
Turku Centre for Computer Science

TUCS Dissertations
No 156, January 2013

Anton Tarasyuk

Formal Development and
Quantitative Verification of
Dependable Systems

Formal Development and
Quantitative Verification of

Dependable Systems

Anton Tarasyuk

To be presented, with the permission of the Department of Information
Technologies of the Åbo Akademi University, for public criticism in

Auditorium Gamma on January 28, 2013, at 12 noon.

Turku Centre for Computer Science
Åbo Akademi University

Department of Information Technologies
Joukahaisenkatu 3-5, 20520 Turku

Finland

2013

Supervisors

Docent Elena Troubitsyna
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5 A, 20520 Turku
Finland

Docent Linas Laibinis
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5 A, 20520 Turku
Finland

Reviewers

Professor Dominique Méry
LORIA & Université de Lorraine
F-54506 Vandoeuvre lès Nancy
France

Professor Aad van Moorsel
School of Computing Science
Newcastle University
Newcastle upon Tyne, NE1 7RU
United Kingdom

Opponent

Professor Aad van Moorsel
School of Computing Science
Newcastle University
Newcastle upon Tyne, NE1 7RU
United Kingdom

ISBN 978-952-12-2832-2
ISSN 1239-1883

To my mother

Ìîåé ìàìå ïîñâÿùàåòñÿ

i

It is good to have an end to journey towards; but it is the

journey that matters, in the end.

Ursula K. Le Guin, “The Left Hand of Darkness”

ii

Abstract

Modern software-intensive systems are becoming increasingly complex. Yet
we are observing the pervasive use of software in such critical infrastructures
as transportation systems, healthcare, telecommunication, energy produc-
tion, etc. Consequently, we tend to place increasing reliance on computer-
based systems and the software that they are running. The degree of reliance
that we can justifiably place on a system is expressed by the notion of de-
pendability.

Designing highly-dependable systems is a notoriously difficult task. It
requires rigorous mathematical methods to prevent design errors and guar-
antee the correct and predictable system behaviour. However, fault pre-
vention via rigorous engineering still cannot ensure avoidance of all faults.
Hence we need powerful mechanisms for tolerating faults, i.e., the solutions
that allow the system to confine the damage caused by fault occurrence
and guarantee high reliability and safety. Traditionally, such dependabil-
ity attributes are assessed probabilistically. However, the current software
development methods suffer from discontinuity between modelling the func-
tional system behaviour and probabilistic dependability evaluation. To ad-
dress these issues, in the thesis we aim at establishing foundations for a
rigorous dependability-explicit development process. In particular, we pro-
pose a semantic extension of Event-B – an automated state-based formal
development framework – with a possibility of quantitative (probabilistic)
reasoning. Event-B and its associated development technique – refinement –
provide the designers with a powerful framework for correct-by-construction
systems development. Via abstract modelling, proofs and decomposition
it allows the designers to derive robust system architectures, ensure pre-
dictable system behaviour and guarantee preservation of important system
properties.

We argue that the rigorous refinement-based approach to system devel-
opment augmented with probabilistic analysis of dependability significantly
facilitates development of complex software systems. Indeed, the proposed
probabilistic extension of Event-B allows the designers to quantitatively as-
sess the effect of different fault tolerance mechanisms and architectural solu-
tions on system dependability. Moreover, it enables the stochastic reasoning

iii

about the impact of component failures and repairs on system reliability
and safety from the early design stages. The proposed enhanced version
of the standard Event-B refinement allows the designers to ensure that the
developed system is not only correct-by-construction but also dependable-
by-construction, i.e., it guarantees that refinement improves (or at least
preserves) the probabilistic measure of system dependability.

The proposed extension has been validated by a number of case stud-
ies from a variety of application domains, including service-oriented sys-
tems, aerospace, railways and communicating systems. We believe that
the research presented in the thesis contributes to creating an integrated
dependability-explicit engineering approach that facilitates rigorous devel-
opment of complex computer-based systems.

iv

Sammanfattning

Programvaruintensiva system ökar allt mera i komplexitet, men trots detta
används programvara i kritisk infrastruktur inom omr̊aden s̊asom transport,
telekommunikation, hälsov̊ard och energiproduktion. Vi litar allt mera p̊a
datorbaserade system och deras programvara, och graden till vilken vi kan
lita p̊a ett system beskriver vi med uttrycket p̊alitlighet.

Att utveckla starkt p̊alitliga system är erkänt sv̊art, och kräver rigorösa
matematiska metoder för att förhindra designfel och garantera att syste-
met uppför sig korrekt och förutsebart. Dessa metoder kan dock inte ga-
rantera att alla fel undviks, och därför behövs kraftfulla mekanismer för
feltolerans, dvs. lösningar som gör det möjligt för systemet att förhindra
spridningen av den skada som felet orsakade samt garantera hög p̊alitlighet
och säkerhet. Dessa egenskaper utvärderas traditionellt probabilistiskt, men
i de utvecklingsmetoder som används i dag finns det ingen kontinuitet mel-
lan modellering av systemets funktionalitet och probabilistisk utvärdering av
p̊alitligheten. I denna avhandling är v̊ar m̊alsättning att etablera grunder för
en rigorös utvecklingsmetod med explicit p̊alitlighet. Specifikt föresl̊ar vi ett
semantiskt tillägg till Event-B – ett automerat ramverk för tillst̊andsbaserad
formell utveckling – som till̊ater ett kvantitativt (probabilistiskt) resone-
mang. Event-B och dess tillhörande utvecklingsteknik – precisering – ger
ett kraftfullt ramverk för utveckling av system som är korrekta genom kon-
struktionen. Detta gör det möjligt att via abstrakt modellering, bevis och
dekomposition skapa robusta systemarkitekturer och försäkra sig om att sy-
stemets uppförande är förutsebart och att viktiga egenskaper hos systemet
bevaras under systemets exekvering.

Vi hävdar att utvecklingen av p̊alitliga komplexa system underlättas av
rigorös preciseringsbaserad systemutveckling kombinerad med probabilistisk
analys av p̊alitlighet. Det föreslagna probabilistiska tillägget till Event-B gör
det möjligt att kvantitativt uppskatta effekten av olika feltoleransmekanis-
mer och arkitekturbaserade lösningar p̊a systemens p̊alitlighet. Dessutom
möjliggör det redan fr̊an ett tidigt stadium stokastiskt resonemang om vil-
ken effekt komponentfel och -reparationer har p̊a systemets p̊alitlighet och
säkerhet. Den föreslagna förbättrade versionen av preciseringen i Event-B
gör det möjligt att säkerställa att systemet som utvecklas inte enbart är

v

korrekt genom konstruktionen, utan ocks̊a p̊alitligt genom konstruktionen,
dvs. garanterar att preciseringen förbättrar, eller åtminstone bibeh̊aller det
sannolikhetsbaserade m̊attet av systemets p̊alitlighet.

Det föreslagna tillägget har validerats av ett antal fallstudier inom olika
applikationsomr̊aden, vilka inkluderar serviceinriktade system, flygindustri,
sp̊artrafik och kommunikationssystem. Vi tror att forskningen som presen-
teras i denna avhandling medverkar till att skapa en integrerad utvecklings-
teknik som har explicit p̊alitlighet och underlättar rigorös utveckling av
komplexa datorbaserade system.

vi

Acknowledgements

First and foremost, I would like to extend my heartfelt gratitude to both my
supervisors, Docent Elena Troubitsyna and Docent Linas Laibinis. With-
out your continuous encouragement, never-ending patience, and invaluable
support this dissertation would never have come into existence. I have been
truly enjoying every day of work with you, and it is very important for me
that I can call you not only my supervisors but also my dear friends.

I am most grateful to Professor Aad van Moorsel and Professor Do-
minique Mèry who kindly accepted to review this dissertation and whose
valuable comments improved both quality and readability of its introduc-
tory part. I owe my special thanks to Professor Aad van Moorsel for also
agreeing to act as an opponent at the public defence of the thesis.

I extend my sincere thanks to all members of the Department of In-
formation Technologies at Åbo Akademi University and Turku Centre for
Computer Science for providing excellent working environment and friendly
atmosphere. I am especially grateful to my colleagues at the Distributed
Systems Laboratory and, above all, to Professor Kaisa Sere, who has always
been the driving force behind the scientific success of our laboratory. I wish
to thank Petter Sandvik and Pontus Boström, who kindly agreed to help me
with the Swedish version of the abstract. I also want to gratefully acknowl-
edge my debt to all my co-authors, Elena Troubitsyna, Linas Laibinis, Inna
Pereverzeva, Timo Latvala and Laura Nummila. I have learnt a great deal
from our inspiring discussions and professional collaboration.

I would like to acknowledge the generous financial support provided to
me by the Department of Information Technologies at Åbo Akademi Uni-
versity, the Academy of Finland, European Commission, Turku Centre for
Computer Science and the Nokia foundation.

Last but not the least, I would like to thank my family and my friends for
their love and support throughout these years. Without you my life would
be less than it has become. Above all, I owe my most special thanks to my
mother, Aila Vistbacka. Thank you for your love and endless trust that you
gave me. This dissertation is dedicated to you.

Anton Tarasyuk
Turku, December 2012

vii

viii

List of original publications

I Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis, Integrating
Stochastic Reasoning about Critical System Properties into Modelling
and Verification in Event-B. (submitted to Science of Computer Pro-
gramming).

II Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis, Towards Prob-
abilistic Modelling in Event-B. In: Dominique Méry, Stephan Merz
(Eds.), Proceedings of 8th International Conference on Integrated For-
mal Methods (iFM 2010), LNCS 6396, 275–289, Springer, 2010.

III Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis, Formal Mod-
elling and Verification of Service-Oriented Systems in Probabilistic
Event-B. In: J. Derrick et al. (Eds.), Proceedings of 9th International
Conference on Integrated Formal Methods (iFM 2012), LNCS 7321,
237–252, Springer, 2012.

IV Anton Tarasyuk, Inna Pereverzeva, Elena Troubitsyna, Timo Lat-
vala and Laura Nummila, Formal Development and Assessment of a
Reconfigurable On-board Satellite System, In: Frank Ortmeier, Pe-
ter Daniel (Eds.), Proceedings of 31st International Conference on
Computer Safety, Reliability and Security (SAFECOMP 2012), LNCS
7612, 210–222, Springer, 2012.

V Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis, Quantitative
Verification of System Safety in Event-B. In: Elena Troubitsyna (Ed.),
Proceedings of 3rd International Workshop on Software Engineering
for Resilient Systems (SERENE 2011), LNCS 6968, 24–39, Springer,
2011.

VI Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis, Augmenting
Formal Development of Control Systems with Quantitative Reliabil-
ity Assessment. In: Proceedings of 2nd International Workshop on
Software Engineering for Resilient Systems (SERENE 2010), ACM,
2010.

ix

VII Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis, From Formal
Specification in Event-B to Probabilistic Reliability Assessment. In:
Proceedings of 3rd International Conference on Dependability (DE-
PEND 2010), 24–31, IEEE Computer Society Press, 2010.

VIII Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis, Quantita-
tive Reasoning about Dependability in Event-B: Probabilistic Model
Checking Approach. In: Luigia Petre, Kaisa Sere, Elena Troubit-
syna (Eds.), Dependability and Computer Engineering: Concepts for
Software-Intensive Systems, 459–472, IGI Global, 2012.

x

Contents

Research Summary 1

1 Introduction 3

1.1 Dependability Concept . 3
1.2 Event-B Method . 6
1.3 Discrete-time Markov Processes 8
1.4 Continuous-time Markov Processes 13
1.5 Markov Analysis in Dependability Engineering 17

2 Probabilistic Reasoning about Event-B Models 19

2.1 Research Objectives . 19
2.2 Discrete-time Models . 20
2.3 Continuous-time Models . 22
2.4 Extending the Notion of Refinement 23
2.5 Means for Modelling and Verification 24

3 Summary of Publications 29

4 Conclusions 35

4.1 Related Work . 35
4.2 Research Conclusions . 40
4.3 Future Work . 41

Original Publications 51

xi

xii

Part I

Research Summary

1

Chapter 1

Introduction

Dependability is one of the most essential properties of computer-based sys-
tems. It can be defined as the ability of a system to deliver a service that can
be justifiably trusted or, alternatively, as the ability of a system to avoid ser-
vice failures that are more frequent or more severe than is acceptable [7, 8].
It is widely recognised that a high degree of system dependability can only be
achieved if it is explicitly addressed through the entire development process.
In this thesis, we aim to establish foundations for a dependability-explicit
development process based on the integration of the Event-B method and
quantitative analysis of dependability.

The thesis consists of two main parts. The first part contains a summary
of the research reported in the thesis, while the second part consists of
reprints of the original publications. The research summary is structured as
follows. In Chapter 1, we introduce the concept of dependability, overview
our formal framework – the Event-B method, and briefly discuss the theory
of Markov processes and their application to dependability analysis. In
Chapter 2, we formulate the research objectives and describe our research
methods applied to achieve these objectives. Chapter 3 contains a detailed
summary of the research results published in each original paper. Finally, in
Chapter 4, we overview the related work in the field, give some concluding
remarks and outline possible directions for our future work.

1.1 Dependability Concept

Dependability and its Attributes The notion of dependability allows
for various interpretations that encompass a wide range of system prop-
erties. Nevertheless, it is commonly accepted that dependability can be
characterised by the following key attributes [79, 7, 8]:

• reliability: the ability of a system to deliver correct service under given
conditions for a specified period of time;

3

• availability: the ability of a system to be in a state to deliver correct
service under given conditions at a specified instant of time;

• maintainability: the ability of a system to be restored to a state in
which it can deliver correct service, when the maintenance is performed
in accordance with stated procedures and resources;

• safety: the ability of a system not to incur, under given conditions,
any critical failures;

• confidentiality: the absence of unauthorised disclosure of information;

• integrity: the absence of improper system alteration.

Threats to Dependability Generally, no system is absolutely depend-
able. Various threats may affect a system during its functioning and prevent
it from delivering the intended service. The threats that may impair sys-
tem dependability are commonly categorised into failures, errors and faults
[7, 8].

The system is said to have a failure when its actual behaviour deviates
from the intended one specified in design documents. This type of a threat
occurs in the external system behaviour, i.e., it becomes observable to the
user. In contrast, an error is usually associated with an incorrect internal
system state and may lead to a subsequent service failure. (Yet it is not
necessary that every error causes a failure.) Finally, a fault is an event
that might cause an error. It is usually associated with a physical defect or
malfunction of a system component. Traditionally, faults are classified as
follows [7, 8]:

• transient faults: the faults that may occur and then disappear after
some period of time;

• permanent faults: the faults that remain in the system until they are
repaired;

• intermittent faults: the reoccurring transient faults.

Means for Dependability There are four categories of the means in-
tended to cope with threats to dependability: fault prevention, fault toler-
ance, fault removal and fault forecasting [7, 8].

The main purpose of fault prevention (also known as fault avoidance)
techniques is to avoid occurrence or introduction of faults during the devel-
opment process. The fault prevention is a proactive process. It is performed
at the design stage, i.e., before the designed system goes operational.

4

Fault tolerance methods are used to design a system in such a way that
it is capable of functioning despite the presence of faults. Fault tolerance is
usually achieved by some form of redundancy that allows the system either
to mask or to detect a fault. While improving dependability, redundancy
always increases the complexity and the cost of the overall system. Hence
a thorough evaluation of the reliability/redundancy trade-off is an essential
part of the fault tolerance methods. Fault tolerance is implemented in two
main steps – error detection and system recovery. Error detection aims
at identifying the presence of errors, while system recovery attempts to
eliminate the detected errors (error handling) and to prevent faults from
re-activation (fault handling).

Fault removal is a set of techniques for identifying and removing the
causes of errors. The fault removal process is performed during the devel-
opment stage as well as during the operational life of a system. The fault
removal process at the development stage starts with system verification,
which is followed by the diagnosis and correction steps. At the operational
stage, corrective and preventive maintenance of the system is performed.
Traditionally, the static and dynamic forms of verification are distinguished.
The static verification includes proof-based and model checking approaches,
while dynamic verification includes various testing techniques.

Fault forecasting aims at evaluation of the impact of fault occurrence and
activation on the system behaviour. Such an evaluation has qualitative and
quantitative aspects. The qualitative analysis helps to designate and classify
failure modes as well as identify combinations of faults of components that
may potentially lead to a system failure. The quantitative (or probabilistic)
analysis is carried out in order to assess to what extent certain attributes of
dependability are satisfied.

Formal development of dependable systems The development of de-
pendable systems is a complex and challenging process. There is a wide
range of techniques proposed to address various issues in dependable system
design. The choice of techniques is guided by general-purpose and domain-
specific standards (e.g., IEC 61508, ISO 26262, IEC 62278, etc.). In general,
the higher the criticality of a system, the more rigorous techniques are re-
quired for its development. Traditionally, rigorous software-engineering ap-
proaches are called formal methods – a collection of mathematically-based
methods for system modelling and verification.

In this thesis, we put forward a formal approach to development and veri-
fication of dependable systems. Within our approach, we do not only capture
the nominal system behaviour but also aim at modelling fault tolerance as
an intrinsic part of the system behaviour. Moreover, we demonstrate how
to integrate quantitative assessment of the specified fault tolerance mecha-
nisms and their impact on system dependability into the formal development

5

process. This goal requires a scalable formal technique that would allow us
to cope with model complexity as well as explicitly address various depend-
ability aspects throughout the entire development cycle. This consideration
has motivated our choice of Event-B [2] – a rigorous, state-based method
supporting the correct-by-construction system development – as a formal
framework for modelling and verification of dependable systems.

1.2 Event-B Method

The B method [1, 73] is a formal approach to industrial development of
dependable software. The method has been successfully applied to the de-
velopment of several complex real-life applications [71, 29, 55]. Event-B is
a modelling framework derived from the B method. The framework was
inspired by the Action Systems formalism [11, 12, 13] – a formal approach
to model parallel, distributed, and reactive systems.

Event-B employs a top-down refinement-based approach to system de-
velopment. In Event-B, the development starts from an abstract formal
specification, which is transformed into a final system implementation via a
number of correctness-preserving refinement steps. The idea of (program)
refinement was introduced by Back [10] and Morgan [63], and later has been
developed into in the refinement calculus [14] – a mathematical theory based
on high order logic and the lattice theory.

In Event-B, a system model is defined using the notion of an abstract
state machine [2]. An abstract state machine encapsulates the model state,
represented as a collection of model variables, and defines a set of feasible
operations on this state. Therefore, it describes the dynamic part of a
modelled system. A machine may also have an accompanying component,
called context, which defines the static part of the model. In particular, it
can include user-defined constants and sets as well as their properties given
as a list of model axioms. A general form of an Event-B model is given in
Figure 1.1.

Any machine is uniquely identified by its name Mch. The model vari-
ables, υ, are declared in the Variables clause and initialised by the special
(obligatory) event Init. Each model variable is strongly typed by the con-
straining predicate I given in the Invariants clause. The invariant clause
may also contain other predicates defining properties that must be preserved
during system execution.

The dynamic behaviour of a system is defined by a set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

evt =̂ any a where G then S end,

where a is the list of local variables, the guard G is a conjunction of predi-
cates over the local variables a and state variables υ, while the action S is a

6

Machine Mch

Variables υ

Invariants I
Events

Init

evt1
· · ·
evtn

−→

Context Ctx

Constants C
Sets S
Axioms A

Figure 1.1: Event-B machine and context

state assignment. If the list a is empty, an event can be described simply as

evt =̂ when G then S end.

The occurrence of events represents the observable behaviour of the sys-
tem. The guard of an event unambiguously defines the conditions under
which its action can be executed, i.e., when the event is enabled. If several
events are simultaneously enabled, any of them can be chosen for execution
nondeterministically. If none of the events is enabled then the system dead-
locks. It is worth to notice that any refined Event-B machine satisfies the
relative deadlock freedom property. It means that the initial system model
defines all possible deadlock states (if any) and no new deadlocks can be
introduced during the refinement process.

In general, the action of an event is a parallel composition of variable
assignments. The assignments can be either deterministic or nondeterminis-
tic. A deterministic assignment, x := E(x, y), has the standard syntax and
meaning. A nondeterministic assignment is denoted either as x :∈ Q, where
Q is a set of values, or x :| Q(x, x′, y), where Q is a predicate relating the
initial values of the variables x and y to some final value of x (which is tra-
ditionally denoted as x′). As a result of such a nondeterministic assignment,
x can get any value belonging to or satisfying Q.

The semantics of Event-B actions is defined using so called before-after
predicates [2]. A before-after predicate describes the relationship between
the system states before and after execution of an event. Figure 1.2 shows
the definition of before-after predicate for all three types of Event-B assign-
ment. Here x and y are disjoint lists of variables, while x′, y′ represent their
values in the after-state.

The initial abstract specification describes the most essential behaviour
and properties of a system. The refinement process gradually transforms the
initial specification into a detailed system model. Each refinement step typ-
ically introduces new variables and events into a more abstract model. The
introduced new events correspond to stuttering steps that are not visible at

7

Action (S) BA(S)

x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ Q x′ ∈ Q ∧ y′ = y

x :| Q(x, x′, y) Q(x, x′, y) ∧ y′ = y

Figure 1.2: Before-after predicates (BA)

the abstract level. The old, abstract model events may be also refined to re-
duce their nondeterminism and define computations over the new variables.
Moreover, the Event-B formal development supports data refinement, allow-
ing us to replace some abstract variables with their concrete counterparts.
In that case, the invariant of a refined machine is extended (conjuncted) with
so called gluing invariant that formally defines the relationship between the
abstract and concrete variables.

The logical consistency of system models and correctness of the refine-
ment process are verified by mathematical proofs. To verify correctness of
a refinement step, we need to prove a number of proof obligations defined
for the refined model. The list of proof obligations can be found in [2]. Au-
tomatic generation and demonstration of the required proof obligations is
significantly facilitated by the Rodin platform [72, 3] – an integrated devel-
opment environment for Event-B. The available tool support makes Event-B
relevant in an industrial setting.

The refinement-based approaches to system development, in particular
Event-B, have demonstrated their worth in the development of dependable
systems from various domains. Traditionally, these approaches are used to
ensure the functional correctness of a system. In other words, while devel-
oping a system in Event-B, we can mathematically prove that it satisfies
the desired functional requirements. However, Event-B does not currently
provide the support for quantitative verification of non-functional system
properties that often play a crucial role in guaranteeing system dependabil-
ity. This thesis is an attempt to overcome this limitation by integrating the
probabilistic reasoning about dependability into the formal development by
refinement. To achieve this goal, we will extensively rely on Markov analysis
– one of the best-known methods used in probabilistic analysis of complex
dependable systems.

1.3 Discrete-time Markov Processes

To enable probabilistic reasoning about an Event-B model, we aim at repre-
senting its behaviour by a stochastic Markov process. A stochastic process is

8

called a Markov process if it satisfies the Markov property : the future state
of the process depends only on its present state and thus independent of the
states that precede it [48]. Markov processes constitute an important class
of stochastic processes, which are widely used in dependability engineering.
In this section, we examine two types of discrete-time Markov process and
briefly present their basic concepts.

Discrete-time Markov chains The most well-known Markov process is
a discrete-time Markov chain (DTMC) [48, 35]. It is a stochastic process
with a discrete state space and discrete time, i.e., the system modelled by a
DTMC is observed only at discrete instances of time.

Definition 1 Let X1, X2, X3, . . . be a sequence of random variables with a
finite or countable set of outcomes Σ. The stochastic process {Xt | t ∈ N} is
a discrete-time Markov chain if it satisfies the following Markov property:

Pr{Xn = σn |Xn−1 = σn−1, . . . ,X1 = σ1} = Pr{Xn = σn |Xn−1 = σn−1},

where ∀j ∈ N ·σj ∈ Σ.

Remark 1 The probability

pij(n) = Pr{Xn = σj |Xn−1 = σi}

is called the n-th step transition probability for a DTMC {Xt | t ∈ N}. If
pij(n) does not depend on n, i.e.,

pij(n) = pij ,

then {Xt | t ∈ N} is a time-homogeneous (or stationary) DTMC.

In this thesis, we consider only time-homogeneous Markov chains with
finite state spaces. The transition (probability) matrix of such a DTMC is
the matrix P with entries pij . The matrix P allows us to define the n-step
transition probabilities of any DTMC [48, 35]:

Theorem 1 Let P be the transition matrix of a DTMC. The ij-th entry

p
(n)
ij of the matrix Pn gives the probability that the Markov chain, starting

in state σi, will be in state σj after n steps.

The initial probability vector is the vector π(0) = [p
(0)
i] = [Pr{X0 = σi}].

Any DTMC process is fully defined by its transition matrix and initial prob-
ability vector [48, 35]:

9

Theorem 2 Let P be the transition matrix of a DTMC, and let π(0) be its
initial probability vector. Then the probability that the chain is in state σj

after n steps is the j-th entry in the vector

π(n) = π(0) · Pn.

Now let us to illustrate the use of the transition matrix of a DTMC for
dependability assessment by a simple example.

Example 1 In this example, we demonstrate the use of DTMC for safety
assessment. Let us consider an example not from real life but from the
life of the Land of Oz. Let us assume that people of the Land of Oz are
anticipating some event of great importance, the success of which strongly
depends on weather at the day of the event. It is known that the correlation
between weather and the success of the event is measured by the following
probability distribution:

Rain Nice Snow

Success 0.85 1.00 0.95

Failure 0.15 0.00 0.05

Safety is generally measured by the probability that a system, under
given conditions, will not cause any critical failures, i.e., the probability
that no hazardous event occurs during the entire system life cycle [79]. The
system, safety of which we want to analyse, is very simple. There is a single
hazard associated with the system – the failure of the event, and the only
hazardous situation is bad weather at the day of the event. We say that
the system is safe if the event can be arranged successfully regardless of the
weather conditions. Our goal is to compute the probability of this.

One rainy Monday morning it was announced that the event is scheduled
on Sunday (we assume that one week is required to make the final prepa-
rations). According to [48, 35], the weather in the Land of Oz is rather
depressing – people there never have two nice days in a row. “If they have
a nice day, they are just as likely to have snow as rain the next day. If they
have snow or rain, they have an even chance of having the same the next
day. If there is change from snow or rain, only half of the time is this a
change to a nice day” [35]. Clearly, in the Land of Oz the weather changes
according to a three-state DTMC with the following transition matrix:

P =





Rain Nice Snow

Rain 0.5 0.25 0.25
Nice 0.5 0 0.5
Snow 0.25 0.25 0.5



.

10

Since we know the Monday’s weather, using Theorem 2 we can forecast the
weather on Sunday:

(
1 0 0

)
× P6 =

(
1 0 0

)
×





0.4 0.2 0.4

0.4 0.2 0.4

0.4 0.2 0.4




=

(Rain Nice Snow

0.4 0.2 0.4
)
.

Therefore, according to the formula of total probability, the probability of
the event success is

Pr{Success} = 0.4 · 0.85 + 0.2 · 1 + 0.4 · 0.95 = 0.92

and does not depend on the today’s weather. As a result, we can conclude
that the considered system is safe with the probability 0.92.

In real life, the safety analysis is not so trivial. A DTMC representing
the behaviour of a system is usually significantly more complex due to the
integrated mechanisms for fault tolerance and repair of system components.
Moreover, many safety-critical systems have more than one associated haz-
ard.

Identification of all possible hazards associated with the system under
development is an important part of the safety analysis. While reasoning
about system safety, it is often convenient to treat hazards as terminating
system states and define safety as an ability of a system to terminate in
a safe state. Next we overview the theoretical results on which we rely to
reason about terminating systems.

Absorbing DTMC The states of a Markov chain can be divided into
equivalence classes. Two states σi and σj belong to the same equivalence
class if the process can go from σi to σj (not necessarily in one step) and
vice versa. In this case, we say that σi and σj communicate. A state of a
Markov chain that does not communicate with any other state of the chain
is called absorbing. Next we define a special class of discrete-time Markov
chains called absorbing Markov chains [35].

Definition 2 A state σi of a Markov chain is called absorbing if and only if
pii = 1, i.e., it is impossible lo leave it. A Markov chain is called absorbing
if it has at least one absorbing state and, if from each state which is not
absorbing, it is possible to reach an absorbing state (not necessarily in one
step).

Definition 3 In an absorbing Markov chain, a state which is not absorbing
is called transient.

11

Let us now consider an arbitrary absorbing DTMC, and let {σ1, . . . , σr}
and {σr+1, . . . , σm} be its sets of transient and absorbing states correspond-
ingly. Then the transition matrix P will have the following canonical form:

P =





r m−r

r Q R

m−r O I



.

Here Q is an r × r matrix that models the process as long as it stays in
transient states. R is a nonzero r×(m−r) matrix that models the transitions
from transient to absorbing states. Finally, O is an (m− r)× r zero matrix
and I is an (m − r) × (m − r) identity matrix [48].

Definition 4 For any absorbing DTMC we define its fundamental matrix
to be N = (I − Q)−1. The entry nij of N gives the expected number of
times that the process spends in the transient state σj if it is started in the
transient state σi.

It is well-known that for any absorbing DTMC the probability to eventually
reach an absorbing state is 1. The following theorem helps us to compute
the corresponding probability distribution of absorbing states [48]:

Theorem 3 Let bij be the probability that an absorbing DTMC will be ab-
sorbed in the absorbing state σj if it starts in the transient state σi. Let B

be the matrix with entries bij. Then

B = N · R.

Theorem 3 plays an important role in the dependability analysis. In
particular, by partitioning the terminating (absorbing) system states into
the classes of safe and unsafe states, we can evaluate which terminating
state is likely to capture the process as well as the overall probability that
the process terminates in a safe system state.

Markov Decision Processes A general framework for Markov decision
processes (MDP) can be considered as an extension of the one for DTMC. In
addition to process states and transition probabilities, an MDP has actions
and rewards [80, 69]. As before, we consider only time-homogeneous finite
Markov processes.

More precisely, a Markov Decision Process is a discrete time stochastic
control process {Xt | t ∈ N}. By choosing actions, the decision maker has
the opportunity to influence the behaviour of a probabilistic system as it
evolves through time. For each state σi, there exist a feasible action space
Ai, which is finite and does not depend on t. As a result of choosing action
a ∈ Ai in state σi:

12

1. the decision maker receives a reward r(σi, a), and

2. the system successor state σj is determined by the transition proba-

bility p
(a)
ij .

Thus, the next state σj depends on the current state σi and the decision
maker’s action a. However, successor state is conditionally independent of
all previous states and actions, and hence the state transitions of an MDP
satisfy the Markov property. In our work, we consider only a simple form of
MDP where all rewards are equal.

Generally, the goal of the decision maker is to choose a sequence of
actions that causes the system to perform optimally with respect to some
predetermined criterion. A decision rule prescribes a procedure for action
selection in each state. The decision rules range from deterministic Markov
to randomised history dependent, depending on how they incorporate past
information and how they select actions (for more details, see, e.g., [80, 69]).
A policy specifies the decision rule to be used in all states. It provides the
decision maker with a prescription for action selection for any possible future
system state. The main problem of the Markov decision theory is to find
a policy for the decision maker, i.e., a function u that specifies the action
a = u(σi), that the decision maker will choose when the process is in the
state σi. Note that an MDP with the defined policy behaves as a DTMC
because the policy fixes the action for each state. However, in this thesis we
do not focus on finding optimal policies. Instead, we allow the decision maker
to choose any available action nondeterministically and aim at verification
of the system behaviour for all possible policies.

1.4 Continuous-time Markov Processes

In this subsection, we consider one particular class of Markov processes –
continuous-time Markov chains (CTMC) [68, 20]. To be precise, a contin-
uous-time Markov chain is a semi-Markov process because, in addition to
transition probabilities, we also take into account the probability distribu-
tion of the sojourn time that the process spends in its current state before
the next transition occurs.

Definition 5 The stochastic process {X(t) | t ∈ R
+} with finite or countable

set of outcomes Σ is a continuous-time Markov chain if, for
t0 < t1 < · · · < tn, ti ∈ R

+, it satisfies the following Markov property:

Pr{X(tn) = σn |X(tn−1) = σn−1, . . . ,X(t0) = σ0} =

Pr{X(tn) = σn |X(tn−1) = σn−1},

where ∀j ∈ N ·σj ∈ Σ and R
+ is the set of non-negative real numbers.

13

Remark 2 The transition probability function of a CTMC {X(t) | t ∈ R
+}

is defined as

pij(s, s + t) = Pr{X(s + t) = σj |X(s) = σi}

for s ≥ 0 and t > 0. If pij(s, s + t) does not depend on the moments s and
s + t but only on the length of interval t, i.e.,

pij(s, s + t) = pij(t),

then {X(t) | t ∈ R
+} is a time-homogeneous (or stationary) CTMC.

As before, we consider only time-homogeneous Markov chains with finite
state spaces. The transition probability function is assumed to be continuous
at t = 0:

lim
t→0

pij(t) =

{
1, i = j,

0, i 6= j.

Moreover, let πj(t) = Pr{X(t) = σj} be the unconditional state probability
at time t, then

πj(t) =
∑

σi∈Σ

pij(t) · πi(0).

The transition probability function satisfies the Chapman-Kolmogorov
equation [68, 20]: for any σi, σj ∈ Σ and s, t ∈ R

+

pij(s + t) =
∑

σk∈Σ

pik(s) · pkj(t).

Similarly to the discrete-time setting, we say that two states σi and
σj communicate if there exist such numbers s and t that pij(t) > 0 and
pji(s) > 0. The definitions of absorbing and transient states are the same
as for a DTMC.

Continuous time is more difficult to reason about because there is no
equivalent to the one-step transition matrix of a DTMC. Indeed, in a CTMC,
the transition probability is the function of elapsed time, not of the number
of elapsed steps. The role of one-step probabilities in the continuous-time
setting play transition rates (or transitions intensities):

qi = lim
t→0

1 − pii(t)

t
and qij = lim

t→0

pij(t)

t
.

For i 6= j, qij is called the transition rate from (the current) state σi to (a
successor) state σj .

14

The transition rate matrix (also called the intensity matrix or the in-
finitesimal generator matrix) of a CTMC is the matrix Q with entries qij

where

qii = −qi = −
∑

j 6=i

qij .

Usually, while formulating a CTMC, we can define the transition rate matrix
Q. Therefore, to find the transition probabilities

pij(t) = Pr{X(s + t) = σj |X(s) = σi},

we need to find the solutions of the forward Kolmogorov differential equa-
tions (for time-homogeneous CTMC)1 [68, 20]:

dpij(t)

dt
= −qj · pij(t) +

∑

k 6=j

pik(t) · qkj .

The differential equations for the state probabilities πj(t) are

dπj(t)

dt
= −qj · πj(t) +

∑

k 6=j

πk(t) · qkj . (1.1)

Now let us to illustrate how the Kolmogorov equations can be used for
reliability assessment.

Example 2 Let us consider a simple redundant system that consists of
two identical repairable components. The system reaches the failure state
when both components have failed. No component repair is possible in this
state. Moreover, we assume that initially both components are operational.

Let λ and µ be correspondingly the failure and repair rates of each
individual component, and let σi, for i ∈ 0..2, be the system state where i

components have failed. Then σ0 is the initial system state, while σ2 is the
unique absorbing state of the system. Overall, the system behaves as it is
shown in Figure 1.3.

In engineering, reliability is measured by the probability that a system
is able to deliver correct service under given conditions for a certain period
of time [0, t] [79, 64].

To assess the reliability of the systems modelled by absorbing Markov
processes, we usually consider the process behaviour up to the moment that
it enters the set of absorbing states. Therefore, reliability of our repairable

1Or, equally, the backward Kolmogorov equations that we omit in this brief overview

of Markov processes

15

Figure 1.3: Reliability of a repairable system: state transition diagram

system can be defined as R(t) = 1 − π2(t). We will use the differential
equations (1.1) to find it. Thus, π0(0) = 1, π1(0) = π2(0) = 0, and

dπ0(t)

dt
= −2λπ0(t) + µπ1(t)

dπ1(t)

dt
= 2λπ0(t) − (λ + µ)π1(t)

dπ2(t)

dt
= λπ1(t)

To find the solutions, we can apply the Laplace transform to both sides
of all three equations. From the reduced equations, we obtain the Laplace
transform F2(s) of π2(s):

F2(s) =
2λ2

s3 + (3λ + µ)s2 + 2λ2s
.

Finally, after inverting the Laplace transform, we can obtain π2(t) and then
derive the reliability function:

R(t) =
s1e

s2t − s2e
s1t

s1 − s2
, where s1,2 =

−(3λ + µ) ±
√

λ2 + 6λµ + µ2

2
.

Provided the numerical values of λ and µ are given, we can use the obtained
formula to compute the system reliability at any moment t.

Finally, let us consider the distribution of the state sojourn times of a
homogeneous CTMC in detail. The Markov property is the memoryless
property of a stochastic process. It is a well-known fact that the exponential
distribution is the only continuous distribution that satisfies the memoryless
property. Therefore, the random variable Yi, denoting the sojourn time in
state σi, is exponentially distributed with parameter qi, i.e.,

Pr{Yi ≥ t} =

{
1 − e−qit, t ≥ 0

0, t < 0
and E[Yi] =

1

qi

.

Since qi =
∑

j 6=i

qij , the parameter of Yi is cumulated by all the transition

rates outgoing from σi.

16

1.5 Markov Analysis in Dependability Engineer-

ing

Markov analysis is one of the most powerful methods in dependability en-
gineering. It allows the developer to reduce the quantitative analysis of
complex, dynamic and highly distributed systems to the mathematically
well-established state modelling problem.

The main advantage of Markov analysis is that it provides the means
for analysis of repairable systems. Markov models fully cover modelling of
all three types of system fault given in Section 1.1. Moreover, the Markov
analysis techniques enable dependability analysis of the systems with strong
dependencies between failures of multiple components or between compo-
nent failures and failure rates (probabilities). In contrast, many of widely
used techniques in dependability engineering, e.g., Fault Tree Analysis [78],
often require the system components to be totally independent. The Markov
analysis techniques are also well suited to handle rare events and allow the
developer to perform the analysis of such events within a reasonable amount
of time.

The application of Markov analysis to dependability assessment is ex-
tensively covered in the literature, see, e.g., [79, 64]. Generally, it consists
of the following three major steps:

1. Defining the system state space and partitioning it into two (dis-
joint) classes of operational and non-operational states. The opera-
tional states are those where the system is functioning properly, i.e.,
is capable to provide the intended services. The remaining states are
non-operational. In an absorbing Markov process, operational and
non-operational system states usually correspond to, respectively, the
transient and absorbing states of the process.

2. Modelling of all possible state transitions together with their proba-
bilities (rates). To accomplish this, the developer has to identify the
cause (or condition) of each transition, e.g., a failure of a component,
a repair of a component, some monitoring action, etc., as well as the
dependencies between different components and their state transitions.

3. Computation of the model solutions. Depending on the type of an
analysed property, the steady-state (long-run) and transient (time-
dependent) analysis techniques are distinguished [20]. The steady-
state analysis results in the steady-state (or average) probabilities that
the system will be in a certain state after a long time interval. This
type of analysis is usually much easier to perform and, in many prac-
tical cases, it provides adequate accuracy. On the other hand, the
transient analysis results in the exact probabilities that the system

17

will be in a certain state at a specific time instant. The transient
analysis is usually performed for highly critical systems.

As any other method in dependability engineering, Markov analysis also
has certain disadvantages. Its main drawback is the state explosion problem
– the exponential growth of number of states as the size of a modelled system
increases.

Thus, obtaining symbolic solutions (for the state probabilities as func-
tions of time) of Kolmogorov equations by taking and inverting their Laplace
transforms is realistic for only small case-studies because the computational
complexity of the method drastically increases together with the cardinality
of the model state space. The same problem arises in the discrete-time set-
ting. Indeed, the matrix methods are traditionally used for dependability
assessment of discrete-time Markov models. However, the application of ma-
trix methods to analysis of large-scale models becomes infeasible. Instead,
the numeric, simulation and model-checking techniques are often applied for
reliability analysis of Markov models. Most of these methods to some extent
depend on the theory of Markov processes discussed in Sections 1.3 and 1.4.

In this thesis, we are mostly concerned with the transient analysis of
system reliability and safety, except for some cases of the system safety
assessment. To bridge the gap between the refinement-based development in
Event-B and the quantitative verification of system reliability and safety, in
the next chapter we show how to augment Event-B models with probabilities
and represent the behaviour of a modelled system by a Markov process.

Integrating dependability engineering and formal modelling Ac-
cording to the surveys of the industrial use of formal methods [81, 19], the
main area of their application is the development of dependable systems.
The transport sector is the largest single application domain (16 of 62 con-
sidered industrial projects are related to the transport sector). Together
with such critical areas as defence, healthcare, nuclear and financial sec-
tors, it makes more than 50% of all the projects that have employed formal
techniques. Moreover, the surveys also show that the popularity of formal
methods, especially their use at early stages of system specification and de-
sign, is gradually increasing. Since Markov analysis remains one of the main
methods in dependability engineering, there is a clear need for integrating
it into formal approaches to system development. This has motivated the
research presented in this thesis.

18

Chapter 2

Probabilistic Reasoning

about Event-B Models

2.1 Research Objectives

Formal development in Event-B allows us to ensure that a resulting de-
tailed specification adheres to its abstract counterpart. In other words, it
guarantees that the services provided by the system are functionally correct
with respect to its specification. However, in the current process of refine-
ment, the non-functional system requirements, in particular dependability
attributes, are usually abstracted away. This deprives the designers of a
common semantic model that would allow them to evaluate the impact of
the chosen design decisions on system dependability. In engineering, this
impact is usually measured by probability. More precisely, while developing
any kind of critical computer system, the developer has to assess to what ex-
tent the system under development satisfies its dependability requirements.
Moreover, it is important to perform such kind of analysis at the early stages
of development. Indeed, postponing the system dependability evaluation to
the later development stages can lead to a major system redevelopment if
dependability requirement are not met.

To enable quantitative verification of an Event-B model, we aim at rep-
resenting the Event-B specification of the functional system behaviour by
a Markov process. To achieve this, we introduce a new operator into the
Event-B specification language – the quantitative probabilistic choice. Fur-
thermore, we show how the behaviour of probabilistically-enriched Event-B
models can be mapped to various kinds of Markov processes.

To facilitate dependability-explicit development in the probabilistic Event-
B, we strengthen the notion of Event-B refinement by requiring that a refined
model, besides being a proper functional refinement of its more abstract
counterpart, also satisfies a number of quantitative constraints. These con-

19

straints ensure that the refined model improves (or at least preserves) the
current probabilistic measures of system dependability attributes. In our
work, these additional constraints are usually derived from the fundamental
properties of Markov processes.

To validate the proposed approaches, we have conducted a number of
case studies spanning over different types of software system, e.g., control
and monitoring systems, service-oriented systems, etc. The case studies
include, in particular, formal development and quantitative assessment of
a fault tolerant satellite system (see Paper IV) and formal modelling to-
gether with integrated safety analysis of a radio-based railway crossing con-
troller (see Paper V). Since a part of this thesis was carried out within the
European Commission Information and Communication Technologies FP7
project DEPLOY (Industrial Deployment of System Engineering Methods
Providing High Dependability and Productivity) [46], some of the consid-
ered case studies have been provided by the project industrial partners or
inspired by our joint work in the project.

2.2 Discrete-time Models

Next we outline our approach to formal modelling and verification of discrete-
time systems. We first demonstrate how to extend the language and se-
mantics of Event-B in such a way that the extended models would enable
dependability analysis using the theory of Markov processes. We accomplish
this task by first introducing the quantitative probabilistic choice operator,
denoted ⊕|, into the Event-B modelling language. The operator notation
coincides with that of the qualitative probabilistic assignment introduced
by Hallerstede and Hoang in [39]. However, its semantics is different in
a sense that the quantitative choice operator contains precise probabilistic
information about how likely a particular choice should be made.

The new probabilistic choice operator can be introduced into a model
to replace a nondeterministic choice (assignment) in the event actions. It
has been shown that any probabilistic choice statement always refines its
demonic nondeterministic counterpart [60]. Hence such an extension is not
interfering with the established refinement process.

