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Introduction

Structural data of biomolecules and biomolecular complexes has been accumu-
lating in databases since the 1970’s. Today, both quality and diversity of the
data is starting to allow reliable 3D models to be built based on information
contained in the coordinate files. These models are then used for various tasks
like identifying binding sites, predicting preferred binders and, in general, as
tools for quantifying inter- and intramolecular interactions.

Most of the structural data has been collected with X-ray diffraction method,
and to a lesser, but possibly increasing extent using nuclear magnetic resonance
(NMR), electron microscopy and neutron diffraction. The experimental meth-
ods and processing of the raw measurement data generate error in the structure
files [1]. Statistical modeling allows taking into account the uncertainty in the
data. Chemical and physical knowledge is used for guidance to avoid unrealistic
schemes and to reduce computational load in applying the model.

In this work, a Bayesian statistical framework was utilised to build a prob-
abilistic model that is used as a new type of knowledge-based scoring function
in assessing preference and relative strength of molecular contacts. This scoring
function is novel in the sense that it takes into account also directional data,
not only distance data, like knowledge-based scoring functions traditionally have
done. Recent reviews of the subject can be found in [2], [3], [4].

The physico-chemical factors that create the directional nature of intermole-
cular interactions and the fragmentation of molecules needed to capture all
relevant structural information in the model are reviewed in the first chapter of
this thesis. The second chapter provides an overview of the statistical modeling
approach utilised in the development of the scoring function. The third chapter
demonstrates use of the model by applying it in a biological context, and the
fourth chapter corresponds to the research article presenting a proof of concept
for the model, which is further developed and tested in other chapters of this
thesis.
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Chapter 1

The 3D nature of
interaction preferences

1.1 Types of interactions between molecules

Intermolecular interactions are ultimately formed from electrostatic attraction
and repulsion between electrons and nucleii of the interacting molecules. Dy-
namical aspects like oscillations of the electron cloud produce a time averaged
electrostatic field. Two standard references on the subject are [5] and [6]. An
overview is given in the textbook [7], where also the types of molecular com-
plexes and functional groups relevant for this work can be found. In this section,
short definitions of what creates intermolecular forces are listed to provide back-
ground details for the subsequent discussion on molecular fragments.

1.1.1 Polar

Different electronegativities of elements produce permanent electrical dipoles in
molecules. Interactions between permanent dipoles form strong non-covalent
bonds, like the hydrogen bond. A special case of hydrogen bonding is a water
bridge, water molecule mediated double hydrogen bond between, for example,
two amino acid residues.

1.1.2 Hydrophobicity and van der Waals contacts

Hydrophobic effect is the agglomeration of nonpolar molecules, or parts of mole-
cules, in aqueous solution to minimize the nonpolar structure contact area with
water. A van der Waals interaction (vdWi) is the attraction between transient
electrical dipoles created by synchronized fluctuations in the electron clouds of
the molecules. A vdWi is in principle always present and for individual frag-
ments it is much weaker than a polar interaction. It can be quantified as binding
energy per unit surface area.
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1.1.3 Ionic

Starting from the electrically neutral form of a functional group, protonated
and deptrotonated forms have a net electric charge. Electrostatic attraction
and repulsion between these forms, together with interactions involving ionized
metal atoms like divalent magnesium (Mg?*t), represent a generic class called
ionic interactions. The strongest non-covalent bonds are ionic.

1.1.4 Polar-neutral and charged-neutral

Permanent electrical dipoles can induce polarization in electrically neutral struc-
tures, which leads to attraction between the permanent and induced dipole.

1.2 Fragmentation of molecules

Modeling the interactions of a molecule with its environment, is in this approach
segmented into interactions relating to individual fragments. The fragments are
typically either a part of, or contain a functional group. Definition of a fragment
type, with an orientation in three-dimensional space, requires specifying at least
three atoms for the fragment. The fragmentation is utilised such that contact
data for each fragment type is collected and the implied contact patterns are
coded in three-dimensional coordinate probability densities and distributions of
a priori information. Contact patterns of a larger molecular fragment, e.g. the
entire molecule, are built combining the patterns for individual fragments. An
atom alleged to be in contact with the fragment is here called a target atom.

1.2.1 Fragment class specific prior information

Chemical properties of a molecular fragment are the main form of a priori
information used for model guidance. These properties include, for example,
electronegativity of the fragment atoms and whether or not the fragment is
part of an aromatic structure. Also, theoretically known aspects like directional
preferences are important, especially when the amount and quality of contact
atom position data are limited. The fragment classification used in this work is
presented in article [17], where the developed probabilistic model is published,
and also in Table 1.1. The target atom classes are given in Table 1.2.

Choosing the classification requires balancing between coverage of chemical
space and sufficiency of the alleged amount of contact data for each fragment
class. The former determines, not only the range of applicability for the clas-
sification, but also the starting point for possible merging of classes based on
equivalent contact patterns. In this work, the classification contains most of
the frequently encountered fragment types, in training data set, as defined with
some broad definition of a molecular setting, like an aromatic structure. This
allows testing the method to verify its usefulness, and also lays the basis for
further development.
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Class Description Class Description
f2 Hydroxyl O / aliphatic f18 Fluorine / non-arom.
3 Hydroxyl O / aromatic 20 Chlorine / aromatic
5 Carbonyl O (\ £9,f10) f21 Chlorine / non-arom.
f6 Carboxyl O 22 N in aromatic (w/o subst.)
f7 Carbamoyl O f18 Fluorine / non-arom.
f8 Phosphate group O f23 N in non-arom. planar
9 Amide O / non-arom. f26 | Amino (prim.) N / non-arom.
f10 Amide O / aromatic f27 Amino (prim.) N / aromatic
f11 Secondary C in aromatic f29 Amino (prim.) N / planar
f12 | Secondary C in non-arom. | f£34 Bromine / aromatic
f13 Primary carbon 35 Bromine / aliphatic
f17 Fluorine / aromatic £36 Iodine / aromatic

Table 1.1: Fragment classes used in this study. Main forms of intermolecular
interaction for these fragment types are hydrogen bonding, dispersion, charged
group based electrostatic and halogen bonding. The fragment classification was
partly adopted from the previous work of Rantanen et al. [48] (see chapter Arti-
cle). Here common slash (’/’) means bonded to and backslash means excluding.
Symbols are used for oxygen, carbon and nitrogen.

Class | Description

C3 Carbon of a methyl group

C4 Alpha carbon

C5 Carbon in an aromatic structure
Ceé Sulfur of a thioether group

C7 Sulfur of a thiol group

C8 Nitrogen of an amide group

C9 Nitrogen of indole, imidazole and guanido groups
C10 Nitrogen of an amino group
C11 Oxygen of a carboxamide group
C12 Oxygen of a carboxyl group
C13 Oxygen of a hydroxyl group
Ci14 Main chain carbonyl oxygen
C15 Main chain amide nitrogen

Table 1.2: Classification of contact atoms, or targets. The target classification
was partly adopted from the previous work of Rantanen et al. [48] (see chapter
Article).
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1.3 Specificity and energetics in intermolecular
contacts

Examples of chemically compatible structures are molecular fragments that have
deformable electronic distributions, and two functional groups with opposite net
charge. Non-covalent and covalent bonds are formed between compatible struc-
tures. When two molecules form a complex with largely compatible contacts,
they can be called structurally and chemically complementary.

1.3.1 Complementarity

In biochemical reactions like enzymatic catalysis, the catalytic site and the re-
actant are highly complementary, especially in the transition state [7]. Relating
to this, a type of therapeutic molecule candidate is the so called transition state
analogue that binds tightly to the active site of an enzyme, preventing it from
performing catalysis. Finding a suitable candidate molecule based on comple-
mentarity, is called molecular docking [4], [8]. Evaluation of the preference of the
docked molecule, which reflects its binding strength and is useful for assessing
relative affinity, is the task of a scoring function.

1.3.2 Distance and direction dependent preferences

Distance between interacting atoms, or more precisely, between the average posi-
tions of two nucleii, can be taken as determining the strength of the interaction.
This assumption is used as the basis for traditional knowledge-based scoring
functions that estimate binding strength in molecular docking [2]. Docking is
part of the computerized stage of drug discovery, and an efficient scoring func-
tion is a potent factor in reducing the work load of the wet laboratories testing
binding affinities of candidate molecules [4].

Directional data of the contact atom distributions contain relevant informa-
tion with respect to, not only the plain contact preferences, but also to strength
of the binding, as discussed in the next section. When probabilistic preferences
are combined with molecular ensemble properties, also relative affinity could be
evaluated.

1.3.3 Correspondence with quantum mechanics

In terms of molecular orbital theory, the electron cloud of a molecule is described
with bonding and nonbonding electron orbitals. These are in one-to-one corre-
spondence with electron densities, and when molecules are in close proximity,
the densities contribute through their 3D structure to the total energy of the
contact. The densities reform in the process, so that the system of nucleii and
electrons approach the minimum energy conformation continuously. In other
words, electrons mediate interactions between nucleii of separate molecules as
part of long distance forces, discussed briefly in the first section of this chapter,
for a detailed treatment see [5].
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The positions of hydrogen atoms in X-ray diffraction based structures are
not usually known, and even if they were known, the positions would not be as
confined with respect to the rest of the structure, as they are for the heavy atoms.
This is because hydrogens are an order of magnitude lighter, so their covalent
bonds reorient readily with changing enviroment. Therefore, hydrogens bonded
to heavy atoms are included in the model implicitly. Protons are considered to
be mediators like electrons, though heavier and carrying opposite charge.

Taken that the fragment classification is non-redundant, the distance and di-
rection dependent distribution of relative positions of the nucleii, together with
molecular ensemble properties influencing physical quantities like temperature,
is interpreted to contain all relevant information to quantify the strength of the
contact. In other words, it reveals the basic form of the potential energy func-
tion governing the relative motion of nucleii during the intermolecular contact.
This reasoning takes advantage of the well-known fact that intermolecular in-
teractions can be considered energetically to be on the border of quantum and
classical mechanics, so that concepts from both sides can be applied. Namely,
quantum mechanics is needed for the description of electronic structure of the
molecule, and as already discussed, it is the electron distribution that dictates
the directional preferences of the intermolecular contacts, through lone electron
pairs, p-orbitals and other basic features. A molecular complex is not a static
structure though, because thermal energy brings about nuclear motion, and this
kinetic energy is confined in the multidimensional potential energy landscape
of the complex. The motion of the nucleii allows a classical description, in the
potential created by electrons and single protons. In conclusion, assuming a
nonredundant molecular fragment classification, the three-dimensional proba-
bility densities that capture relative positions of nucleii correspond to potential
energy wells. The quantum mechanical formation of an effective potential in
molecules is next reviewed.

The adiabatic or Born-Oppenheimer approximation

The fundamental assumption behind the approach described in this section,
that the relative positions of nucleii suffice for describing the form of potential
energy of the interactions between molecules, is based on the so called adiabatic
approximation, see e.g. [9] for details. It is also known as Born-Oppenheimer
approximation and in case of molecules it states that the electronic motion
can be separated from nuclear motion. This is justified by that the electrons
are much lighter than nucleii and therefore move in the mutual electric field
much faster, so much faster that their distribution can be taken to adapt to
the nuclear motion without delay. Many textbooks on quantum mechanics
have an exposition of this approximation included [10], [11]. The separation of
motions is formalized by factoring the joint state of electrons and nucleii to a
product of nuclear and electronic states, also parametrising the electronic states
with nuclear coordinates of a fixed molecular conformation. The outcome is
a group of equations for nucleii, moving in the effective potential created by
electrons. This standard procedure traditionally models nuclear motion as part
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of a molecule, and is in this work used in the framework of relative motion
between molecules in a complex.

Intermolecular motion

Deformations of the electronic clouds during an intermolecular contact depend
on the molecular orbitals of the free molecules, and on the types of contact-
ing molecular surfaces, and on the distance between contacting atoms. Also
the hydrogen, or single proton positions are taken here to continuously adjust
between the molecules in relative motion. These changes in the electron and
proton arrangements generate the potential of interaction, time-average of which
is used in intermolecular contact modeling. Typical forms of these potentials
can be found for example in [12].

The frequency of the intermolecular vibrations are commonly found in the
far infrared region, located between 300 GHz and 3 THz, whereas intramole-
cular vibrations are typically in the near infrared region, i.e. from 30 to 300
THz [13], [14]. Teraherz (THz) corresponds to 10'? Herz. In other words, vibra-
tional motion between molecules is on average slower than internal vibrations,
which is tentatively taken here to allow also protons to adjust their positions
to intermolecular motion instantly. These arguments are the basis for apply-
ing the adiabatic approximation to intermolecular motion, including protons in
addition to electrons as mediators forming the potential.

Additivity of the individual fragment contributions

A relevant issue relating to fragment based modeling is whether the contribu-
tions of individual fragments can be straightforwardly added to give a meaning-
ful estimate for a larger portion of a molecule, for example, an entire ligand or an
area of protein surface. A recent study of this subject with respect to fragment
specific contributions of energy is published in [15] and there it is concluded that
contributions can not automatically be taken as additive. The reason for this is
that biochemistry takes place in water based solution, and the hydration state
of a binding site, or contact site, has a role in the binding process. The work-
ing assumption here is that effects of the hydration state manifest themselves
through the probabilistic contact preferences described in this work, when water
molecules involved in binding are modeled explicitly, but it is acknowledged that
this needs to be studied further to assess if a more complicated than strictly
additive approach should be preferred.

Formalism

This section is concluded by a formal presentation of intermolecular adiabatic
approximation as applied to intermolecular interactions. The quantum mechan-
ical derivation of the equation for intramolecular nuclear motion in an average
potential can be found in many textbooks on quantum mechanics, for example
[9], [10], [16].
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Our exposition starts from the time-independent Schrédinger equation:

A({r} R ({r}, {R}) = BU({7}, {R}). (1.1)

The variables {7} and {R} in (1.1) represent electronic and nuclear positions,
respectively. On the right hand side of the equation, E' is the total energy of
the contact. The total energy operator, Hamiltonian H, is composed of several
terms:

.H:TN+TS+VN8+VS€+VNN7 (12)

where 7' is a kinetic energy operator and V a potential energy operator. Sub-
script e refers to electrons and subricpt N to nucleii. According to the central
dogma of non-relativistic quantum mechanics, the wave function contains all
information about the system described by the Hamiltonian operator. Part of
the adiabatic approximation is factoring the wave function ¥ to a product of
nuclear © and electronic ® wave function:

v({r}, {R}) = 0({RHe({r}; {R}), (1.3)

where @ is parametrized with relative nuclear positions {R} When function
(1.3) is used in equation (1.1), taking into account that the kinetic energy oper-
ators depend only on either {7} or {R}, formally solving the electronic equation
(Te + Ve + Vee)CI) = Ee({R})CI), and finally integrating over the degrees of free-
dom of the mediators (electrons and protons), the equation for nuclear motion

in the average potential (E.-,+) of the contact is obtained:

TNO({RY) + Eoepr ({R)O([R}) = EO({R)). (1.4)

Reminding that a quantum mechanical wave function is in a one-to-one corre-
spondence with a probability density, the wave function for relative, intermole-
cular nuclear motion @({R}) is considered to have a functional connection

=0 (1.5)

In other words, the squared norm of the wave function for nuclear motion co-
incides with the three-dimensional probability density f obtained by modeling
the structural data of the molecular contacts. Interpreting (1.5) together with
(1.4) from the side of f, the atomic positions defined by distance and direction,
that attain the highest probability density values correspond to those atomic
configurations that are located deepest in the potential well of the contact.
This concludes the part of the work describing conceptual foundations for using
structural coordinate data modeling probability densities as knowledge-based
scoring functions. The discussion is next moved on to the statistical model used
for capturing information in the structural coordinates.
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Chapter 2

Statistical modeling

This chapter gives first a review of the basic statistical tools and concepts used
in the model developed in this work and published in [17]. Contents of the
publication are also given in chapter Article in this book. Second, a possible
future development step, a study of a predictive version for the model is pre-
sented. These are followed by exemplifying results, which are compared with
the corresponding results from the presently in use parametric version of the
model [17].

2.1 Bayesian data analysis

The product of probability density point values, determined for a set of observed
data points, is called a likelihood function. A statistical model can be guided
using theoretical and empirical facts or modeler’s beliefs that do not depend on
the observed raw data. In the framework of Bayesian data analysis, this can be
done, for example, through the so called conjugate prior densities by forming
a product with the likelihood. Parameters of the prior densities, the hyperpa-
rameters, hold the external information and are used to calculate regularized
estimates for the model parameters. The level of regularization can be adjusted
by one or more parameters of the prior density. The update procedure creates
a probability density of the parameters, called the posterior density, which can
then be used to determine the regularized estimates and also different measures
of the uncertainty in the estimate. These work as a test, for correctness of the
modeler’s beliefs, or for the support that a theoretical a priori description of
the modeled system attains from the data. The posterior density has the same
functional form as the conjugate prior density and it may be used as a prior for
subsequent rounds of update with new data.

This interplay between external information and data is useful, and many
times necessary, when the datasets are not exhaustive but limited, which they
often are. Useful references on the subject include [18], [19].

9
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2.1.1 Chemical a prior: information

Modeling of molecular processes allows chemical information about the alleged
types of interactions between molecules to be included in the form of experimen-
tal observations and theoretical results. An example of theoretical information
is a value for the angle between a reference direction of a fragment and an
average contact direction, of which the latter can be estimated from known di-
rectional aspects of molecular orbitals. Another level of guidance, in addition to
the prior distributions, emerges when the model contains submodels based on
a classification that requires weights for the classes. The weights can represent
plausibility of a contact type for a molecular fragment class.

2.2 Choosing the densities

The raw data on which this probabilistic model was trained, is atom position
coordinates in three-dimensional space, mainly collected from the Protein Data
Bank [20]. Starting point for choosing the present structure of the model, was
that the three-dimensional probability density to be used, should be flexible
enough to capture the details of the contact atom cloud and still be readily
fitted to data. The rationale behind this was to allow fast training of the model,
several times, in order to investigate the properties of coordinate data sets. This
way, a workable model is obtained, a model that also works as a platform for
future development, one example of a possible development is presented in sec-
tion Predictive model, later in this chapter. The most straightforward way to
achieve the above mentioned goal was to use interconnected one-dimensional
parametric densities. They are straightforward to fit to the data of the corre-
sponding variable and their parameters can be updated with simple formula.
Some complexity comes from that, in principle, each individual density requires
n X m X | terms, where (n,m, ) are numbers of modes for the distributions, cor-
responding to each of the three spherical polar coordinates. Numbers n, m and
[ are typically less than or equal to three, so that a reference maximum number
of terms in the modeling probability density is 27. This number can be reduced
by relying on the characteristic features in the 3D contact data collected for
molecular fragments that have a uniquely defined spatial orientation.

