results

Next, we present the data gathered during our experiment. The data comes
from three main sources: surveys, data logs, and interviews. The surveys
provide basic data on the participants as well as their views on CoRED and
the whole code camp. The data logs are used to find out how the participants
actually worked during the camp. Deeper understanding of the participants
views on real-time collaborative development was gathered during interviews.

www. twitter.com

DOhttp://memegenerator.net
Hyww. foursquare. com

284 A. Nieminen et al.
Skill Initial Std. dev. of | “Learning” Std. dev. of
Initial “learning”
Programming 4.4 0.6 -0,1 0.4
Java 3.1 0.8 0.4 0.6
Vaadin 1.6 0.7 1.5 1.1
REST 2.1 1.1 0.9 0.9

Table 9.3: How much the participants felt they learned during the code camp

9.4.1 Survey

Out of the participants, 21 — 16 master’s degree and 5 postgraduate stu-
dents — answered the pre-camp survey. Both the pre-camp and post-camp
survey was answered by 14 of them. Table 9.3 presents the quantitative
data collected from the questionnaires. In both questionnaires we asked the
participants to give themselves a value from 1-5 to describe their knowledge
of programming, Java, Vaadin and REST, respectively. The number one
stands for no experience and five means that the developer is very experi-
enced. Table 9.3 shows the average initial skill levels of the participants as
well as the learning outcome during the course. As expected, the skills with
the lowest start values improved the most. The overall result indicates that
the participants feel they have learned during the code camp. During group
work, people were able to compare their own and other students skills and
we speculate that to be an explanatory factor behind the small drop in basic
programming skill during the course. Based on observations made on raw
data, it seems that the course was most rewarding for the people with basic
knowledge of Java and no skills in Vaadin or REST.

In freeform feedback, the following themes repeated several times:
Deployment. “Deployment is hard while people editing.” To be able
to deploy and test an application, the code had to be compilable. In a

group with several people, this requires some coordination and was therefore
considered difficult.

Testing tools. “No test tools. Testing was sometimes hard because many
people were editing the code at the same time”, “No access to server logs”
and “Desktop IDE is much better. Real time debugging and much more
(shortcuts, smooth, dynamic); only downside maybe not seeing others code”.

Version control. “No version control or timeline.” Developers often have
a need to be able to restore or study older versions of code. However, in
CoRED this was not supported except by exporting project versions as zip

files.

Collaborative Coding Environment on the Web: A User Study 285

Group | # Avg. Score LOC Collab. | Collab. | Most
Id mem- level (smaller files edits active
bers is bet- (%) devel-
ter) oper
(%)
A 3 3.3 3 691 3/11 11 67
B 3 2.7 5 A7 5/13 8 63
C 4 2.9 5 1482 3/11 7 31
D 4 3.0 7 800 1/2 13 67
E 3 2.0 10 240 0/1 1 88
F 2 2.4 12 874 3/7 9 93

Table 9.4: Some metrics on the groups and collaboration

9.4.2 Log Data

CoRED recorded data on each groups work to a log file. By analyzing the
logs we could get some insight on how the groups collaborated during the
code camp. The most important item type recorded was edits by the group
members. An edit is a small change to the project: addition, removal or a
combination of both. The system sent an edit to be synchronized with the
shared document after the user had paused typing for 500 milliseconds, in
which point it was also recorded to the log. Thus, a typical edit is a line of
code or less.

As confirmed by the logs, the participants developed their application
mostly during “office hours” when the whole group was present in the same
classroom. However, there were some instances when a group member con-
tributed to the project in the evening on their home computer, or even in a
bar at night (as one of the participants described in an interview). The chat
of the development environment, which was also logged, was not used that
much, mostly because all the group members were sitting next to each other
most of the time. The only time when the chat was in heavy use was dur-
ing the two-hour experiment when project leaders were physically separated
from their teams.

Some group statistics as well as collaboration metrics are shown in Ta-
ble 9.4. The first two columns are the group id and the number of group
members. The next column is the average skill level of the group as reported
by the group members themselves in the initial questionnaire. The projects
were evaluated independently by two members of the course staff based on
the originality of the idea and the quality of the implementation. The score
column shows the group score, smaller number being better. The table is
sorted by the score, the best group being at the top. The next column shows
the total project size, measured as lines of code (LOC).

286 A. Nieminen et al.

The remaining columns of Table 9.4 are intended for describing the col-
laboration aspects of the groups. We considered a file to be collaboratively
edited if no one developer is responsible for over 80% of the files content. The
Collab. files column shows the number of collaboratively edited files com-
pared to the total number of files in the project. If another team member
has edited the same file less than 30 seconds before the latter, the edit is
considered collaborative. The Collab. edits column describes the percentage
of the edits that were collaborative. The Most active developer (%) column
describes the percentage of the characters of the total project produced by
the most active member of the group.

As can be seen in the Table 9.4, in all the groups except one, there was one
member who wrote over 50% of the total code. As an exception, the work
in the group C was notably evenly distributed: each of the four members
contributed approximately a quarter of the content. In two of the groups
with the worst score, a single person wrote 90% of the code. This could be
an indication of either poor collaboration within the group or lack of relevant
skills of other project members. The latter conclusion is somewhat supported
by the lower self-reported skill levels by the two groups compared to other
groups. In both of these groups, the person with most Java experience did
most of the coding.