For instance, an event nondeterministically modelling a failure of a sys-
tem component

evt =̂ when G then failure :∈ BOOL end (2.1)

can be refined by a probabilistic one as follows

evt =̂ when G then failure ⊕| TRUE @ p; FALSE @ 1−p end, (2.2)

where p ∈ [0, 1] is the probability of failure occurrence. The variable failure
can be understood as a discrete random variable with two possible outcomes

20

and the probability mass function defined by the right hand side of the ⊕|
operator. Generally, while refining a nondeterministic assignment over the
set of possible values Q, one can introduce a probabilistic choice with the
same set of outcomes Q. In practice, the set Q is usually finite, though it
can also be countable. Clearly, when Q is a singleton set, ⊕| becomes the
standard deterministic assignment.

After refining all the nondeterministic assignments of an Even-B model
by their probabilistic counterparts, we can consider the resulting model as
a Markov process – a DTMC or a simple form of a MDP, depending on
the presence of a nondeterministic choice between simultaneously enabled
events in the model.

In the previous section, we defined reliability as the probability that
a system X is able to deliver correct service under given conditions for a
certain period of time [0, t]. Formally, it can be specified as

R(t) = Pr{X not failed over time [0, t]}.

To verify such a time-bounded reachability property, we also need to intro-
duce into Event-B the notion of time, which is not explicitly supported by
the framework at the moment. To achieve this, we focus on the modelling
of systems that exhibit a cyclic behaviour, i.e., the systems that iteratively
execute a predefined sequence of steps. Typical representatives of cyclic
systems are control and monitoring systems. For instance, one iteration
of a control system usually includes reading the sensors that monitor the
controlled physical processes, processing the obtained sensor values, and fi-
nally setting the actuators according to a predefined control algorithm. In
principle, the system could operate in this way indefinitely long. However,
unforeseen conditions in the operating environment or component failures
may affect the normal system functioning and lead to a shutdown.

Once the desired structure and the control flow requirements of cyclic
systems are formally defined, we can can use the notion of an iteration of
a cyclic system as a discrete unit of time defining a unified time scale for
every refined Event-B model. Moreover, we model cyclic systems in such a
way that, while reasoning about system reliability, it is sufficient to consider
only the initial and final states of each system iteration. Such an approach
allows us to partition the system state space into two sets of observable and
unobservable states (see Paper I for more details). The main advantage
of the achieved partitioning is that it significantly reduces the size of the
model. On the other hand, this complicates computation of the transition
probabilities of the (reduced) underlying Markov process.

Furthermore, to model failures of the system components, we distin-
guish between the operational and non-operational observable system states,
which directly correspond to the transient and absorbing states of the un-
derlying Markov process. If the underlying Markov model is a DTMC, we

21

can rely on its probability transition matrix (Section 1.3) to evaluate the
system reliability. If the underlying stochastic process is a MDP, we have
to assess the worst case scenario reliability over all possible policies, i.e., to
find the policy that minimises the number of steps leading to absorption.

An introduction of the quantitative probabilistic choice (2.2) allows us
to assess not only system reliability but also its safety. In this thesis, we
consider safety in a context of the system behaviour in a hazardous situa-
tion. Hazard – a potentially dangerous situation – may occur as a result of
certain combinations of component failures. One of the developers’ goals is
to identify all possible hazardous situations and specify the expected sys-
tem behaviour in such situations. The main advantage of the approach we
present in the thesis is that the safety assessment becomes an intrinsic part
of formulating and verifying Event-B safety invariants, i.e., the invariants
specifying the required (safe) system behaviour at each particular execution
stage (see Paper V for more details).

2.3 Continuous-time Models

We will now briefly describe our approach to formal modelling and veri-
fication of continuous-time systems. The continuous-time models can be
especially relevant when the designer needs to make an assumption about
explicit duration of system activities, which are represented by events of an
Event-B model in our case.

By defining the probabilistic choice operator in the continuous-time set-
ting, we augment possible state transformations with constant transition
rates λi ∈ R

+. In the continuous-time setting, the event (2.1) modelling a
faulty component can be refined as follows

evt =̂ when G then failure ⊕| TRUE @ λ1; FALSE @ λ2 end. (2.3)

Similar to the case of discrete time, the right hand side of the assignment
may have more than two outcomes. Moreover, according to the theory of
CTMC briefly outlined in Section 1.4,

∑
i λi is the parameter of the exponen-

tially distributed sojourn time that the system spends in the current state
before it transits to the next one. In such a way, we can replace a nonde-
terministic choice between the possible successor states by the probabilistic
choice associated with the (exponential) race condition. The probabilistic
assignment in (2.3) can be then considered as an analogue of that of (2.2),
where

p =
λ1

λ1 + λ2
.

It is important to note that, in the continuous-time setting, any two
simultaneously enabled events participate in the same race condition. This

22

means that, after refining all nondeterministic assignments of an Even-B
model by their probabilistic counterparts, we completely eliminate demonic
nondeterminism from the model. As s result, such a probabilistically aug-
mented Event-B machine becomes a CTMC. The transient methods for re-
liability assessment of the systems modelled by CTMC are discussed in Sec-
tions 1.4 and 1.5. However, for industrial-size models, obtaining the system
reliability by applying and inverting the Laplace transform of the corre-
sponding Kolmogorov equations is an extremely computationally extensive
task. Often it becomes too complex or even unfeasible to solve it analyti-
cally. Instead, for probabilistic analysis of Event-B models, both discrete-
and continuous-time, it is convenient to rely on probabilistic model checking
techniques [16] that we discuss later.

2.4 Extending the Notion of Refinement

Quantitative refinement The formal development of dependable sys-
tems can be facilitated by quantitative evaluation of possible design alter-
natives conducted at early design stages. To achieve this, we also have to
extend our formal development technique – refinement. Specifically, we have
to strengthen the notion of refinement by additionally requiring that a re-
fined system model preserves or improves the probabilistic measures of the
desired dependability attributes.

Let P denote the probabilistic measure of some dependability attribute
that depends on time t. Then, for fully probabilistic discrete-time (contin-
uous-time) models, i.e., models without nondeterminism, we can strengthen
the definition of Event-B refinement in a following way:

Definition 6 Let Ma and Mc be two probabilistic Event-B models. We say
that Mc is a valid refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma ⊑ Mc), and

2. ∀t ∈ N (R+) · Pa(t) ≤ Pc(t).

Remark 3 For discrete-time models with nondeterminism (i.e., MDP mod-
els), in the second refinement condition of Definition 6 we have to evaluate
the minimum probability P over all possible system behaviours.

In this thesis, we usually consider P to be system reliability and respon-
siveness, thus Definition 6 essentially means that the refined model Mc is at
least as reliable (responsive) as the abstract model Ma. Moreover, we also
define the notion of partial quantitative refinement, where the second con-
dition of Definition 6 does not hold everywhere but for a finite time interval

23

of the length T , i.e., ∀t ∈ [0, T]. While the partial refinement is a signif-
icantly weaker property, it nevertheless might be vital when the intended
operational time of the system under development does not exceed T .

Even though our definition of the quantitative refinement looks quite
natural, it is important to check that it is consistent with the traditional
Event-B refinement process. Indeed, this process allows the developer to
introduce new events to a refined model. In the continuous-time setting,
after probabilistic augmentation, execution of each such event takes some
time, which means that the execution time of a refined system can be signif-
icantly longer than the execution time of its more abstract predecessor. In
other word, it means that the abstract and refined models have different time
scales. In this situation, the proposed extended definition of refinement may
become confusing. To avoid this, we often need to find acceptable trade-offs
between certain system characteristics. For instance, if P is the reliability of
a system then, during the refinement process, we should not only guarantee
that P is not decreasing, but also that the system performance remains at
the acceptable level. There is no such a problem in the discrete-time setting
as we usually strictly define an iteration of the execution cycle as a unit of
time and guarantee that it persists as such during the refinement process.
In other words, all new model events are defined on unobservable system
states within an iteration (see Paper I for more details).

2.5 Means for Modelling and Verification

Complexity of modern computer systems puts a great emphasis on tools for
automatic analysis and verification of models. Next we overview the main
platforms for modelling and verifying dependable systems that we have used
in the thesis.

The Rodin platform [72, 3] provides the developers with an automated
tool support that enables formal verification of Event-B models and the
refinement process. Despite the fact that Rodin lacks the functionality re-
quired to verify the quantitative refinement condition of Definition 6, the
reliance on the theory of Markov processes allows the developer to use a
large variety of other software tools to facilitate this task. The most well-
known examples of such tools are the MATLAB programming environment
[58] with Statistics and MDP Toolboxes [59, 24], the Möbius modelling tool
[28] and probabilistic model checking platforms [50, 47, 26, 38].

In our work, we have often used the PRISM probabilistic symbolic model
checker [50] in conjunction with Rodin to prove the strengthened refinement
of Event-B models. Next we consider Rodin and PRISM in more detail.

24

Figure 2.1: The Rodin platform: Proving perspective

Rodin platform In the previous chapter, we have already discussed the
Event-B method, its specification language and the main principles of system
development in Event-B. Here we provide a short overview of its tool support
– the Rodin platform. The Rodin platform is an Eclipse-based integrated
development environment for Event-B that provides effective support for
modelling and verification by mathematical proof. The platform is open
source and is further extendable with plug-ins. More information about
available extensions can be found in [33].

The Roding platform has two major purposes. It provides the means for
modelling in Event-B, i.e., specifying Event-B constructs – machines and
contexts, as well as for proving the consistency, refinement and other for-
mulated properties of models. Well-formedness of Event-B constructs (e.g.,
type checking, lexical and syntactical analysis) is verified by a static checker.
The proof obligation generator takes the well-formed Event-B constructs as
inputs and generates the required proof obligations. Finally, the proof man-
ager tries to automatically prove the generated proof obligations as well as
maintains existing proofs associated with them. When the proof obligations
cannot be discharged automatically, the user can attempt to discharge them
interactively using a collection of available proof tactics within the Proving
perspective, shown in Figure 2.1.

Typical examples of the Event-B proof obligations are invariant preser-
vation, guard strengthening in refinement (ensuring that when a concrete
event is enabled then so is the corresponding abstract one), simulation (en-

25

Figure 2.2: The PRISM GUI: model editor

suring that the actions of a concrete event are not contradictory with those
of the abstract event), etc. The full list of proof obligations and their formal
definitions can be found in [2].

PRISM model checker As we mentioned before, finding analytical so-
lutions while directly relying on the theory of Markov processes is often
computationally infeasible. Probabilistic model checking is a fast growing
area of research that provides means for verification of Markov models. One
of the leading tools in the area is PRISM.

The PRISM model checker is a software tool for formal modelling and
verification of systems that exhibit probabilistic behaviour. It provides sup-
port for analysis of all three considered in the thesis types of Markov process
– DTMC, MDP and CTMC. Moreover, it supports modelling of (priced)
probabilistic timed automata and stochastic games (as a generalisation of
MDP) [51]. The state-based modelling language of PRISM relies on the
reactive modules formalism of Alur and Henzinger [6]. A PRISM model
consists of a number of modules which can interact with each other. The
behaviour of each module is described by a set of guarded commands that
are quite similar to Event-B events. The latter fact significantly simplifies
transformation of Event-B machines to the corresponding PRISM specifica-

26

tions.
While analysing a PRISM model, one can define a number of temporal

logic properties to be evaluated by the tool. The dependability properties
that we are interested in verifying are the time-bounded reachability and
reward properties. In the property specification language of PRISM, such
properties can be formulated using the supported temporal logics – PCTL
(Probabilistic Computation Tree Logic) [41] for discrete-time models and
CSL (Continuous Stochastic Logic) [9, 17] for continuous-time models. A
detailed survey and the specification patterns for probabilistic properties
can be found in [36].

PRISM is free and open source tool released under GPL license. It
is developed in Java and C++ programming languages [50]. It has been
successfully applied in many domains including distributed coordination al-
gorithms, wireless communication protocols, security, dependability and bi-
ological models, etc. A screenshot of the GUI version of PRISM is shown in
Figure 2.2.

In this chapter, we gave a general overview of the research presented in
the thesis. The research results have been published in a number of papers
collected in the Part II of the thesis. Next we present a detailed summary
of the research results published in each paper along with the statement on
the contribution of the thesis author.

27

28

Chapter 3

Summary of Publications

The thesis consists of eight publications. A short summary of each publica-
tion is presented in this chapter.

Paper I: Integrating Stochastic Reasoning about Critical System

Properties into Modelling and Verification in Event-B

In this paper, we propose an approach to integrating stochastic reasoning
about reliability and responsiveness of cyclic systems into Event-B mod-
elling. We formally specify the general requirements that should be verified
to ensure that the system under construction exhibits the cyclic behaviour.
This allows us to strictly control the execution flow of a cyclic system and to
use the notion of a system iteration as a discrete unit of time that unambigu-
ously defines a unified time scale for any Event-B machine in the refinement
chain. Since we formalise the control flow requirements in a general form
that does not depend on a specific Event-B model, they can be easily gen-
erated as additional proof obligations (theorems) that must be discharged
within the Rodin proving environment. We also propose an extension of the
Event-B language with the quantitative probabilistic choice construct and
define the semantics for the extended framework as discrete-time Markov
processes. We demonstrate how to define reliability and responsiveness as
the properties of extended Event-B models and integrate explicit stochastic
reasoning about these system properties into the Event-B refinement pro-
cess. Specifically, we strengthen the notion of Event-B refinement for cyclic
systems by additionally requiring that the refined model has to preserve
or improve the probabilistic measure of a desired dependability attribute.
Finally, we show how to apply the Markov analysis to verification of the
strengthened quantitative refinement between Event-B models.

29

Paper II: Towards Probabilistic Modelling in Event-B

Paper II can be considered as the early version of Paper I. It examines mod-
elling of cyclic systems in Event-B and strengthening the notion of refine-
ment from the reliability point of view. Here, to distinguish between system
operational and non-operational states, we introduce a new clause called
Operational guards into the Event-B specification language. An operational
guard is essentially a shorthand notation implicitly adding the corresponding
guard conditions to all the events enabled in the operational states (except
the initialisation event). As model invariants, operational guards are inher-
ited in all refined machines of the model. Similarly to Paper I, we separately
consider fully probabilistic discrete-time models (modelled by DTMC) and
the models that combine both probabilistic and nondeterministic behaviour
(modelled by MDP). Unfortunately, the approach proposed for reliability
computation of the systems modelled by MDP is not generally correct (the
corrected version is presented in Paper I). Nevertheless, the overall approach
discussed in this work is credible and have inspired us to write Paper I.

Paper III: Formal Modelling and Verification of Service-Oriented

Systems in Probabilistic Event-B

This paper discusses an integration of quantitative assessment of the es-
sential quality of service attributes into the formal modelling process. The
paper’s technical contribution is two-fold. First, we put forward an ap-
proach to creating and verifying a dynamic service architecture in Event-B.
Such an Event-B model represents service orchestration explicitly, i.e., it
depicts interactions of a service director with the controlled services, the
desired sequence of services, simultaneous occurrences of certain services or
their mutual exclusion, possible deadlocks conditions as well as the necessary
fault tolerance mechanisms. We list the most essential properties of service-
oriented systems and formally specify them as the verification conditions for
a dynamic service architecture modelled in Event-B. The formalised condi-
tions are to be generated as additional proof obligations by the Rodin plat-
form. Second, we define the quantitative probabilistic choice construct in the
continuous-time setting and demonstrate how to augment an Event-B model
with stochastic information and transform it into a continuous-time Markov
chain. Further, by relying on probabilistic model-checking techniques, we
conduct quantitative evaluation of the quality of service attributes of the
system under development. We argue that such a verification, i.e. the one
that is performed at the architectural level, can be especially useful at the
early development stages.

30

Paper IV: Formal Development and Assessment of a Reconfig-

urable On-board Satellite System

Ensuring fault tolerance of satellite systems is critical for achieving goals
of a space mission. Since the use of redundancy is restricted by the size
and the weight of the on-board equipment, the designers need to rely on
dynamic system reconfiguration techniques in case of component failures.
Paper IV discusses a formal approach to development and assessment of
fault tolerant dynamically reconfigurable systems. Specifically, we define
the guidelines for step-wise development of such systems in Event-B. Fur-
thermore, we demonstrate how to formally assess a reconfiguration strategy
and evaluate whether the chosen fault tolerance mechanism fulfils the relia-
bility and performance objectives. The proposed approach is illustrated by
a case study – development and assessment of the reconfigurable satellite
Data Processing Unit (DPU). The adopted approach is similar to the one
proposed in Paper III. Namely, we enrich the Event-B models of DPU with
explicit probabilistic information about reliability of its components and the
duration of time required to execute the tasks assigned to these components.
Furthermore, using probabilistic model checking, we compare the reliability
and performance measures of a system by employing two different fault tol-
erance mechanisms: the one realising a standard redundancy scheme and the
other one that is based on dynamic reconfiguration. The method proposed
in the paper not only guarantees correct design of complex fault tolerance
mechanisms but also facilitates finding suitable trade-offs between system
reliability and performance.

Paper V: Quantitative Verification of System Safety in Event-B

In this paper, we present a method for integrating quantitative safety as-
sessment into the formal system development in Event-B. The main merit
of the method is combining logical (qualitative) reasoning about correct-
ness of the system behaviour with probabilistic (quantitative) analysis of
its safety. Essentially, the proposed approach sets the guidelines for safety-
explicit development in Event-B. Specifically, we structure the functioning
of a system according to a number of execution stages that are considered
separately in the refinement process. For each such a stage, we describe
the expected (safe) system behaviour as a number of (standard) safety in-
variants. At the final refinement step, we rely on these safety invariants to
specify the correct behaviour of the overall system in a hazardous situation.
As a result, the refinement process facilitates not only correctness-preserving
model transformations but also establishes a logical link between the system
safety conditions at different levels of abstraction as well as leads to deriv-
ing a logical representation of hazardous conditions. An explicit modelling

31

of probabilities of component failures, based on the extension of Event-B
discussed in Paper I, has allowed us to calculate the likelihood of hazard oc-
currence. The proposed method is illustrated by a case study – an automatic
railway crossing system.

Paper VI: Augmenting Formal Development of Control Systems

with Quantitative Reliability Assessment

This work discusses integration of reliability analysis into the formal de-
velopment of control systems in Event-B. In the paper, in order to enable
stochastic reasoning about Event-B models, we exploit the fact that the se-
mantics of an Event-B model is essentially a trace semantics. We propose
to augment every event trace of an Event-B machine with probabilistic in-
formation, i.e., transform it into the corresponding probabilistic trace. This
is achieved by adding the probabilistic weight to every event in a trace.
Such an augmentation allows us to represent the behaviour of an Event-B
model as a set of observable probabilistic traces, which, in turn, explicitly
defines a DTMC (in this paper, we consider only fully-probabilistic systems).
Furthermore, we define the quantitative Event-B refinement (from the relia-
bility perspective) as the probabilistic trace refinement. The use of Event-B
combined with probabilistic model checking for modelling and verification
is validated by a case study – a heater controller.

Paper VII: From Formal Specification in Event-B to Probabilistic

Reliability Assessment

Paper VII further exploits the integration of two frameworks: refinement
in Event-B and probabilistic model checking. It is a practical work that
demonstrates benefits of this integration by modelling and verification of the
standard fault tolerance mechanisms used in reliability engineering. Specifi-
cally, we show that introducing any of such fault tolerance schemes as Triple
Modular Redundancy (TMR), Hot/Cold Standby Spare and the TMR ar-
rangement with a spare is a valid refinement step in Event-B. To evaluate
which of them is more optimal from the reliability point of view, we demon-
strate how to transform the Event-B specifications into DTMC. We model
the mentioned fault tolerance strategies as their PRISM DTMC counter-
parts and perform the required evaluation using the PRISM model checker.

Paper VIII: Quantitative Reasoning about Dependability in Event-

B: Probabilistic Model Checking Approach

Paper VIII is a continuation of Paper VII. In this paper, we provide the
general modelling guidelines for the Event-B to PRISM model transforma-
tion. Specifically, we discuss the semantic correspondences between Event-B

32

events, containing different types of actions, and the respective combinations
of the guarded commands and modules of the PRISM specification language.
In this paper, we rely on the notion of the operational guard (see Paper II)
to distinguish between the operational and non-operational system states.
The operational guard of an Event-B model is also used to formulate the
corresponding reliability properties in PRISM. Finally, we illustrate the use
of the Event-B in conjunction with the PRISM model checker by an example
– a simple monitoring system.

Author’s contribution: The main author of all the included papers. Re-
sponsible for the Event-B development of most case studies described in the
papers, except for the models of DPU presented in Paper IV (the mod-
els have been developed by M.Sc. Inna Pereverzeva). Responsible for the
probabilistic modelling and analysis of all the conducted case studies. Has
made a major contribution to investigating the theoretical results proposed
in the papers, yet under outstanding technical and theoretical supervision
of Docent Elena Troubitsyna and Docent Linas Laibinis.

33

34

Chapter 4

Conclusions

4.1 Related Work

Formal modelling and quantitative verification of dependable systems is an
area of active research. It is rather unfeasible to describe all the work con-
ducted in the field. Therefore, we are going to overview only the topics
that are specifically relevant to the approaches proposed in the thesis. In
particular, we consider the approaches to modelling reachability in Event-B,
formalisation of the system execution flow in Event-B, and a probabilistic
extension of the refinement calculus. Moreover, we summarise a number of
methods employing the application of probabilistic model checking to de-
pendability assessment. Finally, we briefly describe the industrial use of the
formal techniques combining mechanised theorem proving with the quanti-
tative reasoning about system dependability.

Reachability in Event-B Traditionally, in Event-B, all essential proper-
ties that must be preserved by the system under development are specified
as model invariants. However, this allows the developer to reason only about
the properties that hold with probability one. Verification of reachability
properties has a similar limitation – Event-B allows the developer to prove
only the total correctness property, i.e., the property that a model termi-
nates and delivers the expected result.

There is a solid body of research aimed at extending the set of properties
that can be modelled and verified in Event-B. For instance, in [4] Abrial et
al. proposed an approach to defining and proving reachability properties in
Event-B that is similar to ours. They lift the notion of total correctness of
an individual program task to total correctness of the whole program in a
sense that none of the tasks of a running program may prevent termination
of any other task. In other words, they define reachability as follows: “the
termination of each task must be reachable”. To prove it, in the initial model

35

the desired task is modelled as reachable in “one shot”. The reliance on
convergence of the new events introduced by refinement allows the developer
to guarantee that the task is eventually reachable in the refined models. The
later work by Hoang and Abrial [42] discusses how to reason about such
liveness properties as existence, progress and persistence in Event-B. The
persistence property is the same as our (ideal) goal reachability property
considered in Paper IV. The authors propose proof rules for verification of
the defined properties and, as a result, significantly increase the number
of system properties that can be verified in Event-B. However, the papers
discussed focus on reasoning about reachability and liveness properties that
are preserved by the system with probability one.

Hallerstede and Hoang [39] have proposed an extension of the Event-B
framework to model the probabilistic system behaviour. Specifically, they
introduce the qualitative probabilistic choice operator to reason about al-
most certain termination. This operator is used to bound demonic nondeter-
minism, and to facilitate proving convergence of the new events in Event-B
models. In particular, they apply this technique to resolve the contention
problem in Fireware protocol. In [82], Yilmaz and Hoang also successfully
apply the qualitative probabilistic reasoning in Event-B to formalise the Ra-
bin’s choice coordination algorithm. The use of the qualitative probabilistic
choice is currently supported by the Rodin tool [32]. However, the pre-
sented approach is not suitable for quantitative evaluation of system prop-
erties, since the introduced operator does not contain explicit probabilistic
information.

Formalising system execution in Event-B Several approaches have
been recently proposed to enable explicit reasoning about the dynamic sys-
tem behaviour in Event-B. Iliasov [43] has proposed a method for express-
ing use case scenarios as formal verification conditions. These conditions
appear in Event-B models as additional proof obligations. Moreover, Iliasov
presents a formal semantics of use cases as control flows. The developed ex-
tension of the Rodin platform facilitates automatic translation of use cases
(given in a diagrammatic way) into the proof obligations of a model.

An integration of CSP and Event-B to facilitate reasoning about the
dynamic system behaviour has been proposed by Schneider et al. [74]. In
the latter work, CSP is used to provide an explicit control flow for an Event-
B model as well as to separate the requirements dependent on the control
flow information.

The approach we have taken in the thesis is inspired by these works. We,
however, rely solely on Event-B to built a (dynamic) system architecture.
Specifically, in Paper III, we have extended the work [53, 52] of Laibinis et
al. on a formalisation of Lyra – an UML-based approach for development
of service-oriented systems – by defining in Event-B a number of the formal

36

verification requirements for service orchestration. Moreover, in Paper I, we
have used a similar approach to formally define the desired execution flow
of a cyclic system in Event-B.

In [5], Ait-Sadoune and Ait-Ameur have addressed the problem of formal
validation and verification of services composition. To tackle the problem,
the authors propose to extract Event-B specifications from the BPEL (Busi-
ness Process Execution Language) models expressing services composition
and description, and augment the extracted models with relevant invari-
ants and theorems. Such an approach undoubtedly benefits from combin-
ing Event-B with BPEL, which is the standard language for defining Web
services composition. However, it is not clear how to guarantee correct-
ness of the proposed model transformation, in part because of the fact that
the approach allows the developer to introduce new event guards into the
extracted models. Moreover, the approach that we present in Paper III
combines both proof-based and probabilistic model checking techniques to
verification of services composition that allows us to deal with verification
of a significantly wider class of system requirements (properties).

Probability and refinement The topic of probabilistic formal modelling
has been extensively explored by Morgan et al. in the context of probabilis-
tic refinement calculus [60] – an extension of the standard refinement calcu-
lus. The introduced notion of probabilistic data refinement has been used,
among other things, for assessment of system dependability (see [61, 60],
for instance). Here, probabilistic programs are modelled using expectation
transformers and probabilistic data refinement is verified via simulation be-
tween datatypes. In [77], a similar approach is taken to enable reasoning
about reliability in probabilistic action systems [76] – the extension of the
action systems that combine both probabilistic and nondeterministic be-
haviour. However, proving simulation that implies data refinement between
datatypes is an extremely difficult problem, which immediately raises the
scalability issue. Moreover, the majority of non-functional system attributes,
including those of dependability, explicitly depend on time. However, to the
best of our knowledge, the notion of time is not defined in the probabilistic
refinement calculus.

In [70], Rao has proposed a generalisation of the UNITY formalism [25]
that enables reasoning about probability and parallelism. Specifically, he
generalise the weakest precondition semantics of UNITY to define a new
predicate transformer – weakest probabilistic precondition. Relying on this
extension, he also generalise certain relations of the UNITY to make them
amenable for reasoning about probabilistic (parallel) programs. In partic-
ular, new probabilistically leads-to relation allows for defining probabilistic
progress properties. Similarly to the approach taken in [39], Rao does not
aim at computing any kind of probabilistic measures but to reason about the

37

progress properties that are attained with probability one. The proposed
methodology has proved its worth in constructing and proving probabilistic
algorithms [70].

A connection between probabilistic reasoning and program refinement
has been investigated by Meinicke and Solin [62]. The authors introduce
a refinement algebra for reasoning about probabilistic program transforma-
tions. In particular, they investigate the data and atomicity refinement rules
for probabilistic programs and explore the difference between probabilistic
and non-probabilistic programs. They reason about the probabilistic pro-
gram transformations without introducing a probabilistic choice operator
or other explicit probabilistic attributes. Our approach is rather different
from the one by Meinicke and Solin. We introduce the quantitative proba-
bilistic choice operator, which explicitly defines concrete probabilistic values
for different choices. The introduced probabilistic information is used to
verify quantitative non-functional properties of the system and their preser-
vation by refinement. Otherwise, we rely on the existing Event-B refinement
framework to guarantee correctness of model transformations.

COMPASS project One of the most intensive and ambitious works
on modelling and verification of safety-critical systems is being conducted
within the COMPASS project [27]. The goal of this project is to develop a
coherent co-engineering approach for system specification and evaluation of
system-level correctness, dependability and performability. The main for-
malism adopted in the approach is Architecture Analysis and Design Lan-
guage (AADL). Within the project, a formal extended semantics for AADL
has been developed. The extended semantics incorporates functional, prob-
abilistic and hybrid aspects of safety-critical systems [22, 21]. In the pro-
posed approach, a system specification consists of two models – the nomi-
nal model that describes the system under normal operation and the error
model that specifies how the system can fail. These two models are linked
through fault injection. The method benefits from a powerful tools sup-
port – the COMPASS platform, which is based on various model-checking
techniques and provide the means for verification and validation of AADL
models. The COMPASS methods and the toolset have been validated by a
set of industrial-size case-studies, see [31] for instance. Though initially the
framework has been proposed only for the space domain, it is fairly generic
and comprehensive per se. In comparison, in this thesis, rather than invent
a completely new approach, we extend the Event-B framework and rely on
its powerful correct-by-construction development technique. Building a tool
support for probabilistic Event-B, e.g., bridging Rodin with existing prob-
abilistic model checking tools, is one of the main directions of our future
work.

38

Probabilistic model checking Probabilistic model checking is widely
used for assessment of non-functional system requirements. There are a
number of works, for instance, see [49, 15, 57, 23], successfully applying the
quantitative model checking techniques to evaluate system dependability
and quality of service. These approaches benefit from the existing good tool
support for formal modelling and verification of discrete- and continuous-
time Markov processes [50, 47]. The principal difference between model
checking and our approach stems from the fact that the model checking
generally aims at assessing non-functional system attributes of already devel-
oped systems. However, postponing the dependability and quality of service
evaluation to the later development stages can lead to major system rede-
velopment, if the non-functional requirement are not met. In our approach,
the assessment of non-functional requirements proceeds hand-in-hand with
the system development by refinement, which allows us to analyse the be-
haviour of a designed system at the early stages of development. Despite the
discussed differences, we believe that the probabilistic model checking tech-
niques can complement our approach. More specifically, quantitative model
checkers can be used in conjunction with Rodin to prove the strengthened
(quantitative) refinement of Event-B models.

Quantitative analysis of safety also often relies on probabilistic model
checking. For instance, the work reported in [34] presents model-based
probabilistic safety assessment based on generating PRISM specifications
from Simulink diagrams annotated with the failure logic. The method
pFMEA (probabilistic Failure Modes and Effect Analysis) also relies on
the PRISM model checker to conduct quantitative analysis of safety [37].
The approach integrates the failure behaviour into a system model, repre-
sented by a continuous-time Markov chain, via failure injection. In [65],
the authors proposed a method for probabilistic model-based safety analy-
sis for synchronous parallel systems. It has been shown that different types
of failures, in particular per-time and per-demand, can be modelled and
analysed using probabilistic model checking. In general, the methods based
on model checking aim at safety evaluation of already developed systems.
They extract a model eligible for probabilistic analysis and evaluate impact
of various system parameters on its safety. In Paper V, we have aimed at
providing the designers with a safety-explicit development method. As a
result, the safety analysis is essentially integrated into the system develop-
ment by refinement. It allows us to perform the quantitative assessment of
safety within proof-based verification of the system behaviour.

Formal methods in the railway and aerospace domains Formal
methods are gaining more popularity in the industrial development and ver-
ification of safety-critical systems. Specifically, the railway domain is often
considered as one of the most productive application areas of formal meth-

39

ods. In particular, the B Method and Event-B are successfully applied to
formal development of railway systems [29, 18, 56, 55]. In [67, 66], safety
analysis of a formal model of a radio-based railway crossing controller (that
we discuss in Paper V) has been performed using the KIV theorem prover.
The same case study has been explored in [30] using statecharts with the goal
of proving the required safety properties by model checking. To achieve this
goal, the Statemate Verification Environment (STVE) for Statemate tool
has been developed. However, both these methods concern with only logical
(qualitative) reasoning about railway crossing safety and do not include the
quantitative safety analysis.

One of the success stories of the DEPLOY project [46] is the use of
the Event-B method in the aerospace domain (see, for instance, [45, 44]).
In particular, formalisation and verification of interplay between satellite
operational mode and the fault-tolerance mechanisms, as well as system
dynamic reconfiguration in the presence of component failures have been
investigated. The modelling approach and case-study that we discuss in
Paper IV are aimed at enhancing this research work with the probabilis-
tic reasoning about dependability of satellite systems. While discussing the
application of formal verification techniques in the aerospace domain, it is
worth to mention again the COMPASS project and, in particular, work [31].
In this paper, the authors have performed a thorough analysis of a satel-
lite platform covering discrete, real-time, hybrid and probabilistic system
aspects. However, despite the notable progress in the area of the indus-
trial application of formal methods, the approaches for integrating theorem
proving and quantitative system assessment are still scarce.

4.2 Research Conclusions

Recent advances in formal modelling and verification have demonstrated
that application of formal engineering methods becomes essential for en-
suring both functional correctness and dependability of complex computer
systems. The refinement-based modelling frameworks, such as classical B
and Event-B methods, formalise model-driven development process and en-
able development of systems correct-by-construction. However, these formal
approaches suffer from the lack of support for stochastic reasoning about sys-
tem dependability. The main goal of the research reported in this thesis is
to overcome this limitation.

To achieve our research goal, we have proposed a formal approach to
development and quantitative verification of dependable systems within the
Event-B modelling framework. To enable the probabilistic reasoning about
Event-B models, we have extended the formal semantics of the Event-B spec-
ification language and demonstrated how the behaviour of a probabilistically-

40

enriched Event-B model can be represented by a particular kind of Markov
process. We have defined the strengthened (quantitative) version of Event-
B refinement that takes into account a particular dependability attribute,
yet does not contradict to the standard Event-B refinement process. Fi-
nally, to enable verification of the quantitative refinement, we have build a
connection between the Event-B formalism and the PRISM framework – a
state-of-the-art probabilistic model checking technique. We believe that our
work establishes sound mathematical foundations for integrating the logical
reasoning about functional correctness and the probabilistic reasoning about
dependability of a system.

The work presented in the thesis has certain limitations (discussed in
more detail in the next section) that will be addressed in the future to build a
holistic approach to development of complex dependable systems. Neverthe-
less, the thesis addresses the following essential aspects of the dependability-
explicit system development: refinement-based development of reliable and
responsive cyclic (e.g., control and monitoring) systems, modelling and ver-
ification of service-oriented systems, achieving fault-tolerance of satellite
systems via dynamic reconfiguration, and invariant-based safety analysis
of highly-intensive systems.

4.3 Future Work

In our work, we have established the initial foundation for integrating quan-
titative reasoning about dependability into the formal system development
by refinement. However, further advances in both theory and automated
tool support are required to create a versatile technique for development of
industrial-size dependable systems. The foreseen future directions for our
research are outlined below.

At the moment, the probabilistic choice is defined as an operator that can
be used only in the body of an event. It would be advantageous to introduce
such a choice into the declaration of the event local parameters, to allow
them to be initialised according to some probability distribution. Another
possible extension would be an introduction of a new Distributions clause
into a machine, where the designer can define some constant (parametrised)
distributions than can be used in more than one event of a model. Thus, a
discrete uniform distribution can be defined for any finite set of elements.
At the moment, the use of probabilistic choice is somewhat cumbersome and
these two features can definitely make it more handy. Moreover, to handle
the complexity posed by the size of state space of large-scale systems, we
can employ such techniques as lumping and probabilistic bisimulation (see,
e.g., [48, 54] for fully probabilistic systems and [40, 75] for the systems that
contain both nondeterministic and probabilistic behaviour).

41

To make an Event-B model amenable to probabilistic assessment, we
need to extend the Rodin platform with a dedicated plug-in that would
enable the use of the quantitative probabilistic choice operator in Event-B
machines. Such a plug-in would help the developer to derive an underlying
Markov model from an Event-B specification and to verify the strengthened
quantitative refinement. Moreover, it would also bridge the Rodin platform
with the existing state-of-the-art techniques for formal verification of Markov
models (e.g., probabilistic model checking tools). To derive a Markov model,
we need to omit some excessive elements of the Event-B modelling language
and also ensure the consistency between the derived model and the initial
specification.

Another direction for future research is to use the experience of the au-
tomatic theorem generation of [43] to obtain additional proof obligations
that would constrain the structure of an Event-B model and define its exe-
cution flow. These proof obligations can be generated as theorems in Rodin.
Similarly to the approach presented in [43], in Papers I and III we have pro-
posed to formalise the requirements that define the system execution flow
in a general form. Providing the automatic tool support for generation of
the required proof obligations would significantly facilitate the quantitative
system assessment in Event-B.

42

Bibliography

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 2005.

[2] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[3] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin. Rodin: an Open Toolset for Modelling and Reasoning
in Event-B. International Journal on Software Tools for Technology
Transfer, 12(6):447–466, 2010.

[4] J.-R. Abrial, D. Cansell, and D. Méry. Refinement and Reachability in
Event-B. In ZB 2005, Formal Specification and Development in Z and
B, pages 222–241. Springer, 2005.

[5] I. Ait-Sadoune and Y. Ait-Ameur. A Proof Based Approach for Mod-
elling and Verifying Web Services Composition. In ICECCS 2009, In-
ternational Conference on Engineering of Complex Computer Systems,
pages 1–10. IEEE, 2009.

[6] R. Alur and T. Henzinger. Reactive Modules. Formal Methods in
System Design, 15(1):7–48, 1999.

[7] A. Avizienis, J.-C. Laprie, and B. Randell. Dependability and its
Threats - A taxonomy. In IFIP Congress Topical Sessions, pages 91–
120, 2004.

[8] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic
Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Trans. Dependable Sec. Comput., 1(1):11–33, 2004.

[9] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying Contin-
uous Time Markov Chains. In CAV’96, International Conference on
Computer Aided Verification, pages 269–276. Springer, 1996.

[10] R. J. R. Back. On the Correctness of Refinement Steps in Program
Development. PhD thesis, University of Helsinki, Helsinki, 1978.

43

[11] R. J. R. Back and R. Kurki-Suonio. Decentralization of Process Nets
with Centralized Control. In ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, pages 131–142. ACM, 1983.

[12] R. J. R. Back and K. Sere. Stepwise Refinement of Action Systems.
Structured Programming, 12(1):17–30, 1991.

[13] R. J. R. Back and K. Sere. From Action Systems to Modular Systems.
Software – Concepts and Tools, 17(1):26–39, 1996.

[14] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[15] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Automated
Performance and Dependability Evaluation Using Model Checking. In
Performance Evaluation of Complex Systems: Techniques and Tools,
pages 261–289. Springer-Verlag, 2002.

[16] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT press,
2008.

[17] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate Symbolic
Model Checking of Continuous-Time Markov Chains. In CONCUR’99,
International Conference on Concurrency Theory, pages 146–161.
Springer, 1999.

[18] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A Suc-
cessful Application of B in a Large Project. In FM’99, World Congress
on Formal Methods in the Development of Computing Systems, pages
369–387. Springer, 1999.

[19] J. Bicarregui, J. S. Fitzgerald, P. G. Larsen, and J. C. Woodcock. In-
dustrial Practice in Formal Methods: A Review. In FM’09, World
Congress on Formal Methods, pages 810–813. Springer, 2009.

[20] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Net-
works and Markov Chains. Modeling and Performance Evaluation with
Computer Science Applications. John Wiley & Sons, 2006.

[21] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and
M. Roveri. Safety, Dependability and Performance Analysis of Ex-
tended AADL Models. Comput. J., 54(5):754–775, 2011.

[22] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll,
M. Roveri, and R. Wimmer. A Model Checker for AADL. In T. Touili,
B. Cook, and P. Jackson, editors, CAV’10, Computer Aided Verifica-
tion, pages 562–565. Springer, 2010.

44

[23] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli. Dynamic QoS Management and Optimization in Service-Based
Systems. IEEE Trans. Softw. Eng., 37:387–409, 2011.

[24] I. Chadés, M.-J. Cros, F. Garcia, and R. Sabbadin.
Markov Decision Processes (MDP) Toolbox. online at
http://www.inra.fr/mia/T/MDPtoolbox/.

[25] K. Mani Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

[26] F. Ciesinski and C. Baier. LiQuor: A tool for Qualitative and Quan-
titative Linear Time analysis of Reactive Systems. In QEST’06, In-
ternational Conference on Quantitative Evaluation of Systems, pages
131–132. IEEE CS Press, 2006.

[27] Correctness, Modelling and Performance of Aerospace Systems
(COMPASS). European Space Agency project. online at
http://compass.informatik.rwth-aachen.de/.

[28] T. Courtney, S. Gaonkar, K. Keefe, E. Rozier, and W. H. Sanders.
Möbius 2.3: An Extensible Tool for Dependability, Security, and Per-
formance Evaluation of Large and Complex System Models. In DSN
2009, Dependable Systems and Networks, pages 353–358. IEEE Com-
puter Society, 2009.

[29] D. Craigen, S. Gerhart, and T. Ralson. Case Study: Paris Metro Sig-
naling System. In IEEE Software, pages 32–35, 1994.

[30] W. Damm and J. Klose. Verification of a Radio-Based Signaling System
Using the Statemate Verification Environment. Formal Methods in
System Design, 19(2):121–141, 2001.

[31] M.-A. Esteve, J.-P. Katoen, V. Y. Nguyen, B. Postma, and Y. Yushtein.
Formal Correctness, Safety, Dependability and Performance Analysis
of a Satellite. In ICSE’2012, International Conference on Software
Engineering. ACM and IEEE CS Press, 2012.

[32] Event-B and Rodin Documentation Wiki. Qualitative Proba-
bility Plug-in. online at http://wiki.event-b.org/index.php/Event-
B Qualitative Probability User Guide.

[33] Event-B and Rodin Documentation Wiki. Rodin Plug-ins. online at
http://wiki.event-b.org/index.php/Rodin Plug-ins.

[34] A. Gomes, A. Mota, A. Sampaio, F. Ferri, and J. Buzzi. System-
atic Model-based Safety Assessment via Probabilistic Model Checking.

45

In ISoLA’10, International Conference on Leveraging Applications of
Formal Methods, Verification, and Validation, pages 625–639. Springer-
Verlag, 2010.

[35] C. M. Grinstead and L. J. Snell. Introduction to Probability. American
Mathematical Society, 2006.

[36] L. Grunske. Specification patterns for probabilistic quality properties.
In ICSE 2008, International Conference on Software Engineering, pages
31–40. ACM, 2008.

[37] L. Grunske, R. Colvin, and K. Winter. Probabilistic Model-Checking
Support for FMEA. In QEST’07, International Conference on Quan-
titative Evaluation of Systems, 2007.

[38] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A
Model Checker for Parametric Markov Models. In CAV’10, Inter-
national Conference on Computer Aided Verification, pages 660–664.
Springer, 2010.

[39] S. Hallerstede and T. S. Hoang. Qualitative probabilistic modelling in
Event-B. In J. Davies and J. Gibbons, editors, IFM 2007, Integrated
Formal Methods, pages 293–312, 2007.

[40] H. Hansson. Time and Probability in Formal Design of Distributed
Systems. Elsevier, 1995.

[41] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and
Reliability. In Formal Aspects of Computing, pages 512–535, 1994.

[42] T. S. Hoang and J.-R. Abrial. Reasoning about Liveness Properties in
Event-B. In ICFEM’11, International Conference on Formal Methods
and Software Engineering, pages 456–471. Springer, 2011.

[43] A. Iliasov. Use Case Scenarios as Verification Conditions: Event-
B/Flow Approach. In SERENE 2011, Software Engineering for Re-
silient Systems, pages 9–23. Springer-Verlag, 2011.

[44] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky,
K. Varpaaniemi, D. Ilic, and T. Latvala. Developing Mode-Rich
Satellite Software by Refinement in Event-B. In FMICS 2010, Formal
Methods for Industrial Critical Systems, pages 50–66. Springer, 2010.

[45] A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky,
K. Varpaaniemi, P. Väisänen, D. Ilic, and T. Latvala. Verifying
Mode Consistency for On-Board Satellite Software. In SAFECOMP
2010, International Conference on Computer Safety, Reliability and
Security, pages 126–141. Springer, 2010.

46

[46] Industrial Deployment of System Engineering Methods Providing High
Dependability and Productivity (DEPLOY). IST FP7 IP Project. on-
line at http://www.deploy-project.eu/.

[47] J.-P. Katoen, I. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen.
The Ins and Outs of The Probabilistic Model Checker MRMC. In
QEST 2009, Quantitative Evaluation of Systems, pages 167–176. IEEE
Computer Society, 2009.

[48] J. G. Kemeny and J. L. Snell. Finite Markov Chains. D. Van Nostrand
Company, 1960.

[49] M. Kwiatkowska, G. Norman, and D. Parker. Controller Dependabil-
ity Analysis by Probabilistic Model Checking. In Control Engineering
Practice, pages 1427–1434, 2007.