2.2.1 Simplifying the functional form through regularities
in data

The type of probability density described in this section, can be made simpler
by using observed or alleged regular features in the data.This means, e.g., that
it may be possible to combine modes of two variables, like distance and polar
angle. Combining modes of these variables starts from the assumption that
when a contact atom cloud genuinely has a polar angle distribution with more
than one peak, or mode, the distribution with respect to distance follows the
same pattern, because both reflect the strength of the bond. This assumption
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Covalent boand

® Polar Main-atom
’ Atomsg 1 & 2

a 7 ® Polar Target-atom

= — — —Naoncovalent bond

& palar angle, ¢ azimuthal angle, p distance

Figure 2.1: A possible polar contact geometry showing the use of spherical
polar coordinates to describe the position of the target atom with respect to the
fragment.

is based on chemistry like the double polarization of halogens [21], and can be
observed in the data.

Distributions of the third spherical polar coordinate variable, azimuthal an-
gle, were modeled separately for each combined polar angle and distance mode,
because no similar argument was found for connecting the azimuthal angle
modes with those of either of the other two variables.

The number of modes for either polar angle or distance can be determined
first and then used for the other variable, because possible multimodality of
distance distribution will imply interaction with electrons on different molecular
orbital. Though, it was found that when the count of contact atom positions for
a fragment is relatively low, but large enough to be informative, starting form
the distance distribution gives more robust parameter estimates.

The model

Building the model starts from presenting the distribution of contact atom posi-
tions in spherical polar coordinates, i.e. distance p, polar angle # and azimuthal
angle ¢. A graphical presentation of the geometry of an exemplifying fragment-
target contact is given in Figure 2.1.
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A one-dimensional probability density was fitted to data distributed along
each coordinate separately. The piecewise defined densities obtained: f, g and
h, can now be used to put together a three-dimensional density describing the
cloud of observed contact atom positions. Generic functional form of the density

p, is

N; f @ Nijk
p(p,6,6|0) = Z Z g“ e Z hiji(6 | ©ijr)

(2.1)

In equation (2.1), vectors O, O, @ij and @ijk symbolize the parameters of
the corresponding density, and IV;, N;; and IV, are numbers of density function
modes. The number of modes for the polar angle density in (2.1) is distance
density mode specific and the number of modes for azimuthal angle density is
polar angle density mode specific. The order in which variables appear in the
chain of dependences is exchangeable in this generic form. Correction terms p?
and sin(f) in (2.1) are required in compiling the three-dimensional density,
following from that the atom location distributions along each variable, i.e.
spherical polar coordinate, are modeled as one dimensional variables. Another
equivalent choice would be to use the correction terms to the data points before
fitting probability densities. Modeling data was in this work done using the
approach corresponding to equation (2.1).

The form of the density (2.1) can be simplified when, for example, the ra-
tionale discussed earlier in this section holds, namely that there are prevalent
regularities allowing a preferred order of dependensies to be defined, together
with possibly removing a dependence of two variables.

2.3 Updating parameters with new data

This section demonstrates the use of conjugate prior densities for a model of
the form given in equation (2.1).

2.3.1 Conjugate prior densities

A conjugate prior probability density, or a probability mass function in case of a
discrete prior, is such that the parameter update procedure leads to a posterior
probability density, or a probability mass function in case of a discrete prior,
that has the same functional form as the prior density. The prior is then said
to be closed under sampling.

The parameter update procedure is here demonstrated formally using one
of the one-dimensional densities in the model, the von Mises distribution:
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FOkIM (i tiz1,. s Ao) s 81 ({ZiFiz1,. 0, K0)) =

1
Ko I(’)”'C(/i) exp(k1 * cos( 1))

Hn

1
n 1m*exp(/~e*cos( ;= A))| *

exp(ko * cos(A — Ag)),
(2.2)

1
Ko * IS(K)

where the left hand side (LHS) is the posterior density, K, are normalizing
constants and (¢, kg = Ro«k, A\g) are the hyperparameters. Iy is the modified
Bessel function of zeroth order. This may be written in the form:

#*
()

* eXp (/@ {COS(A)[Z?:l cos(z;) + % cos(Ag)] + sin(N)[X7 sin(x;) + % sin(Ag)] }) .

ORI, By = o) o (2:3)

The definitions for the updated parameters can be found from several sources
in the literature: e.g. [22], [23], but suitable values for the hyperparameters, like
the concentration xo and therefore the ratio Ry = “2, are still required. Para-
meter Ry fixes the chosen level for guidance by the external information stored
in \g - the larger Ry, the more )\ is emphasized. The third hyperparameter c
represents uncertainty in the given value of kg, the larger it is, the more certain
Ko is taken to be.

Following from equations (2.2) and (2.3) it is deduced that the updated

parameters, i.e. the posterior density parameters, are found in the form:

2 272
k1=K [(E?_l cos(z;) + % cos()\o)> + (E?:l sin(x;) + % sin()\o)> } ,
(2.4)

70 in(Ao)\
<Ao>)‘ 25)

)+

)+
= arctan (n « {sin(zi)} + Ro sin(Ao) )
n * {cos(z;)} + Ro cos(\o)

and

1 sin(z;

A1 = arctan ( i=

* , cos(z;

where n is the amount of data points and, in the latter form for A; the result
is given using arithmetic means of the sum terms.

Equations (2.4) and (2.5) show that choosing ratio 2 large enough, x;— >
ko and A\ — > Ag, or choosing it small enough, the hyperparameters of the prior
density would not have influence on posterior parameter values.

The posterior density is then used for inference about the paramerters, for
example, by determining the so called maximum a posteriori, or MAP estimates
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for the parameters. In this study, a MAP estimate for the direction parameter
A was used and it is straightforwardly defined as A\;. The MAP estimate of the
concentration parameter s is calculated using condition

8f()\,l€ | )\1,R1) o
(%>A_M =0. (2.6)

The resulting equation is
To(kr) _ chn7 @7)
Il(KJM) Rl
where R; is the updated ratio of concentration parameters for A and §. The
solution ks is the maximum a posteriori estimate for k. Parameter sum ¢ + n
balances the effect of Ry, as ¢ balanced Ry in the prior, so that the density of
K is concentrated around a larger than zero value for k, in a non-symmetrical
way. The prior and the posterior have the same functional form in the case of
a conjugate prior, and equation determining the peak of the prior density with
respect to k, has the same form as equation (2.7), namely

Io(Hm) _ i
Ii(km) Ro

(2.8)

Equation (2.8) shows how one can define numerically the hyperparameters ¢
and Ry so that the value for , corresponding to the peak (x,,), gets a pre-chosen
reference value, a suggestion based on modeler’s beliefs. When the posterior
peak value k) stays relatively close to the prior peak value k,, after one or
more updates, it can be concluded that x,, is a reasonable choice, possibly to
be used also in other equivalent modeling cases. The MAP estimates A\jand ks
can be used as parameters of the coordinate density for calculations, in addition
to being used as prior parameters in consequtive update procedures.

In this work, a justified way to determine k,, from chemical information
was not yet found, so a formal update for x was used instead to avoid un-
necessary numerical calculations. The update procedure in general starts from
the functional form of the joint probability density for the coordinates and the
parameters. The joint density p was factorized in the following way:

p(0, A, K | Ao, Ko, ) X p1(0 | A, k) x pa(X | Ao, Ko) * p3(k | Ko, ), (2.9)

where von Mises density of the polar angle is

e/{*cos(Gf)\) 510
P11 = ma (2.10)
and prior density for expected direction A is
er@o*cos()\—/\o)
p2 = (2.11)

27 % [0(/10) ’
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and prior density for concentration s around expected direction A is

1

) (2.12)

p3 =

So, in this case kg, representing concentration of A around ), is a predefined
constant that does not depend on x, and the corresponding prior ps is symmet-
rical in the interval [0,2r0] with respect to kg. In other words, ko describes how
much the a priori information on the direction parameter is emphasized, and
can be defined for each modeled system separately, e.g., based on the count of
data points available for modeling. Hyperparameter ¢ has in this form of im-
plementing external information, the role of being a measure of modeler’s belief
in the expected concentration kg. The posterior density parameter x; is still a
function of k, though the dependence is no longer linear. Approximate linearity
appears when the ratio “2 can be considered small, as seen from equation (2.4).
In practise, estimates for x used in p; for calculations, were determined nu-
merically directly from data, i.e., from the observed positions of the contacting
atoms.

The prior density for  in (2.12) is not normalized, like p; and py are, and
the constant needed to normalize the joint density (2.9) is found by integrating

’I’sg:g from 0 to oo, and the result will depend on c. After decision is made on

how a priori information is used, one proceeds to the update (2.2) and also
possibly further, for example, to integrating out parameters like it is done when
forming a predictive model, explored next.

2.4 Predictive model

A representative three-dimensional structure of the contact atom distribution
is an essential component for this type of approach to modeling molecular in-
teractions. It can be emphasized by taking into account simultaneously all
contributions with accepted parameter values, with a relative weight for each
contribution. This corresponds to calculating a predictive probability density
and is accomplished by integrating out the parameters from the joint probabil-
ity density like in eq. (2.9), possibly first updating the hyperparameters of the
model. A versatile treatment of predictive inference can be found in [24].

2.4.1 Integrating out the parameters

The predictive method utilizes a marginal density, which is obtained by inte-
grating the fragment class (f) - target class class (C') -specific joint probability
density over domains of the parameters. In the model used in this work, the
random variable parameters were {f,, kg, Ag, [t¢ }, and the joint density, with-
out correction terms p,? and sin(Ag) ', has the form:
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JfC(pa 07 ¢, Hps Ko, )\97 M¢|@) X
ol 1 1
o Y exp(—5—5(p = 1p)”) X exp(— 55— (ttp — pp,114P.0)°) X
i=1 20’P7i 20p,post,i
exp(rg cos(f — Ng)) " exp(Ka post,i - C08(Ag — Xo.rrap,i)) y

o 2.13
IO(K:G) I()Z(KJG - Hﬁ,post,i) ( )

Nij
1 1

X ZGXP(—%Q (¢ — /~L<z>)2) X exp(—227(/i¢ - N¢,MAP,ij)2) )

j=1

o8] @,post,ij

where " is the modified bessel function of the first kind, raised to (n;):th power
and n; is a measure of the modeler’s belief in the correctness of the concentration
parameter estimate g ;. It is seen from the definition of the function (2.13) that
Kg is formally a random variable.

All parameters that are not treated as random variables, are described with
one symbol ©. In the hyperparameter subscripts, it is shown which are maxi-
mum a posteriori (subscript M AP) estimates and which are posterior (subscript
post) parameters without being MAP estimates. The rest of the parameters, i.e.
standard deviations for distance and azimuthal angle, were defined numerically
directly from data. The deviations of the modeling, or coordinate, density were
chosen not to be handled as random variables, because no meaningful way has
not yet been found to determine a priori values for them from external data.
The same applies, as discussed in previous section, to concentration for polar
angle Kg.

The aimed at marginal density is evaluated as the integral (2.14) and has
the functional form (2.15):

o) ™ 27 Pmax, fC _
p(p,0,) = / / / / T16(0:0, 6. 11y, 50, N 110 |8) ity dpisddodres
0 0 0 0
(2.14)
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p(p, 0, ) o Z oxXp(—5—5——(P — Hpprea)) X

p pred,i

x{m - Io (K post,i - \/(Ci,i 1) +2-cpi-cos(0 — Mg mapi))+

(o]
2. Z I (Ko, post,i - \/(ci’i +1)+2-cp-cos(0 — g amaps)): (2.15)
—1)k+ 41 sinf | + | sin \ .
( ) + -Sin(k-atan( | ‘ | O,MAP,i ))}X
k |cos€\—|—|cosA$MAP’i

X {Z oxp(— (P = figpred,ij)*)}-

qb pred,ij

In derivation of the function (2.15) were needed equation 9.6.34 from [25] and the

additivity of the normal density, through which i, pred;i = ftp,map,i; aipmd’i =

2. Uz,post,ﬂ Ke,pred,ij = H¢,map,ij and J(Zb,pred7ij =2 U(?Smost,ij? see e.g. [26}
The approximate additivity of the vonMises density, described in [26], could
not be used, following from the definition of the interval of the polar angles (6 €
[0,7]) in spherical polar coordinates. Outside this interval, in practice when
0 < 0, polar angle does not obtain values, and consequently the integral (2.14)
is not a product of full convolutions giving symmetric results with respect to the
expectation values {\g aprap;}. The same restriction of the variable values to an
interval is true for the distance p, though the situation is different, because the
data is strongly concentrated on the third third of the interval p € [0, 7cyiory] - A
and the restriction has an effect only for values of p beyond the cutoff distance,
not below zero. On the other hand, the cutoff is an artificial limit, see Table 2.1,
used in collecting the data, and therefore possible influence of any beyond cutoff
values in the form of the predictive density can be considered reasonable, or
meaningful, and the additivity is expected to hold. So, the predictive distance
density has the form of a normal mixture and is normalized to the interval
[0, reutof ] - A. In case of azimuthal angle then, the support is cyclic in the
interval [0, 27] and the densities are defined without any cutting, from which it
follows that the additivity is naturally there.

A noteworthy part in the evaluation of integral (2.14) is the double integral
with respect to the parameters of the polar angle 8, namely k¢ and Ay, where



18 CHAPTER 2. STATISTICAL MODELING

the following step was taken:

‘/Oo dlig
0 IO(K:G) : ISLL (’{9 - Kf@,post,z’)
.{W ’ IO(\/K% + Hg,post,i +2- Ko * Ko,post,i * COS(0 - )‘Q,MAP,i))+

o
+2) W% + 55 posti T 2 Ko Ko posti - €08(0 = Ao, arap.))-
j=1

~

DM AT G atan( SR8 [sinA
—— -s1n(J - atan
j J | cosf | + ‘ COS )‘s,MAP,i

6,MAP,i | ))} N

~a- {ﬂ- ! IO(\/(ci,i + 1) : K’z,post,i +2- Cr,i Hg,post,i : COS(0 - >\(~),MAP71'))+

)
+2 ’ Z IJ(\/(Ci,z + 1) ’ K‘g,post,i + 2. Cr,i Kg,post,i : COS(G - AQ,MAP,'L'))'
j=1

.(71)j+1 +1 - sin(j - atan( |sin® | +|sinA, ,.p, | D} (2.16)

The new parameters in equation (2.16), i.e. a and ¢, are determined nu-
merically for each polar angle density mode i and are based on the trapezoidal
approximation of the integral (2.16): a is half the base of the area-approximating
triangle and ¢, ; is the relation of the peak with respect to kg post,i, see Figure
2.2. The specific value of the parameter a is not very useful, because the result
in (2.16) is only proportional to the predictive density, but a is kept here to
illustrate how the integral was evaluated. The absolute values in the last term
of eq. (2.16) are for crossing the point § = 7 so, that the values of the integral
stay positive. The curves of Figure 2.2 are calculated using values § = 0 and
Ao, map; = 0. Integrand’s asymmetric form that prevails for small values of n;,
like for the red curve with n; = 5, follows from that the term m
concentrates the integrand, around kg post,i, only after the number of observa-
tions supporting kg post,i, hamely n;, is high enough, as seen in Figure 2.2.
Also function m in the integrand of (2.16) influences the position of the

peak, which is here described through condition

i % Il(K’Q,peak) o Il(/f@,peak - Hé,post,i)

— , 2.17
n; IO(KOA,peak) IU (KO,peak - Ke,post,i) ( )
solution of which (kg peqr) gives the location of the peak for function
1
(2.18)

IO(K/H) * I(T)Ll (HG - Hﬁ,post,i) .
I, is the modified Bessel function of the first kind and of order one. Equation
(2.17) shows that already for modest values for n;, kg post,; Will be an approx-
imation for the location of the peak, because the LHS ratio of modified Bessel
functions gets values between zero and one, and the right hand side (RHS) ratio
is close to zero when kg peqr is close to K¢ post,i-
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The sum over orders of the modified Bessel function in eq. (2.16), though
it extends to infinity, converges with a few more terms than j = K¢ post,i, and
Jmax = Ko post,s + O is used. The convergence is depicted in Figure 2.3.

Integrand (functional) and Trapezoidal Lines

5%

3 135 i4 145 15 155 16 16.5 17
Concentration Parameter (kappa)

Figure 2.2: Form of the integrand for concentration x, with four values of n,
ie m;: 5, 25, 125 and 625. Shown also the straight lines (dot-slash) of the
trapezoidal method, defining triangles that approximate the value of the def-
inite integral. The asymmetric form of the integrand is seen for the smallest
concentration (n = 5).

The purpose of the exercise in this section was to demonstrate a possible
way to have an approximate fuctional form for the predictive density and to
show how the choices for hyperparameters affect the procedure. A functional
form for the predictive density is useful for determining and comparing the
characteristics, like numbers of genuine modes, of the three-dimensional shapes
of the contact patterns, given in the predictive form by the marginal densities
for the coordinates.

Multimodalities in the predictive density

The apparent number of modes of the one dimensional densities in equation
(2.15) , i.e. N; and N;j, are here defined by first building a kernel estimate [27]
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. ioffoncentration kappa = 25
4 T

Tincalcdlating =

. 1fBoncentration kappa = 45
2 . .

Number of terms in the sum

MNumber of terms in the sum

&0

Figure 2.3: Parameter density with respect to concentration s, convergence
of the sum over orders of the modified bessel function.
concentrations: £ = {5;25;45}. The sum is considered to have converged when
the result is flattened.

Three exemplifying
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Fragment type\Target Class C3-C7 | C8-C15
2, f3, f5, f8, f22, 23, £26, 27, f29 | 3.5 A 3.3 A
f17, f18, £20, 21, 34, £35, £36, f37 | 3.9 A 39 A
f11, f12, f13 3.7 A 3.7 A
fe, f7, f9, f10 3.3A 3.3 A

Table 2.1: The cutoff distances used in collecting the training data set. See
chapter Article, or Table 1.1, for description of the classification.

of the density, then finding the number of modes in the kernel estimate. After
this stage, using the information obtained, fitting von Mises and Normal distri-
butions is done mode by mode to find estimates for the hyperparameters of the
conjugate prior distributions used in the update procedure, and for the para-
meters for which a MAP estimate is not calculated, i.e. {Ui,m Ui&,ij}' The next
step is then to use the update procedure on {f,, kg, Ag, ity } to find the parame-
ters of the posterior distributions, {1y, ar4P,i, Ko post,i Ao, MAP,i, e MAP,ij }, S€€
eq. (2.13). The joint density is the starting point for calculating the predictive
density.