The collaboration level, expressed in Table 9.4 by the Collab. edits metric
does not seem to have a large correlation to the group performance. In most
of the groups, 7-13% of the edits were “collaborative” as defined earlier. The
only exception is group F, where there were almost no collaborative edits
at all. The group did not produce that much code in terms of LOC, and
the majority of the work was done by a single member. In other, somewhat
larger projects, even though the group assumably try to structure their work
in such a way as to avoid working on the same parts of the project, around
10% of the edits are collaborative. Some of them may be purposeful collab-
oration between project members while others are accidental. It is not easy
to differentiate between the two cases based on the logs.

The column Awg. level in Table 9.4 shows the number that is the average
of all the skills (Programming, Java, Vaadin, REST) of all the project mem-
bers. We could make a hypothesis that instead of average, the mazimum
value for each skill level would better predict the performance of a closely
working group such as the ones in our experiment. That is, a group with
one member with a lot of experience on Vaadin, another with a lot of REST
experience, etc. would outperform a group with each member having average
skill in each of the categories. In this study, though, we did not find evidence
in either direction; the averages of the maximum skill levels (not shown in
the table) were quite close to the average level.

Collaborative Coding Environment on the Web: A User Study 287

To get an overview of the typical collaborative work during the code camp,
Figure 9.3 shows a four-hour long period of one of the projects. The edits
are shown as data points, different symbols for different project members.
The y-axis is the total number of characters in the project and the lines
mark the file boundaries. That is, the edits between two lines are in the
same file. There is nothing very surprising in how the groups worked on
the projects. Most of the time a single person edits a part of the project
alone with occasional closer collaboration here and there in some parts of
the project. In the logs it was quite rare to see two or more people working
on the same piece of the project for very long at a time.

At the end of the log analysis, it should be noted that the logs we analyzed
may not contain all the coding work for all the members. We analyzed the
logs of only the main project of each group. In addition to the main project,
some groups may have used other test projects to try out new features that
may be later included into the main project. The possible additional projects
are not considered in this log analysis. However, in each of the groups, most
of the work seemed to happen in the main project and in any case all the
features had to eventually be integrated into it.

9.4.3 Interviews

During the code camp, a total of six semi-structured interviews were held.
Interviews were conducted between Wednesday afternoon and Friday midday,
taking a half an hour each. In principle, all the interviews followed the same
structured pattern with 11 themes. However, the aim of the interviews was
to get some free form feedback and therefore we did not try to get answers to
all the questions if there was a good flow of conversation. Interviews mostly
strengthen the findings of the survey, but also some new themes appeared
during conversations. During the interviews it was also possible to get more
detailed feedback.

Collaborative editing. Students liked to try out something new and mostly
positive feedback was given concerning real-time collaborating. It was re-
ported that with the collaborative IDE working felt more like group work
compared to a traditional environment with asynchronous version control-
ling such as SVN or Git. It was reported that feeling of group work came
from the ability to see in real-time what others are doing. Furthermore, they
also considered it as a motivational aspect to know that others are able to
see what one is actually implementing.

Concerning team size in real-time collaboration, the interviewees reported
that a group of four people is too large for working on an ad-hoc basis.
Therefore some structure for working was needed. In one group of four

A. Nieminen et al.

288

25000

20000

15000

10000

5000 - | e L PET 1

0 I I I I I I
12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

Figure 9.3: A four-hour long piece of a log of one of the projects. Edits are marked with different symbols for each
developer, anonymized as Alice, Bob and Charlie. The vertical axis represents the character location where the edit
has been done. The lines are file boundaries i.e. edits between the same lines are on the same file. The order of the
files is arbitrary.

Collaborative Coding Environment on the Web: A User Study 289

people, the problem was solved by splitting into two minigroups with tasks
of their own. One example was that the less experienced half implemented
user interface while the other half was doing business logic. Furthermore,
in the minigroups the pairs often adopted two separate roles: a coder and a
“googler” who was searching for solutions to problems.

Students seemed to quickly realize that one big strength of a browser
based IDE is the ability to use any device in a location independent way.
While most of the work was done during the office hours, the students liked
that they had an option to continue work when and where ever they felt like.

Deployment. Deployment was generally considered the most severe prob-
lem in CoRED. Most of the interviewees mentioned that a lot of time was
wasted while waiting other group members to finalize their tasks. In some
groups this lead to situations that lots of code was commented away from
compilation. As no connectivity to version controlling existed, the comment
blocks were also used for storing obsolete code and later it was difficult to
know that which parts of the code should be restored from the comment
blocks and which can be removed. Some solutions for solving the problem
were suggested, such as storing an error-free versions of each file and using
them instead. However, the deployment problem also had some positive out-
comes. It was reported that because of the problem, the developers mostly
concentrated on one problem at a time and tried to finalize their code as
quickly as possible.

Project management tools. To make work more effective, some project
management tools were suggested to be integrated as a part of the system.
For example, it was suggested that a project backlog for future tasks would
be a good addition to CoRED. In addition, in the current implementation of
CoRED, all the users logged into the system are able to read and write all the
projects and files. During the camp, the problem was solved by allocating
a private virtual machine to each of the groups and no problems concerning
access policies were reported. However, it was suggested that each file and
project should have an owner that would be able to share read and write
permissions. Some refactoring tools were also asked to be added to CoRED.

Version control. A graphical tool for browsing old versions of a project
was considered to be mandatory. One of the interviewees stated that cur-
rently most of the old code can not be deleted, but is moved inside a comment
block and therefore it is later difficult to know which of the code blocks are
still needed. Interviewees stated that certain problems concerning undo and
redo functionalities exist in CoRED. A version control system would also
ease these problems, as code from older states could be easily restored using
version control if undo fails.