[50] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of Probabilistic Real-time Systems. In CAV’11, International Confer-
ence on Computer Aided Verification, pages 585–591. Springer, 2011.

[51] M. Kwiatkowska and D. Parker. Advances in Probabilistic Model
Checking. In T. Nipkow, O. Grumberg, and B. Hauptmann, editors,
Software Safety and Security - Tools for Analysis and Verification, vol-
ume 33 of NATO Science for Peace and Security Series - D: Information
and Communication Security, pages 126–151. IOS Press, 2012.

[52] L. Laibinis, E. Troubitsyna, and S. Leppänen. Formal Reasoning about
Fault Tolerance and Parallelism in Communicating Systems. In Meth-
ods, Models and Tools for Fault Tolerance, pages 130–151. Springer-
Verlag, 2009.

[53] L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius, and Q. Malik. For-
mal Model-Driven Development fn Communicating Systems. In ICFEM
2005, International Conference on Formal Engineering Methods, pages
188–203. Springer-Verlag, 2005.

[54] K. G. Larsen and A. Skou. Bisimulation through Probabilistic Testing.
In Information and Computation 94, pages 1–28, 1991.

[55] T. Lecomte. Safe and Reliable Metro Platform Screen Doors Con-
trol/Command Systems. In FM’08, International Symposium on For-
mal Methods, pages 430–434. Springer, 2008.

[56] T. Lecomte, T. Servat, and G. Pouzancre. Formal Methods in Safety-
Critical Railway Systems. In Brasilian Symposium on Formal Methods,
2007.

47

[57] M. Massink, J.-P. Katoen, and D. Latella. Model Checking Depend-
ability Attributes of Wireless Group Communication. In DSN’04, In-
ternational Conference on Dependable Systems and Networks, pages
711–720, 2004.

[58] MathWorks. MATLAB: The Language of Technical Computing. online
at http://www.mathworks.se/products/matlab/.

[59] MathWorks. Statistics Toolbox. online at
http://www.mathworks.com/products/statistics/.

[60] A. K. McIver and C. C. Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Springer, 2005.

[61] A. K. McIver, C. C. Morgan, and E. Troubitsyna. The Probabilis-
tic Steam Boiler: a Case Study in Probabilistic Data Refinement. In
International Refinement Workshop, ANU, Canberra. Springer, 1998.

[62] L. Meinicke and K. Solin. Refinement algebra for probabilistic pro-
grams. In Formal Aspects of Computing, volume 22, pages 3–31, 2010.

[63] C. C. Morgan. Programming from Specification, 2nd ed. Prentice Hall,
1994.

[64] P. D. T. O’Connor. Practical Reliability Engineering, 3rd ed. John
Wiley & Sons, 1995.

[65] F. Ortmeier and M. Güdemann. Probabilistic Model-Based Safety
Analysis. In QAPL 2010, Workshop on Quantitative Aspects of Pro-
gramming Languages, EPTCS, pages 114–128, 2010.

[66] F. Ortmeier, W. Reif, and G. Schellhorn. Formal Safety Analysis of
a Radio-Based Railroad Crossing Using Deductive Cause-Consequence
Analysis (DCCA). In EDCC 2005, European Dependable Computing
Conference, pages 139–151. Springer, 2007.

[67] F. Ortmeier and G. Schellhorn. Formal Fault Tree Analysis: Practical
Experiences. In AVoCS 2006, International Workshop on Automated
Verification of Critical Systems, volume 185 of ENTCS, pages 139–151.
Elsevier, 2007.

[68] E. Parzen. Stochastic Processes. Holden-Day, 1964.

[69] M. Putterman. Markov Decision Processes. Discrete Stochastic Dy-
namic Programming. John Wiley & Sons, 2005.

[70] J. R. Rao. Extension of the UNITY Methodology: Compositionality,
Fairness and Probability in Parallelism. Springer-Verlag, 1995.

48

[71] Rigorous Open Development Environment for Complex Sys-
tems (RODIN). IST FP6 STREP project. online at
http://rodin.cs.ncl.ac.uk/.

[72] Rodin. Event-B Platform. online at http://www.event-b.org/.

[73] S. Schneider. The B-Method: An Introduction. Palgrave, 2001.

[74] S. Schneider, H. Treharne, and H. Wehrheim. A CSP Approach to
Control in Event-B. In IFM 2010, Integrated Formal Methods, pages
260–274. Springer, 2010.

[75] R. Segala and N. Lynch. Probabilistic simulations for probabilistic
processes. In Nordic Journal of Computing, 2(2), pages 250–273, 1995.

[76] K. Sere and E. Troubitsyna. Probabilities in Action Systems. In Nordic
Workshop on Programming Theory, 1996.

[77] E. Troubitsyna. Reliability Assessment through Probabilistic Refine-
ment. Nord. J. Comput., 6(3):320–342, 1999.

[78] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault
Tree Handbook. Nuclear Regulatory Commission. NUREG–0492, 1981.

[79] A. Villemeur. Reliability, Availability, Maintainability and Safety As-
sessment. John Wiley & Sons, 1992.

[80] D. J. White. Markov Decision Processes. John Wiley & Sons, 1993.

[81] J. C. Woodcock, P. G. Larsen, J. Bicarregui, and J. S. Fitzgerald. For-
mal methods: Practice and Experience. ACM Comput. Surv., 41(4),
2009.

[82] E. Yilmaz and T. S. Hoang. Development of Rabin’s Choice Coordina-
tion Algorithm in Event-B. ECEASST, 35, 2010.

49

50

Part II

Original Publications

51

Paper I

Integrating Stochastic Reasoning about Critical

System Properties into Modelling and Verification

in Event-B

Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis

Submitted to Science of Computer Programming

Integrating Stochastic Reasoning about Critical System

Properties into Modelling and Verification in Event-B

A. Tarasyuka,b, E. Troubitsynaa, L. Laibinisa

aÅbo Akademi University, Joukahaisenkatu 3-5 A, 20520 Turku, Finland
bTurku Centre for Computer Science, Joukahaisenkatu 3-5 B, 20520 Turku, Finland

Abstract

Formal modelling and verification techniques are widely used for develop-
ment of critical computer-based systems. Such techniques include Event-B
– a state-based formalism that enables development of systems correct-by-
construction. While Event-B offers a scalable approach to ensuring functional
correctness of a system, it leaves aside modelling of non-functional critical
properties, e.g., reliability and responsiveness, that are essential for ensuring
dependability of critical systems. Both reliability, i.e., the probability of the
system to function correctly over a given period of time, and responsiveness,
i.e., the probability of the system to complete execution of a requested service
within a given time bound, are defined as quantitative stochastic measures.
In this paper we propose an extension of the Event-B semantics to enable
stochastic reasoning about non-functional properties of cyclic systems. We
define the requirements that a cyclic system should satisfy and introduce
the notions of reliability and responsiveness refinement. Such an extension
integrates reasoning about functional correctness and stochastic modelling
of non-functional characteristics into the formal system development. It al-
lows the designer to ensure that a developed system does not only correctly
implement its functional requirements but also satisfies given non-functional
quantitative constraints.

Keywords: Event-B, refinement, stochastic reasoning, reliability,
responsiveness, cyclic systems, Markov processes

Email addresses: anton.tarasyuk@abo.fi (A. Tarasyuk),
elena.troubitsyna@abo.fi (E. Troubitsyna), linas.laibinis@abo.fi (L. Laibinis)

Preprint submitted to Science of Computer Programming May 15, 2012

1. Introduction

Formal methods – the mathematically-based approaches that provide the
developers with rigorous ways to design and analyse systems – are exten-
sively used in the design of critical computer-based systems. Such methods
include Event-B [1, 2] – a formalism derived from the B Method [3] to facili-
tate development of reactive and distributed systems. Event-B is a rigorous,
state-based framework supporting the correct-by-construction system devel-
opment. While developing a computer-based system in Event-B, we start
from an abstract specification that defines the essential behaviour and prop-
erties of the system under construction. Via a number of correctness pre-
serving model transformations – refinement steps, the abstract specification
is transformed into a specification that is close to the desired implementation.
In the development process, correctness of each refinement step is verified by
proofs.

Formal development in Event-B allows us to ensure that a resulting de-
tailed specification adheres to its abstract counterpart, i.e., it guarantees that
the services provided by the system are functionally correct. However, in the
current process of system refinement, the non-functional requirements are ab-
stracted away. This deprives the designers of a common semantic model that
would allow them to evaluate the impact of the chosen design decisions on
the non-functional requirements. Hence there is a clear need for integration
between modelling of functional and non-functional system requirements.

In this paper we extend the Event-B framework to enable stochastic mod-
elling of reliability and responsiveness of cyclic systems. Reliability is the
probability of the system functioning correctly over a given period of time
under a given set of operating conditions [4, 5, 6], while responsiveness is
the likelihood that the system successfully completes service delivery within
a certain time bound [7, 8]. These properties are dual in the sense that
reliability defines a probabilistic measure of the system staying operational
during a certain time period, while responsiveness gives a probabilistic mea-
sure of the system termination within a certain period of time. We rely on
the notion of iteration as a discrete unit of time defining a unified time scale
for cyclic systems, i.e., the systems that iteratively execute a predefined se-
quence of computational steps. We formally define the conditions that should
be verified to ensure that the system under construction is indeed cyclic.

To enable explicit probabilistic reasoning about reliability and respon-
siveness, we introduce a new language construct – the quantitative proba-

2

bilistic choice – and define the semantics of extended Event-B models. We
show that, in the case of fully probabilistic systems, the underlying model of
a probabilistically-enriched Event-B specification is a discrete-time Markov
chain [9]. Moreover, in the case of the systems that contain both probabilis-
tic and demonic behaviour, this model becomes a Markov decision process
[10, 11].

To enable reliability- and responsiveness-explicit development in probabi-
listically-augmented Event-B, we strengthen the notion of refinement by re-
quiring that a refined model, besides being a proper functional refinement
of its more abstract counterpart, also satisfies a number of quantitative con-
straints. These constraints ensure that the refined model improves (or at
least preserves) the current system reliability or responsiveness. These ad-
ditional constraints are derived from the fundamental properties of discrete
Markov chains and Markov decision processes. We believe that our work
establishes sound mathematical foundations for integrating logical reason-
ing about functional correctness and probabilistic reasoning about critical
system properties.

The paper is structured as follows. In Section 2 we overview our formal
framework – Event-B. In Section 3 we introduce the notion of cyclic systems,
formally define the conditions required to verify their cyclic nature and rig-
orously define the notion of a system iteration and its properties. In Section
4 we introduce the probabilistic choice operator and give an example of a
probabilistic Event-B model. In Sections 5 and 6 we present the strength-
ened notion of Event-B refinement for both fully probabilistic systems and
the systems with nondeterminism. In Section 7 we summarise the presented
approach to stochastic reasoning in Event-B. Finally, in Sections 8 and 9 we
overview the related work in the field and give some concluding remarks.

2. Introduction to Event-B

Event-B [1] is a formal framework derived from the (classical) B method
[3] to model parallel, distributed and reactive systems. The Rodin platform
[12] provides tool support for modelling and formal verification by theorem
proving in Event-B.

Event-B employs a top-down refinement-based approach to system devel-
opment. The development starts from an abstract system specification that
models the most essential behaviour and properties. Each refinement step
introduces a representation of more detailed requirements into the system

3

model. This results in elaborating on data structures, dynamic behaviour
and properties of the model. The logical consistency of system models and
correctness of refinement steps are verified by mathematical proofs.

2.1. Event-B Language

In Event-B, a system specification is defined using the notion of an ab-
stract state machine. An abstract state machine encapsulates the model
state, represented as a collection of model variables, and defines operations
on this state via machine events. The occurrence of events together with the
corresponding state changes represents the system behaviour.

Usually, an Event-B machine has an accompanying component called
context. A context component can include user-defined carrier sets (types)
as well as constants and their properties, which are given as a list of model
axioms. In a most general form, an Event-B model can be defined as follows.

Definition 1. An Event-B model is a tuple (C,S,A, υ, Σ, I, E , Init), where:

• C is a set of model constants;

• S is a set of model sets (types);

• A is a set of axioms over C and S;

• υ is a set of model variables;

• Σ is the model state space, which is defined by all possible valuations
of the model variables υ;

• I is the model invariant defined as a state predicate, i.e., I : Σ → Bool;

• E is a non-empty set of model events, where each event e, e ∈ E, is
defined as a binary state relation, i.e., e : Σ × Σ → Bool;

• Init is a predicate defining an non-empty set of model initial states.

The model variables υ are strongly typed by the constraining predicates
specified in the invariant I and initialised by the values satisfying the predi-
cate Init. Furthermore, I may define other important properties that must
be preserved by the system during its execution.

While specifying an event, we rely on the following syntax:

e =̂ any a where Ge then Re end,

where e is the event name, a is a list of local variables of the event, and Ge is
the event guard – a model state predicate Ge : Σ → Bool. The event action

4

Re : Σ×Σ → Bool is defined as a binary relation expressing the relationship
between the system states before and after event execution.

The event guard Ge defines the conditions under which such an execu-
tion can be performed, i.e., when the event is enabled. If several events are
enabled at the same time, any of them can be chosen for execution nonde-
terministically.

The event action Re is usually specified as a parallel composition of state
assignments. These assignments can be either deterministic or nondetermin-
istic. A deterministic assignment x := E(x, y), where x, y ⊆ υ, has the
standard syntax and meaning. A nondeterministic assignment is denoted
either as x :∈ S, where S is a set of values, or x :| P (x, y, x′), where P is a
predicate relating the initial values of variables x and y to some final value
of x, denoted as x′. As a result of such non-deterministic assignments, the
variables x can get any value either belonging to S or according to P .

If an event does not have local variables, it can be described simply as

e =̂ when Ge then Re end.

Without loss of generality, it suffices to consider only such simple events
because any event specified using local variables can be always rewritten in
this simple form.

2.2. Event-B Semantics: Model Events

Essentially, an event is a relation describing the corresponding state trans-
formation from σ to σ′, such that

e(σ, σ′) = I(σ) ∧ Ge(σ) ∧ Re(σ, σ′).

Here we treat the model invariant I as an implicit event guard. Note that,
due to the possible presence of nondeterminism, the successor state σ′ is not
necessarily unique.

In other words, the semantics of a single model event is given as a binary
relation between pre- and post-states of the event. To clarify this relationship,
we define two functions before and after of the type E → 2Σ in a way similar
to [13, 14]:

before(e) = {σ : Σ | I(σ) ∧ Ge(σ)} and

after(e) = {σ′ : Σ | ∃σ : Σ · I(σ) ∧ Ge(σ) ∧ Re(σ, σ′)}.

5

The latter definition can be also rewritten as follows:

after(e) = {σ′ : Σ | ∃σ : Σ · σ ∈ before(e) ∧ Re(σ, σ′)}.

Clearly, for a given event e ∈ E and any state σ ∈ Σ, e is enabled in σ if and
only if σ ∈ before(e).

To consider event execution starting from a particular pre-state σ, we also
introduce a “narrowed down” with respect to a fixed pre-state σ, version of
the function after:

afterσ(e) = {σ′ : Σ | I(σ) ∧ Ge(σ) ∧ Re(σ, σ′)}.

We can lift the above functions before and after for any set of the given
events E, E ⊆ E :

before(E) =
⋃

e∈E

before(e) and after(E) =
⋃

e∈E

after(e).

In the special case when E = E , the resulting set before(E) contains all the
states when the modelled system is operational, i.e., when at least one event
is enabled. Correspondingly, the complement of before(E) gives us those
system states that, once reached, put the system into deadlock:

deadlocks(E) = Σ \ before(E).

2.3. Event-B Semantics: Initial Model

The semantics of an entire Event-B model is completed by formulating
a number of conditions – proof obligations, expressed in the form of logical
sequents. In this paper we present only several of the most important proof
obligations that should be verified for the initial and refined models. The
full list of proof obligations can be found in [1].

In this paper we will heavily rely on the semantic functions before and
after defined above. To keep our formalisation consistent and concise, we
formulate all the presented proof obligations in terms of these functions.

The initial Event-B model should satisfy the event feasibility and invari-
ant preservation properties. For each event e, its feasibility means that,
whenever the event is enabled (in some particular state σ), its next-state
relation is well-defined, i.e., there exists some reachable after-state:

A, σ ∈ before(e) ⊢ ∃σ′ ·σ′ ∈ afterσ(e) (FIS)

6

Each event e of an Event-B model should also preserve the model invariant:

A, σ′ ∈ after(e) ⊢ I(σ′) (INV)

Since the initialisation event has no initial state and guard, its invariant
preservation proof obligation is simpler:

A, Init(σ′) ⊢ I(σ′) (INIT)

2.4. Event-B Semantics: Refinement

Each Event-B refinement step typically introduces new variables and
events into a more abstract model. The introduced new events correspond to
stuttering steps that are not visible at the abstract level. The old, abstract
model events may be also refined to reduce their nondeterminism and provide
access to the new variables.

Moreover, Event-B formal development supports data refinement, allow-
ing us to replace some abstract variables with their concrete counterparts. In
that case, the invariant of a refined machine is extended (conjuncted) with a
so called gluing invariant that formally defines the relationship between the
abstract and concrete variables.

Let Σa, Ia and Ea be respectively the state space, invariant, and events
of the abstract model. Similarly, let Σc, Ic and Ec be respectively the state
space, invariant, and events of the (concrete) refined model. Finally, let J be
the gluing invariant between Σa and Σc. To verify correctness of a refinement
step, we need to prove a number of proof obligations for the refined model.

The first three proof obligations focus on the connection between the
abstract events and their concrete refined versions. Let us assume that an
abstract event ea ∈ Ea is refined by a concrete event ec ∈ Ec.

The first proof obligation states that the refined event ec should stay
feasible:

A, Ia(σa), J (σa, σc), σc ∈ before(ec) ⊢ ∃σ′
c · σ′

c ∈ afterσc
(ec) (REF FIS)

The guard of the refined event ec can be only strengthened in a refinement
step:

A, Ia(σa), J (σa, σc), σc ∈ before(ec) ⊢ σa ∈ before(ea) (REF GRD)

The refined event ec should preserve the concrete invariant Ic. Moreover,
its “execution” cannot be contradictory to the one of the abstract event ea:

A, Ia(σa), J (σa, σc), σ′
c ∈ afterσc

(ec) ⊢

7

Ic(σ
′
c) ∧ ∃σ′

a · σ′
a ∈ afterσa

(ea) ∧ J (σ′
a, σ

′
c) (REF INV)

To verify that all the concrete events (both old and new) do not intro-
duce additional deadlocks into the model, we need to prove relative deadlock
freedom:

A, σa ∈ before(Ea), J (σa, σc), Ic(σc) ⊢ σc ∈ before(Ec) (REF DLF)

Finally, we should demonstrate that the new events do not collectively
diverge, i.e., they eventually return control to the old events. This is typi-
cally achieved by providing a natural number state expression (variant) and
showing that each new event decreases it. Let nvar ∈ Σc → N be the pro-
vided variant expression. Let also e ∈ Êc be a new concrete event, where
Êc ⊂ Ec is a set of new events of the refined model. Then the non-divergence
proof obligation for the event e can be presented as follows:

A, σ′
c ∈ afterσc

(e) ⊢ nvar(σ′
c) < nvar(σc) (REF VAR)

The Event-B refinement process allows us to gradually introduce imple-
mentation details, while preserving functional correctness during stepwise
model transformation. The model verification effort, in particular, auto-
matic generation and demonstration of the required proof obligations, is sig-
nificantly facilitated by the provided tool support – the Rodin platform.

Event-B facilitates correct-by-construction development of critical sys-
tems. However, to ensure system dependability we should guarantee that the
system is not only functionally correct but also meet desired non-functional
requirements to system reliability, safety, responsiveness, etc. Since many of
these properties depend on time, in the next section we will demonstrate how
reliance on the notion of iteration allows us to implicitly introduce a model
of time into Event-B specifications of cyclic systems. In its turn, it sets a
scene for stochastic modelling of quantitative critical properties.

3. Modelling of Cyclic Systems in Event-B

There is a large class of systems that exhibit a cyclic behaviour, i.e.,
the systems that iteratively execute a predefined sequence of steps. Typical
representatives of cyclic systems are control and monitoring systems. For
instance, one iteration of a control system usually includes reading the sen-
sors that monitor the controlled physical processes, processing the obtained
sensor values, and finally setting the actuators according to a predefined

8

control algorithm. In principle, the system could operate in this way indefi-
nitely long. However, unforeseen conditions in the operating environment or
component failures may affect the normal system functioning and lead to a
shutdown.

3.1. The Event-B Structure and Control Flow of a Cyclic System

Let us start by describing the desired structure and control flow properties
of cyclic systems we aim at modelling in Event-B. After completing compu-
tations performed at each iteration, the status of a cyclic system should be
re-evaluated to decide whether it can continue its operation. Therefore, it
is convenient to split a formal model of a cyclic system into two parts. The
first part focuses on modelling the computation performed at each iteration,
e.g., for a control system it would include reading sensor outputs, processing
them, setting actuators, etc. The second part consists of a set of controlling
actions that initiate a new system iteration as well as analyse the system
status once an iteration is completed.

Based on this observation, we assume that the events of the initial Event-
B model of a cyclic system can be partitioned into three groups. The first
group, called e0, models the computational part of a cyclic system. The
remaining two groups, called IN and OUT , model the controlling system
actions at the beginning and the end of each system iteration respectively.
Without losing generality, from now on we will treat all such groups of events
as single events e0, IN , and OUT (because they can always be merged into
the corresponding single events, see, e.g., [1]).

Each iteration of the modelled cyclic system can be represented by the
following control flow on model events:

IN −→ e0 −→ OUT

During the Event-B refinement process, any of the events IN , OUT and
e0 can be refined. For simplicity, in this paper we assume that refinement
will focus on elaborating the computation modelled by e0. This reflects the
refinement style that is frequently adopted in Event-B: the detailed represen-
tation of an algorithm is introduced in a number of new events e1, e2, ..., en

preceding e0. In other words, these events model intermediate calculations
on new data structures necessary to produce the system result in e0. Then
the control flow of a single iteration of a refined system looks as follows:

IN −→ e1, ..., en −→ e0 −→ OUT

9

Please note that we do not restrict in any way the execution order of the new
events e1, e2, ..., en, i.e., any event branching or looping is possible. However,
according to the Event-B semantics, e1, e2, ..., en are not allowed to diverge
(see the proof obligation rule REF VAR), i.e., the new events will eventually
return control to the event e0.

3.2. Formal Requirements for Cyclic Systems

Let us now formally define requirements imposed on the abstract and
refined Event-B models of a cyclic system. Similarly to Section 2, we denote
by E the set of all model events. Moreover, let Ê be all the new model events
introduced during the refinement process. In other words, Ê = {e1, e2, ..., en},

Ê ⊂ E , and E = {IN, e0, OUT} ∪ Ê .
Next we formulate a number of formal requirements that a model of a

cyclic system has to satisfy. These properties can be generated and verified
as additional proof obligations for a particular model under consideration.
Since the properties proved for an Event-B model are preserved for any of its
refinements, it is often sufficient to verify these additional proof obligations
for newly introduced events only.

{σ ∈ Σ | Init(σ)} ⊆ before(IN) (1)

after(IN) ⊆ before(e0) ∪ before(Ê) (2)

after(Ê) ⊆ before(Ê) ∪ before(e0) (3)

after(e0) ⊆ before(OUT) (4)

after(OUT) ⊆ before(IN) ∪ deadlocks(E) (5)

∀e, f ∈ {IN,OUT, e0} · e 6= f ⇒ before(e) ∩ before(f) = ∅ (6)

∀e ∈ {IN,OUT} · before(e) ∩ before(Ê) = ∅ (7)

The requirement (1) states that the system initialisation should enable
the event IN . The requirements (2)–(5) stipulate the desired execution order
of the involved model events, informally presented in the control flow given
above. Specifically, the event IN must be followed by the event e0 or any
of the new model events (the requirement (2)). The new events may loop or
terminate by enabling e0 (the requirement (3)). The event e0 is followed by
the event OUT (the requirement (4)). Finally, the event OUT may enable
a start of a new iteration by the event IN or put the whole system into a
deadlock (the requirement (5)).

10

The last two requirements (6) and (7) stipulate that the guards of the

events IN,OUT and e0 as well as IN,OUT and any new event from Ê should
be disjoint, i.e., they cannot be enabled at the same time. This allows us to
guarantee that the presented control flow is strictly followed.

The presented formulation of additional proof obligations ensuring a spe-
cific control flow of events is inspired by the approach given in [13].

3.3. Example: Abstract Event-B Model of a Cyclic System

In this section we present an example of modelling a simple cyclic system
in Event-B. It can be easily shown that the modelled system satisfies the
given cyclic system requirements (1)–(7).

Figure 1 shows an abstract Event-B model (the machine CS) of such a
cyclic system. The controlling events IN and OUT model the start and the
end of an iteration, while e0 is an event abstractly modelling its body – the
computation. The boolean variable active indicates whether execution of a
system iteration is under way, while the variable res abstractly models the
result returned by a single iteration. Here, the value ND (meaning “not
defined”) indicates that the system output has not been produced yet.

Upon execution of the body event e0, res may obtain one of two values:
OK (successful execution) or NOK (a critical system failure). This output
is evaluated by the event OUT . After its iteration, the system may stay
operational or terminate. In the first case, the system proceeds to its next
iteration. Otherwise, the system deadlocks.

We will use the model CS and its refinements as a running example of
this paper.

3.4. Observable States and Iterations

While reasoning about quantitative properties of a cyclic system, we are
usually interested in the number of iterations that the system can perform
before it terminates. This observation allows us to focus only on those system
states where a system iteration starts and finishes. We call such system states
observable. We also distinguish an important subset of the observable states
called operational states. Usually, essential properties of the system (such
as dependability, performance and safety properties) can be guaranteed only
while the system stays in the operational states.

11

Machine CS

Variables active, res

Invariants active ∈ BOOL, res ∈ {OK,NOK, ND}
Events

Initialisation =̂
begin

active, res := FALSE, ND

end

OUT =̂
when

active = TRUE ∧ res 6= ND

then

active := FALSE

res : | res′ ∈ {res,ND}∧
res′ = ND ⇔ res = OK

end

IN =̂
when

active = FALSE ∧ res = ND

then

active := TRUE

end

e0 =̂
when

active = TRUE ∧ res = ND

then

res :∈ {OK,NOK}
end

Figure 1: Event-B model of a cyclic system

Definition 2 (Observable states). For Event-B models satisfying the re-
quirements (1)–(7), we define the observable system states as a set containing
all the states where an iteration of a cyclic system may start or finish, i.e.,

Σobs = before(IN) ∪ after(OUT).

From the requirement (5), we can also conclude that

Σobs ⊆ before(IN) ∪ deadlocks(E). (8)

Since before(IN) ∩ deadlocks(E) = ∅, (8) also suggests that the set of ob-
servable states can be partitioned into two disjoint subsets of operational and
non-operational (or terminating) states:

Σobs = Σop ∪ Σnop,

where Σop = before(IN) and Σnop = after(OUT)\before(IN) ⊆ deadlocks(E).

States that are not in Σobs are called unobservable. Intuitively, intro-
duction of the system observable states Σobs means that, for the external
observer of a cyclic system, the core part of a cyclic system is a “black box”

12

and only starting and ending points of iterations are visible. Moreover, since
in this paper we aim at stochastic reachability analysis of cyclic systems, we
assume that the set Σobs is finite.

Before we formally define the notion of an iteration for the proposed
generalised Event-B model of a cyclic system, let us to formulate one useful
lemma.

Lemma 1. If an Event-B model satisfies the requirements (1)–(7), all the

model events from {e0} ∪ Ê are defined on unobservable system states only,
i.e.,

∀e ∈ {e0} ∪ Ê · (before(e) ∪ after(e)) ∩ Σobs = ∅.

Proof. We only show the proof for the event e0. The corresponding proof
for any e such that e ∈ Ê is similar.

From the requirement (6), we immediately have that

before(e0) ∩ before(IN) = ∅.

Moreover, by the definition of deadlocks(E), the following is true:

before(e0) ∩ deadlocks(E) = ∅.

From these two propositions and the property (8), we have

before(e0) ∩ Σobs = ∅. (9)

Similarly, from the requirements (4) and (6), we can conclude that

after(e0) ∩ before(IN) = ∅.

From the requirement (4) and the definition of deadlocks(E), we also get

after(e0) ∩ deadlocks(E) = ∅.

From the last two propositions and the property (8), we have

after(e0) ∩ Σobs = ∅. (10)

Finally, from (9) and (10), we conclude that

(before(e0) ∪ after(e0)) ∩ Σobs = ∅.

�

13

Each iteration of a cyclic system maps the current operational system
state σ ∈ Σop into a subset of Σobs. The resulting set of states represents
all possible states that can be reached due to the system nondeterministic
behaviour. Formally, we can define it as follows:

Definition 3 (Iteration). An iteration of a cyclic system is a total function
mapping the set of operational states to the powerset of observable system
states

iter ∈ Σop → 2Σobs ,

such that, for any subsequent observable states σi and σi+1 in a system exe-
cution trace,

σi+1 ∈ iter(σi).

Theorem 1. If an Event-B model satisfies the requirements (1)–(7), the
modelled system is cyclic and its iteration function iter can be defined on
all the system operational states.

Proof. Let us first consider the case when Ê = ∅.
In that case, the requirements (1)–(7) guarantee that the system repeat-

edly executes the events IN , e0, and OUT in the fixed order. Moreover,
Lemma 1 states that the intermediate states, i.e., the pre- and post-states of
the event e0, are unobservable. This means that we can treat the events IN ,
e0, and OUT as a single event

IN ; e0; OUT,

where ”;” denotes the relational composition operator.
Then we can define the function iter as

iter(σ) = afterσ(IN ; e0; OUT)

for any σ ∈ before(IN).

In the case of Ê 6= ∅, we rely on the proof obligation (REF VAR), which
states that the new events cannot diverge. This allows us to represent the
overall execution of the new events as a single composite event (ê)∗, where
ê =

⋃

e∈bE

e and ∗ denotes the transitive relational closure operator.

Moreover, the requirements (1)–(7) guarantee that the system is now
repeatedly executed as a composite event

IN ; (ê)∗; e0; OUT,

14

when Lemma 1 again enforces that all the intermediate states from⋃

e∈{e0}∪bE

(before(e) ∪ after(e)) are unobservable.

Similarly as above, we can now define the function iter as

iter(σ) = afterσ(IN ; (ê)∗; e0; OUT)

for any σ ∈ before(IN).
�

Essentially, Theorem 1 postulates that, no matter what refinement steps
are taken, the Event-B refinement process will preserve the cyclic nature of a
given system, provided that the formulated requirements (1)–(7) are verified.
This means that we can use the notion of a system iteration as a discrete
unit of time defining a unified time scale for any Event-B machine in the
refinement chain.

The given requirements for modelling cyclic systems defined above nar-
row down the class of considered Event-B models. However, this makes such
models amenable for integrating stochastic reasoning about the system be-
haviour. To achieve this goal, we first propose a semantic extension of the
Event-B language.

4. Stochastic Modelling in Event-B

Hallerstede and Hoang [15] have extended the Event-B framework with a
new operator – qualitative probabilistic choice, denoted ⊕|. This operator as-
signs new values to state variables with some positive but generally unknown
probability. The proposed extension aims at introducing into Event-B the
concept of “almost-certain convergence”– probabilistically certain termina-
tion of new event operations introduced by model refinement. The new op-
erator can only replace a nondeterministic choice (assignment) statement in
the event actions. It has been shown that any probabilistic choice statement
always refines its demonic nondeterministic counterpart [16]. Hence such an
extension is not interfering with the established refinement process.

In our previous work [17], we have proposed extending the Event-B mod-
elling language with quantitative probabilistic choice, also denoted ⊕|. The
introduced operator allows us to represent a precise probabilistic information

15

Machine PCS

Variables active, res

Events

Init =̂
begin

active, res := FALSE, ND

end

OUT =̂
when

active = TRUE ∧ res 6= ND

then

active := FALSE

res : |res′ ∈ {res,ND}∧
res′ = ND ⇔ res = OK

end

IN =̂
when

active = FALSE ∧ res = ND

then

active := TRUE

end

e0 =̂
when

active = TRUE ∧ res = ND

then

res⊕| OK @ p;NOK @ 1−p

end

Figure 2: Cyclic system: introducing probabilities

about how likely a particular choice should be made. In other words, it be-
haves according to some known probabilistic distribution. The quantitative
probabilistic choice (assignment) has the following syntax

x ⊕| x1 @ p1; . . . ; xn @ pn,

where
n∑

i=1

pi = 1. It assigns to the variable x a new value xi with the cor-

responding non-zero probability pi. Similarly to Hallerstede and Hoang, we
have restricted the use of the new probabilistic choice operator by introduc-
ing it only to replace the existing demonic one. Therefore, we can rely on
the Event-B proof obligations to guarantee functional correctness of a re-
finement step. Moreover, the probabilistic information introduced in new
quantitative probabilistic choices can be used to stochastically evaluate cer-
tain non-functional system properties as well as their preservation during the
refinement process.

To illustrate the proposed extension, in Figure 2 we present a probabilistic
refinement of the abstract machine CS. In CS, the result returned by a single
iteration is modelled nondeterministically. In the refined model PCS, the
nondeterministic choice is replaced by a probabilistic one, where the non-zero
constant probabilities p and 1−p express how likely the variable res is getting
value OK or NOK. According to the theory of probabilistic refinement [16],

16

the machine PCS is a refinement of the machine CS.
The proposed probabilistic choice operator allows us to introduce a spe-

cific probabilistic information into Event-B models and, as a result, model
(at least some subset of) probabilistic systems. Our goal, however, is to in-
tegrate stochastic reasoning into the entire Event-B development process. In
the next section we will show how the notion of Event-B refinement can be
strengthened to quantitatively demonstrate that the refined system is “bet-
ter” (e.g., more reliable or responsive) than its abstract counterpart.

5. Modelling Fully Probabilistic Cyclic Systems

In this section we present a theoretical basis for formal verification of
probabilistic cyclic systems in Event-B. We rely on the structure and prop-
erties for cyclic systems introduced in Section 3.

5.1. Probability Distribution

Since an Event-B model is essentially a state transition system, we can
simulate its execution by producing a tree of reachable states. Each path in
such a tree corresponds to one operational trace, while tree branching occurs
due the presence of nondeterminism in an Event-B model. If we replace
a particular nondeterministic choice by a probabilistic one, we essentially
attach concrete weights (probabilities) to separate branches, reflecting how
likely a particular branch will be chosen for execution.

Based on that, we can distinguish between two types of modelled systems
– fully probabilistic systems, i.e., the systems containing only probabilistic
branching, and the systems that behave both probabilistically and nondeter-
ministically. The absence of nondeterminism in a fully probabilistic system
additionally imposes a certain restriction on its initialisation event. Specifi-
cally, it can be either deterministic or probabilistic assignment.

Let us first consider fully probabilistic systems. The quantitative infor-
mation present in a probabilistic Event-B model allows us to lift the notion
of the system state to that of a probabilistic distribution over the system
state:

Definition 4 (Probability distribution). For the system observable state
space Σobs, the set of distributions over Σobs is

Σobs =̂ {∆ : Σobs → [0, 1] |
∑

σ∈Σobs

∆(σ) = 1}.

17

Each iteration of a fully probabilistic cyclic system maps some initial
operational state to a subset of Σobs according to some probabilistic distri-
bution, i.e., we can define a single iteration of a probabilistic cyclic system
as a total function

piter : Σop → Σobs.

There is a simple connection between the iteration iter of a cyclic system
and its probabilistic counterpart piter – if some state σ′ can be reached from
a current state σ by piter with a non-zero probability then it is also reachable
by iter:

∀σ ∈ Σop, σ
′ ∈ Σobs · piter(σ)(σ′) > 0 ⇒ σ′ ∈ iter(σ).

For example, for our abstract models CS and PCS, both Σop and Σnop

are singleton sets such that Σop = {σ1} = {(active = FALSE, res = ND)}
and Σnop = {σ2} = {(active = FALSE, res = NOK)}. It is straightforward
to see that the iteration iter of CS is defined as

iter(σ1) = {σ1, σ2},

while the probabilistic iteration function piter for the model PCS is

piter(σ1) = ∆σ1
, such that ∆σ1

(σ1) = p and ∆σ1
(σ2) = 1−p.

For any state σ ∈ Σop, its distribution ∆σ (where ∆σ = piter(σ)) is
calculated from probabilistic choice statements present in a model. However,
once the system terminates, it stays in a terminating state forever. This
means that, for any state σ ∈ Σnop, its distribution ∆σ is such that ∆σ(σ) = 1
and ∆σ(σ′) = 0, if σ′ 6= σ.

5.2. Definition of Quantitative Refinement

While developing a complex software system, the designer often should
define critical non-functional constraints, such as required dependability or
performance properties. These constraints explicitly describe the desired
parameters of the system functioning and must be then taken into account
during the development process. In this paper we focus on reasoning about
two such constraints – the system reliability and responsiveness (response
time).

Often, it is not possible to formally guarantee that the system always sat-
isfies a desired critical property. However, we can still assess the probability

18

that the property is preserved by the system at a certain moment. Currently,
Event-B does not explicitly support the notions of time and probability. In
the previous sections we proposed a general approach for modelling cyclic
systems in Event-B, where the progress of time is modelled by system it-
erations. Moreover, we proposed the semantic extension of the modelling
language that allows us to augment Event-B models with probabilistic in-
formation about the system behaviour. Based on this information, we can
strengthen the notion of Event-B refinement by additionally requiring that
refined models meet reliability and responsiveness requirements with a higher
probability.

Let us first consider system reliability. In engineering, reliability is gen-
erally measured by the probability that an entity X can perform a required
function under given conditions for the time interval [0, t]:

R(t) = P{X not failed over time [0, t]}.

Hence, for cyclic systems, reliability can be expressed as the probability that
the system remains operational during a certain number of iterations. Let
X(t) be a function that returns the system state after t-th iteration, where
t ∈ N, and X(0) is an initial system state such that X(0) ∈ Σop. Then we
can formally define the system reliability as follows:

R(t) = P{✷≤t (X(t) ∈ Σop)}.

Here we use the modal (temporal logic) operator ✷, and the formula (✷≤t φ)
means that φ holds globally for the first t iterations. It is straightforward
to see that this property corresponds to the standard definition of reliability
given above. Thus, while modelling a cyclic system, we can strengthen the
notion of Event-B refinement from the reliability point of view in the following
way:

Definition 5 (Reliability refinement). Let Ma and Mc be two probabilis-
tic Event-B models of cyclic systems. Moreover, let Σa

op and Σc
op be the sets

of operational states of Ma and Mc correspondingly. Then we say that Mc is
a reliability refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma ⊑ Mc), and

2. ∀t ∈ N1 · P{✷≤t (Xa(t) ∈ Σa
op)} ≤ P{✷≤t (Xc(t) ∈ Σc

op)}. (11)

19

The second condition essentially requires that the system reliability cannot
decrease during the refinement process.

Dually, for a cyclic system that terminates by providing some particular
service to the customers, our goal is to assess the probability that this ser-
vice will be provided during a certain time interval. This property can be
expressed as the probability that X(t) eventually falls into Σnop within first
t iterations, i.e., the probability that the system will terminate during the
time interval [0, t]:

Q(t) = P{✸≤t (X(t) ∈ Σnop)}.

Here ✸
≤t is a modal operator denoting “eventually, within time [0, t]”.

Therefore, from the responsiveness point of view, we can strengthen the
definition of Event-B refinement by also requiring that the refined system
should be at least as responsive as the abstract one:

Definition 6 (Responsiveness refinement). Let Ma and Mc be two prob-
abilistic Event-B models of cyclic systems. Moreover, let Σa

nop and Σc
nop be

the sets of non-operational states of Ma and Mc correspondingly. Then we
say that Mc is a responsiveness refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma ⊑ Mc), and

2. ∀t ∈ N1 · P{✸≤t (Xa(t) ∈ Σa
nop)} ≤ P{✸≤t (Xc(t) ∈ Σc

nop)}. (12)

The second condition essentially requires that the system responsiveness can-
not decrease during the refinement process.

Remark 1. If the second, quantitative refinement condition of Definitions 5
and 6 holds not for all t, but for some interval t ∈ 1..T, T ∈ N1, we say that
Mc is a partial reliability (responsiveness) refinement of Ma for t ≤ T .

5.3. Verification of Quantitative Refinement

To verify the first refinement condition of Definitions 5 and 6, we rely
on the proof obligation rules that we discussed in Section 2. Event-B tool
support – the Rodin platform – provides us with a means for generating
and proving of all the required proof obligations, including the formalised
requirements (1)–(7) for cyclic systems given in Section 3. However, it lacks
the functionality needed to quantitatively verify refinement conditions (11)
and (12). In this subsection we give a theoretical background that allows us

20

to express the probabilistic reachability properties (11) and (12) in terms of
the operational and non-operational states of cyclic systems.

Let us now consider in detail the behaviour of a fully probabilistic cyclic
system M . We assume that the initial system state σ is determined by some
probability distribution ∆0 over the set of operational states Σop (which also
covers the case of deterministic initialisation). After its first iteration, the
system reaches some state σ′ ∈ Σobs with the probability ∆σ(σ′). At this
point, if σ′ ∈ Σnop, the system terminates. Otherwise, the system starts a
new iteration and, as a result, reaches some state σ′′ with the probability
∆σ′(σ′′), and so on. This process is completely defined by its state transition
matrix PM . More precisely, given that the state space Σobs is finite, we can
enumerate it, i.e., assume that Σobs = {σ1, . . . σn}, and define elements of the
n × n transition matrix PM as

∀i, j ∈ 1..n ·PM(σi, σj) =̂ ∆σi
(σj) =






piter(σi)(σj) if σi ∈ Σop,

1 if σi ∈ Σnop and i = j,

0 if σi ∈ Σnop and i 6= j.

In its turn, this matrix unambiguously defines the underlying Markov pro-
cess – the absorbing discrete time Markov chain [9], with the set of transient
states Σop and the set of absorbing states Σnop. The state transition matrix
of a Markov process together with its initial state allows us to calculate the
probability that the defined Markov process, after a given number t of steps,
will be in some particular state σ. Using the transition matrix PM , we now
can assess reliability and responsiveness of Event-B models as follows:

Proposition 1. The reliability refinement condition (11) is equivalent to

∀t ∈ N1 ·
∑

σ∈Σa
op

(
[∆a

0] · P
t
Ma

)
(σ) ≤

∑

σ∈Σc
op

(
[∆c

0] · P
t
Mc

)
(σ),

where Σa
op and Σc

op are the sets of operational states of the systems Ma and
Mc respectively, [∆a

0] and [∆c
0] are the initial state distribution row-vectors,

and P t is the matrix P raised to the power t.

Proof. Directly follows from our definition of the observable state space
and fundamental theorems of the theory of Markov chains. �

21

Proposition 2. The responsiveness refinement condition (12) is equivalent
to

∀t ∈ N1 ·
∑

σ∈Σa
nop

(
[∆a

0] · P
t
Ma

)
(σ) ≤

∑

σ∈Σc
nop

(
[∆c

0] · P
t
Mc

)
(σ),

where Σa
nop and Σc

nop are the sets of terminating states of the systems Ma and
Mc respectively, [∆a

0] and [∆c
0] are the initial state distribution row-vectors,

and P t is the matrix P raised to the power t.

Proof. Similar to Proposition 1. �

To illustrate the use of our definitions of quantitative refinement in prac-
tice, let us revisit our simple example. To increase the reliability of our cyclic
system, we refine the model as follows. In the case when the previously ac-
quired result is not acceptable, the system now retries to obtain a new result.
The number of such attempts is bounded by a predefined positive constant
N ∈ N1. The resulting Event-B model RPCS is presented in Figure 3. Here
the variable att represents the number of performed attempts. Moreover, a
new event e1 is introduced to probabilistically model possible multiple re-
tries, where a new variable x stores the outcome of the last attempt. Once
x is assigned the value OK or the system reaches the maximum limit of at-
tempts, the value of x is copied to the variable res in the refined version of
the event e0.