The primary goal of using the kernel estimate in the model construction is
not to find a perfect fit, but to deduce the apparent number of modes in the
one dimensional densities used in building the actual 3D model. The number
of modes was selected by a simple stability criterion in a loop going through
a pre-set range of bandwidth values, namely h = [x/200, 27 /200, 37/200, ...,
327/200] for polar angle and h = [7/50, 27/50, 37 /50, ..., 327 /50] for azimuthal
angle. The stability criterion used was that the number of modes and minima
in the kernel estimate stays constant during three consecutive rounds of the
loop. The third variable, distance, is handled similarly, but with the criterion
that relating to certain polar angle mode, the kernel estimate has exactly one
mode. The bandwidth is one from h = [maxdist/100,2 * mazdist/100,3
maxdist/100, ...,1], where mazdist equals the cutoff distance (see Table 2.1),
used when collecting the training data set for the model.

The multimodalities in eq. (2.15), i.e. N; and N;;, are apparent, because
some of the mixture components in eq. (2.13) will merge with a neighboring
component. This is allowed, because the main point is that genuine multimodal-
ity is taken into account. Of course, when the merged components are updated
separately, the amount of observations used for each component is smaller than
it would be with merged components, but on the other hand, the kernel esti-
mate has in these cases predicted higher multimodality, and as the observed data
accumulates, the individual components might well get smaller variances and
shifted peaks, so that the higher multimodality arises in the modeling density
as well. The procedure is illustrated in Figures 2.4, 2.5, 2.6 and 2.7.

These one-dimensional densities are connected to each other so that first
the number of peaks with respect to the polar angle is determined. Then the
multimodality of the azimuthal angle density is defined for each polar angle
von Mises density separately. For example, in Figure 2.7, the azimuthal angle
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Probability density /Oxygen (f3) - Carbon (C5),

dist 3.46A Contacts / Oxygen (f3) - Carbon (C5)
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Figure 2.4: Left: The form of the angular part of the modeling density at 3.46
A. Right: Training data as a scatter plot. The circle in (0,0) is the main atom
of the fragment. The left and right figures are oriented so that they can be
matched visually by thinking them as superimposed. The fragment class f3
denotes a hydroxyl oxygen bonded to an aromatic structure and target class
C5 denotes a carbon in an aromatic structure.
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Azimuthal Angle / f3 - C5 Polar Angle / 3 - C5 Distance / f3 - C5
0.5 T T T 14 T T T 5 T T T
g 45 4
12 Second polar
e angle mode: ) Modeling density:
Azimuthal angle \
distribution: i 4r 7
under
first polar angle
mode. 4 ir 1 35k i
o First 3+ 4
0.8 [-polar -
angle
] mode, Third polar 250 B
angle
06k mode.
4 / 2L i
Kemel ‘estimate.
7 0.4r : N d : )
4 1k i
0.2 : il
} 05 7Densityét each ]
ﬂ observed point.
0 Lo 0 ::::m:u”'l
8 0 1 2 3 4 0 1 2 3 4

Figure 2.5: Estimation of the number of modes. The red line is the kernel
estimate built on normal kernels with adapted weights and numerically defined
band width. The blue circles joined with line represent the normalized modeling
mixture density, which has either Normal (azimuthal angle and distance) or
vonMises (polar angle) distributed components. The bars are density values
defined for each observed point separately, i.e. a histogram based on intervals
of varying length. The fragment class f3 denotes a hydroxyl oxygen bonded
to an aromatic structure and target class C5 denotes a carbon in an aromatic
structure.
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Figure 2.6: Left: The form of the angular part of the modeling density at
3.46 A. Right: Training data as a scatter plot.The circle in (0,0) is the main
atom of the fragment. The left and right figures are oriented so that they
could be matched visually, by thinking them superimposed. The fragment class
f11 denotes a carbon in an aromatic structure and target class C13 denotes a
hydroxyl oxygen.
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Azimuthal Angle / f11 - C13 Polar Angle / f11 - C13 Distance / f11 - C13
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Figure 2.7: Estimating the number of modes. Red line is the kernel estimate
built on normal kernels with adapted weights and numerically defined band
width. The circles joined with line represent the normalized modeling mixture
density, which has either Normal (azimuthal angle and distance) or vonMises
(polar angle) distributed components. The bars are density values defined for
each observed point separately, i.e. a histogram based on intervals of varying
length. The fragment class f11 denotes a carbon in an aromatic structure and
target class C13 denotes a hydroxyl oxygen.
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density in the subfigure on the left is related to the RHS peak of the subfigure in
the middle. The histograms in Figures 2.7 and 2.5 are constructed by calculating
the size (length) of the surroundings for each observed value of the variable: for
each point z; is given density Ni(x) = (%($i+1 —xi1)) !
points for which it is NZ-(I) = (2441 — m;) ~1. These densities {NZ-(I)}Z-:L,,,,” are

then used as weights in calculating the kernel estimate K E:

, excluding the end

—— el 5 (T, (2.19)

where h is the bandwidth and {y; },=1, .. » are the experimentally observed values
of the variable x.

Computational cost

In this section so far, a procedure for forming the predictive density has been
outlined. In order to ensure that the three-dimensional shape of the contact
atom position density is captured as reliably as possible, a more advanced rou-
tine is needed, which inevitably increases the computational cost.

2.4.2 Comparison with results obtained using parametric
densities

Given here next are the results obtained from calculating the same tasks using
parametric and predictive forms of the model.

Calculating the contact preferences

The contact preferences are defined as probability masses confined to a certain
spatial area in the environment of a specific type of molecular fragment, see
Figure 2.8 and Table 4.2. The probability masses are calculated for each target
class and then the results are normalized to give the fragment type specific
target atom hierarchy, or the contact preferences. Details are given in the next
two sections.

Reference points

The spatial area in which the probability mass is calculated, can be a small,
or a large part of the surroudings of the fragment - from an effectively point
like volume element to the entire spatial area where the target atoms are to be
found. The former gives probability masses that approach zero as the volume
approaches a single point, and the latter equals 'fragment class-target class’ -
specific prior probability. In the examples here, we have taken the volume to be
a spatial area around a reference point (see Figure 2.8), and the spatial area is
defined as intervals of the spherical polar coordinates: {[p1, p2|, [01,02], [¢1, P=2]}-
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The reference points, with corresponding intervals, used both in the article where
this model is published [17], and here, are

19 19
—(1)f = 284 [cos(g) cos( 1(;7) * sin 3) sin( 1;) * sin(g)],
m 197
with intervals [2.800 + 0.0754, — Tl 2Ty —] (2.20)

3712 10 10

7(2)}( = 3. 40A [COS( ) COS(¢arbitrary) * Sin(0)7 Sin(qsarbitrary) * sin(O)] =

= 3.404 - [1,0,0], with intervals [3.400 + 0.154, 0 + % " (2.21)
F =284« [cos( ), cos(g—ﬂ) * Sin(i) sin(?ﬁ) * Sin(E)] =
Tref = 2 2 27 2 2 B
) 3
= 2.84 % [0,0, —1], with intervals [2.800 + 0.14, = i T T
122~ 12
(2.22)
F =334+ [cos( ), cos(g—ﬂ) * Sin(i) sin(g—ﬂ) * Sin(E)] =
Tref 2 2 27 2 2
) 3
= 3.34 % [0,0, —1], with intervals [3.300 + 0.14, = i T T
122~ 12
(2.23)

The volumes are shown graphically in Figure 2.8. A method for evaluating the
probability masses inside the volumes around the reference points is presented
next.

Riemann sums

The predictive density has three-dimensional spatial form of the function (2.15),
which is used for calculating the probability mass p corresponding to a certain
contact atom type in a spatial area, or a volume, from the environment of a
molecular fragment. The calculation is here done using a Riemann sum [28]:

SRR (o = p) (224)
=1
A b+ 6

X ZQ(%)'(QH&_@‘) X h(%)'(@ﬁ-l_(ﬁk) =
j=1 k=1

No
—Ap-AO-AG- Zf Pz+1+Pz Z +1+9 Zh(¢k+1+¢k)’
k=1

. 2
i=1 j=1
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Contacts / Carbon (f11) - Carbon (C5) Contacts / Nitrogen (f26) - Oxygen (C13)

2IA

Figure 2.8: The volumes used in examples 1-4 of section The probability masses.
The volumes are shown with respect to two different scatterplots. Left: Aro-
matic carbon contacts (C5) of the Aromatic carbon fragment (f11). Right: Hy-
droxyl oxygen contacts (C13) of the Primary amino nitrogen fragment (£26).
Reference points are located in the centers of these volumes, both radially and
with respect to the space angle. The target atoms and the fragments Main atom
are color-coded: green for carbon, red for oxygen and blue for nitrogen. The
two other atoms in the fragment (black) can in general be of several atom type,
typically carbon (C), oxygen (O), nitrogen (N) or sulfur (S).
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where f(p)- g(0) - h(¢) = p(p, 0, ) and a uniform segmentation of the supports
of {p,0, ¢} is chosen. The numbers of terms in the Riemann sums (i.e. N,, Ny
and Ny) used in this predictive model study, were tens or hundreds, depending
on the interval of integration. A Riemann sum is a definition of the definite
integral [28], and is an easily implementable way of numerical integration for
functions that are well behaved.

2.4.3 The probability masses

Results for fragment classes (see [17] or chapter Article for fragment class defi-
nitions) f2, 5, f8, f11, f18, £22, 23 and 27 around the first reference point
(2.20) are given in Table 2.2. The probabilities are also shown graphically, to-
gether with results from the parametric method [17], which is called a direct
method here. In Figure 2.9 are given probabilities for fragment classes f2, 5,
f23 and 27 around the first reference point, and in Figure 2.10 are given the re-
sults for classes f18, 20, £34 and £36 around the second reference point (2.21).
Figure 2.11 shows the results for classes 2, f5, f11 and 22 around the third
and fourth reference points, i.e., points (2.22) and (2.23).

The results shown here for each reference point, eqs. (2.20) - (2.23), are
normalized in order to be able to compare them with frequencies from reference
data, i.e. not with probabilities for other reference points. The probabilities for a
certain contact atom type determine the hierarchy among contact atom classes,
or target classes, and essentially give the contact preferences for a fragment

type.

2.4.4 Conclusions on the comparison of results

The difference between resulting probability masses from the predictive and the
direct method is noticeable, but the results are similar, which is encouraging,
because both give reasonable contact preferences. The presumption is that
the predictive should, in a theoretical perspective, be more reliable, because
it takes into account all the parameter values with corresponding weights (see
eq. (2.14)) and not only the value corresponding to the peak of the parameter
density, or the MAP estimate [18] [24]. Indicators of this can be seen for example
in the contact preferences of an aromatic carbon (f11) and a secondary amino
nitrogen (£22), see Figure 2.11. These methods will be further tested and also
error analyses performed with more reference data collected. So far, due to too
limited amount of reference data used, for example, for subsetting the data, the
error limits have been defined only when testing the principle of using the model
as a scoring function, like in Example 2 in chapter Article.

Other possibilities for modeling

One-dimensional densities used in this work, model the contact atom positions in
required detail and are easily fit to data for each corresponding variable. In the
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C\f | 2 f5 f8 f11 f18 f22 f23 f27
C3 | 0.0007 | 0.0009 | 0.0003 | 0.0069 | 0.0018 | 0.0245 | 0.0000 | 0.0006
C4 | 0.0068 | 0.0183 | 0.0132 | 0.0002 | 0.0540 | 0.0004 | 0.0005 | 0.0002
C5 | 0.0093 | 0.0239 | 0.0192 | 0.0002 | 0.0454 | 0.0096 | 0.0000 | 0.0001
C6 | 0.0007 | 0.0009 | 0.0003 | 0.2086 | 0.0687 | 0.0007 | 0.0000 | 0.0014
C7 | 0.0005 | 0.0011 | 0.0000 | 0.0357 | 0.0005 | 0.0029 | 0.0063 | 0.0000
C8 | 0.0951 | 0.0817 | 0.0834 | 0.0069 | 0.2516 | 0.0453 | 0.0246 | 0.0027
C9 | 0.0879 | 0.1696 | 0.2097 | 0.0209 | 0.1202 | 0.1207 | 0.0115 | 0.0083
C10 | 0.0595 | 0.1180 | 0.0947 | 0.2212 | 0.2659 | 0.0362 | 0.0000 | 0.0011
C11 | 0.1194 | 0.0030 | 0.0024 | 0.0252 | 0.0011 | 0.1744 | 0.1717 | 0.1956
C12 | 01774 | 0.1966 | 0.1373 | 0.0817 | 0.0020 | 0.0707 | 0.6488 | 0.4229
C13 | 0.1820 | 0.2443 | 0.2379 | 0.3719 | 0.0542 | 0.3421 | 0.0567 | 0.0800
C14 | 0.1325 | 0.0018 | 0.0020 | 0.0153 | 0.0025 | 0.0880 | 0.0726 | 0.2859
C15 | 0.1282 | 0.1400 | 0.1997 | 0.0053 | 0.1322 | 0.0846 | 0.0073 | 0.0013

Table 2.2: Predictive model based probabilities, calculated at the reference point
1 centered volume. The fragment classes in this table are a hydroxyl O bonded
to an aliphatic structure (f2), a carbonyl oxygen (f5), a phosphate oxygen (8),
an aromatic carbon (f11), a fluorine bonded to an aliphatic structure (f18), a
nitrogen in an aromatic ring (f22), a nitrogen in a non-aromatic planar ring (23)
and a primary nitrogen bonded to an aromatic structure (f27). The probabilities
were calculated over all target classes (C3 - C15). All fragment and target classes
are given in Tables 1.1 and 1.2.
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Figure 2.9: Reference point
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comparison of contact atom frequencies, and

results from the direct method, with predictive model based probabilities for
fragment classes 2, f5, 23 and f27. Fragment classes denote a hydroxyl
oxygen bonded to an aliphatic structure (f2), a carbonyl oxygen (f5), a nitrogen
in a non-aromatic planar structure (f23) and a nitrogen bonded to an aromatic
structure (f27). Hierarchy is given by the calculated probabilities, which are
represented as circles. The circles are joined with a line to illustrate tendensies
among target classes. The contact atom counts in reference data for £2, f5, 23
and f27 were 63, 38, 14 and 9, respectively.
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Figure 2.10: Reference point Fg)f: comparison of contact atom frequencies,

and results from the direct method, with predictive model based probabilities
for fragment classes f18, 20, 34 and f36. Fragment classes denote a fluo-
rine bonded to an aliphatic structure (f18), a chlorine bonded to an aromatic
structure (£20), a bromine bonded to an aromatic structure (f34) and an iodine
bonded to an aromatic structure (£36). Hierarchy is given by the calculated
probabilities, which are represented as circles. The circles are joined with a
line to illustrate tendensies among target classes. The contact atom counts in
reference data for f18, 20, f34 and £36 are 56, 44, 2 and 5, respectively.
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Figure 2.11: Reference points rf,e)f and rie)f: comparison of contact atom fre-

quencies, and results from the direct method, with predictive model based prob-
abilities for fragment classes f2, f5, f11 and f22. Fragment classes denote a
hydroxyl oxygen bonded to an aliphatic structure (f2), a carbonyl oxygen (f5),
a carbon in an aromatic structure (f11) and a nitrogen in an aromatic structure
(f22). Hierarchy is given by the calculated probabilities, which are represented
as circles. The circles are joined with a line to illustrate tendensies among target
classes. The contact atom counts in reference data for f2, f5, f11 and f22 are
37, 10, 4 and 4, respectively.
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3D probability density, they are combined in an interconnected way. Another
possibility for modeling would be using a three-dimensional probability density
from the start. A plausible method for this could be kernel density estimation
[27], the 3D version of equation (2.19), used in estimation of the number of
peaks in the 1D probability densities.

The three-dimensional kernel method can be called an unsupervised learning
procedure, and would require a larger effort on fitting the model efficiently.
This could be worthwhile, because the model fitting procedure does not include
assumptions about the modeled distribution of contact atom positions, like the
parametric densities as they have been used so far.

About calculations

The computational cost is significant when the conformations of both, ligand and
residue side chain, are allowed to vary. An attempt to solve the problem with
respect to the latter, could be modeling target atom positions in conformations
of a side chain. The formed density would then be used in an overlap integral
with a preference density for the target type. This reduces the calculation of
contact preferences separately for each conformation to estimating numerically
an integral. The approach takes automatically into account flexibility of the
residues, therefore also incorporating spatial entropy in the model, taken that
a representative set of energetically plausible conformations is included. This
subject is further discussed and developed in section Amino acid side chain
conformations, in the next chapter.



Chapter 3

Practical applications

The probabilistic model as a knowledge-based scoring function has at the present
phase of the work been applied in two molecular environments, a small mole-
cule binding site in a protein and the interface between two proteins forming a
complex.

3.1 Knowledge-based scoring function for ligand
binding

Characterizing and design of small molecules can include a stage where the bind-
ing strength for a set of molecules with respect to a binding site is computation-
ally estimated. This is done to separate better from worse binding molecules,
with the ultimate goal of defining the group of tight binders. Strength of the
contact is partly defined by kinetic energy of the molecular structures and partly
by the potential energies of the direct intermolecular contacts. As already dis-
cussed in the first chapter, the probability densities correspond to spatial forms
of relative potential energies of the contact. A description of applying the model
created in this work, and published in [17] is next reviewed.

3.1.1 Catechol-O-methyltransferase ligand binding site

A standard method for testing a model for its ability to predict preferred binders,
is using a mixed set of molecular binders (ligands) and decoys. A recommended
set is the Directory of Useful Decoys (DUD) [29]. One target site in DUD is
the site for catechol group methylation in a catechol-O-methyltransferase protein
(COMT). As an example of the models function in the task of a scoring function,
a subset of physically, and partly chemically, similar ligands and decoys were
chosen for testing the method. The rationale was to have such a set that the
direct contact preferences in binding were emphasized. This was achieved so
that all chosen molecules had a ring structure with two hydroxyl groups bonded
to neighboring carbon atoms, similar to a catechol group, and therefore are in

35
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principle able to anchor to the magnesium ion (Mg?*), that is considered as part
of the binding site [30]. In addition, ligands and decoys had similar masses, with
the exception of a known tight binder that was considerably heavier, and was
added to the ligand group together with the natural ligand dopamine [30] as
reference molecules.

The results showed that the contact preferences efficiently (receiver operating
characteristic, ROC, related accuracy was 0.93) separated ligands from decoys.
This is explored in detail in Example 6 of article [17]. Contents of the publication
are presented also here, in chapter Article, where Example 2 corresponds to the
above mentioned Example 6.