290 A. Nieminen et al.

As miscellaneous feedback, it was suggested that two weeks would be a
more suitable length for a code camp instead of one week. Furthermore, the
possibility to include resource files like images and css style sheets to the
project was requested. Some of the interviewees exposed that a collaborative
IDE can also cause feelings of confusion: it is sometimes impossible to un-
derstand the state the project and what are the responsibilities of each group
member as the target is constantly changing. In addition, it was stated that
collaboration would be easier in a group with no high skill level differences.

9.5 Developer Expectations for Real-time Collabora-
tive IDEs

Based on the surveys, interviews and observing the teams working during
the code camp, valuable information concerning real-time collaboration was
collected. Above we described how the teams approached real-time collab-
orative programming, thus answering to the research question 1. In this
section, we answer the second question Q2 by presenting the features impor-
tant for a real-time collaborative IDE.

The second research question was:

Q2 What features do developers expect from a real-time collaborative IDE?

Being able to test a web-based real-time collaborative integrated devel-
opment environment, even with certain deficiencies, gives more perspective
for analyzing and reasoning on what features developers expect from such a
system. Based on the experience from the code camp we have collected a list
(see Table 9.5) of the main features that should be included in a real-time
collaborative IDE. In addition to these findings, we speculate that by fixing
all the features and organizing a new code camp it is probably possible to
find new demands for the system.

The real-time collaboration aspect brings additional twist to deploying
and running the application under development. In the basic case, if files
contain errors or unfinished code blocks, the compilation fails and the ap-
plication can not be deployed or tested. During our experiment, it turned
out that in collaborative work, most of the time projects contain unfinished
features and therefore deploying the application requires some coordination.
This issue did not come up in the two-hour proof-of-concept sessions as the
task at hand was much smaller, and the team members could thus more eas-
ily coordinate their actions, but was a major hindrance in larger projects.
An important realization confirmed in our experiment was that even though

Collaborative Coding Environment on the Web: A User Study 291

Feature Implemented
in CoRED

Edits should be visible in real-time yes
Possibility to deploy a project containing errors no
Project management tools no

Single click deployment yes
Sufficient awareness between the users partly
Support for undo/redo partly
Tools for communicating partly
Tools for debugging and testing no
Version control support no

Table 9.5: Important features for a collaborative web based IDE, in alpha-
betical order

the developers edit the same code concurrently, the running and debugging
of the application should be separate for each developer.

Many developers are used to traditional desktop based IDEs such as
Eclipse!? and Visual Studio'® and have got used to debug tools provided
by these environments. Thus, they have rather high standards for what a
web-based environment should offer. Many of the participants considered
features such as debugging tools and an ability to set breakpoints to the
code to be vital.

Functional undo/redo is also a feature that users expect of a code editor.
Collaborative editing makes undo and redo more difficult to understand, as
it needs to be designed what is undoable and redoable. Are the users only
undoing their own edits, or does the system allow to undo edits made by
other users? How should the overlapping edits be undone?

Even in the realm of real-time collaboration, version control is a highly
requested feature. Even though version control system is not needed to share
the code, it is useful because it allows the developers to revert back to earlier
revision as well as start separate development branches. There could be sev-
eral ways to integrate a version control system into a real-time collaborative
environment. It would be simple to just connect the development environ-
ment to one of the available version control systems and add a commit button
to the user interface. However, how should the old versions be restored? In
real-time collaboration, the restoring of old states would affect all the users
and therefore it is probably not a good idea to allow. As an alternate option,
we are considering a timeline approach that allows users to drag a slider, and
have a read-only access to history. That would allow users to copy features

2http://www.eclipse.org
Bhttp://www.microsoft.com/visualstudio

292 A. Nieminen et al.

from the older versions to the current. However, branches, the possibility to
create forks and full restorations would probably not be available in the user
interface in such a case.

A different approach to version control could be to purposefully keep the
responsibility of version control outside of the web-based collaborative devel-
opment environment. In this approach, the developers could use any editor
they want, but additionally have the possibility to start collaboration sessions
on the web. At the start of a collaboration session, the code is retrieved from
a version control system to be edited in real-time collaboration. At the end
of the session, the code could be committed back to the version control sys-
tem, and, if needed, another session would be started. Thus, the real-time
collaborative environment would just simply be used in between two com-
mits. This approach would have at least two benefits. Firstly, the developers
who do not want to use real-time collaboration could use any environment
they like and just collaborate via the version control system. This would also
allow a development team to be split into smaller collaborating units of, for
example, two people. Secondly, there is no need to implement complicated
version control features into the web-based environment because most of the
responsibility for branching and other version control management would be
elsewhere.

Communication is essential in software development. In our experiment
the role of the communication tools did not play that big a part because the
teams were mostly co-located and could simply talk to each other. During
the two hour experiment the sole communication channel between the project
leader and their team was the chat box in the environment, which, based on
the interviews, succeeded in doing its job. It may not be necessary to try
to include all the communication channels to the development environment.
Teams could, for example, use an external Voice over IP software for com-
munication. In our experiment, one of the groups reported using a separate
chat program for communicating, mostly because they were used to that.

In a collaborative IDE that is open for everybody to use, some project
management tools are needed. In a relatively small scale use, such as our ex-
periment, the system can be based on the trust between the users. However,
in a system with a large user base, tools for sharing and restricting read and
writes to projects and files are necessary.