The Event-B machine RPCS can be proved to be a probabilistic reli-
ability refinement of its abstract probabilistic model (the machine PCS in
Figure 2) according to Definition 5. Indeed, it is easy to see that

RPCS(t) = P{✷≤t (XPCS(t) ∈ Σop)} = pt,

while

RRPCS(t) = P{✷≤t (XRPCS(t) ∈ Σop)} = (1 − (1 − p)N)t

and, finally, for any given values of p and N ,

∀t ∈ N1 ·RPCS(t) ≤ RRPCS(t).

The presented simple example demonstrates how we can incorporate for-
mal reasoning about system reliability into the refinement process in Event-B.
Since system responsiveness is the (mathematically) dual property, it can be
modelled and verified in a similar way.

In the next section we generalise our approach to the systems that com-
bines both nondeterministic and probabilistic behaviour.

22

Machine RPCS

Variables active, res, att, x

Invariants att ∈ 0..N, x ∈ {OK,NOK}
Variant N − att

Events

Init =̂
begin

active, res := FALSE, ND

att, x := 0, NOK

end

IN =̂
when

active = FALSE ∧ res = ND

then

active := TRUE

end

OUT =̂
when

active = TRUE ∧ res 6= ND

then

active := FALSE

res : |res′ ∈ {res,ND}∧
res′ = ND ⇔ res = OK

end

e1 =̂
when

active = TRUE ∧ res = ND

att < N ∧ x = NOK

then

x⊕| OK @ p;NOK @ 1−p

att := att + 1
end

e0 =̂
when

active = TRUE ∧ res = ND

(att = N ∨ x = OK)
then

res := x

att, x := 0, NOK

end

Figure 3: Cyclic system: probabilistic reliability refinement

6. Modelling Probabilistic Cyclic Systems with Nondeterminism

It is not always possible to give precise probabilistic information for all
nondeterministic choices in a specification of a cyclic system. As a result,
system models often contain a mixture of nondeterministic and probabilistic
choices, making reasoning about such systems more complicated. In this
section we offer our solution to this problem, which is a generalisation of our
approach presented in Section 5.

6.1. Extended Definition of Quantitative Refinement

For a cyclic system containing both probabilistic and nondeterministic
choices, we define a single iteration as a total function

npiter : Σop → 2Σobs ,

23

i.e., this function maps a given observable operational state, σ ∈ Σop, into a
set of distributions over the observable state space Σobs. The resulting set of
distributions is built for all possible combinations of nondeterministic choices
(i.e., execution traces) of a single system iteration.

Similarly as in the case of a fully probabilistic system, there is a simple
connection between the iteration iter of a cyclic system and its nondetermi-
nistic-probabilistic counterpart npiter. Specifically, if some state σ′ can be
reached from a current state σ with a non-zero probability according to some
distribution from npiter(σ) then it is also reachable by iter:

∀σ ∈ Σop, σ
′ ∈ Σobs · (∃∆σ ∈ npiter(σ) ·∆σ(σ′) > 0) ⇒ σ′ ∈ iter(σ).

Now let us consider the behaviour of some nondeterministic-probabilistic
cyclic system M in detail. We can assume that the initial system state σ

belongs to the set of operational states Σop. After its first iteration, the
system nondeterministically chooses some distribution ∆σ from npiter(σ)
and then, according to this distribution, reaches some state σ′ with the non-
zero probability ∆σ(σ′). At this point, if σ′ ∈ Σnop, the system terminates.
Otherwise, the system starts a new iteration. It is easy to see that the
behavioural semantics of a nondeterministic-probabilistic cyclic system in
Event-B is defined by a Markov decision process with the absorbing set Σnop

[10, 11].
Nondeterminism has the demonic nature in Event-B [18], i.e., we do not

have any control or information about which branch of execution will be cho-
sen. Therefore, while reasoning about system reliability and responsiveness,
we have to consider the worst case scenario by always choosing the “worst” of
available distributions. From the reliability and responsiveness perspective, it
means that, while evaluating these properties of a probabilistic cyclic system
with nondeterminism, we need to obtain the lowest bound of the performed
evaluation. Therefore, we re-formulate the definitions of the reliability and
responsiveness refinement for probabilistic cyclic systems as follows:

Definition 7 (Reliability refinement). Let Ma and Mc be two nondeter-
ministic-probabilistic Event-B models of cyclic systems. Moreover, let Σa

op

and Σc
op be the sets of operational states of Ma and Mc correspondingly. Then

we say that Mc is a reliability refinement of Ma if and only if

1. Mc is an Event-B refinement of Ma (Ma ⊑ Mc), and

2. ∀t ∈ N1 · Pmin{✷
≤t (Xa(t) ∈ Σa

op)} ≤ Pmin{✷
≤t (Xc(t) ∈ Σc

op)}, (13)

24

where Pmin{✷
≤t (X(t) ∈ Σop)} is the minimum probability that the system

remains operational during the first t iterations.

Definition 8 (Responsiveness refinement). Let Ma and Mc be two non-
deterministic-probabilistic Event-B models of cyclic systems. Moreover, let
Σa

nop and Σc
nop be the sets of non-operational states of Ma and Mc correspond-

ingly. Then we say that Mc is a responsiveness refinement of Ma if and only
if

1. Mc is an Event-B refinement of Ma (Ma ⊑ Mc), and

2. ∀t ∈ N1 · Pmin{✸
≤t (Xa(t) ∈ Σa

nop)} ≤ Pmin{✸
≤t (Xc(t) ∈ Σc

nop)}, (14)

where Pmin{✸
≤t (X(t) ∈ Σnop)} is the minimum probability that the system

terminates during the first t iterations.

Remark 2. If the second, quantitative refinement condition of Definitions 7
and 8 holds not for all t, but for some interval t ∈ 1..T, T ∈ N1, we say that
Mc is a partial reliability (responsiveness) refinement of Ma for t ≤ T .

6.2. Verification of Quantitative Refinement

To evaluate the worst case reliability and responsiveness for probabilistic
systems with nondeterminism, we have to calculate the minimum probabili-
ties participating in (13) and (14). Let us assume that some cyclic system M

is in an operational state σ, while npiter maps σ to the finite set of distribu-
tions ∆σ = {∆1

σ, ∆
2
σ, . . . }. If we want to evaluate the worst case reliability

of the system for this iteration, we just have to choose the distribution that
maps σ to the set of operational states with the minimal probability, i.e., the

probability min
∆∈∆σ

∑

σ′∈Σop

∆(σ′).

Similarly, to evaluate the worst case responsiveness of the system, we
have to choose the distribution that maps σ to the set of terminating states

with the minimal probability, i.e., the probability min
∆∈∆σ

∑

σ′∈Σnop

∆(σ′).

However, when the goal is to evaluate the worst case stochastic behaviour
of the system within a time interval [0, t], where t ≥ 1, the calculation process
of the resulting minimal probability becomes more complex. Because of the
intricate nature of demonic nondeterminism, we cannot simply rely on the
calculated fixed minimal probability for t iterations when calculating it for

25

t + 1 iterations. The “demon” does not have to stick to its previous choices,
so the minimal probability has to re-calculated anew, now for t+1 iterations.

Let us first consider evaluation of system reliability. We define the worst
case reliability as a function r(t, σ), the arguments of which are the number
of system iterations t and some initial state σ. For now, we assume that
the initial system state σ is deterministically defined. Later we consider
more general cases when σ is given by some initial probability distribution or
nondeterministically. The function r(t, σ) returns the minimal value of the
reliability function R(t) over all possible state distributions.

The definition of r(t, σ) is recursive. Two basic cases define the func-
tion values for the terminating (absorbing) states and the zero number of
iterations respectively:

σ ∈ Σnop ⇒ ∀t ∈ N · r(t, σ) = 0,

σ ∈ Σop ⇒ r(0, σ) = 1.

Generally, for σ ∈ Σop, we can recursively define the function r(t, σ) in the
following way:

∀t ∈ N1, σ ∈ Σop · r(t, σ) = min
∆∈∆σ

∑

σ′∈Σop

∆(σ′) · r(t − 1, σ′).

Such an approach for defining an “absorbing” function is often used in the
works based on Markov decision processes with absorbing sets (see [19] for
instance). Please note that the recursive function application essentially
traverses all the possible operational state transitions and, based on that,
operational state distributions, and then finds the minimal probability of the
system staying operational.

Similarly, the stochastic evaluation of system responsiveness is based on
the recursive function q(t, σ). It returns the minimal probability of the system
terminating within the time interval [0, t], when starting in the observable
state σ. The basic cases are

σ ∈ Σnop ⇒ ∀t ∈ N · q(t, σ) = 1,

σ ∈ Σop ⇒ q(0, σ) = 0.

Generally, for σ ∈ Σop, we can recursively define the function q(t, σ) in the

26

following way:

∀t ∈ N1, σ ∈ Σop · q(t, σ) =

min
∆∈∆σ




∑

σ′∈Σop

∆(σ′) · q(t − 1, σ′) +
∑

σ′∈Σnop

∆(σ′)



 =

min
∆∈∆σ

∑

σ′∈Σobs

∆(σ′) · q(t − 1, σ′).

Now we are ready to revisit our definitions of reliability and responsiveness
refinement for probabilistic cyclic systems with nondeterminism. For such a
cyclic system M , let us define column-vectors rt

M and qt
M with the elements

rt
M(σ) = r(t, σ) and qt

M(σ) = q(t, σ) respectively. Now, assuming that the
initial state of the system is not defined deterministically but given instead
by some initial state distribution, we can formulate two propositions similar
to Propositions 1 and 2 of Section 5:

Proposition 3. Let us assume that the initial system state is defined accord-
ing to some probability distribution. Then the reliability refinement condition
(13) is equivalent to

∀t ∈ N1 · [∆a
0] · r

t
Ma

≤ [∆c
0] · r

t
Mc

where [∆a
0] and [∆c

0] are the initial state distribution row-vectors for the sys-
tems Ma and Mc respectively.

Proof. Directly follows from our definition of rt
M . �

Proposition 4. Let us assume that the initial system state is defined ac-
cording to some probability distribution. Then the responsiveness refinement
condition (14) is equivalent to

∀t ∈ N1 · [∆a
0] · q

t
Ma

≤ [∆c
0] · q

t
Mc

where [∆a
0] and [∆c

0] are the initial state distribution row-vectors for the sys-
tems Ma and Mc respectively.

Proof. Directly follows from our definition of qt
M . �

27

In Section 5 we considered the machine initialisation is to be either deter-
ministic or probabilistic. However, for the systems that contain both proba-
bilistic and nondeterministic behaviour, we can also assume that we do not
have precise information about the system initial state, i.e., the initialisation
action is of the following form: σ :∈ S, where S ⊆ Σop. In this case we can
formulate the following two propositions:

Proposition 5. Let us assume that the initial system state is defined non-
deterministically. Then the reliability refinement condition (13) is equivalent
to

∀t ∈ N1 · min
σ∈Sa

r(t, σ) ≤ min
σ∈Sc

r(t, σ)

where Sa and Sc are the sets of possible initial states for the systems Ma and
Mc respectively.

Proof. Directly follows from our definition of r(t, σ) and properties of the
demonic nondeterminism. �

Proposition 6. Let us assume that the initial system state is defined nonde-
terministically. Then the responsiveness refinement condition (14) is equiv-
alent to

∀t ∈ N1 · min
σ∈Sa

q(t, σ) ≤ min
σ∈Sc

q(t, σ)

where Sa and Sc are the sets of possible initial states for the systems Ma and
Mc respectively.

Proof. Directly follows from our definition of q(t, σ) and properties of the
demonic nondeterminism. �

We can also easily show that the proposed approach for modelling of
probabilistic systems with nondeterminism is a generalisation of the approach
presented in the previous section. Indeed, let us assume that we do not have
any nondeterministic choices in our system. This means that, for any state
σ, the set ∆σ is a singleton set, i.e., ∀σ ∈ Σop · ∆s = {∆σ}. Then

r(t, σ) = min
∆∈∆σ

∑

σ′∈Σop

∆(σ′) · r(t − 1, σ′) =
∑

σ′∈Σop

∆σ(σ′) · r(t − 1, σ′) = R(t)

and

28

q(t, σ) = min
∆∈∆σ

∑

σ′∈Σobs

∆(σ′) · q(t − 1, σ′) =
∑

σ′∈Σobs

∆σ(σ′) · q(t − 1, σ′) = Q(t).

Moreover, for fully probabilistic systems, we can easily prove (by induction)
that ∀t ∈ N, σ ∈ Σop · r(t, σ) + q(t, σ) = 1.

To demonstrate the use of our extended definitions of quantitative refine-
ment, let us revisit our simple example yet again. Figure 4 shows a model
that refines the cyclic system CS, yet combines both nondeterministic and
probabilistic behaviour. Here we refine the abstract event e0 by two events e01

and e02 that probabilistically assign one of the values OK and NOK to the
variable res according to two different probability distributions. However,
the choice between these distributions is nondeterministic. This is achieved
by nondeterministically assigning to the new variable dst any of the values 1
or 2 in the model initialisation, and later repeating this action in the bodies
of events e01 and e02.

The model is rather simple. Hence the worst case scenario reliability
function r(t, σ) is trivially defined as

r(t, σ) = (min{p1, p2})
t

for any of two possible initial states σ. More precisely, after the initialisation
the “demon” always chooses the distribution that leads to res = NOK

with the higher probability. It follows the same strategy while choosing a
distribution for the next iteration in the body of the triggered event (e01 or
e02).

Let us now assume that one wants to refine the machine NPCS by only
changing the probabilities in the bodies of events e01 and e02, i.e., by replacing
the probabilities p1 and p2 with some new values s1 and s2. Then, according
to Definition 7, such a new model refines NPCS if and only if

min{p1, p2} ≤ min{s1, s2}.

Essentially, it means that the “better” distribution, i.e., the distribution
that leads to res = OK with the higher probability, does not play any role
in verification of the refinement condition (13). This observation gives some
intuition about the demonic nature of nondeterminism in Event-B.

29

Machine NPCS

Variables active, res, dst

Invariants dst ∈ 1..2
Events

Init =̂
begin

active, res := FALSE, ND

dst :∈ 1..2
end

IN =̂
when

active = FALSE ∧ res = ND

then

active := TRUE

end

OUT =̂
when

active = TRUE ∧ res 6= ND

then

active := FALSE

res : |res′ ∈ {res,ND}∧
res′ = ND ⇔ res = OK

end

e01 =̂
when

active = TRUE ∧ res = ND

dst = 1
then

res⊕| OK @ p1;NOK @ 1−p1

dst :∈ 1..2
end

e02 =̂
when

active = TRUE ∧ res = ND

dst = 2
then

res⊕| OK @ p2;NOK @ 1−p2

dst :∈ 1..2
end

Figure 4: Cyclic system: combining probabilities with nondeterminism

7. Discussion

In this paper we have defined a formal basis for integrating stochastic
reasoning about reliability and responsiveness into formal modelling of cyclic
systems in Event-B. Since reliability and responsiveness are functions of time,
we first had to address the problem of representing time in Event-B. Instead
of modelling time explicitly, i.e., as an intrinsic part of Event-B model, we
have decided to reason about time implicitly by relying on the notion of sys-
tem iteration. This decision was motivated by several reasons. Firstly, the
current approaches to modelling time in Event-B are still rather premature.
For instance, the approach proposed by Butler et al. [20] significantly com-
plicates the model and hence raises the question of scalability. The approach
by Iliasov et al. [21] relies on building an additional model view (called pro-
cess view) in a dedicated modelling language and, hence, makes it hard to
relate probabilistic Event-B and the process view models. Moreover, there

30

is currently no automatic tool support for verification of timed systems in
Event-B. As a result, we have decided to narrow down the class of modelled
systems to cyclic systems and rely on the notion of iteration as a discrete
unit of time defining the system time scale. We have formally defined the
verification conditions ensuring that the abstract as well as all subsequent
refined models preserve the cyclic system behaviour.

To enable stochastic reasoning in Event-B, we have introduced the quan-
titative probabilistic choice operator into the modelling language and also
defined the quantitative refinement conditions that a refined model should
satisfy. These conditions ensure that responsiveness and reliability are im-
proved (or at least preserved) in the refinement process, as postulated in
Definitions 5 – 8. The resulting integration of stochastic reasoning about
non-functional system properties with the modelling and verification of the
system functionality facilitates the development process. Indeed, it supports
early assessment of the chosen design decisions and possible design alterna-
tives with respect to the non-functional critical properties. Our approach
to verification of quantitative model refinement is based on time-bounded
reachability analysis of the underlying Markov processes.

In our work, we aimed at finding a scalable solution to integrating prob-
abilistic reasoning into the refinement process. To ensure scalability, we
need to address two main issues – applicability of the theory to modelling
large-scale systems and availability of automatic tool support. To handle
complexity posed by the size of the state space of large-scale systems, we
can employ such techniques as lumping and probabilistic bisimulation (see
e.g., [9, 22] for fully probabilistic systems and [23, 24] for nondeterminis-
tic probabilistic systems). To address the second issue, we can rely on the
Rodin Platform [12] – an open extendable environment for modelling and
verification in Event-B. Openness and extendability of the platform allow
us to build a tool support – a dedicated plug-in that would facilitate the
calculations presented in Section 5 and Section 6. The theoretical research
described in this paper can be seen as a basis for achieving this goal.

8. Related work

Hallerstede and Hoang [15] have proposed an extension of the Event-B
framework to model probabilistic system behaviour. Specifically, they have
introduced the qualitative probabilistic choice operator to reason about al-
most certain termination. This operator is used to bound demonic nondeter-

31

minism in order to prove convergence of new events in Event-B models. In
particular, this technique is applied to demonstrate convergence of a certain
communication protocol. However, the presented approach is not suitable
for quantitative evaluation of system properties since the introduced opera-
tor does not contain explicit probabilistic information.

A similar topic has been explored by Morgan et al. [25, 16] in the context
of refinement calculus. In this approach the notion of probabilistic (data)
refinement is defined and used to assess system dependability. The semantics
of statements is given in the form of expectation transformers. Dependability
is assessed within the data refinement process. Probabilistic data refinement
is verified by simulation of datatypes. However, establishing simulation that
implies data refinement between datatypes is an extremely difficult problem,
which raises the scalability issue. Moreover, the majority of non-functional
system attributes explicitly depend on time, yet, to the best of our knowledge,
the notion of time is not defined in the probabilistic refinement calculus.

Probabilistic model checking is widely used for assessment of non-functi-
onal system requirements. There are a number of works, for instance, see
[26, 27, 28] successfully applying the quantitative model checking technique
to evaluate system dependability and performance. These approaches benefit
from a good tool support for formal modelling and verification of discrete- and
continuous-time Markov processes [29, 30]. The principal difference between
model checking and our approach stems from the fact that the model check-
ing generally aims at assessing non-functional system attributes of already
developed systems. However, postponing the dependability and responsive-
ness evaluation to the later development stages can lead to major system
redevelopment if non-functional requirement are not met. In our approach,
assessment of non-functional requirements proceeds hand-in-hand with the
system development by refinement, which allows us to analyse the behaviour
of a designed system on the early stages of development. Despite the dis-
cussed differences, we see probabilistic model checking techniques as comple-
menting to our approach. More specifically, quantitative model checkers can
be used in conjunction with Rodin to prove the strengthened refinement of
Event-B models according to Definitions 5 – 8.

A connection between probabilistic reasoning and program refinement
has been investigated by Meinicke and Solin [31]. The authors introduce
a refinement algebra for reasoning about probabilistic program transforma-
tions. In particular, they investigate the data and atomicity refinement rules
for probabilistic programs and explore the difference between probabilistic

32

and non-probabilistic programs. They reason about probabilistic program
transformations without introducing a probabilistic choice operator or other
explicit probabilistic attributes. Our approach is rather different to the one
by Meinicke and Solin. We introduce the quantitative probabilistic choice
operator, which explicitly defines concrete probabilistic values for different
choices. The introduced probabilistic information is used to verify quantita-
tive non-functional properties of the system and their preservation by refine-
ment. Otherwise, we rely on the existing Event-B refinement framework to
guarantee correctness of model transformations.

9. Conclusions

In this paper we have proposed an approach to integrating stochastic
reasoning about reliability and responsiveness of cyclic systems into Event-B
modelling. We have made a number of technical contributions. Firstly, we
have formally defined the conditions that should be verified to ensure that
the system under construction has a cyclic behaviour. Secondly, we have
proposed an extension of the Event-B language with the quantitative prob-
abilistic choice construct and defined the proof semantics for the extended
framework. Finally, we have demonstrated how to define reliability and re-
sponsiveness as the properties of extended Event-B models and integrate
explicit stochastic reasoning about non-functional system properties into the
Event-B refinement process.

The main novelty of our work is in establishing theoretical foundations for
reasoning about probabilistic properties of augmented Event-B models. This
result has been achieved by constraining the structure of considered Event-
B models and consequently reducing the reasoning about time-dependent
properties in general to the reasoning about these properties in terms of
iterations. Since the cyclic systems constitute a large class of critical systems,
we believe that the imposed restriction does not put significant limitations
on the applicability of the proposed approach. Yet it allows us to represent
the system models as discrete Markov chains or Markov decision processes.
This, in its turn, enables the use of the well-established theory of Markov
processes to verify time-bounded reachability properties.

References

[1] J.-R. Abrial, Modeling in Event-B, Cambridge University Press, 2010.

33

[2] J.-R. Abrial, Extending B without Changing it (for Developing Dis-
tributed Systems), in: H. Habiras (Ed.), First Conference on the B
method, 1996, pp. 169–190.

[3] J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge
University Press, 2005.

[4] A. Villemeur, Reliability, Availability, Maintainability and Safety As-
sessment, John Wiley & Sons, 1995.

[5] P. D. T. O’Connor, Practical Reliability Engineering, 3rd ed, John Wiley
& Sons, 1995.

[6] A. Avizienis, J.-C. Laprie, B. Randell, Fundamental Concepts of De-
pendability, 2001, Research Report No 1145, LAAS-CNRS.

[7] K. Trivedi, S. Ramani, R. Fricks, Recent Advances in Modeling
Response-Time Distributions in Real-Time Systems, in: Proceedings
of the IEEE, Vol. 91(7), 2003, pp. 1023–1037.

[8] W. W. Chu, C.-M. Sit, Estimating Task Response Time with Con-
tentions for Real-Time Distributed Systems, in: Real-Time Systems
Symposium, 1988, pp. 272–281.

[9] J. G. Kemeny, J. L. Snell, Finite Markov Chains, D. Van Nostrand
Company, 1960.

[10] M. Putterman, Markov Decision Processes. Discrete Stochastic Dynamic
Programming, John Wiley & Sons, 2005.

[11] D. J. White, Markov Decision Processes, John Wiley & Sons, 1993.

[12] Rodin, Event-B Platform, online at http://www.event-b.org/.

[13] A. Iliasov, Use Case Scenarios as Verification Conditions: Event-B/Flow
Approach, in: SERENE 2011, Software Engineering for Resilient Sys-
tems, Springer-Verlag, 2011, pp. 9–23.

[14] A. Tarasyuk, E. Troubitsyna, L. Laibinis, Formal Modelling and Veri-
fication of Service-Oriented Systems in Probabilistic Event-B, in: IFM
2012, Integrated Formal Methods, Vol. 7321 of LNCS, Springer, 2012,
pp. 237–252.

34

[15] S. Hallerstede, T. S. Hoang, Qualitative probabilistic modelling in
Event-B, in: J. Davies, J. Gibbons (Eds.), IFM 2007, Integrated Formal
Methods, 2007, pp. 293–312.

[16] A. K. McIver, C. C. Morgan, Abstraction, Refinement and Proof for
Probabilistic Systems, Springer, 2005.

[17] A. Tarasyuk, E. Troubitsyna, L. Laibinis, Towards Probabilistic Mod-
elling in Event-B, in: D. Méry, S. Merz (Eds.), IFM 2010, Integrated
Formal Methods, Springer-Verlag, 2010.

[18] R. J. R. Back, J. von Wright, Refinement Calculus: A Systematic In-
troduction, Springer-Verlag, 1998.

[19] K. Hinderer, T.-H. Waldmann, The Critical Discount Factor for Finite
Markovian Decision Processes with an Absorbing Set, in: Mathematical
Methods fo Operations Research, Springer-Verlag, 2003, pp. 1–19.

[20] M. Butler, J. Falampin, An approach to modelling and refining timing
properties in B, in: Refinement of Critical Systems (RCS), 2002.

[21] Augmenting event-b modelling with real-time verification.

[22] K. G. Larsen, A. Skou, Bisimulation through Probabilistic Testing, in:
Information and Computation 94, 1991, pp. 1–28.

[23] H. Hansson, Time and Probability in Formal Design of Distributed Sys-
tems, Elsevier, 1995.

[24] R. Segala, N. Lynch, Probabilistic simulations for probabilistic pro-
cesses, in: Nordic Journal of Computing, 2(2), 1995, pp. 250–273.

[25] A. K. McIver, C. C. Morgan, E. Troubitsyna, The Probabilistic Steam
Boiler: a Case Study in Probabilistic Data Refinement, in: International
Refinement Workshop, ANU, Canberra, Springer, 1998.

[26] M. Kwiatkowska, G. Norman, D. Parker, Controller Dependability Anal-
ysis by Probabilistic Model Checking, in: Control Engineering Practice,
2007, pp. 1427–1434.

35

[27] C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Automated Perfor-
mance and Dependability Evaluation Using Model Checking, in: Perfor-
mance Evaluation of Complex Systems: Techniques and Tools, Springer-
Verlag, 2002, pp. 261–289.

[28] M. Massink, J.-P. Katoen, D. Latella, Model Checking Dependability
Attributes of Wireless Group Communication, in: DSN’04, International
Conference on Dependable Systems and Networks, 2004, pp. 711–720.

[29] PRISM, Probabilistic symbolic model checker, online at
http://www.prismmodelchecker.org/.

[30] MRMC, Markov Reward Model Checker, online at http://www.mrmc-
tool.org/.

[31] L. Meinicke, K. Solin, Refinement algebra for probabilistic programs, in:
Formal Aspects of Computing, Vol. 22, 2010, pp. 3–31.

36

Paper II

Towards Probabilistic Modelling in Event-B

Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis

Originally published in: Dominique Méry, Stephan Merz (Eds.), Proceedings
of 8th International Conference on Integrated Formal Methods (iFM 2010),
LNCS 6396, 275–289, Springer, 2010

Towards Probabilistic Modelling in Event-B

Anton Tarasyuk1,2, Elena Troubitsyna2, and Linas Laibinis2

1 Turku Centre for Computer Science
2 Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520 Turku, Finland
{anton.tarasyuk,elena.troubitsyna,linas.laibinis}@abo.fi

Abstract. Event-B provides us with a powerful framework for correct-
by-construction system development. However, while developing depend-
able systems we should not only guarantee their functional correctness
but also quantitatively assess their dependability attributes. In this pa-
per we investigate how to conduct probabilistic assessment of reliability
of control systems modeled in Event-B. We show how to transform an
Event-B model into a Markov model amendable for probabilistic reli-
ability analysis. Our approach enables integration of reasoning about
correctness with quantitative analysis of reliability.

Keywords: Event-B, cyclic system, refinement, probability, reliability.

1 Introduction

System development by refinement is a formalised model-driven approach to
developing complex systems. Refinement enables correct-by-construction devel-
opment of systems. Its top-down development paradigm allows us to cope with
system complexity via abstraction, gradual model transformation and proofs.
Currently the use of refinement is mainly limited to reasoning about functional
correctness. Meanwhile, in the area of dependable system development – the area
where the formal modelling is mostly demanded – besides functional correctness
it is equally important to demonstrate that the system adheres to certain quanti-
tatively expressed dependability level. Hence, there is a clear need for enhancing
formal modelling with a capability of stochastic reasoning about dependability.

In this paper we propose an approach to introducing probabilities into Event-
B modelling [1]. Our aim is to enable quantitative assessment of dependability
attributes, in particular, reliability of systems modelled in Event-B. We consider
cyclic systems and show that their behaviour can be represented via a common
Event-B modelling pattern. We show then how to augment such models with
probabilities (using a proposed probabilistic choice operator) that in turn would
allow us to assess their reliability.

Reliability is a probability of system to function correctly over a given period
of time under a given set of operating conditions [23,24,17]. It is often assessed
using the classical Markov modelling techniques [9]. We demonstrate that Event-
B models augmented with probabilities can be given the semantic of a Markov

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 275–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

276 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

process (or, in special cases, a Markov chain). Then refinement of augmented
Event-B models essentially becomes reliability-parameterised development, i.e.,
the development that not only guarantees functional correctness but also ensures
that reliability of refined model is preserved or improved. The proposed approach
allows us to smoothly integrate quantitative dependability assessment into the
formal system development.

The paper is structured as follows. In Section 2 we overview our formal frame-
work – Event-B. In Section 3 we introduce a general pattern for specifying cyclic
systems. In Section 4 we demonstrate how to augment Event-B models with
probabilities to enable formal modelling and refinement of fully probabilistic
systems. In Section 5 we generalise our proposal to the cyclic systems that also
contain non-determinism. Finally, in Section 6 we overview the related work and
give concluding remarks.

2 Introduction to Event-B

The B Method [2] is an approach for the industrial development of highly de-
pendable software. The method has been successfully used in the development
of several complex real-life applications [19,5]. Event-B is a formal framework
derived from the B Method to model parallel, distributed and reactive systems.
The Rodin platform [21] provides automated tool support for modelling and ver-
ification (by theorem proving) in Event-B. Currently Event-B is used in the EU
project Deploy [6] to model several industrial systems from automotive, railway,
space and business domains.

In Event-B a system specification is defined using the notion of an abstract
state machine [20]. An abstract machine encapsulates the state (the variables)
of a model and defines operations on its state. A general form of Event-B models
is given in Fig.1.

Machine M
Variables v
Invariants I
Events

Initialisation
evt1
· · ·
evtN

Fig. 1. An Event-B machine

The machine is uniquely identified by its name M . The state variables, v, are de-
clared in the Variables clause and initialised in the init event. The variables are
strongly typed by the constraining predicates I given in the Invariants clause.
The invariant clause might also contain other predicates defining properties that
should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

evt =̂ when g then S end,

Towards Probabilistic Modelling in Event-B 277

where the guard g is a conjunction of predicates over the state variables v and
the action S is an assignment to the state variables. If the guard g is true, an
event can be described simply as

evt =̂ begin S end,

In its general form, an event can also have local variables as well as parameters.
However, in this paper we use only the simple forms given above.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the action can be executed, i.e.,
when the event is enabled. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically. If none of the events is
enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments.
The assignments can be either deterministic or non-deterministic. A determin-
istic assignment, x := E(x, y), has the standard syntax and meaning. A nonde-
terministic assignment is denoted either as x :∈ S, where S is a set of values, or
x :| P (x, y, x′), where P is a predicate relating initial values of x, y to some final
value of x′. As a result of such a non-deterministic assignment, x can get any
value belonging to S or according to P .

The semantics of Event-B events is defined using so called before-after (BA)
predicates [20]. A before-after predicate describes a relationship between the
system states before and after execution of an event, as shown in Fig.2.

Action (S) BA(S)

x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ S ∃t. (t ∈ Set ∧ x′ = t) ∧ y′ = y

x :| P (x, y, x′) ∃t. (P (x, t, y) ∧ x′ = t) ∧ y′ = y

Fig. 2. Before-after predicates

where x and y are disjoint lists (partitions) of state variables, and x′, y′ represent
their values in the after state. A before-after predicate for Event-B events is then
constructed as follows:

BA(evt) = g ∧ BA(S).

The formal semantics provides us with a foundation for establishing correct-
ness of Event-B specifications. In particular, to verify correctness of a specifica-
tion, we need to prove that its initialisation and all events preserve the invariant.

Event-B employs a top-down refinement-based approach to system develop-
ment. Development starts from an abstract system specification that models the
most essential functional requirements. While capturing more detailed require-
ments, each refinement step typically introduces new events and variables into
the abstract specification. These new events correspond to stuttering steps that
are not visible at the abstract level. By verifying correctness of refinement, we
ensure that all invariant properties of (more) abstract machines are preserved.
A detailed description of the formal semantics of Event-B and foundations of
the verification process can be found in [20].

278 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

3 Modelling of Cyclic Systems in Event-B

In this paper, we focus on modelling systems with cyclic behaviour, i.e. the sys-
tems that iteratively execute a predefined sequence of steps. Typical representa-
tives of such cyclic systems are control and monitoring systems. An iteration of a
control system includes reading the sensors that monitor the controlled physical
processes, processing the obtained sensor values and setting actuators according
to a predefined control algorithm. In principle, the system could operate in this
way indefinitely long. However, different failures may affect the normal system
functioning and lead to a shutdown. Hence, during each iteration the system
status should be re-evaluated to decide whether it can continue its operation.

In general, operational states of a system, i.e., the states where system func-
tions properly, are defined by some predicate J(v) over the system variables.
Usually, essential properties of the system (such as safety, fault tolerance, live-
ness properties) can be guaranteed only while system stays in the operational
states. The predicate J(v) partitions the system state space S into two disjoint
classes of states – operational (Sop) and non-operational (Snop) states, where
Sop =̂ {s ∈ S | J.s } and Snop =̂ S \ Sop.

Abstractly, we can specify a cyclic system in Event-B as shown in Fig.3.
In the machine CS, the variable st abstractly models the system state, which
can be either operational (J(st) is true) or failed (J(st) is false). The event iter

abstractly models one iteration of the system execution. As a result of this event,
the system can stay operational or fail. In the first case, the system can execute
its next iteration. In the latter case, the system deadlocks.

Machine CS
Variables st
Invariants

st ∈ STATE
...

Events

Initialisation =̂
begin

st :| J(st′)
end

iter =̂
when

J(st)
then

st :∈ STATE
end

Fig. 3. A cyclic system

The Invariants clause (besides defining the variable types) can contain other
essential properties of the system. Usually they are stated only over the opera-
tional states, i.e., they are of the form:

J(st) ⇒ ...

We can refine the abstract specification CS by introducing specific implemen-
tation details. For example, we may explicitly introduce new events modelling

Towards Probabilistic Modelling in Event-B 279

the environment as well as reading the sensors or setting the actuators. The event
iter can be also refined, e.g., into detection operation, which decides whether the
system can continue its normal operation or has to shut down due to some un-
recoverable failure. However, the Event-B refinement process will preserve the
cyclic nature of the system described in the abstract specification CS.

The only other constraint we put on the refinement process is that all the new
events introduced in refined models can be only enabled in operational system
states, e.g., the event guards should contain the condition J(v). To enforce this
constraint, we propose a simple syntactic extension of the Event-B model struc-
ture. Specifically, we introduce a new clause Operational guards containing
state predicates precisely defining the subset of operational system states. This
is a shorthand notation implicitly adding the corresponding guard conditions to
all events enabled in the operational states (except initialisation). We also as-
sume that, like model invariants, operational guards are inherited in all refined
models. By using this new clause, we can rewrite the system CS as follows.

Machine CS
Variables st
Invariants

st ∈ STATE
...

Operational guards

J(st)
Events

Initialisation =̂
begin

st :| J(st′)
end

iter =̂
begin

st :∈ STATE
end

Fig. 4. A cyclic system

In general, the behaviour of some cyclic system M can be intuitively described by
the sequential composition (Initialisation;doJ → E do), where do J → E do
is a while-loop with the operational guard J and the body E that consists of all
the machine events except initialisation. For example, the behaviour of CS can
be described simply as (Initialisation;doJ → iter do).

Each iteration of the loop maps the current operational system state into a
subset of S. The resulting set of states represents all possible states that can
be reached due to system nondeterministic behaviour. Therefore, an iteration of
a cyclic system M can be defined as a partial function IM of the type Sop →
P(S).1 The concrete definition of IM can be derived from the composition of
before-after predicates of the involved events. Moreover, we can also consider the
behaviour of the overall system and observe that the final state of every iteration
defines the initial state of the next iteration provided the system has not failed.

The specification pattern for modelling cyclic systems defined above restricts
the shape of Event-B models. This restriction allow us to propose a scalable

1 Equivalently, we can define an iteration as a relation between Sop and S.

280 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

approach to integrating probabilistic analysis of dependability into Event-B.
This approach we present next.

4 Stochastic Modelling in Event-B

4.1 Introducing Probabilistic Choice

Hallerstede and Hoang [7] have extended the Event-B framework with a new
operator – qualitative probabilistic choice, denoted ⊕|. This operator assigns
new values to variables with some positive but generally unknown probability.
The extension aimed at introducing into Event-B the concept of “almost-certain
convergence”– probabilistically certain termination of new event operations in-
troduced by model refinement. The new operator can replace a nondeterminis-
tic choice (assignment) statement in the event actions. It has been shown that
any probabilistic choice statement always refines its demonic nondeterministic
counterpart [13]. Hence such an extension is not interfering with traditional re-
finement process.

In this paper we aim at introducing quantitative probabilistic choice, i.e., the
operator ⊕| with precise probabilistic information about how likely a particular
choice should be made. In other words, it behaves according to some known
probabilistic distribution. The quantitative probabilistic assignment

x ⊕| x1 @ p1; . . . ; xn @ pn,

where
n∑

i=1

pi = 1, assigns to the variable x a new value xi with the corresponding

non-zero probability pi. Similarly to Hallerstede and Hoang, we can introduce
probabilistic choice only to replace the existing demonic one.

To illustrate the proposed extension, in Fig.5 we present a small example of a
probabilistic communication protocol implementing transmission over unreliable
channel. Since the channel is unreliable, sent messages may be lost. In the model
AM shown on the left-hand side, the occurrence of faults is modelled nonde-
terministically. Specifically, the variable msga is nondeterministically assigned
delivered or lost. In the model AM ′, the nondeterministic choice is replaced
by the probabilistic one, where the non-zero constant probabilities p and 1 − p

express how likely a message is getting delivered or lost. According to the theory
of probabilistic refinement [13], the machine AM ′ is a refinement of the machine
AM . The model refinement relation is denoted ⊑.

Next we show how to define refinement between probabilistic systems mod-
elled in (extended) Event-B. In particular, our notion of model refinement can
be specialized to quantitatively demonstrate that the refined system is at least
as reliable as its more abstract counterpart.

4.2 Fully Probabilistic Systems

Let us first consider fully probabilistic systems, i.e., systems containing
only probabilistic nondeterminism. The quantitative information present in a

Towards Probabilistic Modelling in Event-B 281

Machine AM
Variables msga

Invariants

I : msga ∈ {delivered, lost}
Operational guards

Ja : msga �= lost
Events

Initialisation =̂
begin

msga := delivered
end

send =̂
begin

msga :∈ {delivered, lost}
end

⊑

Machine AM ′

Variables msga

Invariants

I : msga ∈ {delivered, lost}
Operational guards

Ja : msga �= lost
Events

Initialisation =̂
begin

msga := delivered
end

send =̂
begin

msga ⊕| delivered @ p; lost @ 1−p
end

Fig. 5. A simple communication protocol: introducing probabilities

probabilistic Event-B model requires lifting the notion of the system state to a
probabilistic distribution over it:

Definition 1 (Probabilistic distribution). For a system state space S, the
set of distributions over S is

S̄ =̂ {∆ : S → [0, 1] |
∑

s∈S

∆.s = 1},

where ∆.s is the probability of reaching the state s.

Each iteration of a fully probabilistic system then maps some initial operational
state to a subset of S according to some probabilistic distribution, i.e., we can
define a single iteration PIM of a probabilistic cyclic system M as a partial
function of the type Sop → S̄.

There is a simple connection between iteration IM of a cyclic system M and
and its probabilistic counterpart PIM – some state is reachable by IM if and
only it is reachable by PIM with a non-zero probability:

∀s, s′ · s ∈ dom.IM ∧ s′ ∈ IM .s ⇔ s ∈ dom.PIM ∧ PIM .s.s′ > 0,

where dom is the function domain operator.
For example, it is straightforward to see that for our model AM of the com-

munication channel, the iteration function IAM is

IAM = {delivered
→ {delivered, lost}},

while the probabilistic iteration function PIAM ′ for the model AM ′ is

PIAM ′ = {delivered
→ {delivered
→ p, lost
→ (1−p)}}.

As it was mentioned before, all elements of system state are partitioned into
two disjoint classes of operational and non-operational states. For any state s ∈
Sop, its distribution ∆ is defined by probabilistic choice statements (assignments)

282 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

presented in an Event-B machine. However, once the system fails, it stays in
the failed (non-operational) state. This means that, for any state s ∈ Snop, its
distribution ∆ is such that ∆.s = 1 and ∆.s′ = 0, if s′ �= s.

Once we know the probabilistic state distribution ∆, we can quantitatively
assess the probability that the operational guard J is preserved by a single
iteration. However, our goal is to evaluate system reliability. In engineering,
reliability [24,17] is generally measured by the probability that an entity E can
perform a required function under given conditions for the time interval [0, t]:

R(t) = P{E not failed over time [0, t]}.

Hence reliability can be expressed as the probability that J remains true during
a certain number of iterations, i.e., the probability of system staying operational
for k iterations:

R(t) = P{�≤k J}.

Here we use the modal operator � borrowed from temporal logic (LTL or
(P)CTL, for instance). The formula (�≤k J) means that J holds globally for
the first k iterations. It is straightforward to see that this property corresponds
to the standard definition of reliability given above.

Let M and M ′ be probabilistic Event-Bmodels of cyclic systems. We strengthen
the notion of Event-B refinement by additionally requiring that the refined model
will execute more iterations before shutdown with a higher probability:

Definition 2 (Refinement for probabilistic cyclic systems)
For two probabilistic Event-B models M and M ′ of cyclic systems such that
M =̂ (Initialisation;doJ → E do) and M ′ =̂ (Initialisation′;do J ′ → E′ do),
we say that M ′ is a refinement of M , if and only if

1. M ′ is an Event-B refinement of M (M ⊑ M ′), and

2. ∀k ∈ N1 · P{�≤k J} ≤ P{�≤k J ′}.

Remark 1. If the second condition of Definition 2 holds not for all k, but for
some interval k ∈ 1..K, K ∈ N1, we say that M ′ is a partial refinement of M for
k ≤ K.

From the reliability point of view, a comparison of probabilistic distributions
corresponds to a comparison of how likely the system would fail in its next
iteration. This consideration allows us to define an order over the set S̄ of system
distributions:

Definition 3 (Ordering over distributions). For two distributions
∆, ∆′ ∈ S̄ we define the ordering relation
 as follows

∆
 ∆′ ⇔
∑

s∈Sop

∆.s ≤
∑

s∈Sop

∆′.s.

Towards Probabilistic Modelling in Event-B 283

It is easy to see that the ordering relation
 defined in this way is reflexive and
transitive and hence is a total preorder on S. Let us note that the defined order
is not based on pointwise comparison between the corresponding single state
probabilities. Instead, we rely on the accumulated likelihood that the system
stays operational.

McIver and Morgan [13] have considered deterministic probabilistic programs
with possible nontermination. They have defined the set of (sub-)distributions
for terminating programs, with the order over distributions introduced as ∆

∆′ ⇔ (∀s ∈ S · ∆.s ≤ ∆′.s). Such a pointwise definition of an order is too
strong for our purposes. We focus on quantitative evaluation of system reliability,
treating all the operational states in system distributions as one class, i.e., we do
not distinguish between single operational states or their groups. In our future
work it would be interesting to consider a more fine-grained classification of
operational states, e.g., taking into account different classes of degraded states
of the system.

The order over final state distributions can be in turn used to define the order
over the associated initial states:

Definition 4 (Ordering over states). Let M be a probabilistic cyclic system.
Then, for its iteration PIM , any initial states si, sj ∈ Sop and distributions
∆i, ∆j ∈ S̄ such that ∆i = PIM .si and ∆j = PIM .sj, we define the ordering
relation
M as

si
M sj ⇔ ∆i
 ∆j

We can use this state ordering to represent the system state space S as an
ordered set {s1, . . . , sn}, where n ∈ N≥2 and (∀i ∈ 1..(n − 1) · ∆i+1
 ∆i).

Generally, all the non-operational states Snop can be treated as a singleton set,
since we do not usually care at which particular state the operational guard has
been violated. Therefore, by assuming that S = {s1, . . . , sn} and Snop = {sn},
it can be easily shown that sn is the least element (bottom) of S:

∆n.sn = 1 ⇒ ∀i ∈ 1..n · sn
M si

Now let us consider the behaviour of some cyclic system M in detail. We can
assume that the initial system state s1 belongs to the ordered set {s1, . . . , sn}.
This is a state where the system works “perfectly”. After its first iteration,
the system goes to some state si with the probability ∆1.si and si becomes
the current system state. At this point, if i = n, system shutdown is initiated.
Otherwise, the system starts a new iteration and, as a result, goes to some state
sj with the probability ∆i.sj and so on. It is easy to see that this process is
completely defined by the following state transition matrix

PM =





∆1.s1 ∆1.s2 . . . ∆1.sn

∆2.s1 ∆2.s2 . . . ∆2.sn

...
...