3.2 Amino acid residue mutations

A change in contact preferences for an amino acid residue position can alter the
probability for the protein to perform its function. This is conceivable when
the mutated residue is in a ligand binding site or, for example, in a position
that affects the conformation or stability of the protein or protein complex.
Before demonstrations of the scoring function use in this molecular environment,
a preliminary subject is covered, the approach taken in this work to include
amino acid residue side chain conformational variability, already referred to in
the section About calculations of the second chapter.

3.2.1 Amino acid side chain conformations

Rotation around a bond between two sp? hybridized carbon atoms in a side chain
is typically represented as distributions defining a rotamer, a rotational isomer
[31] [32]. The hybridization state sp® refers to a carbon atom singly bonded to
four other atoms. The rotamers are clearly separated and are centered around
three potential energy minima, one of which is a global minimum. Another type
of rotation, around bonds that connect an sp® and an sp? hybridized atom, the
latter being in a side chain as part of a planar end group, has a distribution
that is less articulate than the one for rotamers, but contains peaks too.

These distributions are obtained by collecting coordinate data for conforma-
tions from structure files. They are stored in rotamer libraries and presented
as binned data forming discrete probabilities for rotation angle intervals [31], or
possibly continous probability densities that are fitted to the observed data on
conformations [32] [34]. The conformational properties of side chains are influ-
enced, in addition to the electronic structure of the side chain, affected by the
main chain conformation of the residue, by contact preferences imposed from the
molecular environment. The latter means direct and water mediated contacts
of the side chain to other residues and small molecules. These factors determine
the functional form for the conformational potential energy of a particular side
chain in a specific position and in given conditions like pH.

Conformation distributions of rotamer libraries, discrete or continous [32],
give a lower probability to conformations that correspond to higher values of
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potential energy. This is somewhat misleading, because at typical temperatures
around 300 K where biochemical reactions take place, there is thermal energy
in the structure and a side chain dihedral, or torsion, angle has values over an
interval with approximately classical harmonic oscillator, or even equal, proba-
bility for each value of the diheral angle. This approximately equal probability
means steep potential energy walls at the ends of the intervals. The torsion
angle intervals in an ensemble of side chains change with time, due to thermal
energy transfer, and at a given point in time follow a distribution corresponding
to thermal equilibrium, which is an argument directly based on thermodynamics
[35].

With the above in mind, it is realized that intervals can be used to replace
the static conformations, which then allows capturing the motion of a side chain
in the statistical model of the type presented in this work. This way, the distrib-
ution of conformations can be built starting from thermal motion in a side chain,
together with a functional form for the potential energy, and get the entropic
contribution from side chain thermal motion incorporated. Technically this can
be done by calculating overlap integrals, as described in the next section on
residue mutations in Dengue virus envelope and pre-membrane proteins.

The overlaps could also be calculated using directly a rotamer library, but
then the results would depend on the rotamer library and although the library
would be main chain conformation dependent, what could not be taken into
account is the position of an individual residue in the 3D structure. Position
influences the likeliness of a level of thermal energy to be captured in the side-
chain degrees of freedom. As an example, following from solvent accessibility,
a residue located in a binding pocket or at a protein interface in a complex, is
likely to occupy smaller portion of thermal energy spectrum than a residue on
the outer surface of the biologically active unit, see for example [36] [37] [38].
Relating to this, it should be mentioned that data from all residues adhering to
certain criteria are included in a rotamer library [31]. This bears significance
when results of docking are scored, or an estimate for the effect of a point
mutation is calculated, and also in determining the amount of entropy reduced
in protein folding. When this torsion angle interval based method is compared to
the traditional rotamer library approach, where side chain conformational space
is seen as a collection of static structures with probability for occurrence, it is
essential to note that a rotamer library corresponds to an ensemble of thermal
energies and effects of potential energies from contacts with the environment.
The interval approach then, can be used for modeling single side chains, taking
into account their molecular environments.

Continuing this relationship, torsion angle values found in a database sur-
vey can be modeled with a density like von Mises [32], but they are not von
Mises distributed during a cycle of side chain rotation. The connection between
overlap integrals in the two approaches is demonstrated with equation

[osaw =3 v [ minseav (31)

where probability density g models side chain target atom positions, produced
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by some dihedral angle distributions. Function f is a contact preference density
defined for the targets, density h is fitted to target positions obtained through a
harmonic oscillator sample of angle values, and p; a weight for the combination
of kinetic energy levels that produced h;. Probability p; depends on probabilities
of the energy levels, selected or sampled, with respect to each rotational angle.
Equation (3.1) means g(7) = >, p;h;(7), which can be stated so that the weighed
angle value intervals generate the distribution of the side chain conformations,
or starting from g, that a spatial distribution of an atom in a set of side chain
conformations can be expressed as a linear combination of distributions for
rotations confined to angle intervals. In this setting, the straightforward use of
a rotamer library would correspond to the LHS of eq. (3.1), the equation being
only approximately valid. The RHS shows that given the form of potential
energy, what can still be adjusted in order to match the external conditions, is
the distribution of angles over an interval and the weights for the intervals.

A set of overlap values for contact preference densities, and a torsion angle
interval defined distribution of conformations, with weights like Boltzmann fac-
tors, covers both the consequences of internal motion with given energy, and
the probability of occurrence for that energy. Energy levels with Boltzmann
distributed net differences with respect to a mean value in a potential energy
well is depicted in Figure 3.1. The functional form of the potential is taken from
[33], where it is used in calculations of rotational energy contributions to side
chain ensemble properties.

It has to be kept in mind that thermal motion for side chains with more than
two dihedral angles is highly complex and the motion around one bond depends
on the motion around another, when two or more rotatable bonds are involved.
The approach described here captures the conformation space accessible for the
side chain through internal rotations. In order to perform overlap calculations,
the contact, or target atom cloud is represented as a probability density. It
should still be mentioned that the X-ray structures are here taken as a sample,
meaning that the measured structures are considered truly representative of the
physical reality, especially with respect to variation of conformations of side
chains. This can be taken as a reasonable assumption [31], [38].

Conformation dependent calculations

In the discussion of the previous section, it was envisioned that contact pref-
erence calculations were done using torsion angle intervals, determined with a
known or approximated potential energy function, and a Boltzmann-distributed
ensemple of kinetic energies with possible dependence on the residue position
on the proteins 3D structure. Implementing that as calculations, is in this
work left as a future challenge in order to avoid unfounded mean kinetic energy
estimates and functional forms of potential energy.

Instead, the concepts developed are demonstrated in a computationally less
demanding way. Namely, sp® to sp® hybridized atom bond torsion angles are
given intervals according to their position in the side chain. The position is
reflected by the moment of inertia (I) of the side chain fragment in rotational
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Figure 3.1: A theoretical distribution for levels of total energy in an ensemble
of side chains, with respect to a dihedral angle. On the left: part of a potential
energy function (blue line). Potential has the same functional form that in
the literature has been shown to work in approximative quantum mechanical
calculations of side chain rotational energies (see text for details). The total
energy levels (green lines) are distributed according to Boltzmann distribution.
The two intercepts of a green line with the curve define an interval. On the right:
binned counts of energy levels generated with rejection sampling, presenting the
distribution of the green lines in the left figure.
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motion. Motivated by the equation for kinetic energy of a particle rotating
around an axis, the intervals were made to shorten towards the main chain,
inversely proportional to square root of moment of inertia. As an example, for
a residue side chain with three consecutive sp® to sp? bonds, the sequence

T T
(Ax1,Axe, Axs) = (AX?)\/ T‘Z’,Ax:a\/ Iz,Ax:),) , (3.2)

is used. In equation (3.2), the interval of an internal rotation angle around the
bond that is farthest from the main chain, Ays, has to be fixed first. The highest
moment of inertia I; is around the bond closest to main chain, that is, bond
between alpha and beta carbon (C, — Cg). Side chain dihedral angle intervals
were centered around the canonical rotamers, known as gauche™, gauchet and
trans (see e.g. [31]).

The distribution of dihedral angles around bonds from sp? to sp® hybridized
atoms, is taken as having relatively high probability for that the rotating group
contains enough thermal energy, or potential energy from environment, to over-
come barriers between rotational potential energy minima. That is, high prob-
ability relative to the dihedral angles around sp? to sp® bonds, where the side
chain conformations have a rotameric structure. Therefore, the intervals for sp?
- sp? bonds, in all cases here the sp? atom being in terminal end group of the
side chain, were fixed on wide ranges of dihedral angle values. This was also
based on visual inspection of single bond intervals in a rotamer library [32].
The extreme case was a bond to terminal carboxamide (-C(O)NHj), which was
given an interval of full 27 rotation, because this functional group can adopt all
orientations to form hydrogen bonds with its environment [39].

Though the rotamer libraries do not give a direct reason for having different
intervals for different side chain dihedral angles, doing so fits the scheme that
both, main chain conformation, and preferences of the molecular environment,
modify the form of the potential that gives boundaries to rotational motion
[31]. In addition, the angular momentum transformed as impulse from thermal
motion of the environment, depends on the relative direction of the impulse
and the rotatable bond, and is therefore taken here to be on average evenly
distributed on fragments having differing moments of inertia (I). Using this
assumption, an interval dependent potential, like harmonic oscillator or stepwise
changing rectangular, and the above mentioned equation for rotational kinetic
energy ’;—;, where L is the angular moment, one gets the interval sequences
exemplified in equation (3.2).

The interval calculations are in the following demonstrated using a sum of
contact preference density point values as a first approximation to the method.
In practise, first a target atom position cloud corresponding to specific set of
intervals for the torsion angles is generated. The distribution of the torsion
angle values within an interval is taken, as another first approximation, to be
uniform, which corresponds to a rectangular potential energy well with the walls
at the interval end points. Second, given a backbone structure, the strength of a
contact between two residues is estimated through calculating contact preference
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density point values for a fragment of one residue, in the generated target atom
positions of the other. During the calculation, numeric values to characterize
the contact are collected. These include sum, mean and maximum of the point
values, together with the count of the points where probability density values
where calculated. The information provided by these numbers can then be used
to rank the suggested amino acid residues for the studied position in the protein
backbone. Still more precisely, the ranking is based on contact preferences with
respect to one of the target atoms in a residue.

Interval based side chain conformations and the idea of the overlap method
is next used in contact preference calculations. Some background information
on the case studies is given first.

3.2.2 Significant residue positions in Dengue virus sequence

Dengue virus is a global health threat transmitted by certain species of mos-
quitos. There exists four genetically distinct serotypes [40], and infection with
one serotype virus gives immunity to that serotype, but might cause an enhance-
ment to the disease severity (antibody-dependent enhancement, ADE) following
infection by another serotype [40]. Ongoing basic research and vaccine devel-
opment require information on virus genome (RNA) that relate to severity of
the disease caused by the infection. This information can then be translated
to structural inspections, intended, for example, for finding antibody binding
epitopes or functional differences of the viral proteins following point mutations.

There is a strong evolutionary selective pressure on Dengue virus popula-
tions [40] and therefore clustering the amino acid residue sequences of the virus
gives clear signals for possible significance of a point mutation. Results of a
clustering analysis on amino acid level sequences for Dengue virus were used
as a starting point to find functional differences that would explain severity
of the disease that follows infection. The analysis had been performed with
a modified version of the Bayesian statistics based clustering tool K-Pax [41]
and had resulted in identifying several significant positions along the expressed
genome, each separating one or several sequence clusters from the other. Stud-
ies conducted in this work were limited to two viral surface proteins, the first
especially significant with respect to immune response, namely envelope protein
(E) [42], and the second, precursor membrane protein (prM), an important part
of maturation and activation process of the virus [43]. Envelope protein being
the immunologically central protein, i.e. containing the most effective epitopes
for antibody binding, it is the main target in vaccine developement [40]. Figures
3.2 and 3.3 show two Dengue virus tree structures that represent the evolution-
ary relationships between clusters inside serotypes 1 and 2. The clustering had
been performed with another Bayesian clustering tool BAPS [44].

Figures 3.2 and 3.3 contain information revealed by nucleic acid base level
clustering analyses on the evolutionary history of Dengue virus serotypes 1 and
2. In the second diagram, Figure 3.3, several clusters show evolutionary fea-
tures not seen when the clustering is done in the level of amino acid residues.
One of these features is splitting of cluster 3, i.e. one cluster in amino acid
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Figure 3.2: Tree diagram for Dengue virus serotype 1, estimated at the level of
the nucleic acid bases of the RNA genome. Cluster 4 shown in red is discussed
in the text. Due to the large number of sequences in the dataset, only cluster-
level separation is presented in the figure to give an overview of the evolutionary
relationships.
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Figure 3.3: Tree diagram for Dengue virus serotype 2, estimated at the level of
nucleic acid bases of the RNA genome. Clusters 1 and 6, shown in yellow and
light rose, respectively, are discussed in the text. Due to the large number of
sequences in the dataset, only cluster-level separation is presented in the figure
to give an overview of the evolutionary relationships.
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sequence analysis, to three groups (color coded magenta), each of which mainly
correspond to a single country of occurrence. Almost all of the sequences in
amino acid sequence cluster 3 are from time period 1985-1995, which suggests
that this cluster represents an ancestral form for the virus populations of this
serotype in these three countries. When mutations have taken place in a way,
that a new genomic variant producing protein machinery more fit for the pre-
vailing conditions, a new variant of the virus is created and starts to spread in
the area. This may show in later virus samples as a new cluster and one of the
clusters replacing number 3 is likely to be cluster 4 (blue in Figure 3.3), that
occurred mainly in two areas where cluster 3 samples were registered, namely
United States and Puerto Rico, and its appearance overlaps in time with the
end of cluster 3 period, in the late 1990’s.

Second detail to be pointed out here is that of clusters 1 (light rose) and 6
(yellow), where 1 replaced 6 in the area of Thailand and spread out in the early
2000’s. The spread of a virus implicates an increase of its fitness-characteristic
[40] and this particular case is discussed in more detail in the next section.
Envelope/pre-membrane protein complex exists in a stage of the maturation
process of the virus.

Selected positions in the amino acid sequence, that were interpreted as sig-
nificant based on clustering, and seemed to match severity of disease in reported
incidents collected by World Health Organization (WHQ), were studied by cal-
culating contact preferences of a potentially contacting amino acid residue on
the other side of the interface. In other words, it was tested, which of the
observed residues, based on the probabilistic model, was most preferred for a
particular position in the structure of the protein complex. It was assumed that
the contacting residue from the other side of the interface was unaltered, i.e.
conserved, as can be verified from the analysed sequences.

Interface between envelope and pre-membrane proteins

Two positions in the amino acid sequence over the entire genome of the virus
were studied, position 169 and position 363, both in the E/prM interface. The
first was interpreted to correspond to number 55 in the pre-membrane protein
sequence and the second to number 83 in the envelope protein sequence.

In order to quantify possible contacts across the interface, overlap integral
values of contact preference probability densities were calculated for alleged
water mediated contacts, and point value sums of the densities determined for
direct contacts.

Mutation R55Q The first position studied was 55 in prM, where one cluster
of Dengue virus serotype 1 had glutamine (GLN, Q) and other 20 clusters had
arginine (ARG, R). This single cluster with Q contained less severe cases of
the disease, i.e. febrile illnesses with relatively few hemorrhagic fevers or shock
syndromes. This was considered a possible indicator for altered function of the
proteins, and the changes in contact preferences were investigated. Figures 3.4
and 3.5 represent direct contact preferences over the interface as probability
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GLNC &5

Figure 3.4: Contact preference density values plotted for glycine 104 from enve-
lope side with respect to glutamine 55 (Q55) from pre-membrane side. Larger
marker size means higher density values. Cutoff used for density values is 5 %
of the maximum. Q55 is in a conformation illustrative of the dimensions of the
contact site.

density value scatterplots, with some neighboring amino acid residues at the
contact site.

Contact preferences were calculated using two structures from Protein Data
Bank (PDB), containing the envelope/pre-membrane protein complex, both of
which represent serotype 2, though the sequence data of this examplifying case
study is for serotype 1. This inconsistency is because no corresponding structure
was available for serotype 1, and it is assumed that the interface is structurally
similar in different serotypes.

Results of the calculations are given in Table 3.1. Side chain conformations
were generated for evaluation of the contacts, after which needed values were
calculated for direct and water mediated bonds. A sum over the density point
values can be large when the density has high values in fewer target atom
positions and as large when the side chain conformations produce more target
atom positions with lower density values. Cutoffs for the length of a water
mediated contact were 3.3 A and 6 A. The higher end value was chosen because
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Figure 3.5: Contact preference density values plotted for glycine 104 from en-
velope side with respect to arginine 55 (R55) from pre-membrane side. Larger
marker size mean higher density values. Cutoff used for density values is 5 %
of the maximum. R55 is in a conformation illustrative of the dimensions of the
contact site.



3.2. AMINO ACID RESIDUE MUTATIONS 47

length 3 A was taken as the upper limit for a hydrogen bond with water. In
the other end, 3.3 A is the upper limit used for direct hydrophilic contacts, so
length intervals for direct and water mediated contacts do not overlap.

In calculations for direct contacts, a distribution of target atom positions
represented a residue in the studied main chain position, which in this example
is 55 of prM. Following the results from the clustering analysis, the residues
tested for that position were glutamine and arginine. On the other side of the
interface, the chosen contact residue was glycine (GLY, G) in position 104 in E,
and it was represented by contact preference probability density of a fragment,
with a main chain oxygen as the contact atom. The site is pictured in Figure 3.4.
Water mediated contacts were calculated as overlaps of two contact preference
densities, for a fragment in the residue tested for position 55 and the glycine
in 104 on the other side of the interface. The preference densities were defined
for a target classified as a generic hydroxyl oxygen. Results of the calculations
are given in Table 3.1. Values corresponding to bonds with and without water
are not directly comparable, because they describe different densities. The
results without water are values of the spatial density and results with water
are evaluated spatial overlap integrals, both having the units A=3. Also to be
noted that, the side chain conformations for xs of glutamine and (x2,xs3) of
arginine were generated only around the rotamers (t, t and g~ respectively) of
the ideal structures from PDB [45].

The numeric values in Table 3.1 suggest that, based on the model and given
structures (PDB coordinate files), in the low pH structure glutamine and argi-
nine in 55 of prM can be considered equally good direct targets for glycine in
104 of E. In the neutral pH structure, glutamine seems to be a better contact,
but in the more likely case of a water mediated contact, arginine is the more
preferred contact in both, low and neutral pH structures. The water bridge was
considered more likely due to dimensions of the site, depicted in Figures 3.4
and 3.5. Overlaps were calculated with three different numbers of finite volume
elements. Table 3.1 gives the mean values. Standard errors in units (10A)~3
are, for GLN 0.4*10~° (3C5X) and 1.7¥10~5 (3C6E), and for ARG 2.0¥10~5
(3C5X) and 2.2*¥1075 (3C6E). The difference in mean values was confirmed sta-
tistically significant with 95% confidence level using t-test. The test p-values
were 0.01584 (3C5X) and 0.01980 (3C6E).