In real-time collaborative tools, awareness is an important concept. There
has been lot of research done on, as well as multiple definitions of awareness.
Basically awareness means “knowing what is going on” [5]. When people
work face-to-face, they exchange a lot of information with their speech, facial
expressions, gestures, and other actions as well as by manipulating their
shared environment. A large part of that information is lost when using

Collaborative Coding Environment on the Web: A User Study 293

software tool for collaboration. That is why the tool must deliberatively add
features to improve the awareness of other collaborators. Information such
as who are currently available for collaboration, what are others looking at,
and what are they doing should be transmitted via the collaboration tool.

9.6 Future Work

As already discussed, CoRED is a research artifact and does not fully meet
developers’ expectations. Via our experiment, we gathered hints on which
additional features would bring the most benefit for our system as well as
directions for future research on real-time collaborative software develop-
ment. Before moving on to the ideas for future work, we briefly evaluate
the current state of CoORED based on the essential features of a collaborative
development environment envisioned above.

The last column of Table 9.5 shows how CoRED currently fulfills the re-
quirements we discussed earlier. When considering the features that are not
available in CoRED, no major technical issues are foreseen in their imple-
mentation, as long as we can rely on already existing concepts and implemen-
tations. We are presently evaluating the relative importance of these from
the developer perspective. So far, the ability to deploy a partially erroneous
project and the support for version control have been considered as the most
important ones.

Deploying and running the collaboratively developed applications turned
out to be one of the most apparent hindrances in CoRED. To be able to run
the application, the whole project has to be compilable, a condition often
not satisfied during real-time collaboration. One way of solving this problem
is given in [9], discussed in more detail in Section 9.7. Another deficiency re-
lated to running the application was the lack of debugging support. Creating
a mechanism that allows the developers to print debug text that would be
shown in the IDE would be useful and relatively simple to implement. Setting
breakpoints in the code to stop the execution of the application at certain
position and inspect the values of variables is a feature seen in many tradi-
tional IDEs. Such feature in CoRED would be possible although laborious
to implement.

Integrating a version control system into real-time collaborative software
development is another subject for future work. As discussed in Section 9.5
and additionally in [19], there could be various ways on how to integrate
version control into a system such as CoRED. We plan to further develop
models for using version control systems in a real-time collaboration, imple-
ment such support in CoRED and try them out in later experiments. As a

294 A. Nieminen et al.

related issue, the undo/redo feature does not work optimally in the current
version of CoRED in the face of collaborative edits. We need to rethink
the undo/redo behavior, and possibly incorporate into some kind of version
control or timeline approach. The role of revision control in the light of col-
laborative software development has also been studied by Magnusson et al.
[18]. We assume that the same mechanisms will be reusable in the context
of our work, where micro-scale revisions that are created in a collaborative
fashion form the technical artifact.

When implementing new features to a real-time collaborative IDE, heavy
emphasis needs to be put on the awareness features of the system. Supporting
awareness of other project members and the state of the project would be
even more important if the developers are physically separated from each
other, as opposed to what was the case most of the time in our experiment.
In the current version of CoRED, some steps for improving awareness have
been taken. CoRED shows who have opened the project, who edits which
files as well as their cursor positions. Still, some of the interviewees said
that they had trouble keeping track of what is going on. Awareness could be
further improved by more clearly indicating where the others are looking at
and when they wrote new code. Introducing a version control system with
the possibility of branching would pose even more challenges to the awareness
aspects of the user interface.

Our goal is to expand the research on real-time collaborative program-
ming in two dimensions. Firstly, we will implement some of the features
discussed above and study how they affect the collaborative software devel-
opment process. Secondly, we seek to broaden the scope of the collaborative
programming experiments to a distributed setting by organizing an intercon-
tinental code camp. A development team where the members do not have
the benefit of physical proximity to each other would pose greater challenges
to the cooperation and collaboration aspects of the tools, as well as possibly
expose aspects of real-time collaborative programming not yet captured in
the mostly co-located setting described in this chapter.

9.7 Related Work

Computer-based tools that support collaboration, often called groupware [4],
have been created, used and studied heavily in the multidisciplinary field
known as computer supported cooperative work [21, 11] for decades. Also in
the domain of software development, collaborative processes and tools have
been a subject of study. Gutwin et. al. [12] have studied distributive col-
laborative software development from the perspective of group awareness.

Collaborative Coding Environment on the Web: A User Study 295

DeFranco-Tommarello et. al. [3] also explore collaborative software develop-
ment and analyze a list of tools that allow software developers to communi-
cate, coordinate and design software artifacts collaboratively. Even though
these kinds of collaboration tools for improving the software development
process have been extensively used, the act of writing code in real-time col-
laboration is a more rarely seen phenomenon. Even though implementations
for real-time collaborative code editors have existed much earlier, they have
really gained popularity only along with the web becoming a viable applica-
tion platform.

A number of real-time collaborative software development environments
have appeared on the web in recent years. Cloud9' is one of the most pop-
ular of such environments. It contains a runtime environment for Node.js'®
applications as well as an integration with various version control systems.
Another real-time collaborative web-based IDE called DevTable'® supports
creating HTML5 as well as Python applications that can be run in Google
AppEngine!”. Codenvy'® have also added some real-time collaborative fea-
tures in their IDE. Many other environments, such as Stypi!? and Collabe-
dit?° offer a more limited system without possibility to run the applications
in the environment.