. . .
...

∆n.s1 ∆n.s2 . . . ∆n.sn




,

284 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

which in turn unambiguously defines the underlying Markov process (absorbing
discrete time Markov chain, to be precise).

Let us note that the state transition matrix of a Markov chain and its initial
state allow us to calculate the probability that the defined Markov process (after
k steps) will be in a state si (see [9] for example). Let assume that the operational
states of the system are ordered according to Definition 4 and initially a system
is in the state s1. Then we can rewrite the second condition of Definition 2 in
the following way:

Proposition 1. For two probabilistic Event-B models M and M ′ such that
M =̂ (Initialisation;doJ → E do) and M ′ =̂ (Initialisation′;do J ′ → E′ do),
the inequality

∀k ∈ N1 · P{�≤k J} ≤ P{�≤k J ′}

is equivalent to

∀k ∈ N1 · ((PM ′)k)1n′ ≤ ((PM)k)1n, (1)

where S = {s1, . . . , sn} and S′ = {s1, . . . , sn′} are the ordered system state spaces
of M and M ′ accordingly, and (. . .)1n is a (1n)-th element of a matrix.

Proof. Directly follows from our definition of the order on state distributions and
fundamental theorems of the Markov chains theory. �

In general, the initial system state is not necessarily the given state s1 but can
be defined by some initial state distribution ∆0. In this case the inequality (1)
should be replaced with

([∆′
0] · P

k
M ′)(n′) ≤ ([∆0] · P

k
M)(n),

where [∆0] =




∆0.s1

...
∆0.sn



, [∆′
0] =




∆′

0.s1

...
∆′

0.sn′



 and ([∆0] · P k
M)(n) is the n-th

component of the column vector ([∆0] · P
k
M).

To illustrate our approach to refining fully probabilistic systems, let us revisit
our transmission protocol example. To increase reliability of transmission, we
refine the protocol to allow the sender to repeat message sending in case of
delivery failure. The maximal number of such attempts is given as the predefined
positive constant N . The resulting Event-B model CM is presented in Fig.6. Here
the variable att represents the current sending attempt. Moreover, the event
send is split to model the situations when the threshold N has been accordingly
reached and not reached.

The Event-B machine CM can be proved to be a probabilistic refinement
of its abstract probabilistic model (the machine AM ′ in Fig.5) according to
Definition 2.

In this section we focused on fully probabilistic systems. In the next section
we generalize our approach to the systems that also contain nondeterminism.

Towards Probabilistic Modelling in Event-B 285

Machine CM
Variables msgc, att
Invariants

I1 : msgc ∈ {delivered, try, lost}
I2 : att ∈ 1..N

Operational guards

Jc : msgc �= lost
Events

Initialisation =̂
begin

msgc := delivered
att := 1

end

start =̂
when

msgc = delivered
then

msgc := try
end

send1 =̂
when

msgc = try ∧ att < N
then

msgc, att ⊕| (delivered, 1) @ p; (try, att+1) @ 1−p
end

send2 =̂
when

msgc = try ∧ att = N
then

msgc, att ⊕| (delivered, 1) @ p; (lost, att) @ 1−p
end

Fig. 6. A simple communication protocol: probabilistic refinement

4.3 Probabilistic Systems with Nondeterminism

For a cyclic system M containing both probabilistic and demonic nondeter-
minism we define a single iteration as the partial function PIM of the type
Sop → P(S̄), i.e., as a mapping of the operational state into a set of distribu-
tions over S.

Nondeterminism has a demonic nature in Event-B. Hence such a model repre-
sent a worst case scenario, i.e., choosing the “worst” of operative sub-distributions
– the distributions with a domain restriction on Sop. From reliability perspective,
it means that while assessing reliability of such a system we obtain the lowest
bound estimate of reliability. In this case the notions of probabilistic system
refinement and the state ordering are defined as follows:

Definition 5 (Refinement for nondeterministic-probabilistic systems).
For two nondeterministic-probabilistic Event-B models M and M ′ of
cyclic systems such that M =̂ (Initialisation;doJ → E do) and M ′ =̂
(Initialisation′;doJ ′ → E′ do), we say that M ′ is a refinement of M , if and
only if

1. M ′ is an Event-B refinement of M (M ⊑ M ′);

2. ∀k ∈ N1 · Pmin{�
≤k J} ≤ Pmin{�

≤k J ′},

where Pmin{�
≤k J} is the minimum probability that J remains true during the

first k iterations.

286 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Remark 2. If the second refinement condition of the Definition 5 holds not for all
k, but for some interval k ∈ 1..K, K ∈ N1, we say that M ′ is a partial refinement
of M for k ≤ K.

Definition 6 (Ordering over distributions)
For two sets of distributions {∆il

| l ∈ 1..L} and {∆jk
| k ∈ 1..K} ∈ P(S̄), we

define the ordering relation
 as

{∆il
| l ∈ 1..L}
 {∆jk

| k ∈ 1..K} ⇔ min
l

(
∑

s∈S

∆il
.s) ≤ min

k
(
∑

s∈S

∆jk
.s).

As in the previous section, the order over final state distributions can be in turn
used to define the order over the associated initial states:

Definition 7 (Ordering over states). Let M be a nondeterministic-
probabilistic system. Then, for its iteration PIM , any initial states si, sj ∈ Sop

and sets of distributions {∆il
| l ∈ 1..L}, {∆jk

| k ∈ 1..K} ∈ P(S̄) such that
{∆il

| l ∈ 1..L} = PIM .si and {∆jk
| k ∈ 1..K} = PIM .sj, we define the

ordering relation
M as

si
M sj ⇔ {∆il
| l ∈ 1..L}
 {∆jk

| k ∈ 1..K}

The underlying Markov process representing the behaviour of a nondeterminis-
tic-probabilistic cyclic system is a simple form of a Markov decision process.

For every i ∈ 1, . . . , (n − 1), let us define ∆i = min
l

(
∑

s∈S

∆il
.s) and ∆n = ∆n.

Then, the state transition matrix that represents the worst-case scenario system
behaviour is defined in the following way:

PM =





∆1.s1 ∆1.s2 . . . ∆1.sn

∆2.s1 ∆2.s2 . . . ∆2.sn

...
...

. . .
...

∆n.s1 ∆n.s2 . . . ∆n.sn




,

and the second refinement condition of Definition 5 can be rewritten as follows:

Proposition 2. For two nondeterministic-probabilistic Event-B models
M and M ′ such that M =̂ (Initialisation;doJ → E do) and M ′ =̂
(Initialisation′;doJ ′ → E′ do), the inequality

∀k ∈ N · P{�≤k J} ≤ P{�≤k J ′}

is equivalent to

∀k ∈ N1 · ((PM ′)k)1n′ ≤ ((PM)k)1n, (2)

where S = {s1, . . . , sn} and S′ = {s1, . . . , sn′} are the ordered system state spaces
of M and M ′ accordingly.

Towards Probabilistic Modelling in Event-B 287

Proof. This proof is the same as the proof for Proposition 1. �

Similarly as for fully-probabilistic systems, if the initial system state is not a
single state s1, but instead it is defined by some initial state distribution ∆0,
then the inequality (2) is replaced by

([∆′
0] · P

k
M ′)(n′) ≤ ([∆0] · P

k
M)(n).

4.4 Discussion

For fully probabilistic systems, we can often reduce the state space size using the
lumping technique [9] or equally probabilistic bisimulation [12]. For nondeter-
ministic probabilistic systems, a number of bisimulation techniques [8,22] have
been also developed.

For simple system models, deriving the set of state distributions S̄ and cal-
culating reliability probabilities P k

M for each refinement step can be done manu-
ally. However, for complex real-size systems this process can be extremely time
and effort consuming. Therefore, it is beneficial to have an automatic tool sup-
port for routine calculations. Development and verification of Event-B models
is supported by the Rodin Platform [19] – integrated extensible development
environment for Event-B. However, at the moment the support for quantita-
tive verification is sorely missing. To prove probabilistic refinement of Event-B
models according to Definition 2 and Definition 5, we need to extend the Rodin
platform with a dedicated plug-in or integrate some external tool.

One of the available automated techniques widely used for analysing systems
that exhibit probabilistic behaviour is probabilistic model checking [4,10]. In
particular, the probabilistic model checking frameworks like PRISM or MRMC
[18,16] provide good tool support for formal modelling and verification of discrete-
and continuous-time Markov processes. To enable the quantitative reliability
analysis of Event-B models, it would be advantageous to develop a Rodin plug-
in enabling automatic translation of Event-B models to existing probabilistic
model checking frameworks.

5 Related Work and Conclusions

5.1 Related Work

The Event-B framework has been extended by Hallerstede and Hoang [7] to take
into account model probabilistic behaviour. They introduce qualitative proba-
bilistic choice operator to reason about almost certain termination. This oper-
ator attempts to bound demonic nondeterminism that, for instance, allows us
to demonstrate convergence of certain protocols. However, this approach is not
suitable for reliability assessment since explicit quantitative representation of
reliability is not supported.

Several researches have already used quantitative model checking for de-
pendability evaluation. For instance, Kwiatkowska et al. [11] have proposed an

288 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

approach to assessing dependability of control systems using continuous time
Markov chains. The general idea is similar to ours – to formulate reliability as
a system property to be verified. This approach differs from ours because it is
aims at assessing reliability of already developed systems. However, dependabil-
ity evaluation late at the development cycle can be perilous and, in case of poor
results, may lead to major system redevelopment causing significant financial
and time losses. In our approach reliability assessment proceeds hand-in-hand
with the system development by refinement. It allows us to assess dependability
of designed system on the early stages of development, for instance, every time
when we need to estimate impact of unreliable component on the system relia-
bility level. This allows a developer to make an informed decision about how to
guarantee a desired system reliability.

A similar topic in the context of refinement calculus has been explored by
Morgan et al. [14,13]. In this approach the probabilistic refinement has been
used to assess system dependability. Such an approach is much stronger than
the approach described in this paper. Probabilistic refinement allows the de-
velopers to obtain algebraic solutions even without pruning the system state
space. Meanwhile, probabilistic verification gives us only numeric solutions for
restricted system models. In a certain sense, our approach can be seen as a
property-wise refinement evaluation. Indeed, while evaluating dependability, we
essentially check that, for the same samples of system parameters, the probability
of system to hold a certain property is not decreased by refinement.

5.2 Conclusions

In this paper we proposed an approach to integrating probabilistic assessment of
reliability into Event-B modelling. We defined reliability of a cyclic system as the
probability of the system to stay in its operational state for a given number of
iterations. Our approach to augmenting Event B models with probabilities allows
us to give the semantic of a Markov process (or, in special cases, a Markov chain)
to augmented models. In turn, this allow us to algebraically compute reliability
by using any of numerous automated tools for reliability estimation.

In general, continuous-time Markov processes are more often used for depend-
ability evaluation. However, the theory of refinement of systems with continuous
behaviour has not reached maturity yet [3,15]. In this paper we showed that, by
restricting the shape of Event-B models and augmenting them with probabilities,
we can make a smooth transition to representing a cyclic system as a Markov
process. This allow us to rely on standard techniques for assessing reliability.

In our future work it would be interesting to explore continuous-time reason-
ing as well as generalise the notion of refinement to take into account several
dependability attributes.

Acknowledgments

This work is supported by IST FP7 DEPLOY Project. We also wish to thank
the anonymous reviewers for their helpful comments.

Towards Probabilistic Modelling in Event-B 289

References

1. Abrial, J.R.: Extending B without Changing it (for Developing Distributed Sys-
tems). In: Habiras, H. (ed.) First Conference on the B method, pp. 169–190. IRIN
Institut de recherche en informatique de Nantes (1996)

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

3. Back, R.J.R., Petre, L., Porres, I.: Generalizing Action Systems to Hybrid Sys-
tems. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 202–213. Springer,
Heidelberg (2000)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Craigen, D., Gerhart, S., Ralson, T.: Case study: Paris metro signaling system.
IEEE Software, 32–35 (1994)

6. EU-project DEPLOY, http://www.deploy-project.eu/
7. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in Event-B. In:

Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,
Heidelberg (2007)

8. Hansson, H.: Time and Probability in Formal Design of Distributed Systems. El-
sevier, Amsterdam (1995)

9. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. D. Van Nostrand Company (1960)
10. Kwiatkowska, M.: Quantitative verification: models techniques and tools. In:

ESEC/FSE 2007, pp. 449–458. ACM, New York (2007)
11. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by

probabilistic model checking. In: Control Engineering Practice, pp. 1427–1434
(2007)

12. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94, 1–28 (1991)

13. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Springer, Heidelberg (2005)

14. McIver, A.K., Morgan, C.C., Troubitsyna, E.: The probabilistic steam boiler: a
case study in probabilistic data refinement. In: Proc. International Refinement
Workshop, ANU, Canberra. Springer, Heidelberg (1998)

15. Meinicke, L., Smith, G.: A Stepwise Development Process for Reasoning about
the Reliability of Real-Time Systems. In: Davies, J., Gibbons, J. (eds.) IFM 2007.
LNCS, vol. 4591, pp. 439–458. Springer, Heidelberg (2007)

16. MRMC – Markov Reward Model Checker, http://www.mrmc-tool.org/
17. O’Connor, P.D.T.: Practical Reliability Engineering, 3rd edn. John Wiley & Sons,

Chichester (1995)
18. PRISM – Probabilistic Symbolic Model Checker,

http://www.prismmodelchecker.org/
19. Rigorous Open Development Environment for Complex Systems (RODIN): IST

FP6 STREP project, http://rodin.cs.ncl.ac.uk/
20. Rigorous Open Development Environment for Complex Systems (RODIN): Deliv-

erable D7, Event-B Language, http://rodin.cs.ncl.ac.uk/
21. RODIN. Event-B Platform, http://www.event-b.org/
22. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic

Journal of Computing 2(2), 250–273 (1995)
23. Storey, N.: Safety-Critical Computer Systems. Addison-Wesley, Reading (1996)
24. Villemeur, A.: Reliability, Availability, Maintainability and Safety Assessment.

John Wiley & Sons, Chichester (1995)

Paper III

Formal Modelling and Verification of Service-Oriented

Systems in Probabilistic Event-B

Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis

Originally published in: J. Derrick et al. (Eds.), Proceedings of 9th Interna-
tional Conference on Integrated Formal Methods (iFM 2012), LNCS 7321,
237–252, Springer, 2012

Formal Modelling and Verification

of Service-Oriented Systems

in Probabilistic Event-B

Anton Tarasyuk1,2, Elena Troubitsyna2, and Linas Laibinis2

1 Turku Centre for Computer Science, Turku, Finland
2 Åbo Akademi University, Turku, Finland

{anton.tarasyuk,elena.troubitsyna,linas.laibinis}@abo.fi

Abstract. Modelling and refinement in Event-B provides a scalable sup-
port for systematic development of complex service-oriented systems.
This is achieved by a gradual transformation of an abstract service spec-
ification into its detailed architecture. In this paper we aim at integrating
quantitative assessment of essential quality of service attributes into the
formal modelling process. We propose an approach to creating and veri-
fying a dynamic service architecture in Event-B. Such an architecture can
be augmented with stochastic information and transformed into the cor-
responding continuous-time Markov chain representation. By relying on
probabilistic model-checking techniques, we allow for quantitative eval-
uation of quality of service at early development stages.

1 Introduction

The main goal of service-oriented computing is to enable rapid building of com-
plex software by assembling readily-available services. While promising productiv-
ity gain in the development, such an approach also poses a significant verification
challenge – how to guarantee correctness of complex composite services?

In our previous work we have demonstrated how to build complex service-
oriented systems (SOSs) by refinement in Event-B [12,11]. We have not only
formalised Lyra – an industrial model-driven approach – but also augmented it
with a systematic modelling of fault tolerance. However, within this approach we
could not evaluate whether the designed fault tolerant mechanisms are appro-
priate, i.e., they suffice to meet the desired quality of service (QoS) attributes.

To address this issue, in this paper we propose an approach to building a
dynamic service architecture – an Event-B model that formally represents the
service orchestration. In particular, we define the set of requirements – the formal
verification conditions – that allow us to ensure that the modelled service ar-
chitecture faithfully represents the dynamic service behaviour. Such an Event-B
model can be then augmented with stochastic information about system failures
and duration of the orchestrated services. Essentially, this results in creating a
continuous-time Markov chain (CTMC) model representation and hence enables
the use of existing probabilistic model checking techniques to verify the desired

J. Derrick et al. (Eds.): IFM 2012, LNCS 7321, pp. 237–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

QoS attributes. We demonstrate how to formulate a number of widely used QoS
attributes as temporal logic formulae to be verified by PRISM [14]. Overall, our
approach enables an early quantitative evaluation of essential QoS attributes
and rigorous verification of the dynamic aspects of the system behaviour.

The paper is organised as follows. In Section 2 we briefly describe our formal
modelling framework, Event-B, and also define its underlying transition system.
Section 3 discusses SOSs and the associated dynamic service architectures. In
Section 4 we propose a set of necessary requirements for SOSs as well as their
formalisation in Event-B. Section 5 presents a small case study that illustrates
building a dynamic service architecture. In Section 6 we explain how to convert
Event-B models into CTMCs and also demonstrate the use of probabilistic model
checking for analysis of QoS attributes. Finally, Section 7 gives some concluding
remarks as well as overviews the related work in the field.

2 Modelling in Event-B

Event-B is a formal framework derived from the (classical) B method [1] to model
parallel, distributed and reactive systems [2]. The Rodin platform provides tool
support for modelling and formal verification (by theorem proving) in Event-B
[17]. Currently, Event-B is used in the EU project Deploy to model dependable
systems from from automotive, railway, space and business domains [9].

In Event-B, a system specification is defined using the notion of an abstract
state machine. An abstract state machine encapsulates the model state, repre-
sented as a collection of model variables, and defines operations on this state via
machine events. The occurrence of events represents the system behaviour. In a
most general form, an Event-B model can be defined as follows.

Definition 1. An Event-B model is a tuple (C,S,A, υ, I, Σ, E , Init) where:

– C is a set of model constants;
– S is a set of model sets;
– A is a set of axioms over C and S;
– υ is a set of system variables;
– I is a set of invariant properties over υ, C and S;
– Σ is a model state space defined by all possible values of the vector υ;
– E ⊆ P(Σ × Σ) is a non-empty set of model events;
– Init is a predicate defining an non-empty set of model initial states.

The model variables υ are strongly typed by the constraining predicates specified
in I and initialised by the predicate Init. Furthermore, I defines important
properties that must be preserved by the system during its execution.

Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, and the guard Ge is a
predicate over the model variables. The Re is a next-state relation called gener-
alised substitution. The guard defines the conditions under which the substitution

Formal Modelling and Verification of Service-Oriented Systems 239

can be performed, i.e., when the event is enabled. If several events are enabled
at the same time, any of them can be chosen for execution nondeterministically.

If an event does not have local variables, it can be described simply as

e =̂ when Ge then Re end.

Throughout the paper we will consider only such simple events. It does not
make any impact on the generality of our approach because any event specified
by using local variables can be always rewritten in the simple form.

Essentially, such an event definition is just a syntactic sugar for the underlying
relation e(σ, σ′) = Ge(σ)∧Re(σ, σ′). Generally, a substitution Re is defined by a
multiple (possibly nondeterministic) assignment over a vector of system variables
u ⊆ υ, i.e., u := X , for some vector of values X . Hence the state transformation
(via Re) can be intuitively defined as Re(σ, σ′) ⇒ σ′ = σ[X/u], where σ[X/u] is
a substitution of values of the variables u in σ by the vector X . Obviously, due
to presence of nondeterminism the successor state σ′ is not necessarily unique.

For our purposes, it is convenient to define an Event-B model as a transition
system. To describe a state transition for an Event-B model, we define two
functions before and after from E to P(Σ) in a way similar to [8]:

before(e) = {σ ∈ Σ | I(σ) ∧ Ge(σ)} and

after(e) = {σ′ ∈ Σ | I(σ′) ∧
(
∃σ ∈ Σ · I(σ) ∧ Ge(σ) ∧ Re(σ, σ′)

)
}.

These functions essentially return the domain and the range of an event e con-
strained by the model invariants I. It is easy to see that e is enabled in σ if
σ ∈ before(e). At any state σ, the behaviour of an Event-B machine is defined
by all the enabled in σ events.

Definition 2. The behaviour of any Event-B machine is defined by a transition
relation →:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ → σ′
,

where Eσ = {e ∈ E | σ ∈ before(e)} is a subset of events enabled in σ.

Remark 1. The soundness of Definition 2 is guaranteed by the feasibility prop-
erty of Event-B events. According to this property, such σ′ should always exist
for any σ ∈ before(e), where e ∈ Eσ [2].

Together Definitions 1 and 2 allow us to describe any Event-B model as a tran-
sition system with state space Σ, transition relation → and a set of initial states
defined by Init. Next we describe the essential structure of SOSs and reflect on
our experience in modelling SOSs in Event-B.

3 Service-Oriented Systems

3.1 Service Orchestration

Service-oriented computing is a popular software development paradigm that
facilitates building complex distributed services by coordinated aggregation of

240 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

lower-level services (called subservices). Coordination of a service execution is
typically performed by a service director (or service composer). It is a dedi-
cated software component that on the one hand, communicates with a service
requesting party and on the other hand, orchestrates the service execution flow.

To coordinate service execution, the service director keeps information about
subservices and their execution order. It requests the corresponding components
to provide the required subservices and monitors the results of their execution.
Let us note that any subservice might also be composed of several subservices,
i.e., in its turn, the subservice execution might be orchestrated by its (sub)service
director. Hence, in general, a SOS might have several layers of hierarchy.

Often, a service director not only ensures the predefined control and data
flow between the involved subservices but also implements fault-tolerance mech-
anisms. Indeed, an execution of any subservice might fail. Then the service direc-
tor should analyse the failed response and decide on the course of error recovery
actions. For instance, if an error deemed to be recoverable, it might repeat the
request to execute the failed subservice. However, it might also stop execution
of a particular subservice to implement coordinated error recovery or abort the
whole service execution due to some unrecoverable error.

Let us consider a simple case when the involved subservices S1, S2, ..., Sn

should be executed in a fixed sequential order:

S1 −→ S2 −→ S3 −→ Sn

According the discussion above, the overall control flow can be graphically rep-
resented as shown in Fig. 1.

SD SDS1 SD S2 SD SD SN...IN OUT

Fig. 1. Service flow in a service director

Here IN and OUT depict receiving new requests and sending service responses,
while the service director SD monitors execution of the subservices and performs
the required controlling or error recovery actions. These actions may involve
requesting a particular subservice to repeat its execution (a dashed arrow from
SD to Si), aborting the whole service (a dashed arrow from SD to OUT), or
allowing a subservice to continue its execution (a looping arrow for Si).

Though we have considered a sequential service execution flow, the service ex-
ecution per se might have any degree of parallelism. Indeed, any subservice might
consist of a number of independent subservices Si1, ..., Sik that can be executed
in parallel. Such a service architecture allows the designer to improve perfor-
mance or increase reliability, e.g., if parallel subservices replicate each other.

Formal Modelling and Verification of Service-Oriented Systems 241

3.2 Towards Formalisation of Service Orchestration

In our previous work [12,11], we have proposed a formalisation of the service-
oriented development method Lyra in the B and Event-B frameworks. In our ap-
proach, refinement formalises unfolding of architectural layers and consequently
introduces explicit representation of subservices at the corresponding architec-
tural layer. Reliance of refinement, decomposition and proof-based verification
offers a scalable support for development of complex services and verification of
their functional correctness. The result of refinement process is a detailed system
specification that can be implemented on a targeted platform. However, before
such an implementation is undertaken, it is desirable to evaluate whether the
designed service meets its QoS requirements.

To enable such an evaluation, we propose to build a formal model that explic-
itly represents service orchestration, i.e., defines the dynamic service architecture,
while suppressing unnecessary modelling details. Such a model can be augmented
with probabilistic information and serve as an input for the evaluation of the
desirable QoS attributes, as we will describe in Section 6.

To achieve this goal, we should strengthen our previous approach by formal-
ising service orchestration requirements. Indeed, in [12,11] the service execution
flow and possible parallelism were modelled via an abstract function Next. Essen-
tially, this function served as an abstract scheduler of subservices. However, such
a representation does not allow for a verification of service orchestration that is
essential for building an adequate model of the dynamic service architecture.

We start our formalisation of service orchestration requirements by assuming
that a service S is composed of a finite set of subservices {S1, S2, . . . , Sn} that
are orchestrated by a service director. The behaviour of the service director
consists of a number of activities {IN, OUT, SD}, where IN and OUT are
modelling the start (i.e., receiving a service request) and the end (i.e., sending a
service response) of the service execution flow. SD represents the decision making
procedure performed by the service director after execution of any subservice,
i.e., it computes whether to restart the execution of the current subservice, call
the next scheduled subservice, or abort the service execution.

In Event-B, the subservices S1, ..., Sn as well as the service director activi-
ties IN, OUT, SD can be represented as groups of mutually exclusive events.
Without losing generality, we will treat all these activities as single events.

Let us also tailor our generic definitions of before and after functions to mod-
elling service-oriented systems. For a composite subservice Si, i.e., a subservice
that is a parallel composition of sub-subservices Si1, ..., Sik, we define

before(Si) =
⋃

j∈1..k

before(Sij) and after(Si) =
⋃

j∈1..k

after(Sij).

Moreover, we introduce a version of the function after that is “narrowed” with
respect to a particular fixed pre-state σ:

afterσ(e) = {σ′ ∈ Σ | I(σ′) ∧ I(σ) ∧ Ge(σ) ∧ Re(σ, σ′)}.

242 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Essentially, this function gives the relational image of the next-state relation Re

for the given singleton set {σ}. We will rely on these definitions while postulating
the service orchestration conditions that we present next.

4 Modelling the Dynamic Service Architecture

In this paper, we focus on modelling of SOSs that can provide service to only one
request at any time instance. In other words, it means that once a SOS starts
to serve a request, it becomes unavailable for the environment until the current
service is finished or aborted. Such a discipline of service imposes the following
requirements for receiving a service request and sending a service response:

(REQ1) After receiving a service request, the service director is activated to han-
dle it;

(REQ2) Once the service execution is finished, the service director is ready to
receive a new service request;

(REQ3) Receiving a service request and sending a service response is not possible
when orchestration of the service execution is still in process.

Formally, the first two requirements can be formulated as follows:

after(IN) ⊆ before(SD) and after(OUT) ⊆ before(IN),

while the formalisation of (REQ3) can be defined by the following two predicates:

∀e1, e2 ∈ {IN, OUT, SD} ·before(e1) ∩ before(e2) = ∅,
(
before(IN) ∪ before(OUT)

)
∩

(⋃

i∈1..n

before(Si)
)

= ∅.

Essentially, these predicates state that IN and OUT cannot be enabled at the
same time as any of subservices Si or the service director event SD.

Moreover, the service director should follow the predefined order of the service
execution. This, however, should not prevent the service director from interfering:

(REQ4) At any moment only one of sequential subservices (i.e., only one of
S1,, Sn) can be active;

(REQ5) The service director has an ability to always provide a required control
action upon execution of the active subservice (or any of parallel subservices);

Formally, (REQ4) is ensured by requiring that the sets of states, where any two
different subservices are enabled, are disjoint:

∀i, j ∈ 1..n · i �= j ⇒ before(Si) ∩ before(Sj) = ∅,

while (REQ5) implies that SD can be enabled by execution of any subservice:

∀i ∈ 1..n · after(Si) ⊆ before(Si) ∪ before(SD).

Let us note that we delegate a part of the service director activity to the guards
of the events modelling the subservices. Specifically, we allow a subservice to
be executed in a cyclic manner without any interference from the service direc-
tor, i.e., it may either block itself or continue its activity if it remains enabled.

Formal Modelling and Verification of Service-Oriented Systems 243

However, if an active subservice blocks itself, it must enable the service director:

∀i ∈ 1..n, σ ∈ Σ · σ ∈ after(Si) ∧ σ /∈ before(Si) ⇒ σ ∈ before(SD)

that directly follows from the formalisation of (REQ5).
The next requirement concerns handling performed by the service director.

(REQ6) The reaction of the service director depends on the result returned by the
supervised subservice (or several parallel subservices) and can be one of the
following:
– upon successful termination of the subservice, the service director calls

the next scheduled subservice;
– in case of a recoverable failure of the subservice, the service director

restarts it;
– in case of an unrecoverable failure (with respect to the main service)

of the subservice, the service director aborts the execution of the whole
service.

Formally, it can be specified in the following way:

∀i ∈ 1..n−1; σ ∈ Σ ·σ ∈ after(Si) ∩ before(SD) ⇒

afterσ(SD) ⊆ before(Si) ∪ before(Si+1) ∪ before(OUT)

and, for a special case when a subservice is the last one in the execution flow,

∀σ ∈ Σ · σ ∈ after(Sn) ∩ before(SD) ⇒

afterσ(SD) ⊆ before(Sn) ∪ before(OUT).

In addition, it is important to validate that execution of any subservice cannot
disable execution of the service director:

(REQ7) None of active subservices can block execution of the service director.

It means that, whenever SD is enabled, it stays enabled after execution of any
subservice:

∀i ∈ 1..n; σ ∈ Σ · σ ∈ before(SD) ∪ before(Si) ⇒ afterσ(Si) ⊆ before(SD).

In the general case, when the execution flow of a SOS contains parallel compo-
sitions of subservices, a couple of additional requirements are needed:

(REQ8) All the subservices of a parallel composition must be independent of each
other, i.e., their execution order does not affect the execution of the overall
service;

(REQ9) Execution of any subservice of a parallel composition cannot block exe-
cution of any other active parallel subservice;

In terms of model events, the independence requirement means that forward
relational composition of two different events running in any order have the
same range:

∀i ∈ 1..n; j, l ∈ 1..k · after(Sij ; Sil) = after(Sil; Sij),
where

after(ei; ej) =
{
σ′′ ∈ Σ | σ′′ ∈ after(ej) ∧

(
∃σ, σ′ ∈ Σ ·σ ∈ before(ei)∧

σ′ ∈ after(ei) ∩ before(ej) ∧ Rei
(σ, σ′) ∧ Rej

(σ′, σ′′)
)}

.

244 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Such a definition of independence is imposed by the interleaving semantics of
Event-B and the fact that the framework does not support events composition
directly. Finally, we formulate the requirement (REQ9) as follows:

∀i ∈ 1..n; j, l ∈ 1..k · j �= l∧

σ ∈ before(Sij) ∪ before(Sil) ⇒ afterσ(Sij) ⊆ before(Sil)

and ∀i ∈ 1..n; j ∈ 1..k · after(Sij) ∩ before(Sij) �= ∅,

where the second formula states that any subservice can continue its execution
without interference from the service director.

To verify that an Event-B model of a SOS satisfies the requirements (REQ1)–
(REQ9), their formalisation (based on concrete model elements) could be gener-
ated and added as a collection of model theorems. A similar approach has been
applied in [8]. The generation and proof of additional model theorems can be
partially automated, provided that the mapping between the model events and
the subservices as well as the activities IN, OUT , and SD is supplied.

In the next section we consider a small example of a SOS. To demonstrate
our approach, we formally model the system dynamic architecture in Event-B
and then show that the model satisfies the formulated flow conditions.

5 Case Study

We model a simple dynamic service architecture that consists of a service director
and five subservices. The latter can be structured into two composite subservices,
S1 and S2, where S1 is a parallel composition of the subservices S11, S12 and
S13, while S2 consists of the parallel subservices S21 and S22. Next we define the
fault assumptions and decision rules used by the service director. Besides (fully)
successful termination of subservices, the following alternatives are possible:

– the subservice S11 can terminate with a transient failure, in which case its
execution should be restarted. The total number of retries cannot exceed the
predefined upperbound number MAX ;

– the subservices S12 and S13 can terminate with a permanent failure. More-
over, each of them may return a partially successful result, complementing
the result of the other subservice;

– the subservices S21 and S22 can also terminate with a permanent failure.
These subservices are functionally identical, thus successful termination of
one of them is sufficient for the overall success of S2.

Fig. 2 shows the events that abstractly model the behaviour of subservices. The
variables srvij , where i ∈ 1..2 and j ∈ 1..3, represent statuses of the correspond-
ing subservices. Here, the value nd (meaning “not defined”) is used to distinguish
between the subservices that are currently inactive, and those that are active but
have not yet returned any result. The value nok stands for a permanent failure
of a subservice, while the values ok and pok represent respectively successful and
partially successful subservice execution.

Formal Modelling and Verification of Service-Oriented Systems 245

Variables cnt, srv11, srv12, srv13, srv21, srv22

Invariants cnt ∈ N∧srv11, srv21, srv22 ∈ {ok, nok, nd}∧srv12, srv13 ∈ {ok, nok, pok, nd}
Events

subsrv11 =̂
when active = 1 ∧ srv11 = nd
then srv11 :∈ {nd, ok}

cnt := cnt + 1 end

subsrv12 =̂
when active = 1 ∧ srv12 = nd
then srv12 :∈ {ok, nok, pok} end

subsrv13 =̂ · · ·
subsrv21 =̂

when active = 2 ∧ srv21 = nd
then srv21 :∈ {nd, ok} end

subsrv22 =̂ · · ·

Fig. 2. Case study: modelling subservices in Event-B

Initially all the subservices have the status nd. Note that, in case of a transient
failure of S11, the value of srv11 remains nd and, as a result, the subservice can
be restarted. The counter variable cnt stores the number of retries of S11.

To provide the overall service, the following necessary conditions must be
satisfied:

– S11 returns a successful result within MAX retries;
– both S12 and S13 do not fail and at least one of them returns a (fully)

successful result;
– at least one of S21 and S22 does not fail.

The service director controls execution of subservices and checks preservation
of these conditions. The events modelling behaviour of the service director are
shown in Fig. 3. Here, the boolean variable idle stores the status of the overall
service, i.e., whether the service director is waiting for a new service request or
the service execution is already in progress. The variable active indicates which
group of subservices or which activity of the service director is currently enabled.
The value of the boolean variable abort shows whether one of the conditions
necessary for successful completion of the service has been violated and thus
the service execution should be interrupted. Finally, the variable failed counts
the number of such interrupted service requests. Please note that the service
director activities sd success1 and sd fail1 may run in parallel with subsrv11.
On the other hand, sd success2 can be activated even if only one of subsrv21

and subsrv22 has been successfully executed and the other one is still running.
For our case study, it is easy to prove that the presented model satisfies the

requirements (REQ1)–(REQ9). For instance, a proof of (REQ7) preservation can be
split into two distinct cases, when active = 1 and active = 2. Let us consider
the first case. When σ ∈ before(sd success1), then all the subservices’ events are
disabled and the requirement is obviously satisfied. When σ ∈ before(sd fail1),
at least one of the disjuncts in the guard of sd fail1 is satisfied. In the case
when cnt > MAX is true, subsrv11 can only increase the value of cnt, and
neither subsrv12 nor subsrv13 can modify it. In the case when either (srv12 =
nok ∨ srv13 = nok) or (srv12 = pok ∧ srv13 = pok) is true, both subsrv12 and
subsrv13 are disabled, and since subsrv11 cannot affect any of these two guards
the requirement is satisfied. Overall, the formal proofs for this model are simple
though quite tedious.

246 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Variables idle, active, abort, failed
Invariants idle ∈ BOOL ∧ active ∈ 0..3 ∧ abort ∈ BOOL ∧ failed ∈ N

Events

in =̂
when active = 0 ∧ idle = TRUE
then idle := FALSE end

sdin =̂
when active = 0 ∧ idle = FALSE
then active := 1 end

outsuccess =̂
when active = 3 ∧ abort = FALSE
then active, cnt := 1, 0

idle := TRUE
srv11 := nd
srv12 := nd . . . end

outfail =̂
when active = 3 ∧ abort = TRUE
then . . .

failed := failed + 1
abort := FALSE end

sd success1 =̂
when active = 1∧

srv11 = ok ∧ cnt ≤ MAX ∧
srv12 �= nok ∧ srv13 �= nok ∧
(srv12 = ok ∨ srv13 = ok)

then active := 2 end

sd fail1 =̂
when active = 1 ∧ (cnt > MAX ∨

srv12 = nok ∨ srv13 = nok ∨
(srv12 = pok ∧ srv13 = pok))

then active, abort := 3, TRUE end

sd success2 =̂
when active = 2∧

(srv21 = ok ∨ srv22 = ok)
then active := 3 end

sd fail2 =̂
when active = 2∧

srv21 = nok ∧ srv22 = nok
then active, abort := 3, TRUE end

Fig. 3. Case study: modelling the service director in Event-B

As we have mentioned in the previous section, the verification of an Event-B
model against the formulated requirements (REQ1)–(REQ9) is based on generation
and proof of a number of Event-B theorems in the Rodin platform. However,
for more complex, industrial-size systems, it can be quite difficult to prove such
theorems in Rodin. To tackle this problem, some external mechanised proving
systems, such as HOL or Isabelle, can be used. Bridging the Rodin platform
with such external provers is currently under development.

The goal of building a model of dynamic service architecture is to enable
quantitative evaluation of QoS attributes. In the next section we show how
an Event-B machine can be represented by a CTMC and probabilistic model
checking used to achieve the desired goal.

6 Probabilistic Verification in Event-B

6.1 Probabilistic Event-B

In this paper, we aim at quantitative verification of QoS of SOSs modelled in
Event-B. To perform such a verification, we will transform Event-B models defin-
ing dynamic service architecture into CTMCs. The properties that we are inter-
ested to verify are the time-bounded reachability and reward properties related
to a possible abort of service execution. For continuous-time models, such proba-
bilistic properties can be specified as CSL (Continuous Stochastic Logic) formu-
lae [3,4]. A detailed survey and specification patterns for probabilistic properties
can be found in [7]. There are several examples of properties of SOSs that can
be interesting for verification:

Formal Modelling and Verification of Service-Oriented Systems 247

– what is the probability that at least one service execution will be aborted
during a certain time interval?

– what is the probability that a number of aborted services during a certain
time interval will not exceed some threshold?

– what is the mean number of served requests during a certain time interval?
– what is the mean number of failures of some particular subservice during a

certain time interval?

To transform an Event-B machine into a CTMC, we augment all the events
with information about probability and duration of all the actions that may
occur during its execution. More specifically, we refine all the events by their
probabilistic counterparts.

Let us consider a system state σ ∈ Σ and an event e ∈ E such that σ ∈
before(e). Assume that Re can transform σ to a set of states {σ′

1, . . . , σ
′
m}, where

m ≥ 1. Please recall that in Event-B, if m > 1 then the choice between the
successor states is nondeterministic. We augment every such state transformation
with a constant rate λi ∈ R

+, where λi is a parameter of the exponentially
distributed sojourn time that the system will spend in the state σ before it goes
to the new state σ′

i. In such a way, we can replace a nondeterministic choice
between the possible successor states by the probabilistic choice associated with
the (exponential) race condition.

It is easy to show that such a replacement is a valid refinement step. Indeed,
let pi be a probability to choose a state transformation σ → σ′

i, σ /∈ {σ′
1, . . . , σ

′
m}.

For i ∈ 1..m, it is convenient to define pi as:

pi =
λi

m∑
j=1

λj

.

The probabilities pi define a next-state distribution for the current state σ.
Refinement of the nondeterministic branching by the (discrete) probabilistic one
is a well-known fact (see [15] for instance), which directly implies the validity of
the refinement.

We adopt the notation λe(σ, σ′) to denote the transition rate from σ to σ′ via
the event e, where σ ∈ before(e) and Re(σ, σ′). Augmenting all the event actions
with transition rates, we can respectively modify Definition 2 as follows.

Definition 3. The behaviour of any probabilistically augmented Event-B ma-

chine is defined by a transition relation
Λ
−→:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ
Λ
−→ σ′

,

where Λ =
∑

e∈Eσ

λe(σ, σ′).

With such a probabilistic transition relation, an Event-B machine becomes a
CTMC, whereas pi are the one-step transition probabilities of the embedded
(discrete-time) Markov chain. Such an elimination of nondeterminism between

248 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

enabled events is not always suitable for modelling. However, for SOSs this as-
sumption seems quite plausible. Indeed, the fact that execution of two or more
simultaneously enabled services may “lead” to the same state usually means
that all these services share the same functionality. In this situation it is nat-
ural to expect that the overall transition rate will increase and thus summing
of the corresponding subservice rates looks absolutely essential. Moreover, for
parallel composition of subservices, the interleaving semantics of Event-B per-
fectly coheres with the fact that the probability that two or more exponentially
distributed transition delays elapse at the same time moment is zero.

Generally, we can assume that σ ∈ {σ′
1, . . . , σ

′
m} and attach a rate for this skip

transformation as well. While participating in the race, such a transition does not
affect it (because it does not change the system state and due to the memoryless
property of the exponential distribution). However, the skip transition can be
useful for verification of specific reward properties, e.g., the number of restarts
for a particular subservice, the number of lost customers in the case of buffer
overflow, etc. Obviously, such a transition is excluded from the calculation of pi.

6.2 Case Study: Quantitative Modelling and Verification

Now let us perform quantitative verification of QoS attributes of the SOS pre-
sented in our case study using the probabilistic symbolic model checker PRISM.
We start by creating a PRISM specification corresponding to our Event-B model.
Short guidelines for Event-B to PRISM model transformation can be found in
our previous work [19]. Fig. 4 and Fig. 5 show the resulting PRISM model as
well as the rates we attached to all the model transitions. The behaviour of sub-
services is modelled by two modules S1 and S2. Note that the rate of successful
execution of S11 is decreasing with the number of retries.

In Fig. 5, the modules SD and IN OUT model behaviour of the service
director. Since the model checker cannot work with infinite sets we have bounded
from above the number of interrupted service requests by the predefined constant
value MAX failed. Such a restriction is reasonable because when the number
of interrupted service requests exceeds some acceptable threshold, the system is
usually treated as unreliable and must be redesigned.

Various properties that can be probabilistically verified for such a system
were presented in the beginning of this section. In particular, the following CSL
property is used to analyse the likelihood that a service request is interrupted
as time progresses:

P=?[F ≤ T abort].

Usually the probability to “lose” at least one request is quite high (for instance,
it equals 0.99993 for 104 time units and rates presented in Fig. 4–5). Therefore,
it is interesting to assess the probability that the number of interrupted (failed)
service request will exceed some threshold or reach the predefined acceptable
threshold:

P=?[F ≤ T (failed > 10)] and P=?[F ≤ T (failed = MAX failed)].

Fig. 6(a) demonstrates how these probabilities change over a period of T = 104

time units.