Tabulated in 3.1 are four values for each direct contact: the sum of the den-
sity point values and for completion, mean (Mean) and maximum (Max) point
values with the number of points (Nr) as well. Arginine gets higher maximum,
but lower mean values in both, low and neutral pH structures, suggesting that
the point values of glutamine are more evenly distributed. Glutamine has a
smaller amount of points, Nr, but the mean of the values evaluated in them
is higher, corresponding to that the main result Sum is higher, especially for
neutral structure 3C6E. The value for Sum is calculated so, that the varying
finite volume element size produced by spherical polar coordinates, is taken
into account, and therefore represents the probability density in the spatial area
containing the target atom positions. Nevertheless, because the actual volume
elements were not used, as in an integral, Sum depends on Nr, and the other
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1/(10A)~3 GLN 55 ARG 55 - PDB
(x1 rmer) prM/E prM/E p (res.)
GLY 104 0.344 (g7) 0.333 (t) low 305X
sum sum 2.2A
(

GLY 104 0.551 (g7) 0.324 (t) neutr. 3C6E
sum sum (2.6A)

G104&H20 03*10 3 (g) | 1.2¥1073 (1) o 3ChX
overlap overlap (2.24)

G104&H20 0.5¥107% (g7) 1.4%1077 (t) neutr. | 3COE
overlap overlap ’ (2.6A)

Mean,Max 7¥107°,3*10~* 6*107°,8%10~* low 3C5X
(Nr) /G104 (4913) (5265) © (2.24)
Mean,Max 1074, 4*¥10~* 6*107°,6%10* neutr 3C6E
(Nr)/G104 (4913) (5265) " (2.64)

Table 3.1: Calculated highest values of contact preferences relating to pre-
membrane protein position 55. Results given as sums of preference density point
values (sum) or as evaluated preference density mean overlap values (overlap).
Overlaps are calculated for water mediated contacts, while sums quantify direct
contacts. Sum and overlap values can be compared separately, not with each
other. The best scoring reference rotational isomer of rotation around alpha
and beta carbon connecting bond given in parentheses after calculated value.
PDB IDs refer to structures measured in neutral and acidic conditions given in
column pH. Last two rows contain supplementary results for Sums. See text for
more details.

two calculated values (Mean,Max) give clarifying information. The side chain
conformations were generated in a process where the amount of torsion angle
values included from the defined interval, depended on the rotatable bond count
of the side chain. Arginine could therefore have a larger advantage in the num-
ber of target atom positions, and though the values for Mean, with similar Nr
(5265 vs. 4913), is higher for glutamine, the result is not conclusive. Following
from that a water bridge was considered the more likely form of interaction, a
decisive result for this direct contact was not pursued. It is concluded, that in
order to make interpretation of the results more straightforward, distribution
of the target atom positions is to be modeled with a pobability density, which
then allows calculating the results as overlap integrals, in a similar way as for
a water bridge in this study.

The water mediated contacts were quantified using numerical integration
with Riemann sums, where the amount of points is related to precision. The
number of finite volume elements, ApAGAP in eq. (2.24), used in evaluating
the integrals varied between 200 and 2000. An assumption used in this study
is that the side chain can be in any rotamer, without considering the energy
differences of the reference rotamers, for a quantum mechanical treatment of
side chain conformational energies see, e.g., [46]. The lower energy rotamers
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could possibly be favoured in an ensemble, but other rotameric states are sys-
tematically observed and the molecular environment emphasized in this study
is shown to have, together with main chain conformation, a significant influence
on which side chain conformations are realized [31].

Numerically obtained results correspond with the severity loss in the one
cluster with R55Q mutation in that, the presumed water bridge from position
55 in prM to position 104 in fusion loop of E would be weaker, therefore making
the complex less stable.

Mutation N83K The second position here is 83 in envelope of dengue virus
serotype 2, where two clusters from the k-pax clustering analysis had lysine
(LYS, K) and 11 clusters, almost all the rest, had asparagine (ASN, N). There
were two more clusters, with valine (VAL, V) in 83 of E, but for these, no
metadata like severity of disease was available, and VAL was not included in
the calculations. The two clusters with lysine had larger portions of severe cases.
Figures 3.6 and 3.7 represent the contact site for ASN C 7 with a scatter plot
of preference density values for the side chain end group fragment in ASN C 7,
and both clustering based significant residue types (N and K) in representative
conformations.

1/(10A)=3 ASN 83 LYS 83 - PDB
(x1 rmer) prM \ E prM \ E p (res.)
T T
e | B0 [ B[, | E
¥ ¥
ASN 7 gulm(g ) iulm(g ) neutr. ?; gg)
T ¥
ASNTLHZ0 0.026 (g) 0.053 (g") o 305X
overlap overlap (2.2A)
T ¥
ASN7&H20 0.011 (g™) 0.035 (g™) neutr. 3C6E
overlap overlap (2.6A)
Mean,Max 6510137107 | 4710002 | | 305X
(Nr) / N 7 (1089) (6561) W (2.24)
Mean,Max 10~%, 5%10~% 3*10-%,1073 . 3C6E
(Nr) /N7 (1089) (6561) HEUM(2.64)

Table 3.2: Calculated highest values of contact preferences relating to enve-
lope protein position 83. Results given as sums of preference density point
values (sum) or as evaluated preference density mean overlap values (overlap).
Overlaps are calculated for water mediated contacts, while sums quantify direct
contacts. Sum and overlap values can be compared separately, not with each
other. The best scoring reference rotational isomer of rotation around alpha
and beta carbon connecting bond given in parentheses after calculated value.
PDB IDs refer to structures measured in neutral and acidic conditions given in
column pH. Last two rows contain supplementary results for Sums. See text for
more details.
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Figure 3.6: Contact preference density values plotted for asparagine 7 from
pre-membrane side with respect to asparagine 83 from envelope side. Larger
marker size means higher density values. Cutoff used for density values is 5 %
of the maximum. Asparagine 83 is in a conformation illustrative of binding site
dimensions.
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LY5 AB3

Figure 3.7: Contact preference density values plotted for asparagine 7 from pre-
membrane side with respect to lysine 83 from envelope side. Larger marker size
means higher density values. Cutoff used for density values is 5 % of the maxi-
mum. Lysine 83 is in a conformation illustrative of the binding site dimensions.
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Overlaps were calculated with six (3C5X) and five (3C6E) different numbers
of finite volume elements. Table 3.2 gives the mean values. Standard errors
in units (10A)~% are, for ASN 0.3*10~% (3C5X) and 1.1*10~ (3C6E), and for
LYS 20.4*103 (3C5X) and 13.8%10~2 (3C6E). The difference in mean values
was confirmed statistically significant with 95% confidence level using t-test.
The test p-values were 0.02140 (3C5X) and 0.01984 (3C6E). The fragment class
specific prior was defined for the residues involved in water mediated contacts
so, that the relating results can be directly compared, also between studied
positions: C55, A83 and 202.

Lysine in position 83 of E is the more preferred as direct contact for as-
paragine in position 7 of prM, and also more preferred contact in a water bridge.
This can be explained by that lysine side chain is longer than asparagine side
chain and has more rotatable bonds (4 vs. 2). This allows lysine to participate
in more geometries that generate a preferred contact with asparagine on the
other side of the interface, through a water molecule or directly. The values
for the direct contact (Sum, Mean and Max), all indicate that lysine can make
a stronger contact, because it does not only get highest Sum, but also Mean,
despite larger number of points, Nr. In addition, lysine gets at least twice higher
maximum probability values, indicative of deeper position in potential energy,
with the a priori given estimate for fragment to target bond strength included,
for details of fragment class specific prior probabilities, see chapter Article. It
follows that lysine is more favoured, both in terms of bond strength and spatial
entropy, the latter following from that there are more geometries that corre-
spond to potential energies close enough to minimum, so that the contact is
maintained. It should be noted that for lysine, alternative rotamers of three
side chain dihedral angles were not considered, but all rotamers for asparagine
were included in the calculations, and therefore lysine could get still stronger
preference when all its degrees of freedom were fully mapped.

Numerically obtained results correspond with the severity rise in the two
clusters with N83K mutation in that, the presumed water bridge from position
83 in E to position 7 in prM would be stronger, therefore making the complex
more stable.

A hydrophobic pocket in domain II of E

This second case study is a residue pair that closes a hydrophobic pocket sur-
rounding a tryptophan (TRP 206) residue of the envelope protein in domain
IT (DII). The residues are in positions 202 and 257 in the amino acid residue
sequence of the envelope protein (E). Position 202 had been found significant in
the clustering analysis performed with the program k-pax [41].

In the dimeric form of E, pockets of the two chains are close to one another
(about 9 A between residues of position 257 in chains A and B), that is, they are
at the E/E interface. Dimer is the prevalent form before the virus particle is in
an endosome of a host cell [43], where, in the lower than neutral pH, E protein
complexes transform to trimeric, cone-like form. In the trimer, the pockets are
on the outer surface of the cone. Tryptophan in position 206 (W206) and its
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environment could be of interest, because it is located in DII, which gives the
strongest immunological response in E [40]. Table 3.3 presents numerical results
for preference calculations quantifying the contact between residues in positions
202 (LYS or GLU) and 257 (GLU).

Overlap / 4GSX 4GSX 10KS8

(10A)—3 (ChainA) (ChainB)
E202-E257 (x; rmer) | 0.20 (g7) 0.05 (t) 0.39 (g7)
K202-E257 (x; rmer) | 0.02 (g7) 0.01 (t) 0.08 (g7)
Stage lfitgoiltage iii?oitage postfusion
Serotype 1 1 2
Resolution 1.9A 19A 20 A

Overlap 3C5X 3C6E

(1004) *3/ (pH low) (pH ntr.) 3UAJ
E202-E257 (x; rmer) | 0.11 (g*) 0.26 (gh) 0.74 (g*)
K202-E257 (3 rmer) | 0.01 (g*) 0.17 (g%) 0.17 (g*)
Stage prM/E prM/E prefusion
Serotype 2 2 4
Resolution 2.2 A 2.6A 323 A

Table 3.3: Probabilistic model based contact preferences calculated for a water
mediated contact between a lysine, or a glutamate, and a glutamate using five
PDB coordinate files, IDs shown. These structures represent different stages of
the viral life cycle, for example, the first column in the lower row has data for a
maturing virion in a lower than neutral pH. Note also serotypes and resolutions.
Results are given as highest overlap mean values. See text for more details.

The results in Table 3.3 point to the direction that structural changes of the
hydrophobic pocket occur in different stages of viral entry (3UAJ,10K8,4GSX)
and varying pH (3C5X,3C6E). In all cases glutamate in position 202 gets values
indicating the stronger water mediated contact with glutamate in position 257
of the same protein chain. Conclusions based on these results are restricted
to that there are structural changes, and that conditionally glutamate is the
more preferred residue, because some factors, like contact with the neighboring
residue in position 203, the main chain conformations and part of the side chain
conformation space are neglected. The last point is related to that alternative
rotamers are accounted only for rotations around the bond between alpha and
beta carbons. Also, the spatial entropy of the side chains could be considered
by quantifying the amount of conformation space allowing a water mediated
contact, when suitable conditions on including minimum overlap value were
determined.

Overlap values were calculated using three different numbers of finite vol-
ume elements in the Riemann sums. Statistical significance was tested for differ-
ence between glutamate-glutamate and lysine-glutamate water mediated con-
tact overlap mean values for all six cases given in Table 3.3. Significance was
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confirmed with 95% confidence level using t-test with respect to all but 4GSX
(chain B), where the test p-value 0.1044 did not allow rejecting the null hypoth-
esis that overlap means were equal. The structure 4GSX contains two identical
chains, but calculations, at the explained level, produce different rotamer pref-
erences and overlap values, the latter especially for glutamate, see Table 3.3.
Inspection of structure 4GSX reveals that distances between any two atoms,
e.g. beta carbons, of the glutamate residue pair (E202,E257) in both chains, A
and B, are very similar. This suggests that the difference in values calculated
for a water mediated contact between GLU A/B 202 and GLU A/B 257, in the
two chains, originates in the relative positions of the secondary structures the
residues are part of, an alpha helix (257) and a beta structure (202). Results
like this, that are not readily explained, can offer guidelines for further study
with perhaps a more comprehensive description of the molecular environment,
requiring then a heavier computational effort.

Residue contact results The highest values from contact preference cal-
culations quantifying a water mediated bond were obtained for glutamate in
position 202 of envelope, Table 3.3. The second highest ranked residue in this
respect was lysine in position 83, located in pre-membrane/envelope protein in-
terface, see Table 3.2 and Figure 3.7. This lysine was also calculated to form the
strongest direct bond among those studied. The weakest water mediated bonds
were estimated for glutamine in position 55 of pre-membrane protein, contact
site depicted in Figure 3.4.

Though the overlap values of this Dengue virus related study can be directly
compared, the relative energies of the contacts are at this stage not yet resolved.
Preferences of the molecular environment with respect to residue atoms other
than the target, influence the energetic cost for a residue to be in a higher than
minimum energy rotamer, for a discussion see [47]. A treatment of all inter-
molecular contact preferences in a uniform setting, i.e. including standardized
quantifiers and fragment class specific priors, with knowledge of the intramole-
cular energetic states, and thermal motion, can be used to estimate the relative
energy of the molecular system when its components are varied. The results
given by the probabilistic model include entropy in a conceptual scale so, that
in the other end, there is large spatial areas of overlap with possibly modest den-
sity values, and therefore the entropy change with respect to free molecules is
less negative, and in the other end, smaller areas with relatively high density val-
ues that correspond to bond strengths that are able to confine the motion. Both
these situations correspond to a bound state scenario, where binding strength
outweighs entropy loss in contact formation. The overlap can be of two con-
tact preference densities, or of a contact preference density and a target atom
distribution in a set of conformations.



Chapter 4

Article

The probabilistic method treated in the preceding chapters was published in
article "Probabilistic prediction of contacts in protein-ligand complexes’ [17]. In
the present chapter, the main parts of the publication are given in order to
complete the contents of this book.

Tables and figures that contain the same information, both in the article and
in other chapters of this monograph, are not presented separately, but instead
are cross referenced in this chapter to the rest of the monograph. Additionally,
first four of the six examples in the original article were excluded from this
abridgement, because they were considered redundant with respect to the ex-
position here, and can be held as supplementary information accessible through
the online publication [17]. The kept Examples five and six were numbered one
and two, respectively. This chapter can be read as a separate entity preceding
a discussion on overall conclusions about the model.

4.1 Abstract

We introduce a statistical method for evaluating atomic level 3D interaction
patterns of protein-ligand contacts. Such patterns can be used for fast separa-
tion of likely ligand and ligand binding site combinations out of all those that
are geometrically possible. The practical purpose of this probabilistic method
is for molecular docking and scoring, as an essential part of a scoring func-
tion. Probabilities of interaction patterns are calculated conditional on struc-
tural X-ray data and predefined chemical classification of molecular fragment
types. Spatial coordinates of atoms are modeled using a Bayesian statistical
framework with parametric 3D probability densities. The parameters are given
distributions a priori, which provides the possibility to update the densities of
model parameters with new structural data and use the parameter estimates
to create a contact hierarchy. The contact preferences can be defined for any
spatial area around a specified type of fragment. We compared calculated con-
tact point hierarchies with the number of contact atoms found near the contact

95
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point in a reference set of X-ray data, and found that these were, in general,
in close agreement. Additionally, using substrate binding site in cathechol-O-
methyltransferase and 27 small potential binder molecules, it was demonstrated
that these probabilities together with auxiliary parameters separate well ligands
from decoys (true positive rate 0.75, false positive rate 0). A particularly useful
feature of the proposed Bayesian framework is that it also characterizes predic-
tive uncertainty in terms of probabilities, which have an intuitive interpretation
from the applied perspective.

4.2 Introduction

Atomic level structures are an important source of information for inferring
functional aspects about macromolecules and ligands binding to them. For
instance, this is illustrated by the substantial amount of existing algorithms
and structural data modeling software created for molecular docking and scoring
purposes [48], [49], [50], [52], [53]. The Protein Data Bank (PDB) [20] offers the
central public access to macromolecular structure files.

Although there is already a large amount of structural data available, it is
by no means straightforward to model it reliably. There are several reasons
for this, such as the inevitable errors present in experimental results and the
"averaging" nature of the measurement process used in the construction of X-
ray diffraction data. Moreover, along the conversion from a measurement to a
structural coordinate file, several computational approximations and the sub-
jective choices of experimentalists will influence the final outcome. Among the
latter sources of variability, two major issues are flexibility of the molecules and
computational constraints implemented in the refinement process. The first one
is related to thermal motion and static disorder, and the second to biochem-
ical a priori information that is always used in the refinement of a structure
to create a coordinate file [53], [54]. These are accompanied by crystal packing
effects, which also originate from the flexibility of the molecules, uncertainty in
orientation and location of small molecules, including water.

It can be argued that for addressing the above-mentioned issues, statistical
modeling provides the most promising approach, given its ability to capture
uncertainties and errors in data. To meet these goals we introduce a Bayesian
statistical method for evaluating atomic level 3D interaction patterns of protein-
ligand contacts. Our work is motivated by the previous findings in Rantanen
et al., [48], [49], [50] which showcased the usefulness of this kind of a multi-
disciplinary approach. However, given computational speed related constraints,
it has not been possible to pursue these previous Bayesian methods further in
contact preference exploration. Therefore, the method discussed here focuses on
providing rapid means of computing, together with adjustability and robustness
of the statistical model. The latter aspect refers in this context firstly to the
constraint that two points in close proximity to each other (with respect to the
system size) should not get very different contact preference hierarchies without
an easily tractable reason. Secondly, in terms of robustness, the preference pre-
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diction model has to be balanced between adhering too closely to the possibly
biased overall number of different types of contact atoms in the training data set
and using a sole comparison of the probability densities defined for each contact
atom type of a molecular fragment. Finally, the adjustability is concerned with
both the model structure and the chemistry-based classification of molecular
fragments. In our illustrations we consider 24 molecular fragment and 13 con-
tact atom types, exhibiting interactions like hydrogen bonding, dispersion (e.g.
aromatic-aromatic) and interactions between charged groups.