There has also been some environments for research purposes. Collabode
[9] is a collaborative web-based IDE, implemented as an Eclipse plugin. The
most notable feature of Collabode is error-mediated integration. The goal of
error-mediated integration is to prevent other collaborators’ erroneous code
to interfere with other developers. It works by keeping a separate copy of
a file for each developer, and additionally an error-free copy to which edits
are only applied if that can be done to create an error-free file. Thus, even
though everybody sees what the other developers write in real-time, every-
body has their own version of the project that can be run whether the other
developers are in the middle of writing or not. The need for this kind of
technique became apparent also during our experiment. Collabode has also
been used as a platform for user studies on real-time collaborative program-
ming. Compared to our experiment, their study was smaller in scope (30 or
40 minutes, single file, Java console application) and mostly concentrated on
validating their error-mediated integration algorithm.

Yhttps://c9.i0/

Bhttp://nodejs.org/
Yhttps://devtable.com
"https://developers.google.com/appengine/
Bhttps://codenvy.com
Yhttps://wuw.stypi.com
20nttp://collabedit.com/

296 A. Nieminen et al.

In our experiment, we did not instruct the developers to assume any roles
(apart from the two-hour experiment on the third day); they were freely al-
lowed to find a suitable way of working in a collaborative environment. A
different approach, envisioned by Goldman [§8], is that the real-time collab-
orative environment could offer for some novel development models to more
effectively structure work and to advance close collaboration. They suggest
three such models: test-driven pair programming where one person writes
the code while another developer writes the tests, micro-outsourcing where
the main developer could “outsource” small implementation tasks to other
developers, allowing himself to remain on the same level of abstraction, and
mobile instructor where one person takes the role of a teacher. As far as we
know, a proper support for these kind of roles is not yet implemented in any
IDE; they could offer additional interesting research directions.

Another development model often associated with real-time collaborative
environments is distributed pair programming. That is, pair programming
where the participants are not required to be co-located. Saros [25] is a real-
time collaborative tool mostly intended for distributed pair programming,
with various features for improving awareness. Unlike CoRED, Saros is not
web-based but is run inside a desktop Eclipse client. As reported in the
case of Saros, companies and open-source projects were reluctant to try out
their tool for distriputed pair programming [24]. That could be taken as an
indication that, more generally, it may not easy to get the software developers
to adopt new development models offered by real-time collaborative tools.

Even if developers are not ready to use real-time collaboration in ordinary
work, it could be utilized in some specific situations where close collaboration
is essential. One such situation is merge conflicts occurring in a version
control system when combining two incompatible branches of development.
To resolve the conflict, all the parties involved in causing the conflict could
participate in a real-time collaborative conflict-resolving session. A more
detailed explanation of such process as well as a web-based tool enabling it
is given in [20].

9.8 Conclusion

The current paradigm shift from desktop applications to the browser based
applications makes it possible that software development can shift from desk-
top based IDEs to the web. Among many other good features, this shift
makes it easier to enable collaboration between the developers as the devel-
opers are connected to the same system.

Earlier, we have implemented a real-time collaborative code editor named

REFERENCES 297

CoRED. To study the software developers perspective of CoRED and col-
laborative coding in general, we ran a week-long experiment. During the
experiment, six small groups of students used the tool for one week while we
both guided and observed the students. We collected feedback via question-
naires and interviews. Based on the lessons learned during the code camp we
continue to develop CoRED, but what is more important we analyzed what
kind of features the developers assume to see in a collaborative web based
IDE. Naturally the users would like to combine all the features well-known
from desktop based IDEs with the benefits provided by a web based environ-
ment such as a low barrier for starting to use the tool as well as collaboration
features.

Towards the end of the chapter, we pinpoint nine essential features that
should be considered when creating a real-time collaborative development
environment. In addition we speculate that more such features could be
found by implementing these and by doing another round of experimenta-
tion. Based on the results of this study a collaborative tools such as CoRED
can offer developers more powerful environments than the current norm to
develop software in teams.

Acknowledgments

The authors wish to express sincere thanks to all the participants of the
experiment. At the same time, we wish to apologize for the few remaining
(but still annoying) bugs in the system. The code camp was part of the
projects TIVIT Digital Services? and ITEA2 EASI-CLOUDS?, supported
by Vaadin inc.

References

[1] V. Basili, R. Selby, and D. Hutchens. “Experimentation in software
engineering”. In: Software Engineering, IEEE Transactions on SE-
12.7 (1986), pp. 733 —743. 15SN: 0098-5589. DOI: 10.1109/TSE. 1986.
6312975.

[2] K. Beck and C. Andres. Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

2lnttp: //www.tivit-services.fi
2nttp://wuw.itea2.org/project/index/view/?project=10078

298

A. Nieminen et al.

J. DeFranco-Tommarello and F. Deek. “Collaborative software devel-
opment: a discussion of problem solving models and groupware tech-
nologies”. In: System Sciences, 2002. HICSS. Proceedings of the 35th
Annual Hawaii International Conference on. 2002, pp. 568 —577. DOTI:
10.1109/HICSS.2002.993937.

C. A. Ellis, S. J. Gibbs, and G. Rein. “Groupware: some issues and
experiences”. In: Commun. ACM 34.1 (Jan. 1991), pp. 39-58. 1SSN:
0001-0782. DOI: 10.1145/99977.99987. URL: http://doi.acm.org/
10.1145/99977.99987.