Formal Modelling and Verification of Service-Oriented Systems 249

// successful service rates of subservices
const double α11 = 0.9; const double α12 = 0.1; const double α13 = 0.12;
const double α2 = 0.085;

const double γ = 0.001; // transient failure rate of S11

// partially successful service rates of S12 and S13

const double β12 = 0.025; const double β13 = 0.03;

// permanent failure rates of S12, S13, and S21(S22)
const double δ12 = 0.001; const double δ13 = 0.002; const double δ2 = 0.003;

const int MAX = 5; // upperbound for retries of S11

// subservice states: 0 = nd, 1 = ok, 2 = nok, 3 = pok
global srv11 : [0..1] init 0; global srv12 : [0..1] init 0; . . . global cnt : [0..100] init 0;

module S1

[] (active = 1)&(srv11 = 0) → α11/(cnt + 1) : (srv′

11
= 1) + γ : (cnt′ = cnt + 1);

[] (active = 1)&(srv12 = 0) → α12 : (srv′

12
= 1) + δ12 : (srv′

12
= 2) + β12 : (srv′

12
= 3);

[] (active = 1)&(srv13 = 0) → α13 : (srv′

13
= 1) + δ13 : (srv′

13
= 2) + β13 : (srv′

13
= 3);

endmodule

module S2

[] (active = 2)&(srv21 = 0) → α2 : (srv′

21
= 1) + δ2 : (srv′

21
= 2);

[] (active = 2)&(srv22 = 0) → α2 : (srv′

22
= 1) + δ2 : (srv′

22
= 2);

endmodule

Fig. 4. Case study: modelling subservices in PRISM

const double λ = 0.2 // service request arrival rate
const double µ = 0.6; // service director’s output rate
const double η = 1; // service director’s handling rate

const int MAX failed = 40; // max acceptable threshold for the failed requests

global abort : bool init false; // 0 = nd, 1 = ok, 2 = nok, 3 = pok
global active : [0..3] init 1; // 1 = IN, 2 = S1..S3, 3 = S4..S5, 4 = OUT

module SD

[] (active = 0)&(!idle) → η : (active′ = 1);

[] (active = 1)&(srv11 = 1)&(cnt ≤ MAX)&(srv12 �= 2)&(srv13 �= 2)&
(srv12 = 1 | srv13 = 1) → η : (active′ = 2);

[] (active = 1)&(srv12 = 2 | srv13 = 2 | cnt > MAX | (srv12 = 3& srv13 = 3)) →
η : (active′ = 3)&(abort′ = true);

[] (active = 2)&(srv21 = 1 | srv22 = 1) → η : (active′ = 3);

[] (active = 2)&(srv21 = 2)&(srv22 = 2) → η : (active′ = 3)&(abort′ = true);

endmodule

module IN OUT

idle : bool init true;
failed : [0..MAX failed + 1] init 0;

[] (active = 0)&(idle) → λ : (idle′ = false);

[] (active = 3)&(!abort) → µ : (active′ = 0)&(cnt′ = 0)&(idle′ = true)&
(srv′

11
= 0)&(srv′

12
= 0)&(srv′

13
= 0)&(srv′

21
= 0)&(srv′

22
= 0);

[] (active = 3)&(abort)&(failed ≤ MAX failed) → µ : (active′ = 0)&(cnt′ = 0)&
(idle′ = true)&(abort′ = false)&(failed′ = failed + 1)&(srv′

11
= 0)& . . . ;

[] (active = 3)&(abort)&(failed > MAX failed) → µ : (active′ = 0)&(cnt′ = 0)&
(idle′ = true)&(abort′ = false)&(srv′

11
= 0)& . . . ;

endmodule

Fig. 5. Case study: modelling the service director in PRISM

250 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

(a) Probabilistic properties (b) Reward-based properties

Fig. 6. Case study: results of probabilistic analysis by PRISM

The next part of the analysis is related to estimation of the failed/served re-
quests over a period of T time units. This analysis was accomplished in PRISM
using its support for reward-based properties. For each class of states corre-
sponding to the OUT activity of the service director, a cost structure which
assigns a cost of 1 is used. The properties

R{‘num failed’}=?[C ≤ T] and R{‘num served’}=?[C ≤ T]

are then used to compute the expected number of failed and served service
requests cumulated by the system over T time units (see Fig. 6(b)).

7 Related Work and Conclusions

Modelling of SOSs is a topic of active ongoing research. Here we only overview
two research strands closely related to our approach: 1) formal approaches to
modelling SOSs and quantitative assessment of QoS, and 2) the approaches that
facilitate explicit reasoning about the dynamic system behaviour in Event-B.

Significant research efforts have been put into developing dedicated languages
for modelling SOSs and their dynamic behaviour. For instance, Orc [10] is a
language specifically designed to provide a formal basis for conceptual program-
ming of web-services, while COWS (Calculus for Orchestration of Web Services)
is a process calculus for specifying and combining services [13]. Similarly to our
approach, the stochastic extension of COWS relies on CTMCs and the PRISM
model checker to enable quantitative assessment of QoS parameters [16]. A fun-
damental approach to stochastic modelling of SOSs is proposed by De Nicola
et al. [6]. The authors define a structural operational semantics of MarCaSPiS
– a Markovian extension of CaSPiS (Calculus of Sessions and Pipelines). The
proposed semantics is based on a stochastic version of two-party (CCS-like)
synchronisation, typical for service-oriented approaches, while guaranteeing as-
sociativity and commutativity of parallel composition of services.

In contrast, in our approach we rely on a formal framework that enables unified
modelling of functional requirements and orchestration aspects of SOSs. We have
extended our previous work on formalisation of Lyra, an UML-based approach

Formal Modelling and Verification of Service-Oriented Systems 251

for development of SOSs [12,11], in two ways. First, we defined a number of
formal verification requirements for service orchestration. Second, we proposed
a probabilistic extension of Event-B that, in combination with the probabilistic
model checker PRISM, enables stochastic assessment of QoS attributes.

There is also an extensive body of research on applying of model checking
techniques for quantitative evaluation of QoS (see, e.g., [5]). We however focus
on combining formal refinement techniques with quantitative assessment of QoS.

Several approaches have been recently proposed to enable explicit reason-
ing about the dynamic system behaviour in Event-B. Iliasov [8] has proposed
to augment Event-B models with additional proof obligations derived from the
provided use case scenarios and control flow diagrams. An integration of CSP
and Event-B to facilitate reasoning about the dynamic system behaviour has
been proposed by Schneider et al. [18]. In the latter work, CSP is used to pro-
vide an explicit control flow for an Event-B model as well as to separate the
requirements dependent on the control flow information. The approach we have
taken is inspired by these works. We however rely solely on Event-B to built a
dynamic service architecture and verify the required service orchestration.

We can summarise our technical contribution as being two-fold. First, we have
put forward an approach to defining a dynamic service architecture in Event-B.
Such an Event-B model represents service orchestration explicitly, i.e., it depicts
interactions of a service director with the controlled services, the order of service
execution as well as fault tolerance mechanisms. Moreover, we have formally
defined the conditions required for verification of a dynamic service architecture
modelled in Event-B. Second, we have demonstrated how to augment such a
model with stochastic information and transform it into a CTMC. It allows us
to rely on probabilistic model checking techniques to quantitatively assess the
desired quality of essential service attributes. In our future work, it would be in-
teresting to extend the proposed approach to deal with dynamic reconfiguration
as well as unreliable communication channels.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (2005)

2. Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2010)
3. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying Continuous Time Markov

Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996)

4. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate Symbolic Model Checking of
Continuous-Time Markov Chains (Extended Abstract). In: Baeten, J.C.M., Mauw,
S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–161. Springer, Heidelberg
(1999)

5. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.: Dy-
namic QoS Management and Optimization in Service-Based Systems. IEEE Trans.
Softw. Eng. 37, 387–409 (2011)

6. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian
Extension of a Calculus for Services. Electronic Notes in Theoretical Computer
Science 229(4), 11–26 (2009)

252 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

7. Grunske, L.: Specification patterns for probabilistic quality properties. In: Inter-
national Conference on Software Engineering, ICSE 2008, pp. 31–40. ACM (2008)

8. Iliasov, A.: Use Case Scenarios as Verification Conditions: Event-B/Flow Approach.
In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, vol. 6968, pp. 9–23. Springer,
Heidelberg (2011)

9. Industrial Deployment of System Engineering Methods Providing High Depend-
ability and Productivity (DEPLOY): IST FP7 IP Project,
http://www.deploy-project.eu/

10. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc Programming Language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE 2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009)

11. Laibinis, L., Troubitsyna, E., Leppänen, S.: Formal Reasoning about Fault Toler-
ance and Parallelism in Communicating Systems. In: Butler, M., Jones, C., Ro-
manovsky, A., Troubitsyna, E. (eds.) Methods, Models and Tools for Fault Toler-
ance. LNCS, vol. 5454, pp. 130–151. Springer, Heidelberg (2009)

12. Laibinis, L., Troubitsyna, E., Leppänen, S., Lilius, J., Malik, Q.A.: Formal Model-
Driven Development of Communicating Systems. In: Lau, K.-K., Banach, R. (eds.)
ICFEM 2005. LNCS, vol. 3785, pp. 188–203. Springer, Heidelberg (2005)

13. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

15. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Springer (2005)

16. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Hei-
delberg (2007)

17. Rodin: Event-B Platform, http://www.event-b.org/
18. Schneider, S., Treharne, H., Wehrheim, H.: A CSP Approach to Control in Event-

B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 260–274. Springer,
Heidelberg (2010)

19. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Quantitative Reasoning about Depend-
ability in Event-B: Probabilistic Model Checking Approach. In: Dependability and
Computer Engineering: Concepts for Software-Intensive Systems, pp. 459–472. IGI
Global (2011)

Paper IV

Formal Development and Assessment of a

Reconfigurable On-board Satellite System

Anton Tarasyuk, Inna Pereverzeva, Elena Troubitsyna,

Timo Latvala and Laura Nummila

Originally published in: Frank Ortmeier, Peter Daniel (Eds.), Proceedings of
31st International Conference on Computer Safety, Reliability and Security
(SAFECOMP 2012), LNCS 7612, 210–222, Springer, 2012

Formal Development and Assessment

of a Reconfigurable On-board Satellite System

Anton Tarasyuk1,2, Inna Pereverzeva1,2, Elena Troubitsyna1,
Timo Latvala3, and Laura Nummila3

1 Åbo Akademi University, Turku, Finland
2 Turku Centre for Computer Science, Turku, Finland

3 Space Systems Finland, Espoo, Finland
{inna.pereverzeva,anton.tarasyuk,elena.troubitsyna}@abo.fi,

{timo.latvala,laura.nummila}@ssf.fi

Abstract. Ensuring fault tolerance of satellite systems is critical for
achieving goals of the space mission. Since the use of redundancy is
restricted by the size and the weight of the on-board equipments, the
designers need to rely on dynamic reconfiguration in case of failures of
some components. In this paper we propose a formal approach to devel-
opment of dynamically reconfigurable systems in Event-B. Our approach
allows us to build the system that can discover possible reconfiguration
strategy and continue to provide its services despite failures of its vital
components. We integrate probabilistic verification to evaluate reconfig-
uration alternatives. Our approach is illustrated by a case study from
aerospace domain.

Keywords: Formal modelling, fault tolerance, Event-B, refinement,
probabilistic verification.

1 Introduction

Fault tolerance is an important characteristics of on-board satellite systems.
One of the essential means to achieve it is redundancy. However, the use of
(hardware) component redundancy in spacecraft is restricted by the weight and
volume constraints. Thus, the system developers need to perform a careful cost-
benefit analysis to minimise the use of spare modules yet achieve the required
level of reliability.

Despite such an analysis, Space System Finland has recently experienced a
double-failure problem with a system that samples and packages scientific data
in one of the operating satellites. The system consists of two identical modules.
When one of the first module subcomponents failed, the system switched to the
use of the second module. However, after a while a subcomponent of the spare
has also failed, so it became impossible to produce scientific data. To not lose
the entire mission, the company has invented a solution that relied on healthy
subcomponents of both modules and a complex communication mechanism to
restore system functioning. Obviously, a certain amount of data has been lost
before a repair was deployed. This motivated our work on exploring proactive

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 210–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Formal Development and Assessment of a Reconfigurable System 211

solutions for fault tolerance, i.e., planning and evaluating of scenarios imple-
menting a seamless reconfiguration using a fine-grained redundancy.

In this paper we propose a formal approach to modelling and assessment of on-
board reconfigurable systems. We generalise the ad-hoc solution created by Space
Systems Finland and propose an approach to formal development and assess-
ment of fault tolerant satellite systems. The essence of our modelling approach is
to start from abstract modelling functional goals that the system should achieve
to remain operational, and to derive reconfigurable architecture by refinement in
the Event-B formalism [1]. The rigorous refinement process allows us to establish
the precise relationships between component failures and goal reachability. The
derived system architecture should not only satisfy functional requirements but
also achieve its reliability objective. Moreover, since the reconfiguration proce-
dure requires additional inter-component communication, the developers should
also verify that system performance remains acceptable. Quantitative evaluation
of reliability and performance of probabilistically augmented Event-B models is
performed using the PRISM model checker [8].

The main novelty of our work is in proposing an integrated approach to formal
derivation of reconfigurable system architectures and probabilistic assessment
of their reliability and performance. We believe that the proposed approach
facilitates early exploration of the design space and helps to build redundancy-
frugal systems that meet the desired reliability and performance requirements.

2 Reconfigurable Fault Tolerant Systems

2.1 Case Study: Data Processing Unit

As mentioned in the previous section, our work is inspired by a solution proposed
to circumvent the double failure occurred in a currently operational on-board
satellite system. The architecture of that system is similar to Data Processing
Unit (DPU) – a subsystem of the European Space Agency (ESA) mission Bepi-
Colombo [2]. Space Systems Finland is one of the providers for BepiColombo.
The main goal of the mission is to carry out various scientific measures to explore
the planet Mercury. DPU is an important part of the Mercury Planetary Orbiter.
It consists of four independent components (computers) responsible for receiv-
ing and processing data from four sensor units: SIXS-X (X-ray spectrometer),
SIXS-P (particle spectrometer), MIXS-T (telescope) and MIXS-C (collimator).

The behaviour of DPU is managed by telecommands (TCs) received from the
spacecraft and stored in a circular buffer (TC pool). With a predefined rate, DPU
periodically polls the buffer, decodes a TC and performs the required actions.
Processing of each TC results in producing telemetry (TM). Both TC and TM
packages follow the syntax defined by the ESA Packet Utilisation Standard [12].
As a result of TC decoding, DPU might produce a housekeeping report, switch
to some mode or initiate/continue production of scientific data. The main pur-
pose of DPU is to ensure a required rate of producing TM containing scientific
data. In this paper we focus on analysing this particular aspect of the system

212 A. Tarasyuk et al.

behaviour. Hence, in the rest of the paper, TC will correspond to the telecom-
mands requiring production of scientific data, while TM will designate packages
containing scientific data.

2.2 Goal-Oriented Reasoning about Fault Tolerance

We use the notion of a goal as a basis for reasoning about fault tolerance. Goals
– the functional and non-functional objectives that the system should achieve –
are often used to structure the requirements of dependable systems [7,9].

Let G be a predicate that defines a desired goal and M be a system model.
Ideally, the system design should ensure that the goal can be reached “infinitely
often”. Hence, while verifying the system, we should establish that

M |= ✷✸G.

The main idea of a goal-oriented development is to decompose the high-level
system goals into a set of subgoals. Essentially, subgoals define the intermediate
stages of achieving a high-level goal. In the process of goal decomposition we as-
sociate system components with tasks – the lowest-level subgoals. A component
is associated with a task if its functionality enables establishing the goal defined
by the corresponding task.

For instance, in this paper we consider “produce scientific TM” as a goal of
DPU. DPU sequentially enquires each of its four components to produce its part
of scientific data. Each component acquires fresh scientific data from the cor-
responding sensor unit (SIXS-X, SIXS-P, MIXS-T or MIXS-C), preprocesses it
and makes available to DPU that eventually forms the entire TM package. Thus,
the goal can be decomposed into four similar tasks “sensor data production”.

Generally, the goal G can be decomposed into a finite set of tasks:

T = {taskj | j ∈ 1..n ∧ n ∈ N1},

Let also C be a finite set of components capable of performing tasks from T :

C = {compj | j ∈ 1..m ∧m ∈ N1},

where N1 is the set of positive integers. Then the relation Φ defined below asso-
ciates components with the tasks:

Φ ∈ T ↔ C, such that ∀t ∈ T ·∃c ∈ C ·Φ(t, c),
where ↔ designates a binary relation.

To reason about fault tolerance, we should take into account component un-
reliability. A failure of a component means that it cannot perform its associated
task. Fault tolerance mechanisms employed to mitigate results of component fail-
ures rely on various forms of component redundancy. Spacecraft have stringent
limitations on the size and weight of the on-board equipment, hence high degree
of redundancy is rarely present. Typically, components are either duplicated or
triplicated. Let us consider a duplicated system that consists of two identical
DPUs – DPUA and DPUB. As it was explained above, each DPU contains four
components responsible for controlling the corresponding sensor.

Formal Development and Assessment of a Reconfigurable System 213

Traditionally, satellite systems are designed to implement the following sim-
ple redundancy scheme. Initially DPUA is active, while DPUB is a cold spare.
DPUA allocates tasks on its components to achieve the system goal G – pro-
cessing of a TC and producing the TM. When some component of DPUA fails,
DPUB is activated to achieve the goal G. Failure of DPUB results in failure of
the overall system. However, even though none of the DPUs can accomplish G
on its own, it might be the case that the operational components of both DPUs
can together perform the entire set of tasks required to reach G. This observation
allows us to define the following dynamic reconfiguration strategy.

Initially DPUA is active and assigned to reach the goal G. If some of its
components fails, resulting in a failure to execute one of four scientific tasks
(let it be taskj), the spare DPUB is activated and DPUA is deactivated. DPUB

performs the taskj and the consecutive tasks required to reach G. It becomes fully
responsible for achieving the goal G until some of its component fails. In this case,
to remain operational, the system performs dynamic reconfiguration. Specifically,
it reactivates DPUA and tries to assign the failed task to its corresponding
component. If such a component is operational then DPUA continues to execute
the subsequent tasks until it encounters a failed component. Then the control
is passed to DPUB again. Obviously, the overall system stays operational until
two identical components of both DPUs have failed.

We generalise the architecture of DPU by stating that essentially a system
consists of a number of modules and each module consists of n components:

C = Ca ∪ Cb, where Ca = {a compj | j ∈ 1..n ∧ n ∈ N1} etc.

Each module relies on its components to achieve the tasks required to accomplish
G. An introduction of redundancy allows us to associate not a single but sev-
eral components with each task. We reformulate the goal reachability property
as follows: a goal remains reachable while there exists at least one operational

component associated with each task. Formally, it can be specified as:

M |= ✷Os, where Os ≡ ∀t ∈ T · (∃c ∈ C ·Φ(t, c) ∧ O(c))

and O is a predicate over the set of components C such that O(c) evaluates to
TRUE if and only if the component c is operational.

2.3 Probabilistic Assessment

If a duplicated system with the dynamic reconfiguration achieves the desired
reliability level, it might allow the designers to avoid module triplication. How-
ever, it also increases the amount of intercomponent communication that leads
to decreasing the system performance. Hence, while deciding on a fault tolerance
strategy, it is important to consider not only reachability of functional goals but
also their performance and reliability aspects.

In engineering, reliability is usually measured by the probability that the
system remains operational under given conditions for a certain time interval. In
terms of goal reachability, the system remains operational until it is capable of

214 A. Tarasyuk et al.

reaching targeted goals. Hence, to guarantee that system is capable of performing
a required functions within a time interval t, it is enough to verify that

M |= ✷
≤t Os. (1)

However, due to possible component failures we usually cannot guarantee the
absolute preservation of (1). Instead, to assess the reliability of a system, we need
to show that the probability of preserving the property (1) is sufficiently high.
On the other hand, the system performance is a reward-based property that can
be measured by the number of successfully achieved goals within a certain time
period.

To quantitatively verify these quality attributes we formulate the following
CSL (Continuous Stochastic Logic) formulas [6]:

P=?{G ≤ t Os} and R(|goals|)=?{C ≤ t }.

The formulas above are specified using PRISM notation. The operator P is used
to refer to the probability of an event occurrence,G is an analogue of ✷,R is used
to analyse the expected values of rewards specified in a model, while C specifies
that the reward should be cumulated only up to a given time bound. Thus, the
first formula is used to analyse how likely the system remains operational as
time passes, while the second one is used to compute the expected number of
achieved goals cumulated by the system over t time units.

In this paper we rely on modelling in Event-B to formally define the architec-
ture of a dynamically reconfigurable system, and on the probabilistic extension
of Event-B to create models for assessing system reliability and performance.
The next section briefly describes Event-B and its probabilistic extension.

3 Modelling in Event-B and Probabilistic Analysis

3.1 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-construc-
tion development paradigm and formal verification by theorem proving. In Event-
B, a system model is specified using the notion of an abstract state machine [1],
which encapsulates the model state, represented as a collection of variables, and
defines operations on the state, i.e., it describes the behaviour of a modelled sys-
tem. Usually, a machine has an accompanying component, called context, which
includes user-defined sets, constants and their properties given as a list of model
axioms. The model variables are strongly typed by the constraining predicates.
These predicates and the other important properties that must be preserved by
the model constitute model invariants.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is
a predicate over the local variables of the event and the state variables of the

Formal Development and Assessment of a Reconfigurable System 215

system. The body of the event is defined by the next-state relation Re. In Event-
B, Re is defined by a multiple (possibly nondeterministic) assignment over the
system variables. The guard defines the conditions under which the event is
enabled. If several events are enabled at the same time, any of them can be
chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system devel-
opment. Development starts from an abstract specification that nondetermin-
istically models the most essential functional requirements. In a sequence of
refinement steps we gradually reduce nondeterminism and introduce detailed de-
sign decisions. In particular, we can add new events, split events as well as replace
abstract variables by their concrete counterparts, i.e., perform data refinement.
When data refinement is performed, we should define gluing invariants as a part
of the invariants of the refined machine. They define the relationship between the
abstract and concrete variables. The proof of data refinement is often supported
by supplying witnesses – the concrete values for the replaced abstract variables
and parameters. Witnesses are specified in the event clause with.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demonstrated
by discharging the relevant proof obligations generated by the Rodin platform
[11]. The platform provides an automated tool support for proving.

3.2 Augmenting Event-B Models with Probabilities

Next we briefly describe the idea behind translating of an Event-B machine into
continuous time Markov chain – CTMC (the details can be found in [15]). To
achieve this, we augment all events of the machine with information about the
probability and duration of all the actions that may occur during their execution,
and refine them by their probabilistic counterparts.

Let Σ be a state space of an Event-B model defined by all possible values of
the system variables. Let also I be the model invariant. We consider an event e
as a binary relation on Σ, i.e., for any two states σ, σ′ ∈ Σ:

e(σ, σ′)
def
= Ge(σ) ∧Re(σ, σ

′).

Definition 1. The behaviour of an Event-B machine is fully defined by a tran-

sition relation →:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ → σ′
,

where before(e) = {σ ∈ Σ | I(σ) ∧Ge(σ)}, Eσ = {e ∈ E | σ ∈ before(e)} and

after(e) = {σ′ ∈ Σ | I(σ′) ∧ (∃σ ∈ Σ · I(σ) ∧Ge(σ) ∧Re(σ, σ
′))}.

Furthermore, let us denote by λe(σ, σ
′) the (exponential) transition rate from σ

to σ′ via the event e, where σ ∈ before(e) and Re(σ, σ
′). By augmenting all the

event actions with transition rates, we can modify Definition 1 as follows.

216 A. Tarasyuk et al.

Definition 2. The behaviour of a probabilistically augmented Event-B machine

is defined by a transition relation
Λ
−→:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ
Λ
−→ σ′

, where Λ =
∑

e∈Eσ

λe(σ, σ
′).

Definition 2 allows us to define the semantics of a probabilistically augmented
Event-B model as a probabilistic transition system with the state space Σ, tran-

sition relation
Λ
−→ and the initial state defined by model initialisation (for prob-

abilistic models we require the initialisation to be deterministic). Clearly, such
a transition system corresponds to a CTMC.

In the next section we demonstrate how to formally derive an Event-B model
of the architecture of a reconfigurable system.

4 Deriving Fault Tolerant Architectures by Refinement

in Event-B

The general idea behind our formal development is to start from an abstract goal
modelling, decompose it into tasks and introduce an abstract representation of
the goal execution flow. Such a model can be refined into different fault tolerant
architectures. Subsequently, these models are augmented with probabilistic data
and used for the quantitative assessment.

4.1 Modelling Goal Reaching

Goal Modelling. Our initial specification abstractly models the process of
reaching the goal. The progress of achieving the goal is modelled by the variable
goal that obtains values from the enumerated set STATUS = {not reached,
reached, failed}. Initially, the system is not assigned any goals to accomplish,
i.e., the variable idle is equal to TRUE. When the system becomes engaged
in establishing the goal, idle obtains value FALSE as modelled by the event
Activation. In the process of accomplishing the goal, the variable goal might
eventually change its value from not reached to reached or failed, as modelled
by the event Body. After the goal is reached the system becomes idle, i.e., a new
goal can be assigned. The event Finish defines such a behaviour. We treat the
failure to achieve the goal as a permanent system failure. It is represented by
the infinite stuttering defined in the event Abort.

Activation =̂

when idle = TRUE

then idle := FALSE

end

Body =̂

when idle = FALSE ∧ goal = not reached

then goal :∈ STATUS

end

Finish =̂

when idle = FALSE ∧ goal = reached

then goal, idle := not reached, TRUE

end

Abort =̂

when goal = failed

then skip

end

Formal Development and Assessment of a Reconfigurable System 217

Goal Decomposition. The aim of our first refinement step is to define the
goal execution flow. We assume that the goal is decomposed into n tasks, and
can be achieved by a sequential execution of one task after another. We also
assume that the id of each task is defined by its execution order. Initially, when
the goal is assigned, none of the tasks is executed, i.e., the state of each task
is “not defined” (designated by the constant value ND). After the execution,
the state of a task might be changed to success or failure, represented by the
constants OK andNOK correspondingly. Our refinement step is essentially data
refinement that replaces the abstract variable goal with the new variable task

that maps the id of a task to its state, i.e., task ∈ 1..n → {OK,NOK,ND}.
We omit showing the events of the refined model (the complete development

can be found in [13]). They represent the process of sequential selection of one
task after another until either all tasks are executed, i.e., the goal is reached, or
execution of some task fails, i.e., goal is not achieved. Correspondingly, the guards
ensure that either the goal reaching has not commenced yet or the execution of
all previous task has been successful. The body of the events nondeterministically
changes the state of the chosen task to OK or NOK. The following invariants
define the properties of the task execution flow:

∀l · l ∈ 2 .. n ∧ task(l) �= ND ⇒ (∀i · i ∈ 1 .. l − 1⇒ task(i) = OK),

∀l · l ∈ 1 .. n− 1 ∧ task(l) �= OK ⇒ (∀i · i ∈ l + 1 .. n⇒ task(i) = ND).

They state that the goal execution can progress, i.e., a next task can be chosen for
execution, only if none of the previously executed tasks failed and the subsequent
tasks have not been executed yet.

From the requirements perspective, the refined model should guarantee that
the system level goal remains achievable. This is ensured by the gluing invariants
that establish the relationship between the abstract goal and the tasks:

task[1 .. n] = {OK} ⇒ goal = reached,

(task[1 .. n] = {OK,ND} ∨ task[1 .. n] = {ND})⇒ goal = not reached,

(∃i · i ∈ 1 .. n ∧ task(i) = NOK)⇒ goal = failed.

Introducing Abstract Communication. In the second refinement step we
introduce an abstract model of communication. We define a new variable ct that
stores the id of the last achieved task. The value of ct is checked every time when
a new task is to be chosen for execution. If task execution succeeds then ct is
incremented. Failure to execute the task leaves ct unchanged and results only
in the change of the failed task status to NOK. Essentially, the refined model
introduces an abstract communication via shared memory. The following gluing
invariants allow us to prove the refinement:

ct > 0⇒ (∀i · i ∈ 1 .. ct⇒ task(i) = OK), ct < n⇒ task(ct+ 1) ∈ {ND,NOK},

ct < n− 1⇒ (∀i · i ∈ ct+ 2 .. n⇒ task(i) = ND).

As discussed in Section 2, each task is independently executed by a separate
component of a high-level module. Hence, by substituting the id of a task with
the id of the corresponding component, i.e., performing a data refinement with
the gluing invariant

∀i ∈ 1..n · task(i) = comp(i),

218 A. Tarasyuk et al.

we specify a non-redundant system architecture. This invariant trivially defines
the relation Φ. Next we demonstrate how to introduce either a triplicated archi-
tecture or duplicated architecture with a dynamic reconfiguration by refinement.

4.2 Reconfiguration Strategies

To define triplicated architecture with static reconfiguration, we define three
identical modules A, B and C. Each module consists of n components execut-
ing corresponding tasks. We refine the abstract variable task by the three new
variables a comp, b comp and c comp:

a comp ∈ 1..n → STATE, b comp ∈ 1..n → STATE, c comp ∈ 1..n → STATE.

To associate the tasks with the components of each module, we formulate a
number of gluing invariants that essentially specify the relation Φ. Some of these
invariants are shown below:

∀i · i ∈ 1 .. n ∧module = A ∧ a comp(i) = OK ⇒ task(i) = OK,

module = A⇒ (∀i · i ∈ 1 .. n⇒ b comp(i) = ND ∧ c comp(i) = ND),

∀i · i ∈ 1 .. n ∧module = A ∧ a comp(i) �= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧module = B ∧ b comp(i) �= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧module = C ⇒ c comp(i) = task(i),

module = B ⇒ (∀i · i ∈ 1 .. n⇒ c comp(i) = ND).

Here, a new variable module ∈ {A,B,C} stores the id of the currently active
module. The complete list of invariants can be found in [13]. Please note, that
these invariants allows us to mathematically prove that the Event-B model pre-
serves the desired system architecture.

An alternative way to perform this refinement step is to introduce a duplicated
architecture with dynamic reconfiguration. In this case, we assume that our
system consists of two modules, A and B, defined in the same way as discussed
above. We replace the abstract variable task with two new variables a comp and
b comp. Below we give an excerpt from the definition of the gluing invariants:

module = A ∧ ct > 0 ∧ a comp(ct) = OK ⇒ task(ct) = OK,

module = B ∧ ct > 0 ∧ b comp(ct) = OK ⇒ task(ct) = OK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = NOK ⇒ task(i) = NOK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = ND ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧ b comp(i) = NOK ∧ a comp(i) = ND ⇒ task(i) = ND.

Essentially, the invariants define the behavioural patterns for executing the tasks
according to dynamic reconfiguration scenario described in Section 2.

Since our goal is to study the fault tolerance aspect of the system architecture,
in our Event-B model we have deliberately abstracted away from the represen-
tation of the details of the system behaviour. A significant number of functional
requirements is formulated as gluing invariants. As a result, to verify correctness
of the models we discharged more than 500 proof obligations. Around 90% of
them have been proved automatically by the Rodin platform and the rest have
been proved manually in the Rodin interactive proving environment.

Formal Development and Assessment of a Reconfigurable System 219

Note that the described development for a generic system can be easily in-
stantiated to formally derive fault tolerant architectures of DPU. The goal of
DPU – handling the scientific TC by producing TM – is decomposed into four
tasks that define the production of data by the satellite’s sensor units – SIXS-X,
SIXS-P, MIXS-T and MIXS-C. Thus, for such a model we have four tasks (n=4)
and each task is handled by the corresponding computing component of DPU.
The high-level modules A, B and C correspond to three identical DPUs that
control handling of scientific TC – DPUA, DPUB and DPUC , while functions
a comp, b comp and c comp represent statuses of their internal components.

From the functional point of view, both alternatives of the last refinement
step are equivalent. Indeed, each of them models the process of reaching the
goal by a fault tolerant system architecture. In the next section we will present
a quantitative assessment of their reliability and performance aspects.

5 Quantitative Assessment of Reconfiguration Strategies

The scientific mission of BepiColombo on the orbit of the Mercury will last for
one year with possibility to extend this period for another year. Therefore, we
should assess the reliability of both architectural alternatives for this period of
time. Clearly, the triplicated DPU is able to tolerate up to three DPU failures
within the two-year period, while the use of a duplicated DPU with a dynamic
reconfiguration allows the satellite to tolerate from one (in the worst case) to
four (in the best case) failures of the components.

Obviously, the duplicated architecture with a dynamic configuration min-
imises volume and the weight of the on-board equipment. However, the dynamic
reconfiguration requires additional inter-component communication that slows
down the process of producing TM. Therefore, we need to carefully analyse the
performance aspect as well. Essentially, we need to show that the duplicated
system with the dynamic reconfiguration can also provide a sufficient amount of
scientific TM within the two-year period.

To perform the probabilistic assessment of reliability and performance, we
rely on two types of data:

– probabilistic data about lengths of time delays required by DPU components
and sensor units to produce the corresponding parts of scientific data

– data about occurrence rates of possible failures of these components

It is assumed that all time delays are exponentially distributed. We refine the
Event-B specifications obtained at the final refinement step by their proba-
bilistic counterparts. This is achieved via introducing probabilistic information
into events and replacing all the local nondeterminism with the (exponential)
race conditions. Such a refinement relies on the model transformation presented
in Section 3. As a result, we represent the behaviour of Event-B machines by
CTMCs. This allows us to use the probabilistic symbolic model checker PRISM
to evaluate reliability and performance of the proposed models.

Due to the space constraints, we omit showing the PRISM specifications in
the paper, they can be found in [13]. The guidelines for Event-B to PRISM model
transformation can be found in our previous work [14].

220 A. Tarasyuk et al.

The results of quantitative verification performed by PRISM show that with
probabilistic characteristics of DPU presented, in Table 11, both reconfiguration
strategies lead to a similar level of system reliability and performance with in-
significant advantage of the triplicated DPU. Thus, the reliability levels of both
systems within the two-year period are approximately the same with the differ-
ence of just 0.003 at the end of this period (0.999 against 0.996). Furthermore,
the use of two DPUs under dynamic reconfiguration allows the satellite to han-
dle only 2 TCs less after two years of work – 1104 against 1106 returned TM
packets in the case of the triplicated DPU. Clearly, the use of the duplicated
architecture with dynamic reconfiguration to achieve the desired levels of relia
bility and performance is optimal for the considered system.

Table 1. Rates (time is measured by minutes)

TC access rate when the system is idle λ 1

12·60
SIXS-P work rate α2

1

30

TM output rate when a TC is handled µ 1

20
SIXS-P failure rate β2

1

106

Spare DPU activation rate (power on) δ 1

10
MIXS-T work rate α3

1

30

DPUs “communication” rate τ 1

5
MIXS-T failure rate β3

1

9·107

SIXS-X work rate α1
1

60
MIXS-C work rate α4

1

90

SIXS-X failure rate β1
1

8·107
MIXS-C failure rate β4

1

6·107

Finally, let us remark that the goal-oriented style of the reliability and per-
formance analysis has significantly simplified the assessment of the architectural
alternatives of DPU. Indeed, it allowed us to abstract away from the configura-
tion of input and output buffers, i.e., to avoid modelling of the circular buffer as
a part of the analysis.

6 Conclusions and Related Work

In this paper we proposed a formal approach to development and assessment
of fault tolerant satellite systems. We made two main technical contributions.
On the one hand, we defined the guidelines for development of the dynamically
reconfigurable systems. On the other hand, we demonstrated how to formally
assess reconfiguration strategy and evaluate whether the chosen fault tolerance
mechanism fulfils reliability and performance objectives. The proposed approach
was illustrated by a case study – development and assessment of the reconfig-
urable DPU. We believe that our approach not only guarantees correct design of
complex fault tolerance mechanisms but also facilitates finding suitable trade-offs
between reliability and performance.

1 Provided information may differ form the characteristics of the real components. It is
used merely to demonstrate how the required comparison of reliability/performance
can be achieved.

Formal Development and Assessment of a Reconfigurable System 221

A large variety of aspects of the dynamic reconfiguration has been studied
in the last decade. For instance, Wermelinger et al. [17] proposed a high-level
language for specifying the dynamically reconfigurable architectures. They focus
on modifications of the architectural components and model reconfiguration by
the algebraic graph rewriting. In contrast, we focused on the functional rather
than structural aspect of reasoning about reconfiguration.

Significant research efforts are invested in finding suitable models of triggers
for run-time adaptation. Such triggers monitor performance [3] or integrity [16]
of the application and initiate reconfiguration when the desired characteristics
are not achieved. In our work we perform the assessment of reconfiguration strat-
egy at the development phase that allows us to rely on existing error detection
mechanisms to trigger dynamic reconfiguration.

A number of researchers investigate self* techniques for designing adaptive
systems that autonomously achieve fault tolerance, e.g., see [4,10]. However,
these approaches are characterised by a high degree of uncertainty in achieving
fault tolerance that is unsuitable for the satellite systems. The work [5] proposes
an interesting conceptual framework for establishing a link between changing
environmental conditions, requirements and system-level goals. In our approach
we were more interested in studying a formal aspect of dynamic reconfiguration.

In our future work we are planning to further study the properties of dynamic
reconfiguration. It particular, it would be interesting to investigate reconfigura-
tion in the presence of parallelism and complex component interdependencies.

References

1. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press (2010)
2. BepiColombo: ESA Media Center, Space Science,

http://www.esa.int/esaSC/SEMNEM3MDAF_0_spk.html

3. Caporuscio, M., Di Marco, A., Inverardi, P.: Model-Based System Reconfiguration
for Dynamic Performance Management. J. Syst. Softw. 80, 455–473 (2007)

4. de Castro Guerra, P.A., Rubira, C.M.F., de Lemos, R.: A Fault-Tolerant Software
Architecture for Component-Based Systems. In: Architecting Dependable Systems,
pp. 129–143. Springer (2003)

5. Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B., Hughes, D.: Goal-Based Mod-
eling of Dynamically Adaptive System Requirements. In: ECBS 2008, pp. 36–45.
IEEE Computer Society (2008)

6. Grunske, L.: Specification Patterns for Probabilistic Quality Properties. In: ICSE
2008, pp. 31–40. ACM (2008)

7. Kelly, T.P., Weaver, R.A.: The Goal Structuring Notation – A Safety Argument
Notation. In: DSN 2004, Workshop on Assurance Cases (2004)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

9. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: RE 2001, pp. 249–263. IEEE Computer Society (2001)

10. de Lemos, R., de Castro Guerra, P.A., Rubira, C.M.F.: A Fault-Tolerant Architec-
tural Approach for Dependable Systems. IEEE Software 23, 80–87 (2006)

11. Rodin: Event-B Platform, http://www.event-b.org/

222 A. Tarasyuk et al.

12. Space Engineering: Ground Systems and Operations – Telemetry and Telecom-
mand Packet Utilization: ECSS-E-70-41A. ECSS Secretariat (January 30, 2003),
http://www.ecss.nl/

13. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T., Nummila, L.: Formal
Development and Assessment of a Reconfigurable On-board Satellite System. Tech.
Rep. 1038, Turku Centre for Computer Science (2012)

14. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Quantitative Reasoning about Depend-
ability in Event-B: Probabilistic Model Checking Approach. In: Dependability and
Computer Engineering: Concepts for Software-Intensive Systems, pp. 459–472. IGI
Global (2011)

15. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Formal Modelling and Verification
of Service-Oriented Systems in Probabilistic Event-B. In: Derrick, J., Gnesi, S.,
Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 237–252. Springer,
Heidelberg (2012)

16. Warren, I., Sun, J., Krishnamohan, S., Weerasinghe, T.: An Automated Formal Ap-
proach to Managing Dynamic Reconfiguration. In: ASE 2006, pp. 18–22. Springer
(2006)

17. Wermelinger, M., Lopes, A., Fiadeiro, J.: A Graph Based Architectural Reconfig-
uration Language. SIGSOFT Softw. Eng. Notes 26, 21–32 (2001)

Paper V

Quantitative Verification of System Safety in

Event-B

Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis

Originally published in: Elena Troubitsyna (Ed.), Proceedings of 3rd Inter-
national Workshop on Software Engineering for Resilient Systems (SERENE
2011), LNCS 6968, 24–39, Springer, 2011

Quantitative V erification of System Safety in

Event-B

Anton Tarasyuk1,2, Elena Troubitsyna2, and Linas Laibinis2

1 Turku Centre for Computer Science
2 Åbo Akademi University

Joukahaisenkatu 3-5, 20520 Turku, Finland
{anton.tarasyuk,elena.troubitsyna,linas.laibinis}@abo.fi

Abstract. Certification of safety-critical systems requires formal verifi-
cation of system properties and behaviour as well as quantitative demon-
stration of safety. Usually, formal modelling frameworks do not include
quantitative assessment of safety. This has a negative impact on produc-
tivity and predictability of system development. In this paper we present
an approach to integrating quantitative safety analysis into formal sys-
tem modelling and verification in Event-B. The proposed approach is
based on an extension of Event-B, which allows us to perform quan-
titative assessment of safety within proof-based verification of system
behaviour. This enables development of systems that are not only cor-
rect but also safe by construction. The approach is demonstrated by a
case study – an automatic railway crossing system.

1 Introduction

Safety is a property of a system to not endanger human life or environment [4]. To
guarantee safety, designers employ various rigorous techniques for formal mod-
elling and verification. Such techniques facilitate formal reasoning about system
correctness. In particular, they allow us to guarantee that a safety invariant –
a logical representation of safety – is always preserved during system execution.
However, real safety-critical systems, i.e., the systems whose components are
susceptible to various kinds of faults, are not “absolutely” safe. In other words,
certain combinations of failures may lead to an occurrence of a hazard – a po-
tentially dangerous situation breaching safety requirements. While designing and
certifying safety-critical systems, we should demonstrate that the probability of
a hazard occurrence is acceptably low. In this paper we propose an approach to
combining formal system modelling and quantitative safety analysis.

Our approach is based on a probabilistic extension of Event-B [22]. Event-B
is a formal modelling framework for developing systems correct-by-construction
[3,1]. It is actively used in the EU project Deploy [6] for modelling and verifying
of complex systems from various domains including railways. The Rodin platform
[20] provides the designers with an automated tool support that facilitates formal
verification and makes Event-B relevant in an industrial setting.

E.A. T roubitsyna (Ed.): SER ENE 2011, LNCS 6968, pp. 24–39, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Quantitative Verification of System Safety in Event-B 25

The main development technique of Event-B is refinement – a top-down pro-
cess of gradual unfolding of the system structure and elaborating on its func-
tionality. In this paper we propose design strategies that allow the developers
to structure safety requirements according to the system abstraction layers. Es-
sentially, such an approach can be seen as a process of extracting a fault tree
– a logical representation of a hazardous situation in terms of the primitives
used at different abstraction layers. Eventually, we arrive at the representation
of a hazard in terms of failures of basic system components. Since our model
explicitly contains probabilities of component failures, standard calculations al-
low us to obtain a probabilistic evaluation of a hazard occurrence. As a result,
we obtain an algebraic representation of the probability of safety violation. This
probability is defined using the probabilities of system component failures. To
illustrate our approach, we present a formal development and safety analysis of a
radio-based railway crossing. We believe the proposed approach can potentially
facilitate development, verification and assessment of safety-critical systems.

The rest of the paper is organised as follows. In Section 2 we describe our
formal modelling framework – Event-B, and briefly introduce its probabilistic
extension. In Section 3 we discuss a general design strategy for specifying Event-
B models amenable for probabilistic analysis of system safety. In Section 4 we
demonstrate the presented approach by a case study. Finally, Section 5 presents
an overview of the related work and some concluding remarks.

2 Modelling in Event-B

The B Method [2] is an approach for the industrial development of highly de-
pendable software. The method has been successfully used in the development
of several complex real-life applications [19,5]. Event-B is a formal framework
derived from the B Method to model parallel, distributed and reactive systems.
The Rodin platform provides automated tool support for modelling and verifi-
cation in Event-B. Currently Event-B is used in the EU project Deploy to model
several industrial systems from automotive, railway, space and business domains.

Event-B L anguage and Semantics. In Event-B, a system model is defined
using the notion of an abstract state machine [18]. An abstract state machine
encapsulates the model state, represented as a collection of model variables, and
defines operations on this state. Therefore, it describes the dynamic part of the
modelled system. A machine may also have an accompanying component, called
context, which contains the static part of the system. In particular, It can include
user-defined carrier sets, constants and their properties given as a list of model
axioms. A general form of Event-B models is given in Fig. 1.

The machine is uniquely identified by its name M . The state variables, v, are
declared in the Va riables clause and initialised in the Init event. The variables
are strongly typed by the constraining predicates I given in the Invariants

clause. The invariant clause also contains other predicates defining properties
that must be preserved during system execution.

26 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Machine M

Variables v

Invariants I

Events

Init

evt1
· · ·
evtN

−→

Context C

Carrier Sets d

Constants c

Axioms A

Fig. 1. Event-B machine and context

Action (S) BA(S)

x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ Set ∃z · (z ∈ Set ∧ x′ = z) ∧ y′ = y

x :| Q(x, y, x′) ∃z · (Q(x, z, y) ∧ x′ = z) ∧ y′ = y

Fig. 2. Before-after predicates

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

evt =̂ any a where g then S end,

where a is the list of local variables, the guard g is a conjunction of predicates
over the local variables a and state variables v, while the action S is a state
assignment. If the list a is empty, an event can be described simply as

evt =̂ when g then S end.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the action can be executed, i.e.,
when the event is enabled. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically. If none of the events is
enabled then the system deadlocks.

In general, the action of an event is a parallel composition of variable as-
signments. The assignments can be either deterministic or non-deterministic. A
deterministic assignment, x := E(x, y), has the standard syntax and meaning.
A nondeterministic assignment is denoted either as x :∈ Set, where Set is a set
of values, or x :| Q(x, y, x′), where Q is a predicate relating initial values of x, y
to some final value of x′. As a result of such a non-deterministic assignment, x
can get any value belonging to Set or satisfying Q.