The main purpose of this paper is to show how a Bayesian statistical model-
ing approach can be utilized to make naturally ranked predictions about contact
preferences, such that the model itself can be flexibly updated in the presence of
novel data and other auxiliary information. Basically, this method is developed
to retrieve information to be used in a knowledge-based scoring function. There
exist several well performing scoring functions [2], [65] that utilize the experi-
mental knowledge through inverse Boltzmann relation from statistical thermo-
dynamics [35]. These functions depend only on distance between atoms, e.g.,
a ligand atom and a binding site atom. Our method differs from them in that
also directional information is incorporated in the model, which has been shown
in case of hydrogen bonding to still significantly improve evaluation of binding
energetics from experimental data [56].

Three basic scoring function tasks have been defined [2], of which enrichment
of ligands was tested with our method. The test was done through separating
catechol-O-methyltransferase (COMT) ligands from decoys using logistic re-
gression on a set of 27 small molecules having similar properties. The receiver
operating characteristics (ROC) [57] for the results show that the probabilis-
tic contact preferences give reliable information about the relative affinities in
intermolecular contacts. These probabilities can be applied to intramolecular
contacts as well. In practice, they are used as part of a molecular docking and
scoring routine. The method described in this paper will be integrated as a
functionality in the molecular modeling environment BODIL [51].

The structure of the article is as follows. First, data collection and the
modeling approach are described. Thereafter, results from two case-studies
are presented. Last, implications of the results and some future prospects are
discussed.

4.3 Materials and methods

4.3.1 Data collection and processing

We used PDB as the main source of data in this work. Training data for the
model was collected from a set of approximately 28000 structure files published
before January 1%% 2009. The files were selected using the criteria presented
in Table 4.1. A reference dataset for model validation was selected under the
same criteria as the training set and contained 10361 structure files published
between February 2" of 2009 and 31%* August 2011. X-ray structures form the
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Has ligands: Yes

Contains: Protein,DNA ,RNA | Yes, No, No
Experimental method: X-ray diffraction
Min. resolution 2.5 A

Table 4.1: Criteria for selecting structure files from PDB

largest group of data present in PDB. The bulk of a structure file is the coordi-
nate section, but there is also chemical and biological information, interpreted
as metadata, which is necessary for constructing a sensible predictive model.
The type of metadata that is most directly deducible from the experimental
observations is the atom type. The atom type classification can be considered
sufficiently reliable for the higher resolution (< 2.5 A) structures, however, with
at least one exception, which corresponds to the nitrogen (N) and oxygen (O)
atoms in a carbamoyl group (-CO-NHz). In this group, O and N cannot be
distinguished solely on the basis of X-ray diffraction data, because of the sym-
metric structure of the group and very similar electronic densities around both
O and N. This is a prime example of a regularly encountered error in the meta-
data, which, however, can be corrected by reversing the coordinates of O and
N. The ligand metadata would impose this error when for instance hydrogen
bonding with the ligand would require an acceptor (O) contact, but a donor
(-NH;) contact is given a closer coordinate location in the structure file.

A considerably more difficult problem to handle is the influence of the con-
straints used in the refinement of the protein structure from experimental data.
These constraints generate some unreliability in the coordinates, because only
conformations with restricted geometries are allowed for the amino acid chain,
which together with limited resolution can lead to artificially distorted confor-
mations of ligand structures. In practice this means that the refinement involves
fitting an alleged structure to the experimentally determined electron density
map, which does not define all structural features uniquely, especially when the
resolution is low [54].

Molecular fragments of pre-defined types (see Tables 4.2 and 4.3) were searched
from coordinate ligand structure files in PDB. The search was based on atom
types, chemical connectivity and geometry, and the identified fragments were
then labelled for use in the extraction of coordinate data from protein structure
files. To obtain unique fragment orientations, atoms from within a functional
group were, when possible, chosen for the fragment definitions. In order to
build a predictive model, the set of 24 fragment classes in Table 4.2 was used
while collecting a dataset of approximately 70,000 contacts, representing the 13
contact atom types, i.e. target classes in Table 4.3.

Regarding the contact classes in Table 4.3, for example, the class C3 rep-
resents a pure van der Waals contact [58] and class C4, a hydrogen donor in
a possible weak hydrogen bond in addition to a van der Waals contact [59],
[60]. Aromatic carbons (C5, f11) can participate in both of the typical C3
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Class | Description

f2 Hydroxyl oxygen bonded to a non-planar
aliphatic structure

f3 Hydroxyl oxygen bonded to an aromatic structure

5 Carbonyl oxygen
(excluding those belonging to f9 and {10)

f6 Oxygen of a carboxyl group

fr7 Carbamoyl oxygen

8 Oxygen bonded to a phosphate group

f9 Amide group oxygen bonded to a non-aromatic
structure

£10 Amide group oxygen bonded to an aromatic
structure

f11 Secondary carbon in an aromatic structure

f12 Secondary carbon in a non-aromatic structure

f13 Primary carbon (with one hydrogen)

f17 Fluorine bonded to an aromatic structure

f18 Fluorine bonded to a non-aromatic structure

20 Chlorine bonded to an aromatic structure

f21 Chlorine bonded to a non-aromatic structure

f22 Nitrogen in an aromatic structure (without a substituent)

f23 Nitrogen in a non-aromatic planar ring structure
(without a substituent)

26 Amino (primary) nitrogen singly bonded
to a non-aromatic structure

f27 Amino (primary) nitrogen bonded to an aromatic structure

29 Amino (primary) nitrogen singly bonded
to a planar structure

f34 Bromine bonded to an aromatic structure

35 Bromine bonded to an aliphatic structure

36 Todine bonded to an aromatic structure

f37 Todine bonded to an aliphatic structure

59

Table 4.2: Fragment classes used in this study. Main forms of intermolecular
interaction for these fragment types are hydrogen bonding, dispersion, charged
group based electrostatic and halogen bonding. The fragment classification was
partly adopted from the previous work of Rantanen et al. (see Introduction).
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Main chain carbony! O (C14) contacts for Amino-N Singly Bonded to a Planar Structure (29)
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Figure 4.1: Contact atom (target) cloud formed by main chain carbonyl oxygens
(C14) around fragment type (f29) (amino nitrogen singly bonded to a planar
structure). In the reference frame where targets are modeled, polar angle value
# = 0 corresponds to what is in this paper called the main direction of the
fragment — the direction of the vector from Atom1 to Main-atom, and 6 = 5
corresponds to the plane that includes Main-atom in the origo and to which the
main direction is perpendicular. Azimuthal angle ¢ measures angular deviation
from the plane of the fragment, so that the center of the smaller cluster below
the fragment is (in the model frame) approximately in direction [ = 7, ¢ =
37” = —7%]. A fragment is defined by determining the characteristics of an
atom triplet: Main-atom, Atoml and Atom2. Main-atom is covalently bonded
to Atom1, and Atoml is covalently bonded to Atom2. Chemical properties of
the Main-atom primarily determine the class of a fragment.
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The contact: Amino-M Singly Bonded to a Planar Structure (29) - Main Chain Carbonyl-O (C14)

Palar angle 38 -3 2

Azirmuthal angle

Figure 4.2: Probability density modeling the target cloud of Figure 4.1, which is
depicted in the same reference frame with the density. They can be interpreted
as overlayed such that elevations in the density correspond to dense areas in the
cloud of data points. The main direction of the fragment, as described in the
caption of Figure 4.1, is defined by € = 0 in the reference frame of the model,
but corresponds in this figure to [ = T, ¢ = 0], where 6 is the polar angle and
¢ is the azimuthal angle.
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Class | Description

C3 Carbon of a methyl group

C4 Alpha carbon

C5 Carbon in an aromatic structure
Cé6 Sulfur of a thioether group

Cc7 Sulfur of a thiol group

C8 Nitrogen of an amide group

C9 Nitrogen of indole, imidazole and guanido groups
C10 Nitrogen of an amino group
C11 Oxygen of a carboxamide group
C12 Oxygen of a carboxyl group
C13 Oxygen of a hydroxyl group
Ci14 Main chain carbonyl oxygen
C15 Main chain amide nitrogen

Table 4.3: Classification of contact atoms, or targets. The target classification
was partly adopted from the previous work of Rantanen et al. (see Introduction).

and C4 interactions [61]. Halogen bonds have a role in biological processes [21]
and therefore Fluorine [62], Chlorine, Bromine and Iodine are considered as so
called fragment Main-atoms, as shown in Table 4.2. The target atoms in pro-
teins, identified with three distance criteria (< 3.3A for alleged H-bonds and
charged groups, < 3.7A for probable dispersion and < 3.9A for halogen bonds),
were classified during the search using three criteria: 1) element, 2) amino acid
residue and 3) side or main chain atom. The interaction was defined as between
a fragment type and target type, or between nuclei, mediated by protons and/or
electrons.

A fragment was defined by an atom triple: Main-atom, Atom1 and Atom2,
and at least the Main-atom was given the following characteristics: element,
covalent bond count, aromaticity and possibly functional group, see Tables 4.2
and 4.3. These characteristics were used in collecting data from PDB, resulting
in coordinates with metadata. The aromaticity of an atom was decided using
PDB Ligand Dictionary through PDBeChem [45].

In addition to classification, target atoms have to be put in one coordi-
nate system, i.e. fragments are superimposed. This was done using an ele-
mentary translation-rotation: first the database coordinates of the Main-atoms
were translated to origin, which creates a new dataset (Fyatapase below in eq.
4.1), and then a rotation operation was defined to connect the fragments refer-
ence frame to a common coordinate system. This requires solving the following
matrix equation:

ﬂarget = R Fyatabases (41)

where R refers to a 3x3 rotation; F' = [Fq Fo T3], 73 = [z, yi, z:]T and 73 =
71 X T, i.e., T3 is the cross product of 71 with 75.
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Thus, we have the equation,

R= Earget : F1d_‘omiahbase7 (42)
which was solved for each fragment. The resulting R was then used in the
translation-rotations of the respective target atom position vectors to the com-
mon coordinate system. When the data is collected as mentioned above, as well
as classified and coordinate systemized in this manner, the process results in a
collection of three-dimensional distributions of points that present measured
relative positions of specified atoms with respect to specified fragment types.
These distributions were then modeled with 3D probability densities described
below.

4.3.2 Statistical modeling

To obtain predictive distributions for contact preferences we utilize a Bayesian
framework where the observed 3D coordinates in the training data are mod-
eled with interconnected parametric 1D densities, such that the parameters are
provided a priori uncertainty characterizations in terms of probability distribu-
tions. The prior distributions enable regulation of parameter estimates in order
to prevent them from depending solely on the observed data, which is desirable
especially under the circumstances where the data generation process is known
to harbor intrinsic biases. Also, regularization of model parameter estimates
with the prior information is most crucial when certain class pairs have only
very sparse training data, in which case unsmoothed estimates can be strongly
biased.

The core distribution we utilize for characterizing coordinate variability is
the von Mises-Fisher distribution (vMF) which is widely applied for modeling
directional data. Separate probability densities for all three coordinates were
necessary in order to capture the properties of the target atom clouds in a
uniform setting (details provided below). Spatially the most complex (multi-
modal) observed differences in target atom distributions are found around the
main direction of the fragment, and to a somewhat lesser extent with respect
to distributions of polar angle, i.e. angular deviation from the main direction,
see Figures 4.1 and 4.2. The distance distributions are given a priori as many
modes as the corresponding polar angle distributions have, though in most cases
they practically form a unimodal density, but not always. This is explained more
thoroughly later in this section. The variables and parameters of the densities
used in our work are specified in Tables 4.4 and 4.5.

Symbol | Variable

1) distance

10} azimuthal angle
0 polar angle

Table 4.4: The spherical polar coordinates.
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Symbol | Description Treated as
Mean of Normal den- .
Hp sity for the distance Random variable
V =
2 Variance of Normal den- 1 aigf) p— (L Ek )2
p sity for the distance k £al=1F1 k Zal=1 P

for k observed distances.

Expected direction, i:th
by von Mises mixture Random variable
component for
Concentration parameter,
K 1:th von Mises mixture Random variable
component for 6

Mean, j:th Normal mixture
component for ¢

Hij related to i:th von Mises Random variable
mixture component
Variance, j:th Normal Var(¢),; =
2 mixture component for ¢ 1k t s 1k )
Tij related to i:th von Mises k Zl:1 g (lc Zl:l o1)?,

. for k observed angles.
mixture component

Table 4.5: Parameters for the model densities.

Let « denote a generic set of parameters specifying a density in a 3D space.
Then, the probability density in spherical polar coordinates frc(p, ¢,68]v) for
fragment class f and target class C is assumed to be of the piece-wise defined
form

Fro@{piph Ao, b AN} {kit {n} {o}) o (4.3)

Noym
D I(p € )10 € bi)zifors (O1Ni, ki) - I (plptip: 07 )
=1

Nn,i

(D10 € ai)wi; fn(Dlijy 04j)]

j=1

where 7 = [psin(6) cos(¢), psin() sin(¢), pcos(9)]7, the b; divide (0,7) and ¢;
divide (0, psccgtof f )) to non-overlapping intervals. The limit p;céftof 7) is the max-
imum distance used in collecting the target atom locations for a fragment class
and target class pair (fC). The intervals b; and ¢; are associated with weight
%, Zf\i’lM z; = 1. The a;; then, are non-overlapping intervals of (0,27) associ-

ated with the weights w;;, Z;V:Nl‘ w;; = 1 (see below) and the different density
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components and parameters are defined using conventional nomenclature as:

i 1
f](\f)(p | Hip, aip) = Ni,p : eXp(_2o_2 (p - Mi,P)Q) (44)
ip

(i:th Normal component, N; , normalizing term),

fi?\)ﬂep\iaf%) = N; -exp(kcos(d — \;))

(i:th von Mises component N; normalizing term) and

7,7 1
N (@i, 14) = f% exp(— g7 (¢~ 1)°)

(j:th Normal component, relating to i:th von Mises component).

Equations 4.4 show the forms of the densities in the particular coordinate
system, or reference frame, that is used for modeling and in which the main
direction of the fragment coincides with the positive z-axis. A likelihood function
is obtained as a product from the values of the components of the density (eq.
4.3) for n; (or n;;) points representing each of the included regions in the sample
space,

L{piphAoiph ANk kit {nih {oi}) =
Nyum Nn,i
Z Li(tti,p 04,0y Niy Ki) - Z Lij(piz, 0i5) | » (4.5)

where

1 nq s 2
L; zz% . el E;Ll cos(0k—X;) .e 2"1'2-,;3 2= (Prtip) , (46)
n, (pr—piz)?
Lij ocw™ - ¢ 5 W) (4.7)

ij

The structure of the density (eq. 4.3) was chosen based on investigations
of the forms of the target atom clouds. For example, use of normal densities
for the distance data was supported by large p-values in Kolmogorov-Smirnov
normality test and the numbers of components needed in the angle dependent
part of the density (i.e. N,a and Ny ;) were automatically chosen based on
frequency distribution of binned data. This was done for both angles (§ and
¢) by connecting the heights of the adjacent bars of the histogram, creating a
sequence of values, in which every change of sign corresponds to a local minimum
or a maximum. The number of maxima was restricted to the interval [1,5], was
used to represent the number of modes in the density. The number of maxima
was restricted by either reducing or increasing the number of bins in case the
result would be outside the given interval.
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Figure 4.3: Contacts for carboxyl oxygen (f6), showing differences in spatial
arrangement of contacts among three target classes - C4 (alpha carbon), C10
(amino nitrogen) and C12 (carboxyl oxygen). The scatter plots contain all
the target atoms found in the fragment class f6 training data for these target
classes.

In the separation of variables, the azimuthal angle and the distance are con-
ditioned on a polar angle interval, see the equations in (4.4). The angular part
reflects arc-like structures around the main direction of the fragment (for exam-
ples of this see Figures 4.3-4.5). The angular deviation from the main direction
is the leading variable in the sense that a multimodal azimuthal angle distribu-
tion (i.e. around the main direction) and a unimodal distance distribution are
defined separately inside each polar angle segment. The idea behind this is that
the peak of a polar angle density is an indicator of the strength of the interac-
tion between a fragment and a target. The smaller the angle, the stronger the
interaction, and if there is any effective multimodality in the distance density,
the modes should coincide with the modes of the polar angle density. The az-
imuthal angle distribution thus completes the directional structure within each
polar angle mode.

The uncertainties of the distance and the azimuthal angle variances are dif-
ficult to model due to the data generation process, the limitations of which
were discussed above, and therefore, we use the standard maximum likelihood
estimates calculated marginally from observed coordinates. On the other hand,



4.3. MATERIALS AND METHODS

Probability density /Oxygen (f10) - Nitragen (C8) Probability density fOxygen (f10)
A

dist 2.74 dist 2,744

Polar angle 3 i [ 2

Arzimuthal angle
Contacts / Oxygen (FI0) - Nitrogen (C8)
¥

dist"cos(Polar angle)
o

7=

Polar angle 3 ~ 1}

08y ..
0.4

02

Azimuthal angle
Contacts / Quxtygen (f10) - Mitrogen (C8)
*

67

- hitrogen (C3), Probability density /Oxygen (FI0) - Mitrogen (C3),
dist 3,184

Polar angle 3
Agzimuthal angle

Contacts £ Oxygen {f10) - Nitrogen (C3)
*

3 2 A a 1

y=dist*sin(Polar angle)™sin{Azimuthal angle)

3 -2 A 1) 1 2

y=dist*sin(Polar angle)*sin(Azimuthal angle)

3

-3 -2 -1 0 1
y=dist*sin{Palar angle)*sinfAzimuthal angle)

)
w

* : +
cLt ¥ s * i
i g2 b SIS
¥ su ‘é;# Sy &
A AR I S
by T Rt ey
M 4;*-;* P o +*
b ST 4T . RIS G A
B s **ﬁ* =+ S **ﬁ* ﬁ
T + * + ¥ * +
H -J)r#le'-k- 1 *#ﬂ*
o *f U *{
* * 1 * * * 1 %
F *oa * s 2 Fokeg * [
e o Ty Ay
+ . o + w*
i = 3 +
2

Figure 4.4: Contacts for amide oxygen (f10) showing differences in contact
arrangements for two target classes - C8 (carbamoyl nitrogen) and C9 (imida-
zole, guanido or indole nitrogen), and also distance dependence for class C9.
The scatter plots contain all contacts found in the training data for these frag-
ment and target class pairs. Note that the target atom clouds in the middle
and on the right are the same.
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Probability density /Mitrogen (29) - Oxygen (C14), Probability density MNitrogen (29) - Oxygen (C14),
dist 274 dist 2.98A
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Figure 4.5: Contacts for nitrogen, singly bonded to a planar structure (£29)
— e.g. in carbamoyl group, showing distance dependence for target class C14
(carbonyl oxygen). The scatter plot contains all C14 target atoms in the train-

ing data and the densities show which directions are emphasized at distances
2.7, 2.98 and 3.26 A.
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the means yi; ,, A; and p;; are central parameters representing a measure of the
strength of the interaction between the fragment and the target.