M. R. Endsley. “Toward a theory of situation awareness in dynamic
systems”. In: Human Factors: The Journal of the Human Factors and
Ergonomics Society 37.1 (1995), pp. 32-64.

R. T. Fielding. “Chapter 5: Representational State Transfer (REST)”.
In: Architectural Styles and the Design of Network-based Software Ar-
chitectures, Dissertation (2000).

N. Fraser. “Differential synchronization”. In: Proceedings of the 9th
ACM symposium on Document engineering. DocEng ’09. Munich,
Germany: ACM, 2009, pp. 13-20. 1SBN: 978-1-60558-575-8. DOI: 10.
1145/1600193 . 1600198. URL: http://doi.acm.org/10. 1145/
1600193.1600198.

M. Goldman. “Role-based interfaces for collaborative software devel-
opment”. In: Proceedings of the 24th annual ACM symposium adjunct
on User interface software and technology. UIST '11 Adjunct. Santa
Barbara, California, USA: ACM, 2011, pp. 23-26. 1SBN: 978-1-4503-
1014-7. por: 10.1145/2046396 . 2046410. URL: http://doi.acm.
org/10.1145/2046396.2046410.

M. Goldman, G. Little, and R. C. Miller. “Real-time collaborative cod-
ing in a web IDE”. In: Proceedings of the 24th annual ACM symposium
on User interface software and technology. UIST '11. Santa Barbara,
California, USA: ACM, 2011, pp. 155-164. 1SBN: 978-1-4503-0716-1.
DOI: 10.1145/2047196 .2047215. URL: http://doi.acm.org/10.
1145/2047196.2047215.

M. Gronroos. Book of Vaadin. Vaadin Limited, 2011.

J. Grudin. “Computer-supported cooperative work: history and fo-
cus”. In: Computer 27.5 (1994), pp. 19 —26. 1SsN: 0018-9162. por:
10.1109/2.291294.

REFERENCES 299

[12]

[13]

[16]

[17]

C. Gutwin, R. Penner, and K. Schneider. “Group awareness in dis-
tributed software development”. In: Proceedings of the 2004 ACM con-
ference on Computer supported cooperative work. CSCW ’04. Chicago,
Mlinois, USA: ACM, 2004, pp. 72-81. 1SBN: 1-58113-810-5. DOI: 10.
1145/1031607 . 1031621. URL: http://doi.acm.org/10. 1145/
1031607.1031621.

J. D. Herbsleb. “Global Software Engineering: The Future of Socio-
technical Coordination”. In: 2007 Future of Software Engineering.
FOSE ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 188-198. 1SBN: 0-7695-2829-5. DOI: 10.1109/F0SE.2007.11. URL:
http://dx.doi.org/10.1109/F0SE.2007.11.

M. Jonge, E. Visser, and J. M. Visser. Collaborative software devel-
opment. Tech. rep. Amsterdam, The Netherlands, The Netherlands,
2001.

B. Kitchenham et al. “Preliminary guidelines for empirical research in
software engineering”. In: Software Engineering, IEEE Transactions
on 28.8 (2002), pp. 721 —734. 1sSN: 0098-5589. DOI: 10.1109/TSE.
2002.1027796.

B. Kitchenham and S. Pfleeger. “Personal Opinion Surveys”. In: Guide
to Advanced Empirical Software Engineering. Ed. by F. Shull, J.
Singer, and D. Sjgberg. Springer London, 2008, pp. 63-92. ISBN: 978-
1-84800-043-8. por: 10.1007/978-1-84800-044-5_3. URL: http:
//dx.doi.org/10.1007/978-1-84800-044-5_3.

J. Lautamaki et al. “CoRED: browser-based Collaborative Real-time
Editor for Java web applications”. In: Proceedings of the ACM 2012
conference on Computer Supported Cooperative Work. CSCW ’12.
Seattle, Washington, USA: ACM, 2012, pp. 1307-1316. 1SBN: 978-
1-4503-1086-4. DOI: 10.1145/2145204.2145399. URL: http://doi.
acm.org/10.1145/2145204.2145399.

B. Magnusson, U. Asklund, and S. Minor. “Fine-grained revision con-
trol for collaborative software development”. In: Proceedings of the
1st ACM SIGSOFT symposium on Foundations of software engineer-
ing. SIGSOFT '93. Los Angeles, California, USA: ACM, 1993, pp. 33—
41. 1SBN: 0-89791-625-5. DOI: 10.1145/256428.167061. URL: http:
//doi.acm.org/10.1145/256428.167061.

T. Mikkonen and A. Nieminen. “Elements for a cloud-based develop-
ment environment: online collaboration, revision control, and contin-
uous integration”. In: Proceedings of the WICSA/ECSA 2012 Com-
panion Volume. WICSA/ECSA ’12. Helsinki, Finland: ACM, 2012,

[25]

pp. 14-20. 1SBN: 978-1-4503-1568-5. DOI: 10.1145/2361999.2362003.
URL: http://doi.acm.org/10.1145/2361999.2362003.

A. Nieminen. “Real-time collaborative resolving of merge conflicts”.
In: Collaborative Computing: Networking, Applications and Work-
sharing (CollaborateCom), 2012 8th International Conference on.
2012, pp. 540 —543.

T. Palmer and N. Fields. “Computer supported cooperative work”. In:
Computer 27.5 (1994), pp. 15 —17. 1SsN: 0018-9162. DOI: 10.1109/2.
291295.