The semantics of Event-B actions is defined using so-called before-after (BA)
predicates [3,18]. A BA predicate describes a relationship between the system
states before and after execution of an event, as shown in Fig. 2. Here x and y are
disjoint lists of state variables, and x′, y′ represent their values in the after-state.
The semantics of a whole Event-B model is formulated as a number of proof obli-
gations, expressed in the form of logical sequents. The full list of proof obligations
can be found in [3].

Quantitative Verification of System Safety in Event-B 27

Probabilistic Event-B. In our previous work [22] we have have extended the
Event-B modelling language with a new operator – quantitative probabilistic
choice, denoted ⊕|. It has the following syntax

x ⊕| x1 @ p1;. . . ;xn @ pn,

where
n∑

i= 1

pi = 1. It assigns to the variable x a new value xi with the correspond-

ing non-zero probability pi. The quantitative probabilistic choice (assignment)
allows us to precisely represent the probabilistic information about how likely a
particular choice is made. In other words, it behaves according to some known
probabilistic distribution.

We have restricted the use of the new probabilistic choice operator by intro-
ducing it only to replace the existing demonic one. This approach has also been
adopted by Hallerstede and Hoang, who have proposed extending the Event-
B framework with qualitative probabilistic choice [10]. It has been shown that
any probabilistic choice statement always refines its demonic nondeterministic
counterpart [13]. Hence, such an extension is not interfering with the established
refinement process. Therefore, we can rely on the Event-B proof obligations to
guarantee functional correctness of a refinement step. Moreover, the probabilis-
tic information introduced in new quantitative probabilistic choices can be used
to stochastically evaluate certain non-functional system properties.

For instance, in [22] we have shown how the notion of Event-B refinement
can be strengthened to quantitatively demonstrate that the refined system is
more reliable than its abstract counterpart. In this paper we aim at enabling
quantitative safety analysis within Event-B development.

3 Safety Analysis in Event-B

In this paper we focus on modelling of highly dynamic reactive control systems.
Such systems provide instant control actions as a result of receiving stimuli
from the controlled environment. Such a restriction prevents the system from
executing automated error recovery, i.e. once a component fails, its failure is
considered to be permanent and the system ceases its automatic functioning.

Generally, control systems are built in a layered fashion and reasoning about
their behaviour is conducted by unfolding layers of abstraction. Deductive safety
analysis is performed in a similar way. We start by identifying a hazard – a dan-
gerous situation associated with the system. By unfolding the layers of abstrac-
tion we formulate the hazard in terms of component states of different layers.

In an Event-B model, a hazard can be naturally defined as a predicate over
the system variables. Sometimes, it is more convenient to reformulate a hazard
as a dual safety requirement (property) that specifies a proper behaviour of a
system in a hazardous situation. The general form of such a safety property is:

SAF =̂ H(v) ⇒ K(v),

where the predicate H(v) specifies a hazardous situation and the predicate K(v)
defines the safety requirements in the terms of the system variables and states.

28 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

The essential properties of an Event-B model are usually formulated as in-
variants. However, to represent system behaviour realistically, our specification
should include modelling of not only normal behaviour but also component fail-
ure occurrence. Since certain combinations of failures will lead to hazardous
situations, we cannot guarantee “absolute” preservation of safety invariants. In-
deed, the goal of development of safety-critical systems is to guarantee that the
probability of violation of safety requirements is sufficiently small.

To assess the preservation of a desired safety property, we will unfold it (in
the refinement process) until it refers only to concrete system components that
have direct impact on the system safety. To quantitatively evaluate this impact,
we require that these components are probabilistically modelled in Event-B us-
ing the available information about their reliability. Next we demonstrate how
the process of unfolding the safety property from the abstract to the required
concrete representation can be integrated into our formal system development.

Often, functioning of a system can be structured according to a number of ex-
ecution stages. There is a specific component functionality associated with each
stage. Since there is no possibility to replace or repair failed system components,
we can divide the process of quantitative safety assessment into several con-
secutive steps, where each step corresponds to a particular stage of the system
functioning. Moreover, a relationship between different failures of components
and the system behaviour at a certain execution stage is preserved during all
the subsequent stages. On the other hand, different subsystems can communicate
with each other, which leads to possible additional dependencies between system
failures (not necessarily within the same execution stage). This fact significantly
complicates quantitative evaluation of the system safety.

We can unfold system safety properties either in a backward or in a forward
way. In the backward unfolding we start from the last execution stage preceding
the stage associated with the potentially hazardous situation. In the forward
one we start from the first execution stage of the system and continue until the
last stage just before the hazardous situation occurs. In this paper we follow
the former approach. The main idea is to perform a stepwise analysis of any
possible behaviour of all the subsystems at every execution stage preceding the
hazardous situation, while gradually unfolding the abstract safety property in
terms of new (concrete) variables representing faulty components of the system.

Specifically, in each refinement step, we have to establish the relationship
between the newly introduced variables and the abstract variables present in
the safety property. A standard way to achieve this is to formulate the required
relationship as a number of safety invariants in Event-B. According to our devel-
opment strategy, each such invariant establishes a connection between abstract
and more concrete variables that have an impact on system safety. Moreover, the
preservation of a safety invariant is usually verified for a particular subsystem
at a specific stage. Therefore, we can define a general form of such an invariant:

Is(v, u) =̂ F (v) ⇒ (K(v) ⇔ L(u)),

where the predicate F restricts the execution stage and the subsystems involved,
while the predicate K ⇔ L relates the values of the newly introduced variables

Quantitative Verification of System Safety in Event-B 29

u with the values the abstract variables v present in the initially defined safety
property or/and in the safety invariants defined in the previous refinement steps.

To calculate the probability of preservation of the safety property, the refine-
ment process should be continued until all the abstract variables, used in the
definition of the system safety property, are related to the concrete, probabilisti-
cally updated variables, representing various system failures or malfunctioning.
The process of probability evaluation is rather straightforward and based on
basic definitions and rules for calculating probabilities (see [7] for instance).

Let us consider a small yet generic example illustrating the calculation of
probability using Event-B safety invariants. We assume that the safety property
SAF is defined as above. In addition, let us define two safety invariants – Is and
Js – introduced in two subsequent refinement steps. More specifically,

Is =̂ F ⇒ (K(v) ⇔ L1(u1) ∨ L2(u2)) and Js =̂ F̃ ⇒ (L2(u2) ⇔ N(w)),

where u1 ⊂ u, u1 �= ∅ are updated probabilistically in the first refinement, while
u2 = u \u1 are still abstract in the first refinement machine and related by Js to
the probabilistically updated variables w in the following one. Let us note that
the predicate F̃ must define the earlier stage of the system than the predicate
F does. Then the probability that the safety property SAF is preserved is

PSAF = P{K(v)} = P{L1(u1) ∨ L2(u2)} = P{L1(u1) ∨ N(w)} =

P{L1(u1)}+ P{N(w)} − P{L1(u1) ∧ N(w)},
where

P{L1(u1) ∧ N(w)} = P{L1(u1)} · P{N(w)}

in the case of independent L1 and N , and

P{L1(u1) ∧ N(w)} = P{L1(u1)} · P{N(w) | L1(u1)}

otherwise. Note that the predicate H(v) is not participating in the calculation
of PSAF directly. Instead, it defines “the time and the place” when and where
the values of the variables u and v should be considered, and, as long as it
specifies the hazardous situation following the stages defined by F and F̃ , it can
be understood as the post-state for all the probabilistic events.

In the next section we will demonstrate the approach presented above by a
case study – an automatic railway crossing system.

4 Case Study

To illustrate safety analysis in the probabilistically enriched Event-B method,
in this section we present a quantitative safety analysis of a radio-based rail-
way crossing. This case study is included into priority program 1064 of the
German Research Council (DFG) prepared in cooperation with Deutsche Bahn
AG. The main difference between the proposed technology and traditional con-
trol systems of railway crossings is that signals and sensors on the route are
replaced by radio communication and software computations performed at the
train and railway crossings. Formal system modelling of such a system has been
undertaken previously [16,15]. However, the presented methodology is focused
on logical (qualitative) reasoning about safety and does not include quantitative

30 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

safety analysis. Below we demonstrate how to integrate formal modelling and
probabilistic safety analysis.

Let us now briefly describe the functioning of a radio-based railway crossing
system. The train on the route continuously computes its position. When it
approaches a crossing, it broadcasts a close request to the crossing. When the
railway crossing receives the command close, it performs some routine control
to ensure safe train passage. It includes switching on the traffic lights, that is
followed by an attempt to close the barriers. Shortly before the train reaches
the latest braking point, i.e., the latest point where it is still possible for the
train to stop safely, it requests the status of the railway crossing. If the crossing
is secured, it responds with a release signal, which indicates that the train may
pass the crossing. Otherwise, the train has to brake and stop before the crossing.
More detailed requirements can be found in [16] for instance.

In our development we abstract away from modelling train movement, calcu-
lating train positions and routine control by the railway crossing. Let us note
that, any time when the train approaches to the railway crossing, it sequentially
performs a number of predefined operations:

– it sends the close request to the crossing controller;
– after a delay it sends the status request;
– it awaits for an answer from the crossing controller.

The crossing controller, upon receiving the close request, tries to close the bar-
riers and, if successful, sends the release signal to the train. Otherwise, it does
not send any signal and in this case the train activates the emergency brakes.
Our safety analysis focused on defining the hazardous events that may happen
in such a railway crossing system due to different hardware and/or communica-
tion failures, and assess the probability of the hazard occurrences. We make the
following fault assumptions:

– the radio communication is unreliable and can cause messages to be lost;
– the crossing barrier motors may fail to start;
– the positioning sensors that are used by the crossing controller to determine

a physical position of the barriers are unreliable;
– the train emergency brakes may fail.

The abstract model. We start our development with identification of all the
high-level subsystems we have to model. Essentially, our system consists of two
main components – the train and the crossing controller. The system environ-
ment is represented by the physical position of the train. Therefore, each control
cycle consists of three main phases – Env, Train and Crossing. To indicate the
current phase, the eponymous variable is used.

The type modelling abstract train positions is defined as the enumerated
set of nonnegative integers POS SET = {0, CRP, SRP, SRS, DS}, where 0 <
CRP < SRP < SRS < DS. Each value of POS SET represents a specific po-
sition of the train. Here 0 stands for some initial train position outside the com-
munication area, CRP and SRP stand for the close and status request points,
and SRS and DS represent the safe reaction and danger spots respectively. The
actual train position is modelled by the variable train pos ∈ POS SET . In

Quantitative Verification of System Safety in Event-B 31

Machine RailwayCrossing
Variables train pos, phase, emrg brakes, bar1, bar2

Invariants · · ·
Events · · ·

UpdatePosition1 =̂
when phase = Env ∧ train pos < DS ∧ emrg brakes = FALSE
then

train pos := min({p | p ∈ POS SET ∧ p > train pos}) || phase := Train
end

UpdatePosition2 =̂
when phase = Env ∧

((train pos = DS ∧ emrg brakes = FALSE) ∨ emrg brakes = TRUE)
then

skip
end

TrainIdle =̂
when phase = Train ∧ train pos �= SRS
then

phase := Crossing
end

TrainReact =̂
when phase = Train ∧ train pos = SRS
then

emrg brakes :∈ BOOL || phase := Crossing
end

CrossingBars =̂
when phase = Crossing ∧ train pos = CRP
then

bar1, bar2 :∈ BAR POS || phase := Env
end

CrossingIdle =̂
when phase = Crossing ∧ train pos �= CRP
then

phase := Env
end

Fig. 3. Railway crossing: the abstract machine

addition, we use the boolean variable emrg brakes to model the status of the
train emergency brakes. We assume that initially they are not triggered, i.e.,
emrg brakes = FALSE.

The crossing has two barriers – one at each side of the crossing. The status
of the barriers is modelled by the variables bar1 and bar2 that can take values
Opened and Closed. We assume that both barriers are initially open.

The initial abstract machine RailwayCrossing is presented in Fig. 3. We
omit showing here the Initialisation event and the Invariants clause (it merely
defines the types of variables). Due to lack of space, in the rest of the section
we will also present only some selected excerpts of the model. The full Event-B
specifications of the Railway crossing system can be found in [21].

In RailwayCrossing we consider only the basic functionality of the system.
Two events UpdatePosition1 and UpdatePosition2 are used to abstractly model
train movement. The first event models the train movement outside the danger
spot by updating the train abstract position according to the next value of the
POS SET . UpdatePosition2 models the train behaviour after it has passed
the last braking point or when it has stopped in the safe reaction spot. Essen-
tially, this event represents the system termination (both safe and unsafe cases),
which is modelled as infinite stuttering. Such an approach for modelling of the
train movement is sufficient since we only analyse system behaviour within the

32 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

train-crossing communication area, i.e., the area that consists of the close and
status request points, and the safe reaction spot. A more realistic approach for
modelling of the train movement is out of the scope of our safety analysis.

For the crossing controller, we abstractly model closing of the barriers by
the event CrossingBar, which non-deterministically assigns the variables bar1
and bar2 from the set BAR POS. Let us note that in the abstract machine the
crossing controller immediately knows when the train enters the close request
area and makes an attempt to close the barriers. In further refinement steps
we eliminate this unrealistic abstraction by introducing communication between
the train and the crossing controller. In addition, in the Train phase the event
TrainReact models triggering of the train brakes in the safe reaction spot.

The hazard present in the system is the situation when the train passes the
crossing while at least one barrier is not closed. In terms of the introduced system
variables and their states it can defined as follows:

train pos = DS ∧ (bar1 = Opened ∨ bar2 = Opened).

In a more traditional (for Event-B invariants) form, this hazard can be dually
reformulated as the following safety property:

train pos = SRS ∧ phase = Crossing ⇒

(bar1 = Closed ∧ bar2 = Closed) ∨ emrg brakes = TRUE. (1)

This safety requirement can be interpreted as follows: after the train, being in
the safe reaction spot, reacts on signals from the crossing controller, the system
is in the safe state only when both barriers are closed or the emergency brakes
are activated. Obviously, this property cannot be formulated as an Event-B in-
variant – it might be violated due to possible communication and/or hardware
failures. Our goal is to assess the probability of violation of the safety prop-
erty (1). To achieve this, during the refinement process, we have to unfold (1)
by introducing representation of all the system components that have impact
on safety. Moreover, we should establish a relationship between the variables
representing these components and the abstract variables present in (1).

The first refinement. In the first refinement step we examine in detail the
system behaviour at the safe reaction spot – the last train position preced-
ing the danger spot where the hazard may occur. As a result, the abstract
event TrainReact is refined by three events TrainRelease1, TrainRelease2 and
TrainStop that represent reaction of the train on the presence or absence of the
release signal from the crossing controller. The first two events are used to model
the situations when the release signal has been successfully delivered or lost re-
spectively. The last one models the situation when the release signal has not
been sent due to some problems at the crossing controller side. Please note that
since the events TrainRelease2 and TrainStop perform the same actions, i.e.,
trigger the emergency brakes, they differ only in their guards.

The event CrossingStatusReq that “decides” whether to send or not to send
the release signal is very abstract at this stage – it does not have any specific
guards except those that define the system phase and train position. Moreover,
the variable release snd is updated in the event body non-deterministically. To

Quantitative Verification of System Safety in Event-B 33

Machine RailwayCrossing R1
Variables . . . , release snd, release rcv, emrg brakes failure, release com failure, . . .
Invariants · · ·
Events · · ·

TrainRelease1 =̂
when phase = Train ∧ train pos = SRS ∧ release snd = TRUE

release comm failure = FALSE ∧ deceleration = FALSE ∧ comm ct = FALSE
then

emrg brakes := FALSE || release rcv := TRUE || phase := Crossing
end

TrainRelease2 =̂
when phase = Train ∧ train pos = SRS ∧ release snd = TRUE

release comm failure = TRUE ∧ deceleration = FALSE ∧ comm ct = FALSE
then

emrg brakes :| emrg brakes′ ∈ BOOL ∧ (emrg brakes′ = TRUE ⇔
emrg brakes failure = FALSE)

release rcv := TRUE || phase := Crossing
end

TrainStop =̂
when phase = Train∧train pos = SRS∧release snd = FALSE∧deceleration = FALSE
then

· · ·
end

CrossingStatusReq =̂
when phase = Crossing ∧ train pos = SRP
then

release snd :∈ BOOL || phase := Env
end

ReleaseComm =̂
when phase = Train ∧ train pos = SRS ∧ release snd = TRUE ∧ comm ct = TRUE
then

release comm failure ⊕| TRUE @ p1;FALSE @ 1 −p1 || comm ct := FALSE
end

TrainDec =̂
when phase = Train ∧ train pos = SRS ∧ deceleration = TRUE
then

emrg brakes failure ⊕| TRUE @ p4;FALSE @ 1 −p4 || deceleration := FALSE
end

Fig. 4. Railway crossing: first refinement

model the failures of communication and emergency brakes, we introduce two
new events with probabilistic bodies – the events ReleaseComm and TrainDec
correspondingly. For convenience, we consider communication as a part of the
receiving side behaviour. Thus the release communication failure occurrence is
modelled in the Train phase while the train being in the SRS position. Some key
details of the Event-B machine RailwayCrossing R1 that refines the abstract
machine RailwayCrossing are shown in Fig. 4.

The presence of concrete variables representing unreliable system components
in RailwayCrossing R1 allows us to formulate two safety invariants (saf inv1
and saf inv2) that glue the abstract variable emrg brakes participating in the
safety requirement (1) with the (more) concrete variables release rcv,
emrg brakes failure, release snd and release com failure.

saf inv1 : train pos = SRS ∧ phase = Crossing ⇒ (emrg brakes = TRUE ⇔

release rcv = FALSE ∧ emrg brakes failure = FALSE)

saf inv2 : train pos = SRS ∧ phase = Crossing ⇒ (release rcv = FALSE ⇔

release snd = FALSE ∨ release comm failure = TRUE)

34 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

We split the relationship between the variables into two invariant properties
just to improve the readability and make the invariants easier to understand.
Obviously, since the antecedents of both invariants coincide, one can easily merge
them together by replacing the variable release rcv in saf inv1 with the right
hand side of the equivalence in the consequent of saf inv1. Please note that the
variable release snd corresponds to a certain combination of system actions and
hence should be further unfolded during the refinement process.

The second refinement. In the second refinement step we further elaborate
on the system functionality. In particular, we model the request messages that
the train sends to the crossing controller, as well as sensors that read the po-
sition of the barriers. Selected excerpts from the second refinement machine
RailwayCrossing R2 are shown in Fig. 5. To model sending of the close and
status requests by the train, we refine the event TrainIdle by two simple events
TrainCloseReq and TrainStatusReq that activate sending of the close and sta-
tus requests at the corresponding stages. In the crossing controller part, we refine
the event CrossingBars by the event CrossingCloseReq that sets the actuators
closing the barriers in response to the close request from the train. Clearly, in the
case of communication failure occurrence during the close request transmission,
both barriers remain open.

Moreover, the abstract event CrossingStatusReq is refined by two events
CrossingStatusReq1 and CrossingStatusReq2 to model a reaction of the cross-
ing controller on the status request. The former event is used to model the situa-
tion when the close request has been successfully received (at the previous stage)
and the latter one models the opposite situation. Notice that in the refined event
CrossingStatusReq1 the controller sends the release signal only when it has re-
ceived both request signals and identified that both barriers are closed. This
interconnection is reflected in the safety invariant saf inv3.

saf inv3 : train pos = SRP ∧ phase = Env ⇒

(release snd = TRUE ⇔ close req rcv = TRUE ∧

status req rcv = TRUE ∧ sensor1 = Closed ∧ sensor2 = Closed)

Here the variables sensor1 and sensor2 represent values of the barrier positioning
sensors. Let us remind that the sensors are unreliable and can return the actual
position of the barriers incorrectly. Specifically, the sensors can get stuck at their
previous values or spontaneously change the values to the opposite ones. In addi-
tion, to model the communication failures, we add two new events CloseComm
and StatusComm. These events are similar to the ReleaseComm event of the
RailwayCrossing R1 machine. Rather intuitive dependencies between the train
requests delivery and communication failure occurrences are defined by a pair of
safety invariants saf inv4 and saf inv5 .

saf inv4 : train pos = SRP ∧ phase = Env ⇒

(status req rcv = TRUE ⇔ status com failure = FALSE)

saf inv5 : train pos = CRP ∧ phase = Env ⇒

(close req rcv = TRUE ⇔ close com failure = FALSE)

Quantitative Verification of System Safety in Event-B 35

Machine RailwayCrossing R2
Variables . . . , close snd, close rcv, status snd, status rcv,

close com failure, status com failure, sensor1, sensor2 . . .
Invariants · · ·
Events · · ·

TrainCloseReq =̂
when phase = Train ∧ train pos = CRP
then

close req snd := TRUE || phase := Crossing
end

· · ·
CrossingCloseReq =̂
when phase = Crossing ∧ close req snd = TRUE ∧ comm tc = FALSE
then

bar1, bar2 :| bar′

1
∈ BAR POS ∧ bar′

2
∈ BAR POS∧

(close comm failure = TRUE ⇒ bar′

1
= Opened ∧ bar′

2
= Opened)

close req rcv : | close req rcv′ ∈ BOOL ∧
(close req rcv′ = TRUE ⇔ close comm failure = FALSE)

comm tc := TRUE || phase := Env
end

CrossingStatusReq1 =̂
when phase = Crossing ∧ status req snd = TRUE ∧ close req rcv = TRUE ∧

sens reading = FALSE ∧ comm tc = FALSE
then

release snd :| release snd′ ∈ BOOL ∧ (release snd′ = TRUE ⇔
status comm failure = FALSE ∧ sensor1 = Closed ∧ sensor2 = Closed)

status req rcv : | status req rcv′ ∈ BOOL ∧
(status req rcv′ = TRUE ⇔ status comm failure = FALSE)

comm tc := TRUE || phase := Env
end

· · ·
ReadSensors =̂
when phase = Crossing ∧ status req snd = TRUE ∧ sens reading = TRUE
then

sensor1 :∈ {bar1, bnot(bar1)} || sensor2 :∈ {bar2, bnot(bar2)} || sens reading := FALSE
end

Fig. 5. Railway crossing: second refinement

The third refinement. In the third Event-B machine RailwayCrossing R3,
we refine the remaining abstract representation of components mentioned in the
safety requirement (1), i.e., modelling of the barrier motors and positioning sen-
sors.We introduce the new variables bar failure1, bar failure2, sensor failure1
and sensor failure2 to model the hardware failures. These variables are assigned
probabilistically in the newly introduced events BarStatus and SensorStatus in
the same way as it was done for the communication and emergency brakes failures
in the first refinement. We refine CrossingCloseReq and ReadSensors events
accordingly. Finally, we formulate four safety invariants saf inv6, saf inv7,
saf inv8 and saf inv9 to specify the correlation between the physical position
of the barriers, the sensor readings, and the hardware failures.

saf inv6 : train pos = CRP ∧ phase = Env ⇒ (bar1 = Closed ⇔

bar failure1 = FALSE ∧ close comm failure = FALSE)

saf inv7 : train pos = CRP ∧ phase = Env ⇒ (bar2 = Closed ⇔

bar failure2 = FALSE ∧ close comm failure = FALSE)

36 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

saf inv8 : train pos = SRP ∧ phase = Env ⇒ (sensor1 = Closed ⇔

((bar1 = Closed ∧ sensor failure1 = FALSE) ∨

(bar1 = Opened ∧ sensor failure1 = TRUE)))

saf inv9 : train pos = SRP ∧ phase = Env ⇒ (sensor2 = Closed ⇔

((bar2 = Closed ∧ sensor failure2 = FALSE) ∨

(bar2 = Opened ∧ sensor failure2 = TRUE)))

The first two invariants state that the crossing barrier can be closed (in the post-
state) only when the controller has received the close request and the barrier
motor has not failed to start. The second pair of invariants postulates that the
positioning sensor may return the value Closed in two cases – when the barrier
is closed and the sensor works properly, or when the barrier has got stuck while
opened and the sensor misreads its position.

Once we have formulated the last four safety invariants, there is no longer
any variable, in the safety property (1), that cannot be expressed via some
probabilistically updated variables introduced during the refinement process.
This allows us to calculate the probability PSAF that (1) is preserved:

PSAF = P{(bar1 = Closed ∧ bar2 = Closed) ∨ emrg brakes = TRUE} =

P{bar1 = Closed ∧ bar2 = Closed}+ P{emrg brakes = TRUE} −

P{bar1 = Closed ∧ bar2 = Closed} ·

P{emrg brakes = TRUE | bar1 = Closed ∧ bar2 = Closed}.

Let us recall that we have idenified four different types of failures in our system
– the communication failure, the failure of the barrier motor, the sensor failure
and emergency brakes failure. We suppose that the probabilities of all these
failures are constant and equal to p1, p2, p3 and p4 correspondingly. The first
probability presented in the sum above can be trivially calculated based on the
safety invariants saf inv7 and saf inv8 :

P{bar1 = Closed ∧ bar2 = Closed} =

P{bar failure1 = FALSE ∧ bar failure2 = FALSE ∧

close comm failure = FALSE} = (1− p1) · (1− p2)
2
.

Indeed, both barriers are closed only when the crossing controller received the
close request and none of the barrier motors has failed. The calculation of the
other two probabilities is slightly more complicated. Nevertheless, they can be
straightforwardly obtained using the model safety invariants and basic rules for
calculating probability. We omit the computation details due to a lack of space.
The resulting probability of preservation of the safety property (1) is:

PSAF = (1− p1) · (1− p2)
2+

(1− p4) ·
(

1− (1− p1)
3 · (p2 · p3 + (1− p2) · (1− p3))

2
)

−

(1− p1) · (1− p2)
2 · (1− p4) ·

(

1− (1− p1)
2 · (1− p3)

2
)

.

Please note that PSAF is defined as a function of probabilities of component
failures, i.e., probabilities p1, . . . , p4 . Provided the numerical values of them are
given, we can use the obtained formula to verify whether the system achieves
the desired safety threshold.

Quantitative Verification of System Safety in Event-B 37

5 Discussion

5.1 Related W ork

Formal methods are extensively used for the development and verification of
safety-critical systems. In particular, the B Method and Event-B are successfully
being applied for formal development of railway systems [12,5]. A safety analysis
of the formal model of a radio-based railway crossing controller has also been
performed with the K IV theorem prover [16,15]. However, the approaches for
integrating formal verification and quantitative assessment are still scarce.

Usually, quantitative analysis of safety relies on probabilistic model checking
techniques. For instance, in [11], the authors demonstrate how the quantita-
tive model checker PRISM [17] can be used to evaluate system dependability
attributes. The work reported in [8] presents model-based probabilistic safety
assessment based on generating PRISM specifications from Simulink diagrams
annotated with failure logic. A method pFMEA (probabilistic Failure Modes and
Effect Analysis) also relies on the PRISM model checker to conduct quantita-
tive analysis of safety [9]. The approach integrates the failure behaviour into the
system model described in continuous time Markov chains via failure injection.
In [14] the authors propose a method for probabilistic model-based safety anal-
ysis for synchronous parallel systems. It has been shown that different types of
failures, in particular per-time and per-demand, can be modelled and analysed
using probabilistic model checking.

However, in general the methods based on model checking aim at safety eval-
uation of already developed systems. They extract a model eligible for proba-
bilistic analysis and evaluate impact of various system parameters on its safety.
In our approach, we aim at providing the designers with a safety-explicit de-
velopment method. Indeed, safety analysis is essentially integrated into system
development by refinement. It allows us to perform quantitative assessment of
safety within proof-based verification of the system behaviour.

5.2 Conclusions

In this paper we have proposed an approach to integrating quantitative safety
assessment into formal system development in Event-B. The main merit of our
approach is that of merging logical (qualitative) reasoning about correctness
of system behaviour with probabilistic (quantitative) analysis of its safety. An
application of our approach allows the designers to obtain a probability of hazard
occurrence as a function over probabilities of component failures.

Essentially, our approach sets the guidelines for safety-explicit development
in Event-B. We have shown how to explicitly define safety properties at different
levels of refinement. The refinement process has facilitated not only correctness-
preserving model transformations but also establishes a logical link between
safety conditions at different levels of abstraction. It leads to deriving a logical
representation of hazardous conditions. An explicit modelling of probabilities
of component failures has allowed us to calculate the likelihood of hazard oc-
currence. The B Method and Event-B are successfully and intensively used in

38 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

the development of safety-critical systems, particularly in the railway domain.
We believe that our approach provides the developers with a promising solution
unifying formal verification and quantitative reasoning.

In our future work we are planning to further extend the proposed approach
to enable probabilistic safety assessment at the architectural level.

Acknowledgments. This work is supported by IST FP7 DEPLOY Project.
We also wish to thank the anonymous reviewers for their helpful comments.

References

1. Abrial, J.R.: Extending B without Changing it (for Developing Distributed Sys-
tems). In: Habiras, H. (ed.) First Conference on the B Method, pp. 169–190 (1996)

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

3. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
4. Avizienis, A., Laprie, J.C., Randell, B.: Fundamental Concepts of Dependability,

Research Report No 1145, LAAS-CNRS (2001)
5. Craigen, D., Gerhart, S., Ralson, T.: Case Study: Paris Metro Signaling System.

IEEE Software, 32–35 (1994)
6. EU-project DEPLOY , http://www.deploy-project.eu/
7. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1.

John Wiley & Sons, Chichester (1967)
8. Gomes, A., Mota, A., Sampaio, A., Ferri, F., Buzzi, J.: Systematic Model-Based

Safety Assessment Via Probabilistic Model Checking. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2010. LNCS, vol. 6415, pp. 625–639. Springer, Heidelberg (2010)

9. Grunske, L., Colvin, R., Winter, K.: Probabilistic Model-Checking Support for
FMEA. In: QEST 2007, International Conference on Quantitative Evaluation of
Systems (2007)

10. Hallerstede, S., Hoang, T.S.: Qualitative Probabilistic Modelling in Event-B. In:
Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,
Heidelberg (2007)

11. Kwiatkowska, M., Norman, G., Parker, D.: Controller Dependability Analysis by
Probabilistic Model Checking. In: Control Engineering Practice, pp. 1427–1434
(2007)

12. Lecomte, T., Servat, T., Pouzancre, G.: Formal Methods in Safety-Critical Railway
Systems. In: Brasilian Symposium on Formal Methods (2007)

13. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Springer, Heidelberg (2005)

14. Ortmeier, F., Güdemann, M.: Probabilistic Model-Based Safety Analysis. In: Work-
shop on Quantitative Aspects of Programming Languages, QAPL 2010. EPTCS,
pp. 114–128 (2010)

15. Ortmeier, F., Reif, W., Schellhorn, G.: Formal Safety Analysis of a Radio-Based
Railroad Crossing Using Deductive Cause-Consequence Analysis (DCCA). In: Dal
Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp.
210–224. Springer, Heidelberg (2005)

16. Ortmeier, F., Schellhorn, G.: Formal Fault Tree Analysis: Practical Experiences.
In: International Workshop on Automated Verification of Critical Systems, AVoCS
2006. ENTCS, vol. 185, pp. 139–151. Elsevier, Amsterdam (2007)

Quantitative Verification of System Safety in Event-B 39

17. PRISM – Probabilistic Symbolic Model Checker,
http://www.prismmodelchecker.org/

18. Rigorous Open Development Environment for Complex Systems (RODIN): Deliv-
erable D7, Event-B Language, http://rodin.cs.ncl.ac.uk/

19. Rigorous Open Development Environment for Complex Systems (RODIN): IST
FP6 STREP project, http://rodin.cs.ncl.ac.uk/

20. RODIN. Event-B Platform, http://www.event-b.org/
21. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Quantitative Verification of System

Safety in Event-B. Tech. Rep. 1010, Turku Centre for Computer Science (2011)
22. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Towards Probabilistic Modelling in

Event-B. In: Méry, D., Merz, S. (eds.) IFM 2010. LNCS, vol. 6396, pp. 275–289.
Springer, Heidelberg (2010)

Paper VI

Augmenting Formal Development of Control

Systems with Quantitative Reliability Assessment

Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis

Originally published in: Proceedings of 2nd International Workshop on Soft-
ware Engineering for Resilient Systems (SERENE 2010), ACM, 2010

Augmenting Formal Development of Control Systems with
Quantitative Reliability Assessment

Anton Tarasyuk
Åbo Akademi University
Joukahaisenkatu 3-5A
20520 Turku, Finland

anton.tarasyuk@abo.fi

Elena Troubitsyna
Åbo Akademi University
Joukahaisenkatu 3-5A
20520 Turku, Finland

elena.troubitsyna@abo.fi

Linas Laibinis
Åbo Akademi University
Joukahaisenkatu 3-5A
20520 Turku, Finland

linas.laibinis@abo.fi

ABSTRACT

Formal methods, in particular the B Method and its exten-
sion Event-B, have demonstrated their value in the develop-
ment of complex control systems. However, while providing
us with a powerful development platform, these frameworks
poorly support quantitative assessment of dependability at-
tributes. Yet, by assessing dependability at the early design
phase we would facilitate development of systems that are
not only correct-by-construction but also achieve the desired
dependability level. In this paper we demonstrate how to in-
tegrate reliability assessment performed via Markov analysis
into refinement in Event-B. Such an integration allows us to
combine logical reasoning about functional correctness with
probabilistic reasoning about reliability. Hence we obtain a
method that enables building the systems that are not only
provably correct but also have a required level of reliability.

Keywords

Reliability assessment, formal modelling, Event-B, Markov
processes, refinement, probabilistic model checking

1. INTRODUCTION
Formal approaches provide us with rigorous methods for

establishing correctness of complex systems. The advances
in expressiveness, usability and automation offered by these
approaches enable their use in the design of wide range
of complex dependable systems. For instance, Event-B [1]
provides us with a powerful framework for developing sys-
tems correct-by-construction. The top-down development
paradigm based on stepwise refinement adopted by Event-B
has proved its worth in several industrial projects [19, 7].

While developing system by refinement, we start from a
specification that abstracts away from low-level design de-
cisions yet defines the most essential behaviour and proper-
ties of the system. While refining the abstract specification,
we gradually introduce the desired implementation decisions
that initially were modelled non-deterministically.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SERENE ’10, 13-16 April 2010, London, United Kingdom
Copyright 2010 ACM 978-1-4503-0289-0/10/04 ...$10.00.

In general, there may be several ways to resolve non-deter-
minism, i.e., there are might be several possible implemen-
tation decisions that adhere to the abstract specification.
These alternatives are equivalent from the correctness point
of view, i.e., they faithfully implement functional require-
ments. Yet they might be different from the point of view
of non-functional requirements, e.g., reliability, performance
etc. Early quantitative assessment of various design alter-
natives is certainly useful and desirable. However, within
the current refinement frameworks there are no scalable so-
lutions for that [15]. In this paper we propose an approach
to overcome this problem.

Reliability is a probability of system to function correctly
over a given period of time under a given set of operating
conditions [22, 24, 17]. Obviously, to assess reliability of var-
ious design alternatives, we need to model their behaviour
stochastically. In this paper, we show how Event-B models
can be augmented with probabilistic information required
to perform the quantitative dependability analysis. We also
demonstrate how probabilistic model verification [18] of such
augmented models can be used to assess system reliability.
Such an approach allows us to use our formal models not
only for reasoning about correctness but also for quantita-
tive analysis of dependability. We exemplify our approach
by refinement and reliability evaluation of a simple control
system.

In this paper we focus on reliability assessment of control
systems. Control systems are usually cyclic, i.e., at periodic
intervals they get inputs from the sensors, process them, and
then output new values to the actuators. We show how to
model such systems in Event-B as well as formally reason
about the behaviour of control systems in terms of observ-
able event traces. Moreover, once we augment Event-B mod-
els with probabilities, we extend the notion of event traces
by incorporating the probabilistic information into them. As
a result, the formal semantics given in terms of probabilistic
events traces allows us to establish a clear connection to the
classical probabilistic reliability definitions used in engineer-
ing [24, 17].

The remainder of the paper is structured as follows. In
Section 2 we give a brief overview of our modelling formalism
the Event-B framework. Section 3 presents abstract specifi-
cation of a control system and also shows how we can reason
about the behaviour of a system in terms of event traces. In
Section 4 we explain how we can do stochastic modelling
in Event-B. We also define here the notion of probabilistic
event traces. Section 5 explains how probabilistic model ver-
ification can done using the PRISM models checker. In Sec-

tion 6 we exemplify our approach by presenting a case study
of the simple heater control system. Finally, in Sections 7
and 8 we overview the related work, discuss the obtained
results and propose some directions for the future work.

2. INTRODUCTION TO EVENT-B
The B Method [2] is an approach for the industrial de-

velopment of highly dependable software. The method has
been successfully used in the development of several com-
plex real-life applications [19, 7]. Event-B is an extension
of the B Method to model parallel, distributed and reactive
systems. The Rodin platform [21] provides automated tool
support for modelling and verification (by theorem proving)
in Event-B. Currently Event-B is used in the EU project
Deploy [8] to model several industrial systems from auto-
motive, railway, space and business domains.

In Event-B a system specification is defined using an ab-
stract (state) machine notion [20]. An abstract machine
encapsulates the state (the variables) of a model and defines
operations on its state. It has the following general form:

Machine M

Variables v

Invariants I

Events
init

evt1
· · ·
evtN

The machine is uniquely identified by its name M . The state
variables, v, are declared in the Variables clause and ini-
tialised in the init event. The variables are strongly typed
by the constraining predicates I given in the Invariants
clause. The invariant clause might also contain other pred-
icates defining properties that should be preserved during
system execution.

The dynamic behaviour of the system is defined by the set
of atomic events specified in the Events clause. Generally,
an event can be defined as follows:

evt b= when g then S end,

where the guard g is a conjunction of predicates over the
state variables v and the action S is an assignment to the
state variables.

The guard defines the conditions under which the action
can be executed, i.e., when the event is enabled. If several
events are enabled at the same time, any of them can be
chosen for execution non-deterministically. If none of the
events is enabled then the system deadlocks.

In general, the action of an event is a composition of as-
signments executed simultaneously. In this paper the si-
multaneous execution is denoted as ‖. The assignments
can be either deterministic or non-deterministic. A deter-
ministic assignment, x := E(v), has the standard syntax
and meaning. A non-deterministic assignment is denoted as
x :∈ S, where S is a set of values. As a result of such a non-
deterministic assignment, x can get any value belonging to
S.

Event-B employs top-down refinement-based approach to
system development. Development starts from an abstract

system specification that models the most essential func-
tional requirements. While capturing more detailed require-
ments, each refinement step typically introduces new events
and variables into the abstract specification. These new
events correspond to stuttering steps that are not visible
at the abstract level. By verifying correctness of refinement,
we ensure that all invariant properties of (more) abstract
machines are preserved. A detailed description of formal se-
mantics of Event-B and foundations of the verification pro-
cess can be found in [20].

Event-B adopts the interleaving semantics, i.e., if sev-
eral events are enabled simultaneously only one of them is
(non-deterministically) chosen for execution. This allows us
to implicitly model parallelism. Specifically, if several en-
abled events are defined on disjoint sets of variables, they
can be eventually implemented as parallel activities. How-
ever, sometimes it is convenient to explicitly model parallel
execution of several events already at the abstract system
stage. To achieve this, we rely on the Butler’s idea of event
fusion [5]. For two events evt1 and evt2,

evt1 b= when g1 then S1 end

evt2 b= when g2 then S2 end

their parallel composition evt1 ‖ evt2 is defined as

evt1 ‖ evt2 b= when g1 ∧ g2 then S1 ‖ S2 end.

In such a way we explicitly model that an execution of events
evt1 and evt2 is synchronised. The event fusion technique
can be also applied in reverse, i.e., by splitting an event
into a group of events that should be always executed si-
multaneously. This can be useful in the refinement process,
e.g., when decomposing system into several components that
synchronise their activities via such parallel events.

In general, while refining a system in Event-B, we gradu-
ally introduce certain design decisions into the system speci-
fication. Sometimes there are several refinement alternatives
that can adequately implement a certain functional require-
ment. These alternatives can have different impact on non-
functional system requirements, e.g., such as dependability,
performance etc. Obviously, it would be advantageous to
evaluate this impact already at the development stage to en-
sure that the most optimal solutions are chosen. To achieve
this, we would need to perform quantitative analysis of sys-
tem dependability. For instance, to assess system reliability,
it is necessary to evaluate the probability of system function-
ing correctly over the given period of time. To assess safety
of a system that terminates when its safety is breached, it is
imperative to evaluate the probability of termination within
a certain period of time. These kinds of evaluations are
rather easily performed via probabilistic model checking.

3. MODELLING A CONTROL SYSTEM IN

EVENT-B

3.1 Abstract Specification of a Control
System

Usually a control system have cyclic behaviour – a sys-
tem goes through a number of predefined execution phases.
A system phase usually includes reading the sensors that
monitor the controlled physical processes, processing the
obtained sensor values, and, finally, setting actuators ac-
cordingly to a predefined algorithm. Ideally, the system can

function in this way infinitely. However, different failures
may force the system to shutdown at any moment. In the
most abstract way, we can specify such a control system as
follows:

Machine CS

Variables st

Invariants
st ∈ {ok, nok}

Events
init b=

begin
st := ok

end
step b=

when
st = ok

then
st :∈ {ok, nok}

end
shutdown b=

when
st = nok

then
skip

end

The variable st abstractly models a state of the system
that can be in either operational (ok) or failed (nok). The
event step models one iteration of the system execution. As
a result of this event, the system can stay operational or fail.
In the first case, the system continues to its next iteration.
In the latter case, the system shutdown is initiated (speci-
fied by the event shutdown). Here the system shutdown is
abstractly modelled as infinite stuttering, keeping the sys-
tem in the failed state forever. Let us note that Event-B
does not support explicit modelling of real time. Therefore,
in our specification we assume that the controller is suffi-
ciently fast to react on the changes of the environment in
the timely manner.

We can refine the abstract specification CS by introducing
specific details for any concrete control system. For exam-
ple, we may explicitly introduce new events modelling the
environment as well as reading the sensors or setting the
actuators. The event step can be also refined into, e.g.,
detection operation, which decides whether the system can
continue its normal operation or has to shutdown due to
some unrecoverable failure.

3.2 Event-B Traces
One of convenient ways to reason about the behaviour

of an Event-B specification is by using the notion of event
traces. Essentially, this allows us to define a formal seman-
tics in terms of traces of observable events of the system.

Formally, an event trace is a sequence of events (event
labels) that can be observed during the system execution.
For example, this is one possible trace of the system CS

described above:

< step, step, step, shutdown, shutdown, ... > .

The initialisation event of an Event-B machine is executed
only ones when the system starts to function. It defines the
initial state of any event trace, but it is not a part of a trace

as such. Moreover, we assume that all the assignments of the
init event are deterministic and hence the initial state of the
system is determined unambiguously. Conventionally, the
infinite stuttering at the end of a trace is omitted. Therefore,
the above trace can be simply written as

< step, step, step, shutdown > .

Due to branching and non-determinism that could be present
in a system model, the system behaviour cannot be de-
scribed as a single trace. Instead, a set of all possible traces
is used to define its execution.

We introduce the operator Traces that, for a given model,
returns the set of all its observable traces. For example, for
the system CS, the set of all its traces is

Traces(CS) = {< step1, ..., stepi, shutdown > | i ∈ N1}

∪

{step1, step2, step3, ...}.

Therefore, all possible CS traces include execution of a finite
number of step events followed by shutdown, or, in ideal
case, infinite number of step events while never failing.

The system CS is a really simple one. For more com-
plicated cases, the system traces would include all possible
interleavings of different system events. However, the sim-
plicity level of CS is chosen intentionally to emphasise the
cyclic nature of such systems.

A machine M ′ is trace refinement of machine M , denoted
M ⊑tr M ′, if any trace of M ′ is also a trace of M , i.e., any
trace that is observable for the concrete system can be also
observed in the abstract system. Formally,

M ⊑tr M
′ iff Traces(M ′) ⊆ Traces(M).

It has been shown [6] that the proof obligations defined
for standard Event-B refinement are sufficient conditions for
trace refinement as well. Formally, for any two models M

and M ′, where M ′ is a refinement of M , denoted as M ⊑ M ′,

M ⊑ M
′ ⇒ M ⊑tr M

′

.