Parameter prior densities

A prior distribution in Bayesian statistics can either be used to model uncer-
tainty about a parameter or to include a priori knowledge, or beliefs, in the
model [63]. Both of these uses are necessary for our modeling purposes.

Prior densities can be chosen in various ways such that they are either conju-
gate distributions for a particular likelihood function, or some other probability
densities possessing required statistical properties, such as an asymmetry. Priors
utilized here for individual parameters in the model densities are summarized
in Table 4.6. In Table 4.6, Iy(.) is the zeroth order modified Bessel function of
the first kind. For the von Mises and Normal distributions, conjugate priors are
used (for the mathematical derivations related to these distributions see [64],
[65], [66]).

Functional Form
of Prior

— 1 (s = 2
e 25(2)(“1”’ Ho) :

Symbol | Parameter Type

Wi,p Mean of p (i:th Normal component) | ;0 and o2 are

constants.
I(;nl (Hi — Iﬂ;o);

Concentration of 0

i (i:th von Mises component) tio and n; are
constants.
A Mean of 6 ey cos(Aj—,\o);
) (4:th von Mises component) \o is a constant.
Mean of ¢ e—%(uu—w,o)z;
i (j:th Normal component related {150 and 03).0 are
to i:th von Mises component) constants.

Table 4.6: Prior densities for model parameters. More details can be found in
section Parameter prior densities.

Our prior density for the parameters is a slightly modified version of the
distributions considered in [22] and [67]. The density has the form:

p({1ip}, {mi}s {Nits {15 {eij Hivo, 005 Koy iy Ao, €is Kx 0, 1,0, Tg,0) O

N o)
e 253 \Hip™HO)™ I(;n7(fiz _ HO) e cos(Ai—Ao) | I(;Ci("i/\i _ fi}\,O)' (48)
=1
Nn,i

— 55— (Hij—p4,0)*
T

Jj=1
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In equation (4.8) hyperparameters n; and ¢; represent measures of modeler’s
belief in the expected values of the concentrations. The larger the value of the
hyperparameter, the more the prior is concentrated around kg or Ky 9. A default
choice for any of these hyperparameters is the number of observations available
for calculating the estimates for sy and &y 0.

The posterior distribution

In Bayesian statistics, learning from observations takes place through the pos-
terior distribution which is accessible from the joint probability density defined
for the data and the parameters. For our piece-wise defined likelihood, the joint
density is formally defined as

p{maph ANt ARits {pig Hpip b i hs ki b {pizp}) =
L({,U’i,p}v it kit {,Uij})' (4.9)
’ p({ﬂi)p}7 {)‘l}’ {Hi}7 {MUH/’LOv Ao, Ko, M¢7O)

The posterior density (eq. 4.9) has the same functional form as the prior
density (eq. 4.8), but with updated parameters. As shown in the equation (4.9),
the prior parameters pg, Ao, ko and pg o are updated to i, Aip, Kip and
Iij,p, Tespectively, in the usual manner in Bayesian inference. In contrary, the
remaining parameters are determined either directly from the data or given a
suitable value based on chemical knowledge.

In order to define contact preferences, every fragment class and target class
pair has to be specified with some characteristics. Maximum a posteriori (MAP)
estimates are in this respect suitable when the associated densities are (piece-
wise) unimodal. The MAP estimates of the parameters are defined and updated
with new data according to the formulae in Table 4.7. The prior parameter og
was given a constant value 0.01(A2) and Ry was defined separately for each
fragment type.

Updated parameters and the probability mass in a reference volume

In our method, to evaluate the plausibility of a contact atom type in a given
spatial area, the probability mass within in this volume is evaluated. The mass
is calculated using the model densities (4.4) with updated parameters, see Ta-
ble 4.7. The spatial area, or volume, is defined by a distance interval and a
solid angle (i.e. intervals polar and azimuthal angles), and can be arbitrarily

located. The volume that contains all target locations is defined through the
(cutof f)

intervals [0, p;c ], [0,7] and [0,27] for the distance, polar angle and az-
imuthal angle, respectively. The cutoff pgfgtof Dis the maximum distance used

when collecting data for a fragment class and target class pair (fC). The size
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Posterior MAP Definitions
variable estimate and estimates
Mean of Pip = | ﬂ Z;nﬁ yl:
. Yxo5+po*o; _ 1 m 2
distance U‘%T?p” 0 — (5 > 1 p1)
R o Rﬂyi*sin()\o)Jer:l sin(6;)
Mean of A=Ay )‘w = arctaun(RM*COS(/\OH_Z;;1 <o (01) ),

polar angle R, = kixi/ki and Ag = const.

k;,p numerically by
Rip = Kip equalizing model and
data variances.

Concentration
of polar angle

Mean of

(:: = — n;
) Hijp = , Y= 05 2 5 yl,
azimuthal Gxog 0 FHG,0%0;; o2 = ! Znu _ ( ”w ¢)
angle o0ty v i :

Table 4.7: MAP estimates of parameters.

of the volume can be chosen to be large, when for example contact preferences
on either side of the fragments plane are investigated. Alternatively, the size of
the volume can also be small, depending on the situation under investigation.

The spatial information content of the model is coded in the particular func-
tional form of the probability density, but if one would solely rely on probability
densities, it could easily happen that a scarce contact atom type could obtain
a hierarchically higher preference position than a relatively often encountered
type. This could happen in a spatial area where all the few contacts of the
former type are observed. These kinds of problems are avoided and results
for different contact types made more directly comparable by supervising the
model such that chemically more likely contacts are paralleled, as well as the
less likely. The model supervision was here achieved by multiplying the prob-
ability masses with target type specific weights that are calculated from three
parameters electronegativity, softness and mean distance. Softness of an ele-
ment e, one from the group G = {C, N, O, S, F, CL, BR, I}, was defined as
twice the mean value of hardness among the elements in G, minus hardness of
the element e. Numerical values for absolute hardness were taken from Parr et
al.[68]. The electronegativity and softness were used to represent the tendency
of an element to obtain partial charge in a compound. The third parameter,
mean distance, is a measure of the strength of the interaction between a frag-
ment and a target, and the numerical value given to it was the arithmetic mean
of the distances in the training data. These parameters are used to calculate
the weights as proportional to Coulomb force between the partial charges at the
mean distance, i.e.

€r-cc
| rrc 2

prc = (4.10)

where ey and ec are the obtained partial charges for a fragment Main-atom
and a target atom, respectively, and | 7f¢ | is the mean distance between the
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f\C | C3 C4 C5 C6 c7 C8 C9

f2 0.0015 | 0.0077 | 0.1259 | 0.0012 | 0.0015 | 0.0970 | 0.1355
3 0.0014 | 0.0069 | 0.1217 | 0.0016 | 0.0014 | 0.0990 | 0.1312
5 0.0027 | 0.1316 | 0.0876 | 0.0020 | 0.0020 | 0.1233 | 0.1246
f8 0.0018 | 0.0884 | 0.0896 | 0.0020 | 0.0006 | 0.1297 | 0.1317
f11 | 0.0103 | 0.0542 | 0.1248 | 0.0119 | 0.0120 | 0.0777 | 0.0301
f18 | 0.0013 | 0.1002 | 0.1000 | 0.0014 | 0.0014 | 0.1391 | 0.1237
f20 | 0.0109 | 0.0691 | 0.0698 | 0.0740 | 0.0713 | 0.0864 | 0.0863
f22 | 0.0068 | 0.0365 | 0.1052 | 0.0079 | 0.0080 | 0.0594 | 0.0229
f23 | 0.0058 | 0.0313 | 0.1016 | 0.0062 | 0.0066 | 0.0103 | 0.0187
f26 | 0.0020 | 0.0176 | 0.0966 | 0.0025 | 0.0022 | 0.0037 | 0.1563
f27 | 0.0023 | 0.0130 | 0.1083 | 0.0027 | 0.0025 | 0.0040 | 0.0656
f34 | 0.0112 | 0.0698 | 0.0712 | 0.0266 | 0.0739 | 0.0884 | 0.0871
f36 | 0.0110 | 0.0661 | 0.0729 | 0.0696 | 0.0835 | 0.0814 | 0.0779

Table 4.8: Prior probabilities for fragment classes that were used in this study,
target classes C3 - C9.

Main-atom and the target atom. The motivation for this prior is that the
intermolecular interactions are mainly electrostatic, despite of the fact that they
occur in many different forms, e.g., between a permanent dipole and an induced
dipole, or between two induced dipoles, known as a London dispersion.

In the above formulation, it is assumed that a generic a priori information
can be accurately utilized when modeling an interaction between f and C. It
would also be possible to use calculated energies of some simplified fragment-
target model as the a priori information, but the described approach is chosen
because of its simplicity and independence of molecular details, which follows
from utilizing element specific, measurable parameters, i.e. ionization energy
and electron affinity [68]. Calculated prior probabilities relevant for this study
are given in Tables 4.8 and 4.9.

4.3.3 Hierarchy calculations

In order to calculate the spatially dependent hierarchies around an arbitrary
reference point

Tref,z = Pref - [COS(Pres) - siN(bres), sin(@ref) - sin(Oref),cos(bres)],  (4.11)
we defined intervals in spherical polar coordinates:

A = [p1, p2, 01,02, $1,02], (4.12)

which define a volume that includes 7ycf ., €.8. prey = 2(p1+p2), Orep = 3(01+
02) and ¢pcf = %((,zbl + ¢2). The reference point 7,y , is defined in the reference
frame that is used for modeling the data, and in which the fragment is in the
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f\C | C10 C11 C12 C13 C14 C15

2 0.1003 | 0.1036 | 0.1125 | 0.1100 | 0.1068 | 0.0960
3 0.1073 | 0.1026 | 0.1092 | 0.1152 | 0.1090 | 0.0934
5 0.1279 | 0.0036 | 0.1306 | 0.1384 | 0.0017 | 0.1238
f8 0.1351 | 0.0037 | 0.1347 | 0.1519 | 0.0019 | 0.1288
f11 | 0.0787 | 0.0894 | 0.1718 | 0.1716 | 0.0911 | 0.0763
f18 | 0.1380 | 0.0022 | 0.1366 | 0.1350 | 0.0012 | 0.1198
f20 | 0.0882 | 0.0891 | 0.0896 | 0.0894 | 0.0901 | 0.0858
f22 | 0.0641 | 0.1193 | 0.1938 | 0.1922 | 0.1200 | 0.0638
f23 | 0.0050 | 0.2090 | 0.2059 | 0.1926 | 0.2020 | 0.0049
f26 | 0.0018 | 0.1822 | 0.1815 | 0.1749 | 0.1768 | 0.0020
f27 | 0.0018 | 0.2025 | 0.2013 | 0.1939 | 0.2002 | 0.0018
f34 | 0.0890 | 0.0955 | 0.1011 | 0.1025 | 0.0991 | 0.0846
36 | 0.0841 | 0.0890 | 0.0871 | 0.1069 | 0.0903 | 0.0803

Table 4.9: Prior probabilities for fragment classes that were used in this study,
target classes C10 - C15.

(-z)(-x)-plane. The Main-atom (see section Data collection and processing) is
at the origin, Atoml on the negative z-axis and Atom2 in a point (— | z2 |
,— | y2 |,0), i.e. in the plane defined by the negative z- and x-axes. On the
other hand, in the reference frame used for the graphical representations in this
article, ez . (eq. 4.11) is transformed to

Tref = Pref - [€0S(Ores), cOS(Dref) - sin(Oref), sin(@rer) - sin(Grer)], (4.13)

which is in a reference frame where the fragment is in (-x)(-y)-plane, see Figures
2.8 and 4.1.

The probability masses in the volume defined by A (eq. 4.12) are evaluated
using the model densities with the updated parameter values. Technically the
calculations are done either with series expansions, see e.g. the equations 7.1.1.,
7.1.7., 7.1.22 and 9.6.34 in [25] or directly as Riemann sums.

The fC-specific probability mass is the factor that gives a contact atom
type C' its rank, in the fragment class f related, and around a reference point
Trey defined hierarchy. Namely, the bigger the mass, the more probable the
contact atom type. The volume can cover a larger portion of the neighborhood
of the fragment, for example, the hemisphere on either side of the plane of the
fragment.

A hierarchy can also be defined for example among the fragment types (f),
with respect to a representative of a target class C' around 7,.y. The motivation
for choosing the probability density and the estimation procedures of the model
parameters as described in Methods, is that they provide a rapid and flexible
way to capture the relevant features of the target atom distributions, without
relying on fine details of the target atom clouds, which are potentially misleading
due to the intrinsic uncertainties in the data generation process.
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4.4 Results

The calculated hierarchies are exemplified in the original article [17] (Examples
1-4), as well as in this thesis (chapter Statistical modeling), and are therefore
not included in this section.

The functionality of the introduced Bayesian method of finding hierarchies
is here illustrated by two case-studies. In order to assess the reliability of the
results, standard errors for all results were determined with a bootstrap type
procedure [69], which is described together with the corresponding results.

4.4.1 Example 1: Direct contacts of R-norepinephrine

Here we consider the hydrogen bonding and aromatic interaction preferences
of norepinephrine (also known as noradrenaline; PDB ligand identifier: LT4).
The molecular environment of this example is the norepinephrine binding site in
chain B of human phenylethanolamine N-methyltransferase (PNMT) from PDB
entry 3HCD. PNMT catalyses adrenaline synthesis with coenzyme S-adenosyl-
L-methionine (AdoMet). In the structure of 3HCD AdoMet is replaced by its
demethylated form S-adenosyl-L-homocysteine (AdoHcy) to study the binding
mode of LT4 [71]. The X-ray resolution of the entry 3HCD is 2.39 A, which
is near the upper limit considered in our study (< 2.5 A, see Table 4.1). As
discussed previously, this means that some precaution is necessary while deduc-
ing interactions from the structure. Consequently, the statistical nature of our
method is helpful, since the probability densities can indicate a certain relative
location that is associated with what is experimentally observed in other struc-
tures. This enables the quantification of the relation in question as a probability.

LT4 has three hydroxyl groups, a terminal amino group and a six-carbon
aromatic ring as its functional groups. The most preferred target class for
any of these functional groups is defined as a class for which the product of
the probability density peak value (eq. 4.3) and the class conditional prior
probability (see Tables 4.8 and 4.9) has the highest numerical value.

Two of the hydroxyl oxygens are bonded to the aromatic ring (cathecol
hydroxyl groups), and based on the model, prefer a nitrogen from histidine or
arginine side chain as a contact. The aromatic ring carbons then prefer aromatic
carbons, i.e. phenylalanine, histidine, tyrosine or tryptophan is a likely contact
residue. The aromatic carbons also have strong contacts from the hydrophilic
targets, for example carboxyl oxygens. The hydroxyl group of the aliphatic tail
prefers lysine and the terminal amino group prefers glutamic acid/glutamate or
aspartic acid/aspartate.

These a priori preferences are not related to LT4, instead only the 3D struc-
ture of the interactions is. Some directional aspects related to this example
are illustrated in Figures 4.6 - 4.10. Figures 4.7 and 4.8 present hydrogen
bonding contacts for the R-norepinephrine tail. There are two carboxyl oxygen
(C12) contacts for the LT4 hydroxyl group, namely GLU B219 and ASP B267.
The former is at a distance less than the maximum length used in this study
for a oxygen donor and oxygen acceptor hydrogen bond, i.e. 3.14 A < 3.30 A.
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TYR B222

Methyl group
donor in adrenaline
synthesis.

Figure 4.6: The aromatic phenylalanine contact PHE B182 in PNMT (see text
of section Example 1) for the LT4 aromatic ring. Also depicted in the figure is
the proximity (closest 3.4 A) of the TYR B222 aromatic ring to the amino group
of LT4. Though the distance and orientation of the ring fit well to the hydrogen
bond donor - aromatic ring interaction scheme, the relative direction is such
that TYR B222 corresponds to probability density values smaller than 20 % of
the peak value. Therefore, this might not be a strong contact for the amino
group, but possibly has a guiding task in the binding process. The depicted
distance between amino group and the methyl group donating sulfur atom is
5.66 A.
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= o TYRB222

Figure 4.7: Contacts in the active site of PNMT (a methyltransferase) for R-
noradrenaline tail hydroxyl group. Three amino acid residues (ASP B267, GLU
B219 and TYR B222) were considered as contacts.

According to the model, its direction of approach is not typical for a hydrogen
bond, but because the same GLU B219 residue is simultaneously a contact for
the adjacent amino group, the actual preferred direction is such that it allows
the carboxyl to bond with both of these functional groups in LT4. Therefore
this is considered a direct contact. Regarding the amino group, the direction of
approach of the GLU B219 carboxyl oxygen is typical for a hydrogen bond (al-
most optimal), only somewhat shifted to a direction that facilitates the double
contact described above, see Figure 4.8. The latter carboxyl, ASP B267, is in
a more typical direction, but even further apart, and it is confirmed from PDB
entry 3HCD water locations that this contact is a bridged hydrogen bond, not
a direct contact.

The TYR B222 contact for the hydroxyl of LT4 tail, see Figure 4.7, has an
aromatic ring that can serve as a hydrogen bond acceptor. Therefore, in case
the LT4 tail hydroxyl group would act as an acceptor in the above described
hydrogen bonds (i.e. with water and GLU B219) it could in principle donate
its hydrogen to a weak hydrogen bond with the aromatic ring of TYR B222,
because the closest atom of the ring is at a distance of about 3.5 A and the
ring is facing toward the hydroxyl group. Consequently, as for the LT4 amino
group this is not a strong contact, but perhaps has a guiding task in the binding
process.
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GLU B219

Figure 4.8: Carboxyl oxygen (C12) contact for the amino group of LT4. The
residue GLU B219 carboxyl oxygen is located in a typical direction of a class
C12 hydrogen bond acceptor for this functional group (fragment class £26).
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Figure 4.9: The contact between a catechol hydroxyl group and the tyrosine B40
residue of the phenylethanolamine N-methyltransferase (PNMT). The distance
to both degenerate maxima is 2.52 A.
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Figure 4.10: R-Norepinephrine (PDB ligand identifier: LT4) with amino acid
residues that contain target atoms having highest probability density values in
the model. In the figures on the right, the double contacts are created by a
degeneracy that follows from the way the fragments are defined. Namely, the
third atom (Atom2, see Section Data collection and processing) of a fragment
in a molecule can frequently be chosen from more than one possible atom and
each choice creates its own probability density, including a maximum. These
densities are connected through a rotation around the covalent bond between
the Main-atom and Atoml.
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Index | ZINC pmPerMass | RotBonds | Phob/Phil
1 21789 0.053 2 2.33

2 330141 0.071 0 6

3 3801154 | 0.038 3 6

4 3814483 | 0.011 2 2

5 3814484 | 0.049 1 6

6 3814485 | 0.051 1 6

7 33882 0.052 2 6

8 52627624 | 0.078 5 12

Table 4.10: Ligand properties in Example 2. Index values represent an ordering
of the molecules used in this study.