B. W. Perry. Google Web Toolkit for Ajax. O’Reilly Media, 2007.

M. Pikkarainen et al. “The impact of agile practices on communication
in software development”. English. In: Empirical Software Engineering
13 (3 2008), pp. 303-337. 1sSN: 1382-3256. DOL: 10. 1007 /510664~
008-9065-9. URL: http://dx.doi.org/10.1007/s10664-008-
9065-9.

L. Prechelt. “Some non-usage data for a distributed editor: the saros
outreach”. In: Proceedings of the 4th International Workshop on Co-
operative and Human Aspects of Software Engineering. CHASE ’11.
Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 48-48. 1sBN: 978-1-4503-
0576-1. DOI: 10.1145/1984642.1984651. URL: http://doi.acm.
org/10.1145/1984642.1984651.

S. Salinger et al. “Saros: an eclipse plug-in for distributed party pro-
gramming”. In: Proceedings of the 2010 ICSE Workshop on Coopera-
tive and Human Aspects of Software Engineering. CHASE ’10. Cape
Town, South Africa: ACM, 2010, pp. 48-55. 1SBN: 978-1-60558-966-4.
DOI: 10.1145/1833310.1833319. URL: http://doi.acm.org/10.
1145/1833310.1833319.

300

11.
12,

13.

14.

15.

16.

17.

18.

20.

21.

22,

23.

24.

25.

26.

27.
28.

Turku Centre for Computer Science
TUCS General Publications

Joakim von Wright, Jim Grundy and John Harrison (Eds.), Supplementary
Proceedings of the 9th International Conference on Theorem Proving in Higher
Order Logics: TPHOLs'96

Mikko Ruohonen and Juha Parnisto (Eds.), Proceedings of the First European
Doctoral Seminar on Strategic Information Management

Christer Carlsson (Ed.), Exploring the Limits of Support Systems

Mats Aspnads, Ralph-Johan Back, Timo Jarvi and Tiina Lehto (Eds.), Turku
Centre for Computer Science, Annual Report 1996

Wolfgang Weck, Jan Bosch and Clemens Szyperski (Eds.), Proceedings of
the Second International Workshop on Component-Oriented Programming (WCOP
'97)

Working Material from the School on Natural Computation, SNAC

Mats Aspnds, Ralph-Johan Back, Timo Jarvi and Tiina Lehto (Eds.), Turku
Centre for Computer Science, Annual Report 1997

Reima Suomi, Paul Jackson, Laura Hollmén and Mats Aspnés (Eds.),
Teleworking Environments, Proceedings of the Third International Workshop on
Telework

Robert Fullér, Fuzzy Reasonging and Fuzzy Optimization

Wolfgang Weck, Jan Bosch and Clemens Szyperski (Eds.), Proceedings of
the Third International Workshop on Component-Oriented Programming (WCOP
‘'98)

Abstracts from the 10th Nordic Workshop on Programming Theory (NWPT'98)
Edward M. Roche, Kalle Kangas and Reima Suomi (Eds.), Proceedings of the
IFIP WG 8.7 Helsinki Working Conference, 1998

Christer Carlsson and Franck Tétard (Eds.), Intelligent Systems and Active
DSS, Abstracts of the IFORS SPC-9 Conference

Mats Aspnds, Ralph-Johan Back, Timo Jarvi, Martti Kuutti, and Tiina Lehto
(Eds.), Turku Centre for Computer Science, Annual Report 1998

Tero Harju and Iiro Honkala (Eds.), Proceedings of the Secenth Nordic
Combinatorial Conference

Christer Carlsson (Ed.), The State of the Art of Information System Applications
in 2007

Christer Carlsson (Ed.), Information Systems Day

Ralph-Johan Back, Timo Jarvi, Nina Kivinen, Leena Palmulaakso-Nylund
and Thomas Sund (Eds.), Turku Centre for Computer Science, Annual Report
1999

Reima Suomi and Jarmo Tahkapaa (Eds.), Health and Welath through
Knowledge

Johan Lilius and Seppo Virtanen (Eds.), TTA Workshop Notes 2002

Mikael Collan, Investment Planning — An Introduction

Mats Aspnds, Christel Donner, Monika Eklund, Pia Le Grand, Ulrika
Gustafsson, Timo Jarvi, Nina Kivinen, Maria Prusila and Thomas Sund
(Eds.), Turku Centre for Computer Science, Annual Report 2000-2001
Ralph-Johan Back and Victor Bos, Centre for Reliable Software Technology,
Progress Report 2003

Pirkko Walden, Stina Storling-Sarkkila, Hannu Salmela and Eija H. Karsten
(Eds.), ICT and Services: Combining Views from IS and Service Research

Timo Jarvi and Pekka Reijonen (Eds.), People and Computers: Twenty-One
Ways of Looking at Information Systems

Tero Harju and Juhani Karhumaki (Eds.), Proceedings of WORDS'03

Mats Aspnds, Christel Donner, Monika Eklund, Pia Le Grand, Ulrika
Gustafsson, Timo Jarvi and Nina Kivinen (Eds.), Turku Centre for Computer
Science, Annual Report 2002

29.

30.

31.
32.
33.

34.

35.

36.

37.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52,

53.

54.

55.

Joao M. Fernandes, Johan Lilius, Ricardo J. Machado and Ivan Porres
(Eds.), Proceedings of the 1st International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software

Mats Aspnds, Christel Donner, Monika Eklund, Ulrika Gustafsson, Timo
Jarvi and Nina Kivinen (Eds.), Turku Centre for Computer Science, Annual
Report 2003

Andrei Sabelfeld (Ed.), Foundations of Computer Security

Eugen Czeizler and Jarkko Kari (Eds.), Proceedings of the Workshop on
Discrete Models for Complex Systems

Peter Selinger (Ed.), Proceedings of the 2nd International Workshop on
Quantum Programming Languages

Kai Koskimies, Johan Lilius, Ivan Porres and Kasper @sterbye (Eds.),
Proceedings of the 11th Nordic Workshop on Programming and Software
Development Tools and Techniques, NWPER'2004

Kai Koskimies, Ludwik Kuzniarz, Johan Lilius and Ivan Porres (Eds.),
Proceedings of the 2nd Nordic Workshop on the Unified Modelling Language,
NWUML'2004

Franca Cantoni and Hannu Salmela (Eds.), Proceedings of the Finnish-Italian
Workshop on Information Systems, FIWIS 2004

Ralph-Johan Back and Kaisa Sere, CREST Progress Report 2002-2003

Mats Aspnds, Christel Donner, Monika Eklund, Ulrika Gustafsson, Timo
Jarvi and Nina Kivinen (Eds.), Turku Centre for Computer Science, Annual
Report 2004

Johan Lilius, Ricardo J. Machado, Dragos Truscan and Jodo M. Fernandes
(Eds.), Proceedings of MOMPES’05, 2nd International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software

Ralph-Johan Back, Kaisa Sere and Luigia Petre, CREST Progress Report
2004-2005

Tapio Salakoski, Tomi Mantyla and Mikko Laakso (Eds.), Koli Calling 2005 -
Proceedings of the Fifth Koli Calling Conference on Computer Science Education
Petri Paju, Nina Kivinen, Timo Jarvi and Jouko Ruissalo (Eds.), History of
Nordic Computing - HiNC2

Tero Harju and Juhani Karhumaki (Eds.), Proceedings of the Workshop on
Fibonacci Words 2006

Michal Kunc and Alexander Okhotin (Eds.), Theory and Applications of
Language Equations, Proceedings of the 1st International Workshop, Turku,
Finland, 2 July 2007

Mika Hirvensalo, Vesa Halava, Igor Potapov and Jarkko Kari (Eds.),
Proceedings of the Satellite Workshops of DLT 2007

Anne-Maria Ernvall-Hytonen, Matti Jutila, Juhani Karhumaki and Arto
Lepisto (Eds.), Proceedings of Conference on Algorithmic Number Theory 2007
Ralph-Johan Back and Ion Petre (Eds.), Proceedings of COMPMOD 2008
Elena Troubitsyna (Ed.), Proceedings of Doctoral Symposium Held in
Conjunction with Formal Methods 2008

Reima Suomi and Sanna Apiainen (Eds.), Promoting Health in Urban Living:
Proceedings of the Second International Conference on Well-Being in the
Information Society (WIS 2008)

Auli Stuominen, Jussi Kantola, Arho Suominen and Sami Hyrynsalmi
(Eds.), NEXT 2008 - Proceedings of the Fifth International New Exploratory
Technologies Conference

Tapio Salakoski, Dietrich Rebholz-Schuhmann and Sampo Pyysalo (Eds.),
Proceedings of the Third International Symposium on Semantic Mining in
Biomedicine (SMBM 2008)

Helena Karsten, Barbro Back, Tapio Salakoski, Sanna Salanterd and Hanna
Suominen (Eds.), The Proceedings of the First Conference on Text and Data
Mining of Clinical Documents (Louhi’08)

Anne-Maria Ernvall-Hytonen and Camilla Hollanti (Eds.), Proceedings of the
3™ Nordic EWM Summer School for PhD Students in Mathematics

Terry Rout, Ivan Porres, Risto Nevalainen and Beatrix Barafort (Eds.),
Software Process Improvement and Capability Determination 9th International
Conference, SPICE 2009, Turku, Finland, June 2009 Proceedings

Harri Virolainen, Seppo Sirkemaa and Tero Vartiainen (Eds.), Proceedings
of 14™ International Conference on Telework - ITA 2009

56.

57.

58.

59.
60.

Reima Suomi and Ilkka Ilveskoski (Eds.), Navigating the Fragmented
Innovation Landscape: Proceedings of the Third International Conference on Well-
Being in the Information Society (WIS 2010)

Marina Waldén and Luigia Petre (Eds.), Proceedings of the 22nd Nordic
Workshop on Programming Theory NWPT’'10

Irmeli Laine, Johan Lilius, Tomi Mantyla, Ion Petre, Outi Tuohi and Ilona
Tuominen (Eds.), Turku Centre for Computer Science, Annual Report 2012
Heikki Partanen, Matematiikan johtaminen luonnollisten lukujen teoriasta

Ivan Porres, Tommi Mikkonen and Adnan Ashraf (Eds.), Developing Cloud
Software: Algorithms, Applications, and Tools

TURKU
CENTRE for
COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

? University of Turku

& A ,é Faculty of Mathematics and Natural Sciences

§ é e Department of Information Technology

7// \\§ e Department of Mathematics and Statistics
2N Turku School of Economics

e Institute of Information Systems Science

Abo Akademi University
Division for Natural Sciences and Technology
e Department of Information Technologies

%o

ISBN 978-952-12-2952-7
ISSN 1239-1905

Developing Cloud Software

Developing Cloud Software

Developing Cloud Software: Algorithms, Applications, and Tools