4.4.2 Example 2: Separating COMT ligands from decoys
in a subset of DUD

Here we demonstrate the usefulness of the estimated contact probability masses
in discriminating between appropriate and poor binders using logistic regression.
Details of logistic regression can be found, e.g., in [72]. In the current applica-
tion context, logistic regression model connects a binary response variable (here
ligand/decoy), with explanatory variables describing the modeled system. The
outcome is a probability indicating how likely it is for a system to belong to
either of the two response groups. Our testing was done by retrieving a set
containing 6 out of the 11 Catechol-O-methyltransferase (COMT) ligands and
19 out of the total 468 decoys from the Directory of useful decoys (DUD) [29].
Two extra ligands were added, namely dopamine and BIA 3-335 (PDB Ligand
identifiers LDP and BIA, respectively), by retrieving their structures from ZINC
database [73]. These 27 small molecules (ZINC codes in Tables 4.10, 4.11 and
4.12) were chosen so that the DUD molecules have high mutual resemblance,
especially so that the decoys have an aromatic ring with at least two primary
oxygens bonded to neighboring carbons (in hydroxyl groups typically). This is
because all except one COMT ligand in DUD have this type of a structure, and
the exception is different only in that the ring is non-aromatic. The two extra
ligands were included for reference, because they are known good binders, for
BIA [74], and should have clearly higher preference to binding than an average
decoy.

The search for the binding mode of the small molecule in the binding pocket
(from PDB ID 1H1D) was started by orienting the molecule such that two of
the primary oxygens would coordinate with the magnesium ion (Mg?*), partic-
ipating in the COMT function (see [74] for details), and here taken as part of
the binding site. Then, predefined rotamers of the small molecule were rotated
around the axis connecting the two coordinating Os, and to a lesser amount
around a second axis. Direct contact probabilities between the small molecule
and the binding site were calculated. Probabilities for the two coordinating
Os were excluded to emphasize contacts for the rest of the molecule. Rotamers
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Index | ZINC | pmPerMass | RotBonds | Phob/Phil
9 22831 0.049 0 3

10 366295 | 0.050 3 2

11 366296 | 0.044 3 2

12 370041 | 0.033 3 2.5
13 370042 | 0.036 3 2.4
14 370157 | 0.015 2 4.5
15 370162 | 0.029 2 4.5
16 402870 | 0.055 2 3

17 438536 | 0.032 2 3

18 1833085 | 0.010 1 3.67

81

Table 4.11: Properties of the first set of decoys in Example 2. Index values

represent an ordering of the molecules used in this study.

Index | ZINC | pmPerMass | RotBonds | Phob/Phil
19 2519115 | 0.050 2 4.5

20 2990158 | 0.010 1 3.33

21 3836392 | 0.000 2 3

22 3871444 | 0.041 3 4.5

23 3836392 | 0.000 2 3

24 3995296 | 0.040 3 2

25 4000727 | 0.030 3 2

26 4404113 | 0.036 1 2.33

27 4443675 | 0.039 3 4.5

Table 4.12: Properties of the second set of decoys in Example 2. Index values

represent an ordering of the molecules used in this study.
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and orientations with close intra- or intermolecular contacts were removed using
distance criteria, though the plausibility of a rotamer could be evaluated using
probability masses for intramolecular contacts.

For each small molecule, the rotamer and orientation with highest probability
were found and the probabilities were then used in a logistic regression model
that represents a docking screening task. Two explanatory variables were used
in the logistic regression model: the total probability mass of direct contacts,
divided by the mass of the molecule (pmPerMass) and the ratio of the number
of hydrophobic and hydrophilic fragments (Phob/Phil) in the molecule.

It is well known that in an actual binding affinity calculation for a ligand-
protein pair in solution, one needs to consider energetics of direct contacts,
water and metal mediated contacts, desolvation and entropy. The variable pm-
PerMass is here considered to be a measure of the binding energy of direct
contacts, whereas the variable Phob/Phil reflects desolvation properties and
perhaps tendency for water mediated contacts. Configurational entropy does
not have in this study any obvious representative, because for the numbers of
rotatable bonds (RotBonds) no predictive role was identified. Results of the
predictions based on logistic regression are shown graphically in Figure 4.11.
Values for the putative explanatory variables are given in Tables 4.10, 4.11 and
4.12.

The molecule that was most highly ranked, BIA 3-335, is a known tight
binding inhibitor [74]. It is also heaviest of the 27 molecules included in the
example; approximately 360 hydrogen masses compared to the more typical
value that is between 150 and 250. The variable pmPerMass is intensive, i.e.,
the size of the molecule should not directly influence it’s value, and it is assumed
that success in predicting relative binding affinities for smaller candidate binders
depends strongly on the accuracy of this variable.

Probabilities derived from the logistic regression are on average over 0.5 for
the molecules in the alleged ligand group and below 0.5 for the alleged decoys,
which represents a natural threshold between a ligand and a decoy in a screening
process. T'wo exceptions in the ligand group are the low scoring molecules with
index values 1 and 4. The ligand with index value 1 has the third highest
pmPerMass, but quite low Phob/Phil value, while the ligand with index 4 has a
low value for both (see Table 4.10). Hence, if both these molecules are considered
as good binders, our approach does not contain enough information to reveal
this. On the other hand, there are not necessarily experimental data available
on the binding affinities for the decoys, which in this study were chosen to
resemble the ligands as much as possible, each starting with the two, to Mg?*t
anchoring primary oxygens bonded to an aromatic ring. This means that some
decoys might be reasonably good binders. Nevertheless, based on the logistic
regression model, molecules in the ligand group have on average clearly higher
probabilities (0.62) to be ligands than the molecules in the decoy group (0.16).
In summary, in the set of 27 chemically similar small molecules, containing
8 experimentally defined ligands, 6 highest ranked molecules were from the
ligand group. Consequently, the receiver operating characteristics (ROC) [57]
in the screening experiment are: true positive rate TPR=0.75, false positive
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Figure 4.11: Probabilities calculated for separation of Catechol-O-
methyltransferase (COMT) ligands from decoys in a subset of DUD. The green
circles represent ligands and the red circles decoys, as they are classified in
DUD, when all 27 considered molecules are included in the model. The two ex-
tra ligands (see text) have index values 7 and 8 (PDB identifiers LDP and BIA,
respectively). Blue step curve gives the mean probability that was obtained
from bootstrapping over the two small molecule subgroups to calculate stan-
dard errors for the logistic regression (error bars representing these are centered
at the mean values).
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rate FPR=0 and accuracy ACC=0.93. A ROC curve was produced by using
discriminating thresholds having either different TPR or FPR. The ROC curve
is given in Figure 4.12.

ROC curve for Example 6
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Figure 4.12: An ROC curve illustrating the functionality of the probabilistic
model. The 12 threshold probabilities separating ligands from decoys that were
used for calculating the characteristics are 0.05, 0.1, ..., 0.3, 0.4, 0.5, 0.65, 0.75,
0.8 and 0.9 . Example 6 in figure title refers to example 2 in this chapter.

One important aspect that has not been considered here, is whether the
active form of COMT is a monomer or a multimer. If it is a multimer, it would
be interesting to investigate how informative this characteristic is about the
properties of suitable ligands. Additional potential molecular characteristics
for further study are the flexibility of the binding site and the features of the
binding modes having the highest probabilities (pmPerMass).
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4.5 Discussion

Predictions about unresolved binding sites, or ligands, can be made by building
the preferred contact patterns from the molecules included in a set of function-
ally classified fragments. In our method, these contact patterns are composed
of probability masses calculated for the fragments to have a specific kind of
contact in a spatial area. When, for example, the binding affinity of a molecule
is studied and the probability masses are defined for an entire molecule, they
can be used in a docking and scoring procedure. The absolute binding affinity
would be given by the total energetics of the binding process in a thermody-
namic setting, including direct and bridged contacts, desolvation and entropy.
It is presumed, that using a fragmentation where the fragments have distinct
and unique contact patterns, the probability densities described here contain
information beyond the chemical complementarity, namely on energetics (for
results in this direction, see [75]). This is reasoned out by an analogy with
quantum mechanics, because it can be argued that the probability masses are
proportional to the amount of binding energy, which are needed in evaluating
the binding affinities. In our setting this means relative binding affinities, i.e.
rankings over a set of ligands and decoys.

The results obtained in section Example 2, show a level of reliability that
is typical for a successful scoring function, see e.g. reviews [2], [55]. Our ex-
periment revealed that potentially very reliable information could be retrieved
when our probabilistic method is combined with an effective search routine.
An important aspect is that the ligand and decoy molecules were similar, i.e.
the decoys used were ’drug-like’ [69]. This is based on that they typically had
masses between 150 to 250 hydrogen masses, contained both hydrophobic and
hydrophilic fragments throughout the structure and were chosen so that each
can be anchored to the magnesium ion in the COMT binding site. This should
make separation of ligands from decoys challenging and be ultimately based
on finer details of the binding affinity, because no decoy was readily rejectable.
In a docking and scoring routine such a method can also be used to find the
most favourable orientation for the most favourable rotamer, or conformer, of a
small molecule in a binding site, i.e. the pose. When adjusting the method for
calculations of the absolute binding affinities, the same difficulties will be faced
as for any knowledge-based scoring function, described in [2].

In addition to the quality of the fragmentation, the reliability of the data is a
central issue in the prediction of contact preferences and some issues related to
this were discussed in Introduction and section Materials and methods. When
choosing the structure for a prediction model, it is essential to understand the
data generation process; in principle from the experimental measurement to
the coordinate file. Regarding the special characteristics of the experimental
method, X-ray diffraction is sensitive to thermal motion in the crystal. This
weakens locally the electron density map, and since electron density maps are
precisely the starting point in structure refinement, such an effect should prefer-
ably be assessed. In the further refinement, constraints are used in order to keep
the protein structure within chemically acceptable boundaries. It thus follows
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that the ligand atom positions have uncertainty which is not straightforward
to quantify. Possible approaches to quantification could be exploration of the
effects of the constraints on a theoretical basis or using structures refined with
different constraints. On the other hand, PDB files contain substantial amounts
of metadata that could potentially also be used in modeling. An example of this
are the b-factors, which can be used for incorporating thermal motion in the
model. Another example is provided by the occupancies that are needed to
take into account the more long lasting local displacements, i.e. alternative
conformations in the crystallized protein-ligand complexes [54].

Though the results in the example sections are given with standard errors
[69], performance of our model in predicting favourable intermolecular contacts
could be more quantitatively verified in the future when more extensive reference
sets of sufficiently high quality become available. The approximately 10,000
structure files from PDB used as reference data did only give a preliminary
test for certain fragment types. This is mainly because of the 3D nature of the
problem, since in order to obtain a good spatial resolution, the frequencies need
to be defined in less extensive volumes.

4.6 Conclusions

The examples show that, tentatively our approach can be used to study struc-
tural aspects of biochemical reactions or as a tool in predicting the most favourable
binding modes and separating ligands from decoys. A plausible future test would
be to create a hierarchy among a group of ligands and compare their binding
probabilities to experimentally measured binding affinities, e.g. those of KiBank
database referred to in DUD. Test on each stage of the docking and scoring pro-
cedure has to be successfully conducted, before it is shown that the method is
applicable for the purpose. Then it can be directly compared, e.g., with the
knowledge-based potentials that are only distance dependent.

Reliable evaluation of binding affinities for potential ligands of a binding
site, would be a desirable feature of a virtual drug design screen, see for ex-
ample [2], [12]. As discussed, the distance and direction dependent probability
masses obtained with the approach described here, are taken to provide direct
information on relative binding affinity, which is supported by the results in sec-
tion Example 2. Regarding further development of our modeling approach, both
statistics- and chemistry-based generalizations and improvements are possible,
including the obvious expansion to all imaginable molecular fragment types.

Bayesian predictive modeling in the normative sense as defined in [24] pro-
vides a potential approach to representing contact preference distributions. Such
a predictive model could exploit directly the 3D structures of the probability
densities (eq. 4.3) that model the contact atom positions, instead of considering
density parameters as the main characterization of the spatial information. The
obvious disadvantage of such an approach is the considerably increased compu-
tational effort needed to derive approximations to the sought after predictive
distributions.
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The reliability of an inferred order of preference depends, on one hand, on
how successfully the error from experimental methods and structure refinement
is quantified in terms of the used probability densities. On the other hand it de-
pends on how realistically the chemical likelihood of a contact atom type and the
bias in the data set are taken into account. The latter are here incorporated as
prior information, see equation (4.10), which guides the model with chemistry-
based knowledge. A third fundamental area for chemistry-based improvements
are the classifications (Tables 4.2 and 4.3). For example, a classification can be
envisioned where the covalent bond count of Atom1 (see section Data collection
and processing) would be used as one of the characteristics defining the frag-
ment, which would then remove the degeneracy described in section Example 1.
This kind of more structural way of defining the fragments would expand the
classifications, but should also give fragment definitions that are closer to being
unique.
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Chapter 5

Some generic conclusions

The probabilistic model developed in this work, has been tested for several case
studies and has proven to give reasonable and robust estimates for the intended
purpose. That is, a scoring function for ranking small molecules in contact with
a protein binding site, and assessing the effect of an amino acid residue mutation
on the preference of a protein-protein contact. The model based probabilities
can be calculated in time scales that allow routine use in finding molecular
complex candidates for further, for example, experimental analyses.

In the field of molecular modeling, this probabilistic method is placed be-
tween first principles theoretical models and statistical methods modeling col-
lected experimental data. The former produce results having best correspon-
dence with measured molecular properties, and require computations that still
today are too time-consuming to be used, e.g., in modeling and visualization
environments for rapid inspection of structural aspects following an induced
change, like a residue mutation. Results from statistical methods then, depend
on amount and quality of the data used as input, and can be fast enough to
evaluate when estimates are needed in seconds, but their import does not nec-
essarily transfer from one task to another, because they do not automatically
have a strict chemical interpretation.

Compared to another knowledge-based scoring function, the statistical po-
tential that uses a probability distribution function to convert observed relative
distances to an estimate of the thermodynamic free energy, output of our prob-
abilistic method have a more straightforward interpretation. This is due to the
feature that, in addition to distance, also directional data are used to build the
model, which makes correspondence between the densities and quantum me-
chanical effective potentials for the motion of nucleii possible. In order to add
further physical realism to the scoring, theoretical components independent of
training data are incorporated into the model. Examples of these components
are the chemical element specific estimates for relative partial charges and de-
formabilities of electron cloud, both of which are used in defining the fragment
class conditional prior probabilities. In addition we use theoretical dihedral
angle intervals to describe thermal motion generated amino acid side chain con-

89
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formations for overlap integrals representing the noncovalent bond strengths.
A modeling approach like this can also take advantage of quantum mechanical
electronic structure calculations, results of which could be used, for example, in
defining the mentioned dihedral angle intervals and finding theoretical founda-
tions for a more advanced molecular fragment classification.

In addition to finalising the molecular fragment classification, development
of the method can be pursued in numerous other aspects as well. These in-
clude formulating a contact as a fragment-fragment interaction, testing other
functional forms for the probability densities, attempting analytical derivations
to reduce computational load and implementing the method into a modeling
and visualization environment. Computational challenges associated with the
knowledge-based scoring function are larger than for a traditional statistical
potential, since also directional aspects are taken into account. The load is fur-
ther increased by modeling flexibility of the molecules. This has so far been
planned for amino acid residue side chains, but it is considered possible to treat
protein main chains and small molecules with the same approach, i.e., building
distributions of conformations for overlap calculations, starting from ensembles
of intervals for internal rotation angles. Algorithm development is plausibly
needed to achieve sufficient computational speed for fast structural inspections
without compromising the discussed implementation of chemistry and physics.

5.1 Relation to drug design methods

The function of this probabilistic method has been outlined in this thesis as
a scoring function for estimating the relative strength of molecular contacts
in general, however, also a discussion about drug design as a possible area of
application is to the purpose.

A pharmacophore model, as described in the review [76], is either ligand-
based or structure-based. The latter analyse ligand binding sites through the
experimentally measured structures of molecular complexes, or binding sites
without a bound small molecule. Ligand-based methods aim at quantifying
similarities of features that guide the binding process and are conducted in sets
of small molecules that are considered as possible ligands for a binding site.
The ligand-based approach has two major challenges that are not satisfacto-
rily resolved currently. These challenges are molecular alignment and modeling
structural flexibility of the alleged ligands. Solving the alignment problem is
attempted with either a point-based or property-based model. The property-
based approach, to some extent, models the molecular flexibility through the
tolerance radius related to the so called properties, which are spatially defined
chemical characteristics like hydrophobicity. These spatial characteristics are
not necessarily ranked, nor are they internally weighed, and a probabilistic 3D
model could provide both these features. Consequently, defining the properties
in a pharmacophore model is a potential application of the probabilistic contact
preferences.

A second widely used drug design method is the three-dimensional quanti-
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tative structure-activity relationship (3D-QSAR), for a review of this method-
ological field see for example [77]. A QSAR method seeks to find correlation
between all structural aspects of a molecule and experimental data correspond-
ing to its biological activity. Part of the 3D-QSAR model is a description of
non-covalent interaction fields around the molecules, and the energies of these
fields are calculated, e.g., with force fields [12], [77]. Relative interaction en-
ergies among a group of molecules can also be estimated with the probability
densities of the contact preferences and the efficacy of this approach would be
worthwhile testing.
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Probabilistic contact
preferences in protein-
ligand and protein-
protein complexes

This thesis presents a Bayesian statistical model for
computational studies of molecular complexes.
Case studies of testing the method in the most
relevant molecular environments are described.
Plausible steps to further develop the model are
discussed.

- /

9 "789521"229541 ">

Abo Akademi University Press | ISBN 978-952-12-2954-1





 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20130221112901
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1115
     512
     None
     Left
     2.8346
     2.8346
            
                
         Both
         2
         AllDoc
         4
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     0
     104
     103
     104
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20130221112901
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1115
     512
    
     None
     Left
     2.8346
     2.8346
            
                
         Both
         2
         AllDoc
         4
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9b
     Quite Imposing Plus 2
     1
      

        
     1
     104
     103
     104
      

   1
  

 HistoryList_V1
 qi2base