Refined Event-B models typically add new events that op-
erate on newly introduced variables, thus increasing granu-
larity of model execution. In the abstract specification such
events correspond to unobservable, internal events, which
can be modelled as skip statements. While showing that
one Event-B model is trace refined by another, these events
are excluded from concrete traces. In other words, the ab-
stract specification determines which events are considered
observable. Only those events (or their refined versions) are
taken into account while demonstrating that the concrete
model is a trace refinement of the abstract one.

The machine CS describes a very abstract control system,
emphasising its cyclic nature. Any refinement of such a spec-
ification preserves this property. This can be formulated as
the following simple theorem.

Theorem 1. Let M be an Event-B machine such that
CS ⊑ M . Then, for any positive natural number k, k ∈ N1,
and a concrete trace tr, tr ∈ Traces(M), that contains k

first consecutive step events,

tr ∈ Traces(CS).

Proof Directly follows from the fact that

CS ⊑ M ⇒ CS ⊑tr M

and the definition of trace refinement. ✷

Therefore, we can compare the refined and abstract sys-
tems by executing (simulating) both of them side by side ex-
actly the same number of iterations. The additional events
of the refined system are treated as internal and can be dis-
missed.

4. STOCHASTIC MODELLING IN

EVENT-B.
Let us observe that Event-B is a state-based formalism.

The state space of the system specified in Event-B is formed
by the values of the state variables. The transitions between
states are determined by the actions of the system events.
The states that can be reached as a result of event execu-
tion are defined by the current state. If we augment Event-B
specification with the probabilities of reaching the next sys-
tem state from the current one, we obtain a probabilistic
transition system [3]. In case the events are mutually exclu-
sive, i.e., only one event is enabled at each system state, the
specification can be represented by a Markov chain. Other-
wise, it corresponds to a Markov Decision process [9, 12, 25].
More specifically, it is a discrete time Markov process since
we can only use it to describe the states at certain instances
of time.

While augmenting an Event-B specification with proba-
bilities, we replace non-deterministic assignments in some
event actions with their probabilistic counterparts. While
the result of executing a non-deterministic assignment is ar-
bitrary (within the given set), the result of executing the
probabilistic one is more predictable. Indeed, it has been
shown that such probabilistic choice always refines its cor-
responding non-deterministic counterpart [14]. Therefore,
augmenting Event-B specifications with probabilities con-
stitutes a valid refinement step.

Incorporation of probabilistic information into Event-B
models also allows us extend the notion of event traces for
probabilistic systems. In this paper we focus our attention
on completely probabilistic Event-B models, i.e. we assume
that all non-deterministic system behaviour has been refined
by probabilistic one. We propose the following trace nota-
tion for the Event-B systems augmented with probabilistic
information:

< evt1.p1, evt2.p2, . . . , evtn.pn >,

where pi are probabilities of executing evti+1 as the next
system event. If evtn is the last event of a finite trace then
pn = 1, i.e. the last event evtn is assumed to be a stuttering
event. For a model M , the set of all such traces is denoted
as PTraces(M).

To illustrate probabilistic traces, let us go back to our ab-
stract CS specification. Assume that the nondeterministic
assignment st :∈ {ok, nok} has been refined by the prob-
abilistic choice between st := ok, with probability p, and
st := nok, with probability 1 − p. Then

PTraces(CS) = {< step1.p, . . . ,

stepk−1.p, stepk.(1−p), shutdown.1 > | k ∈ N1}.

If we assume that the system CS can fail with a non-zero
probability (i.e., 0 < 1 − p), this fact implies that the in-
finite trace containing only step events is impossible, i.e.,
its probability is 0, and thus can be excluded from consid-

eration. Let us explain how we can calculate such trace
probabilities.

For any trace tr, we define its length |tr| as a number of
all its events excluding the final stuttering event. Then the
overall probability of a probabilistic trace tr is defined as

pr(tr) =

|tr|
Y

i=1

pi.

Moreover, we require that for all possible traces

X

tr

pr(tr) =
X

tr

|tr|
Y

i=1

pi = 1.

The last property simply states that the set of probabilistic
traces should be complete. It can be derived from the (more)
basic requirement that, for all execution branches creating
multiple traces, the sum of all probabilities to choose a dif-
ferent branch (event) is equal to 1.

Let us assume that we have two Event-B models M and
M ′ such that M ⊑tr M ′. Moreover, we have extended both
models with certain probabilistic information. Having this
quantitative information about the model behaviour allows
us to strengthen the notion of trace refinement by requir-
ing that the refined model is executed longer with a higher
probability.

Definition 1. For two Event-B models M and M ′, we
say that M ′ is a probabilistic trace refinement of M , denoted
M ⊑ptr M ′, iff

(i) M ′ is a trace refinement of M ′ (M ⊑tr M ′)

(ii) for any t ∈ N,
X

tr∈PTraces(M′
)

|tr|≤t

pr(tr) ≤
X

tr∈PTraces(M)

|tr|≤t

pr(tr).

The condition (ii) requires that that the probability of the
refined system to finish its execution in t or less execution
steps should be less than the one for the abstract system.

The quantitative requirement (ii) explicitly makes this
definition of probabilistic trace refinement biased towards
the systems where longer execution is considered advanta-
geous. We choose this definition because in this paper we
focus on reliability assessment of control systems. As we will
show below, there is a clear connection between the quanti-
tative requirement (ii) and probabilistic modelling of system
reliability.

Sometimes the inequality from (ii) does not hold for every
t but for only some finite interval [0, t̄].

Definition 2. We say that M ′ is a partial probabilistic
trace refinement of M ′ for t ∈ [0, t̄] iff

(i) M ′ is a trace refinement of M ′ (M ⊑tr M ′)

(iii) for any t ∈ N such that t ≤ t̄,
X

tr∈PTraces(M′
)

|tr|≤t

pr(tr) ≤
X

tr∈PTraces(M)

|tr|≤t

pr(tr).

Let us note that the inequalities form (ii) and (iii) can be
rewritten as follows

(iv)
X

tr∈PTraces(M)

|tr|>t

pr(tr) ≤
X

tr∈PTraces(M′
)

|tr|>t

pr(tr).

In this formulation, the property simply states that the prob-
ability of the refined system to execute longer should be
higher.

As it was mentioned before, we are interested in assessing
reliability of control systems. In engineering, reliability [24,
17] is generally measured by the probability that an entity E
can perform a required function under given conditions for
the time interval [0, t]:

R(t) = P[E not failed over time [0, t]].

Let T (M) be a random variable measuring the number of
iterations of a control system M before the system shut-
down, and FM (t) is its cumulative distribution function.
Since the system M functions properly while it stays op-
erational, we can define reliability function of such a system
in the following way:

RM (t) = P{T (M) > t}.

Then RM (t) and FM (t) are related as follows:

RM (t) = P[T (M) > t] = 1 − P[T (M) ≤ t] = 1 − FM (t).

We intentionally specified our abstract control system CS

in such a way that its traces directly ”record” the system
iterations. Then the number of events in the system trace
(excluding the final event modelling system shutdown) corre-
sponds to the number of iterations the system is operational
before its failure. If we assume that one system iteration
is executed in one time unit, it is easy to notice that the
cumulative distribution function FM (t) is equal to the prob-
ability that the length of the event trace is less or equal to
the number of execution steps t, i.e.,

FM (t) =
X

tr∈PTraces(M)

|tr|≤t

pr(tr).

That means that the condition (ii) can be rewritten as

FM′(t) ≤ FM (t)

for any t ∈ N. On the other hand, the system reliability
RM (t)

RM (t) = 1 − FM (t) =
X

tr∈PTraces(M)

|tr|>t

pr(tr). (1)

This allows us to rewrite the equivalent condition (iv) into

RM (t) ≤ RM′(t)

for any t ∈ N. Therefore, the conditions (ii), (iii) and (iv)
essentially require that the reliability of the refined system
should improve.

Let us note that we are not modelling time explicitly in
our Event-B specification. However, we can assume that
an execution of the control cycle takes constant predefined
amount of time, i.e. the duration length of the control cycle
is constant. Therefore, we can extrapolate our estimation of
reliability in terms of iterations into classic reliability esti-
mation in terms of real time. In general, reliability analy-
sis is a complex mathematical and engineering problem. In
the next section we demonstrate how the Event-B modelling
framework extended with probabilistic model checking can
be used to tackle this problem.

5. STOCHASTIC REASONING IN PRISM

As mentioned before, Event-B models augmented with
probabilistic information generally correspond to Markov
processes. However, the current Event-B framework does
not support modelling of stochastic behaviour, while proba-
bilistic model checking is one of available techniques widely
used for analysis of Markov models. In particular, the proba-
bilistic model checking framework developed by Kwiatkowska
et al. [13] supports verification of Discrete-Time Markov
Chains (DTMC) and Markov Decision Processes (MDP).
The framework also has mature tool support – the PRISM
model checker [18]. To enable quantitative dependability
analysis of Event-B models, it would be advantageous to
bridge Event-B modelling with the PRISM model checking.
Next we briefly describe modelling in PRISM.

The PRISM modelling language is a high-level state-based
language. It relies on the Reactive Modules formalism of
Alur and Henzinger [3]. PRISM supports the use of con-
stants and variables that can be integers, doubles (real num-
bers) and Booleans. Constants are used, for instance, to de-
fine the probabilities associated with variable updates. The
variables in PRISM are finite-ranged and strongly typed.
They can be either local or global. The definition of an ini-
tial value of a variable is usually attached to its declaration.
The state space of a PRISM model is defined by the set of
all variables, both global and local.

In general, a PRISM specification looks as follows:

dtmc
const double p11 = . . . ;

. . .

global v : Type init . . . ;
module M1

v1 : Type init . . . ;

[] g11 → p11 : act11 + · · · + p1n : act1n;
[sync] g12 → q11 : act′11 + · · · + q1m : act′1m;
. . .

endmodule

module M2

v2 : Type init . . . ;

[sync] g21 → p21 : act21 + · · · + p2k : act2k;
[] g22 → q21 : act′21 + · · · + q2l : act′2l;
. . .

endmodule

A system specification in PRISM is constructed as a par-
allel composition of modules. They can be independent of
each other or interact with each other. Each module has a
number of local variables – denoted as v1, v2 in the specifi-
cation above – and a set of guarded commands that deter-
mine its dynamic behaviour. The guarded commands can
have names (labels). Similarly to the events of Event-B, a
guarded command can be executed if its guard evaluates to
TRUE. If several guarded commands are enabled then the
choice between them can be either non-deterministic, in case
of MDP, or probabilistic (according to the uniform distribu-
tion), in case of DTMC. In general, the body of a guarded
command is a probabilistic choice between deterministic as-

signments. It is of the following form:

p1 : act1 + · · · + pn : actn,

where + denotes the probabilistic choice, act1, . . . , actn are
deterministic assignments, and p1, . . . , pn are the correspond-
ing probabilities.

Synchronisation between modules is defined via guarded
commands with the matching names. For instance, in the
PRISM specification shown above, the modules M1 and M2

have the guarded commands labelled with the same name
sync. Whenever both commands are enabled, the mod-
ules M1 and M2 synchronise by simultaneously executing
the bodies of these commands. It is easy to notice that
the guarded command synchronisation in PRISM essentially
models the same operational behaviour as the event fusion
in Event-B.

While analysing a PRISM model, we define a number
of temporal logic properties and systematically check the
model to verify them. Properties of discrete-time PRISM
models, i.e, DTMC and MDP, are expressed formally in
the probabilistic computational tree logic [11]. The PRISM
property specification language supports a number of dif-
ferent types of such properties. For example, the P oper-
ator is used to refer to the probability of a certain event
occurrence. The operator G, when used inside the operator
P, allows us to express invariant properties, i.e., properties
maintained by the system globally. In particular, the prop-
erty P=?[G ≤ t prop] returns a probability that the predi-
cate prop remains TRUE in all states within the period of
time t.

Let OP be a predicate defining a subset of operational
system states. Then, the PRISM property

P=?[G ≤ t OP] (2)

gives us the probability that the system will stay operational
during the first t iterations, i.e, it is the probability that,
during that time, the system will stay within the subset of
operational states. In the previous section we have intro-
duced the random variable T (M) that measures the uptime
of the probabilistic Event-B model M , i.e. the number of
iterations the system M stays operational before its failure.
Therefore, the property (2) clearly corresponds to our defi-
nition of reliability (1) for probabilistic Event-B traces.

In the next section we exemplify the proposed approach
by considering a case study – the heater control system.

6. CASE STUDY
Our case study is a simple control system with two main

entities – a tank containing some liquid and a heater con-
troller. The controller tries to keep a temperature (tmp) of
the liquid between the minimal (tmpmin) and the maximal
(tmpmax) boundaries. Periodically, the temperature sensor
produces temperature measurements that are read by the
controller. We assume that the sensor is faulty and can fail
(and eventually recover) with predefined probabilities on any
control cycle. Obviously, such a stochastic sensor behaviour
affects the overall system reliability. The controller has a
fault detector that analyses each reading to detect whether
the sensor functions properly or it has failed. If no fault is
detected, the controller makes routine control and the sys-
tem continues to operate in the same iterative manner. This
constitutes the normal (fault-free) system state. However,

if the fault detector discovers a sensor failure then the sys-
tem enters the degraded state. In this state it outputs the
last good sensor reading. At the same time, it keeps peri-
odically reading the sensor outputs to detect whether it has
recovered. The system can stay in the degraded state for a
limited period of time. Specifically, it cannot exceed N iter-
ations, where N is a threshold calculated by the controller.
The threshold equals to the minimal difference between the
last good output of the sensor and the upper or lower tem-
perature limits. If sensor recovers from its failure within the
allowed time limit, the system returns to the normal state
and its normal operation is resumed. Otherwise, the system
aborts.

The most abstract Event-B specification that models such
a system is our simple CS machine presented in Section 3.
The specification below (the machine MCH1) is one pos-
sible refinement of it. The variable st models the current
state of the system, which can be operating (ok) or failed
(nok). We also introduce the variable phase that models
the phases that the system goes through within one itera-
tion: first modelling of the environment, i.e. changes of the
temperature, then reading the sensor, detecting sensor fail-
ure, and, finally, executing of the routine control or aborting
the system.

Machine MCH1

Variables st, s, tmp, tmpest, phase, heat, cnt, N
Invariants s ∈ {0, 1} ∧ tmp ∈ N ∧ tmpest ∈ N ∧ cnt ∈ N

N ∈ N∧phase ∈ {env, read, det, cont}∧heat ∈ {on, off}
phase = cont ⇒ tmpmin ≤ tmp ≤ tmpmax

Initialisation st := ok‖s := 1‖tmp := tmp0 ‖tmpest :=
tmp0‖phase := env‖heat := on‖cnt := 0‖N := tmpmax

Event planton b=
when

phase = env ∧ heat = on
then

tmp := tmp + 1 ‖ phase := read
end

Event plantoff b=
when

phase = env ∧ heat = off
then

tmp := tmp − 1 ‖ phase := read
end

Event sensorok b=
when

phase = read ∧ s = 1
then

s :∈ {0, 1} ‖ phase := det
end

Event sensornok b=
when

phase = read ∧ s = 0
then

s :∈ {0, 1} ‖ phase := det
Event detectionok b=

when
phase = det ∧ s = 1

then
N := tmpmax ‖ tmpest := tmp ‖ cnt := 0 ‖
phase := cont

end
Event detectionnok b=

when
phase = det ∧ s = 0

then
N := min(tmpmax − tmpest, tmpest − tmpmin) ‖
cnt := cnt + 1 ‖ phase := cont

end

Event switchon b=
when

phase = cont∧st = ok∧cnt < N∧tmpest ≤ tmpmin

then
heat := on ‖ phase := env

end
Event switchoff b=

when
phase = cont∧st = ok∧cnt < N∧tmpest ≥ tmpmax

then
heat := off ‖ phase := env

end
Event switchok b=

when
phase = cont ∧ st = ok ∧ cnt < N∧
tmpmin < tmpest < tmpmax

then
phase := env

end
Event switchnok b=

when
phase = cont ∧ st = ok ∧ cnt ≥ N

then
st := nok

end
Event shutdown b=

when
st = nok

then
skip

end

The variable tmp measures the actual temperature of the
liquid. We intentionally simplify the environment behaviour
by assuming that the temperature increases by 1, when the
heater is switched on, and decreases by 1, when it is switched
off. The variable s models the sensor status. When s equals
1, the sensor is ”healthy” and its value tmpest equals to the
actual temperature tmp. The value of variable cnt corre-
sponds to the number of successive iterations while the sen-
sor has remained faulty, i.e., when the variable s has had
value 0. Let us note that we could have merged the events
sensorok and sensornok into a single event by dropping the
second conjuncts from their guards. The combined event
would model sensor reading irrespectively whether the sen-
sor has been faulty or healthy. However, we deliberately
decided to model them separately here to be able to attach
different probabilities while translating this specification to
PRISM, thus distinguishing between the cases when the sen-
sor fails and when it recovers.

The faulty detector checks the sensor status and sends its
output to the switching mechanism. When no error is de-
tected, the switcher performs the routine control – it either
switches the heater on, if the temperature has reached the
lower bound, or switches heater off, if the temperature has
reached the upper bound, or does nothing, if the value of
tmpest is in the allowable limits. However, if the error is
detected and the variable cnt already reached the value N ,
then the switcher shutdowns the system.

While translating the Event-B specification into the cor-
responding PRISM specification, the non-deterministic sen-
sor behaviour is replaced by its probabilistic counterpart.
Specifically, we explicitly introduce the constants f and r to
model the corresponding probabilities of sensor failure and
recovery. The type of the variable phase is converted to enu-
merated integers. In addition, the events modelling system
behaviour at each phase are grouped into the correspond-

ing PRISM modules. The justification for this conversion
will be given when we will discuss our next refinement step.
The PRISM model resulting from this rather straightfor-
ward translation is shown below.

dtmc MCH1

const double f = 0.01;
const double r = 0.9;
const int tmpmin = 0;
const int tmpmax = 20;
const int tmp0 = 10
smallskip global phase : [0..3] init 0;

module plant

tmp : [tmpmin..tmpmax] init tmp0;

[] (phase = 0)&(s = 1)&(tmp < tmpmax) →

(tmp
′ = tmp + 1)&(phase

′ = 1);

[] (phase = 0)&(s = 0)&(tmp > tmpmin) →

(tmp
′ = tmp − 1)&(phase

′ = 1);

endmodule

module sensor

s : [0..1] init 1;

[] (phase = 1)&(s = 1) → f : (s′ = 0)&(phase
′ = 2)

+ (1 − f) : (s′ = 1)&(phase
′ = 2);

[] (phase = 1)&(s = 0) → r : (s′ = 1)&(phase
′ = 2)

+ (1 − r) : (s′ = 0)&(phase
′ = 2);

endmodule

module detection

tmpest : [tmpmin..tmpmax] init tmp0;

N : [tmpmin..tmpmax] init tmpmax;

cnt : [0..tmpmax] init 0;

[] (phase = 2)&(s = 1) → (N ′ = tmpmax) &

(cnt
′ = 0)&(tmp

′

est = tmp)&(phase
′ = 3);

[] (phase = 2)&(s = 0)&(cnt < tmpmax) →

(N ′ = min(tmpmax − tmpest, tmpest − tmpmin)) &

(cnt
′ = cnt + 1)&(phase

′ = 3);

endmodule

module switch

st : [0..1] init 1;

heat : [0..1] init 1;

[] (phase = 3)&(cnt < N)&(tmpest = tmpmax) &

(st = 1) → (heat
′ = 0)&(phase

′ = 0);

[] (phase = 3)&(cnt < N)&(tmpest = tmpmin) &

(st = 1) → (heat
′ = 1)&(phase

′ = 0);

[] (phase = 3)&(cnt < N)&(tmpest > tmpmin) &

(tmpest < tmpmax)&(st = 1) → (phase
′ = 0);

[] (phase = 3)&(cnt ≥ N)&(st = 1) → (st′ = 0);

[] (phase = 3)&(st = 0) → (st′ = 0);

endmodule

To evaluate the reliability of the system, we notice that our
specification makes a clear distinction between the operating

and failed system states. Indeed, in our case the operating
states are the states where the variable st has the value ok.
Correspondingly, the failed states are the states where the
variable st has the value nok. Therefore, the operational
states of our systems are defined by the predicate st = ok,
i.e., OP b= (st = ok). Then, according to (2), the PRISM
property

P=?[G ≤ t (st = ok)] (3)

denotes the reliability of our systems within the time t. The
resulting system reliability is graphically presented in Figure
1 compared against the reliability of a control system that
instead of a single sensor employs two sensors in the hot
spare arrangement, as we explain next.

The hot spare arrangement is a standard fault tolerance
mechanism [22]. We introduce an additional sensor – a spare
– that works in parallel with the main one. When a fault
is detected, the system automatically switches to read the
data produced by a spare sensor.

Introduction of the fault tolerance mechanisms by refine-
ment is a rather standard refinement step often performed
in the development of dependable systems. The machine
MCH2 is a result of refining the machine MCH1 to intro-
duce a hot spare. An excerpt of MCH2 machine is given
below.

Machine MCH2

· · ·
Invariants s1 + s2 > 0 ⇔ s = 1 ∧ s1 + s2 = 0 ⇔ s = 0

· · ·
Event sensorok1

b=
when

phase = read ∧ s1 = 1
then

s1 :∈ {0, 1} ‖ phase := det
end

Event sensornok1
b=

when
phase = read ∧ s1 = 0

then
s1 :∈ {0, 1} ‖ phase := det

end
Event sensorok2

b=
when

phase = read ∧ s2 = 1
then

s2 :∈ {0, 1} ‖ phase := det
end

Event sensornok2
b=

when
phase = read ∧ s2 = 0

then
s2 :∈ {0, 1} ‖ phase := det

end
Event detectionok b=

when
phase = det ∧ s1 + s2 > 0

then
· · ·

end
Event detectionnok b=

when
phase = det ∧ s1 + s2 = 0

then
· · ·

end
· · ·

In the refined specification, we replace the sensor s by
two sensors s1 and s2. The behaviour of these sensors is the

same as the behaviour of s. The gluing invariant s1 + s2 >

0 ⇔ s = 1 describes the refinement relationship between
the corresponding variables – the system would output the
actual sensor readings only if no more than one sensor has
failed. In order to take this into account, we modify the
guards of the detection events. The events modelling the
environment and the switcher are the same as in the MCH1.

To show that MCH2 is indeed a refinement of MCH1,
we use the event fusion technique described in Section 2.
Namely, we prove that the event sensornok is refined by par-
allel composition of the events (sensornok1

‖ sensornok2
),

while the event sensorok is refined by any of the following
parallel compositions: (sensorok1

‖ sensorok2
), (sensorok1

‖
sensornok2

) and (sensornok1
‖ sensorok2

).
The event fusion technique significantly simplifies transla-

tion to PRISM. The behaviour of each sensor is represented
by the corresponding module in PRISM. The synchronising
guarded commands (labelled ss) are used to model paral-
lel work of sensors. The translation then follows the rules
described in Section 3. In the module sensor2 we addition-
ally update the global variable phase to model transition of
the system to the detection phase. The modules sensor1 and
sensor2 of corresponding PRISM specification are presented
below.

dtmc MCH2

· · ·

module sensor1

s1 : [0..1] init 1;

[ss] (phase = 1)&(s1 = 1) →

f : (s′1 = 0) + (1 − f) : (s′1 = 1);

[ss] (phase = 1)&(s1 = 0) →

r : (s′1 = 1) + (1 − r) : (s′1 = 0);

endmodule

module sensor2

s2 : [0..1] init 1;

sw : bool init true;

[ss] (phase = 1)&(s2 = 1)&(sw) →

f : (s′2 = 0)&(sw′ = false)+

(1 − f) : (s′2 = 1)&(sw′ = false);

[ss] (phase = 1)&(s2 = 0)&(sw) →

r : (s′2 = 1)&(sw′ = false)+

(1 − r) : (s′2 = 0)&(sw′ = false);

[] (phase = 1)&(!sw) → (sw′ = true)&(phase′ = 2);

endmodule

· · ·

Let us note that, to model parallel work of sensors, we repre-
sent them by the corresponding synchronising modules. In
principle, we could have avoided introducing modules until
this stage.

In the refined specification the system operational states
are still confined by the predicate st = ok. Hence, to as-

(a) 1000 iterations (b) 10000 iterations

Figure 1: Case study results by PRISM (f = 0.01, r = 0.9, tmpmin = 0, tmpmax = 20, tmp0 = 10)

sess reliability, we again check the property (3). Figure 1
shows the results of evaluation for the more abstract and
refined systems. The results clearly demonstrate that the
redundant hot spare system always gives a significantly bet-
ter reliability. In this paper we omit comparison between
various fault tolerance mechanisms that could be used in
our system. Such a comparison for a similar system can be
found in [23].

7. RELATED WORK

The Event-B framework has been extended by Hallerst-
ede and Hoang [10] to take into account probabilistic be-
haviour. They introduce qualitative probabilistic choice op-
erator to reason about almost certain termination. This
operator attempts to bound demonic non-determinism that,
for instance, allows us to demonstrate convergence of certain
protocols. However, this approach is not suitable for relia-
bility assessment since explicit quantitative representation
of reliability is not supported.

Several researches have already used quantitative model
checking for dependability evaluation. For instance, Kwiat-
kowska et al. [13] have proposed an approach to assessing de-
pendability of control systems using continuous time Markov
chains. The general idea is similar to ours – to formulate re-
liability as a system property to be verified. However, this
approach aims at assessing reliability of already developed
systems. However, dependability evaluation late at develop-
ment cycle can be perilous and in case of poor results lead to
system redevelopment that would mean significant financial
and time loss. In our approach reliability assessment pro-
ceeds hand-in-hand with the system development by refine-
ment. It allows us to assess dependability of designed system
on the early stages of development, for instance, every time
when we need to estimate impact of unreliable component
on the system reliability level. This allows a developer to
make an informed decision about how to guarantee a de-
sired system reliability.

A similar topic in the context of refinement calculus has
been explored by Morgan et al. [15, 14]. In this approach
the probabilistic refinement has been used to assess system
dependability. Such an approach is much stronger than the
approach described in this paper. Probabilistic refinement
allows the developers to obtain algebraic solutions even with-
out pruning the system state space. Meanwhile, probabilis-
tic verification gives us only numeric solutions for restricted
system models. In a certain sense, our approach can be seen
as a property-wise refinement evaluation. Indeed, while eval-

uating dependability, we essentially check that, for the same
samples of system parameters, the probability of system to
hold a certain property is not decreased by refinement.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a simple pragmatic ap-
proach to quantitative dependability assessment in Event-
B. Our approach integrates two frameworks: Event-B and
probabilistic model checking. Event-B supported by the
RODIN tool platform provides us with a suitable framework
for development of complex industrial-size systems. By in-
tegrating probabilistic verification supported by the PRISM
model checker we open a possibility to reason quantitatively
also about non-functional system requirements in the refine-
ment process.

In general continuous-time Markov processes are more of-
ten used for dependability evaluation. However, the theory
of refinement of systems with continuous behaviour has not
reached maturity yet and suffers from poor scalability and
lack of tool support [4, 16]. In this paper we have capitalised
on similarities between Event-B and PRISM DTMC mod-
elling. Since the Event-B modelling language is richer than
the PRISM one, we have shown how to restrict it to achieve
compatibility with PRISM. The restrictions are formulated
as a number of rules for the syntactic translation. In the
future we are planning to define rigorously correspondence
between the semantics of these formalisms and define the
theory that would enable automatic translation from Event-
B to PRISM. As a more challenging task, it would be inter-
esting to extend Event-B with the notion of continuous time
and correspondingly enable dependability evaluation using
continuous time Markov chains.

Furthermore, in our future work it would be interesting
to further explore the connection between Event-B mod-
elling and dependability assessment. In particular, addi-
tional studies are required to establish a complete formal se-
mantic basis for converting Event-B models into their proba-
bilistic counterparts. We see our work on probabilistic event
traces as the first steps on this road. Furthermore, it would
be interesting to explore the topic of probabilistic data re-
finement in connection with dependability assessment.

9. ACKNOWLEDGMENTS

This work is partially supported by the FP7 IP Deploy
Project. We also wish to thank the anonymous reviewers
for their helpful comments.

10. REFERENCES

[1] J.-R. Abrial. Extending B without changing it (for
developing distributed systems). In H. Habiras, editor,
First Conference on the B method, pages 169–190.
IRIN Institut de recherche en informatique de Nantes,
1996.

[2] J.-R. Abrial. The B-Book: Assigning Programs to
Meanings. Cambridge University Press, 2005.

[3] R. Alur and T. Henzinger. Reactive modules. In
Formal Methods in System Design, pages 7–48, 1999.

[4] R. J. R. Back, L. Petre, and I. Porres. Generalizing
Action Systems to Hybrid Systems. In FTRTFT 2000,
LNCS 1926, pages 202–213. Springer, 2000.

[5] M. Butler. Decomposition Structures for Event-B. In
Integrated Formal Methods IFM2009, LNCS 5423,
pages 20–38, 2009.

[6] M. Butler. Incremental Design of Disteributed Systems
with Event-B. In Engineering Methods and Tools for
Software Safety and Security. IOS Press, 2009.

[7] D. Craigen, S. Gerhart, and T.Ralson. Case study:
Paris metro signaling system. In IEEE Software, pages
32–35, 1994.

[8] EU-project DEPLOY. online at
http://www.deploy-project.eu/.

[9] W. Feller. An Introduction to Probability Theory and
its Applications, volume 1. John Wiley & Sons, 1967.

[10] S. Hallerstede and T. S. Hoang. Qualitative
probabilistic modelling in Event-B. In J. Davies and
J. Gibbons, editors, IFM 2007, LNCS 4591, pages
293–312, 2007.

[11] H. Hansson and B. Jonsson. A logic for reasoning
about time and reliability. In Formal Aspects of
Computing, pages 512–535, 1994.

[12] J. G. Kemeny and J. L. Snell. Finite Markov Chains.
D. Van Nostrand Company, 1960.

[13] M. Kwiatkowska, G. Norman, and D. Parker.
Controller dependability analysis by probabilistic
model checking. In Control Engineering Practice,
pages 1427–1434, 2007.

[14] A. K. McIver and C. C. Morgan. Abstraction,
Refinement and Proof for Probabilistic Systems.
Springer, 2005.

[15] A. K. McIver, C. C. Morgan, and E. Troubitsyna. The
probabilistic steam boiler: a case study in probabilistic
data refinement. In Proc. International Refinement
Workshop, ANU, Canberra. Springer, 1998.

[16] L. Meinicke and G. Smith. A Stepwise Development
Process for Reasoning about the Reliability of
Real-Time Systems. In Integrated Formal Methods
IFM2007, LNCS 4591, pages 439–456. Springer, 2007.

[17] P. D. T. O’Connor. Practical Reliability Engineering,
3rd ed. John Wiley & Sons, 1995.

[18] PRISM. Probabilistic symbolic model checker.
online at http://www.prismmodelchecker.org/.

[19] Rigorous Open Development Environment for
Complex Systems (RODIN). IST FP6 STREP project,
online at http://rodin.cs.ncl.ac.uk/.

[20] Rigorous Open Development Environment for
Complex Systems (RODIN). Deliverable D7, Event-B
Language, online at http://rodin.cs.ncl.ac.uk/.

[21] RODIN. Event-B platform. online at

http://www.event-b.org/.

[22] N. Storey. Safety-Critical Computer Systems.
Addison-Wesley, 1996.

[23] A. Tarasyuk, E. Troubitsyna, and L. Laibinis.
Reliability assessment in Event-B. Technical Report
932, Turku Centre for Computer Science, 2009.

[24] A. Villemeur. Reliability, Availability, Maintainability
and Safety Assessment. John Wiley & Sons, 1995.

[25] D. J. White. Markov Decision Processes. John Wiley
& Sons, 1993.

Paper VII

From Formal Specification in Event-B to

Probabilistic Reliability Assessment

Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis

Originally published in: Proceedings of 3rd International Conference on De-
pendability (DEPEND 2010), 24–31, IEEE Computer Society Press, 2010

From Formal Specification in Event-B to Probabilistic Reliability Assessment

Anton Tarasyuk and Elena Troubitsyna and Linas Laibinis

Department of Information Technologies

Åbo Akademi University

Joukahaisenkatu 3-5A, 20520 Turku, Finland

Email: {anton.tarasyuk, elena.troubitsyna, linas.laibinis}@abo.fi

Abstract—Formal methods, in particular the B Method
and its extension Event-B, have proven their worth in the
development of many complex software-intensive systems.
However, while providing us with a powerful development
platform, these frameworks poorly support quantitative as-
sessment of dependability attributes. Yet, such an assessment
would facilitate not only system certification but also system
development by guiding it towards the design optimal from the
dependability point of view. In this paper we demonstrate how
to integrate reliability assessment performed by model checking
into refinement process in Event-B. Such an integration allows
us to combine logical reasoning about functional correctness
with probabilistic reasoning about reliability. Hence we obtain
a method that enables building the systems that are not
only correct-by-construction but also have a predicted level
of reliability.

Keywords-Reliability assessment; formal modelling; Markov
processes; refinement; probabilistic model checking

I. INTRODUCTION

Formal verification techniques provide us with rigorous

and powerful methods for establishing correctness of com-

plex systems. The advances in expressiveness, usability and

automation of these techniques enable their use in the design

of wide range of complex dependable systems. For instance,

the B Method [1] and its extension Event-B [2] provide us

with a powerful framework for developing systems correct-

by-construction. The top-down development paradigm based

on stepwise refinement adopted by these frameworks has

proven its worth in several industrial projects [3], [4].

While developing system by refinement, we start from

an abstract system specification and, in a number of refine-

ment steps, introduce the desired implementation decisions.

While approaching the final implementation, we decrease

the abstraction level and reduce non-determinism inherently

present in the abstract specifications. In general, an abstract

specification can be refined in several different ways be-

cause usually there are several ways to resolve its non-

determinism. These refinement alternatives are equivalent

from the correctness point of view, i.e., they faithfully im-

plement functional requirements. Yet they might be different

from the point of view of non-functional requirements, e.g.,

reliability, performance etc. Early quantitative assessment of

various design alternatives is certainly useful and desirable.

However, within the current refinement frameworks we

cannot perform it. In this paper we propose an approach

to overcoming this problem.

We propose to integrate stepwise development in Event-

B with probabilistic model checking [5] to enable reliability

assessment already at the development stage. Reliability is

a probability of system to function correctly over a given

period of time under a given set of operating conditions [6],

[7], [8]. Obviously, to assess reliability of various design

alternatives, we need to model their behaviour stochasti-

cally. In this paper we demonstrate how to augment (non-

deterministic) Event-B models with probabilistic informa-

tion and then convert them into the form amenable to prob-

abilistic verification. Reliability is expressed as a property

that we verify by probabilistic model checking. To illustrate

our approach, we assess reliability of refinement alternatives

that model different fault tolerance mechanisms.

We believe that our approach can facilitate the process

of developing dependable systems by enabling evaluation of

design alternatives at early development stages. Moreover,

it can also be used to demonstrate that the system adheres

to the desired dependability levels, for instance, by proving

statistically that the probability of a catastrophic failure is

acceptably low. This application is especially useful for

certifying safety-critical systems.

The remainder of the paper is structured as follows.

In Section II, we give a brief overview of our modelling

formalism – the Event-B framework. In Section III, we give

an example of refinement in Event-B. In Section IV, we

demonstrate how to augment Event-B specifications with

probabilistic information and convert them into specifica-

tions of the PRISM model checker [9]. In Section V, we

define how to assess reliability via probabilistic verification

and compare the results obtained by model checking with

algebraic solutions. Finally, in Section VI, we discuss the

obtained results, overview the related work and propose

some directions for the future work.

II. MODELLING AND REFINEMENT IN EVENT-B

The B Method is an approach for the industrial develop-

ment of highly dependable software. Event-B is an extension

of the B Method to model parallel, distributed and reactive

systems. The Rodin platform [10] provides automated tool

support for modelling and verification (by theorem proving)

2010 Third International Conference on Dependability

978-0-7695-4090-0/10 $26.00 © 2010 IEEE

DOI 10.1109/DEPEND.2010.12

24

in Event-B. Currently Event-B is used in the EU project

Deploy [11] to model several industrial systems from auto-

motive, railway, space and business domains.

Event-B uses the Abstract Machine Notation [12] for con-

structing and verifying system models. An abstract machine

encapsulates the state (the variables) of a model and defines

operations on its state. A simple abstract machine has the

following general form:

Machine AM
Variables v
Invariants I
Events

init
evt1
· · ·
evtN

The machine is uniquely identified by its name AM . The

state variables of the machine, v, are declared in the Vari-

ables clause and initialised in init event. The variables are

strongly typed by constraining predicates of invariants I

given in the Invariants clause. The invariant is usually de-

fined as a conjunction predicates and the predicates defining

the properties of the system that should be preserved during

system execution.

The dynamic behaviour of the system is defined by the

set of atomic events specified in the Events clause. An event

is defined as follows:

evt =̂ when g then S end

where the guard g is conjunction of predicates over the state

variables v, and the action S is an assignment to the state

variables.

The guard defines the conditions under which the action

can be executed, i.e., when the event is enabled. If several

events are enabled then any of them can be chosen for

execution non-deterministically. If none of the events is

enabled then the system deadlocks.

In general, the action of an event is a composition of

variable assignments executed simultaneously (simultaneous

execution is denoted as ‖). Variable assignments can be

either deterministic or non-deterministic. The deterministic

assignment is denoted as x := E(v), where x is a state

variable and E(v) expression over the state variables v. The

non-deterministic assignment can be denoted as x :∈ S or

x :| Q(v, x′), where S is a set of values and Q(v, x′) is

a predicate. As a result of non-deterministic assignment, x

gets any value from S or it obtains such a value x′ that

Q(v, x′) is satisfied.

The semantics of Event-B events is defined using so called

before-after predicates [12]. It is a variation of the weakest

precondition semantics [13]. A before-after predicate de-

scribes a relationship between the system states before and

after execution of an event. The formal semantics provides

us with a foundation for establishing correctness of Event-

B specifications. To verify correctness of a specification we

need to prove that its initialization and all events preserve

the invariant.

The formal semantics also establishes a basis for system

refinement – the process of developing systems correct by

construction. The basic idea underlying formal stepwise

development by refinement is to design the system im-

plementation gradually, by a number of correctness pre-

serving steps, called refinements. The refinement process

starts from creating an abstract, albeit unimplementable,

specification and finishes with generating executable code.

The intermediate stages yield the specifications containing a

mixture of abstract mathematical constructs and executable

programming artifacts.

Assume that the refinement machine AM ′ is a result of

refinement of the abstract machine AM :

Machine AM
Variables v
Invariants I
Events

init
evt1
· · ·
evtN

⊑

Machine AM ′

Variables v′

Invariants I′

Events

init′

evt′
1

· · ·
evt′

K

The machine AM ′ might contain new variables and events

as well as replace the abstract data structures of AM with the

concrete ones. The invariants of AM ′ – I ′ – define not only

the invariant properties of the refined model, but also the

connection between the state spaces of AM and AM ′. For

a refinement step to be valid, every possible execution of the

refined machine must correspond (via I ′) to some execution

of the abstract machine. To demonstrate this, we should

prove that init′ is a valid refinement of init, each event

of AM ′ is a valid refinement of its counterpart in AM and

that the refined specification does not introduce additional

deadlocks. In the next section we illustrate modelling and

refinement in Event-B by an example.

III. EXAMPLE OF REFINEMENT IN EVENT-B

Control and monitoring systems constitute a large class

of dependable systems. Essentially, the behaviour of these

systems is periodic. Indeed, a control system periodically

executes a control cycle that consists of reading sensors

and setting actuators. The monitoring systems periodically

perform certain measurements. Due to faults (e.g., caused by

random hardware failures) inevitably present in any system,

the system can fail to perform its functions. In this paper we

focus on modelling fail-safe systems, i.e., the systems that

shut down upon occurrence of failure.

In general, the behaviour of such system can be repre-

sented as shown in the specification below.

25

by a Markov chain. Otherwise, it corresponds to a Markov

Decision process [18], [19], [20]. More specifically, it is a

discrete time Markov process since we can use it to describe

the states at certain instances of time.

The probabilistic model checking framework developed

by Kwiatkowska et al. [5] supports verification of Discrete-

Time Markov Chains (DTMC) and Markov Decision Pro-

cesses (MDP). The framework has a mature tool support –

the PRISM model checker [9]

The PRISM modelling language is a high-level state-

based language. It relies on the Reactive Modules formalism

of Alur and Henzinger [17]. PRISM supports the use of

constants and variables that can be integers, doubles (real

numbers) and Booleans. Constants are used, for instance,

to define the probabilities associated with variable updates.

The variables in PRISM are finite-ranged and strongly typed.

They can be either local or global. The definition of an initial

value of a variable is usually attached to its declaration. The

state space of a PRISM model is defined by the set of all

variables, both global and local.

In general, a PRISM specification looks as follows:

dtmc

const double p11 = . . . ;
. . .

global v : Type init . . . ;
module M1

v1 : Type init . . . ;

[] g11 → p11 : act11 + · · · + p1n : act1n;
[sync] g12 → q11 : act′

11
+ · · · + q1m : act′

1m
;

. . .
endmodule

module M2

v2 : Type init . . . ;

[sync] g21 → p21 : act21 + · · · + p2k : act2k;
[] g22 → q21 : act′

21
+ · · · + q2l : act′

2l
;

. . .
endmodule

A system specification in PRISM is constructed as a

parallel composition of modules. Modules work in parallel.

They can be independent of each other or interact with each

other. Each module has a number of local variables v1, v2

and a set of guarded commands that determine its dynamic

behaviour. The guarded commands can have names. Simi-

larly to the events of Event-B, a guarded command can be

executed if its guard evaluates to TRUE. If several guarded

commands are enabled then the choice between them can be

non-deterministic in case of MDP or probabilistic (according

to the uniform distribution) in case of DTMC. In general,

the body of a guarded command is a probabilistic choice

between deterministic assignments.

The guarded commands define not only the dynamic

behaviour of a stand-alone module but can also be used to

define syncronisation between modules. If several modules

synchronise then each of them should contain a command

defining the syncronisation condition. These commands

should have identical names. For instance, in our general

PRISM specification shown above, the modules M1 and M2

synchronise. They contain the corresponding guarded com-

mands labelled with the name sync. The guarded commands

that provide synchronisation with other modules cannot

modify the global variables. This allows to avoid read-write

and write-write conflicts on the global variables.

With certain restrictions on the Event-B modelling lan-

guage, converting of an Event-B specification into a PRISM

model is rather straightforward. When converting the Event-

B model into its counterpart, we need to restrict the types of

variables and constants to the types supported by PRISM.

Moreover, PRISM lacks of support relations and functions.

The invariants that describe system properties can be repre-

sented as a number of temporal logic formulas in a list of

properties of the model and then can be verified by PRISM

if needed. While converting events into the PRISM guarded

commands, we identify four classes of events: initilisation

events, events with parallel deterministic assignment, non-

deterministic assignment and parallel non-deterministic as-

signment. The conversion of an Event-B event to a PRISM

guarded command depends on its class:

• The initialisation events are used to form the initial-

isation part of the corresponding variable declaration.

Hence the initialisation does not have a corresponding

guarded command in PRISM;

• An event with a parallel deterministic assignment

evt =̂ when g then x := x1 ‖ y := y1 end

can be represented by the following guarded command

in PRISM:

[] g → (x′ = x1) & (y′ = y1)

Here & denotes the parallel composition;

• An event with a non-deterministic assignment

evt =̂ when g then x :∈ {x1, . . . xn} end

can be represented as

[] g → p1 : (x′ = x1) + · · · + pn : (x′ = xn)

where p1, ..., pn are defined according to a certain

probability distribution;

• An event with a parallel non-deterministic assignment

evt =̂ when g then

x :∈ {x1, . . . xn} ‖ y :∈ {y1, . . . ym} end

can be represented using the PRISM synchronisation

mechanism. It corresponds to a set of the guarded

commands modelling syncronisation. These commands

have the identical guards. Their bodies are formed from

the assignments used in the parallel composition of the

Event-B action.

28

module X

x : Type init . . . ;

[name] g → p1 : (x′ = x1) + · · · + pn : (x′ = xn);

endmodule

module Y

y : Type init . . . ;

[name] g → q1 : (y′ = y1) + · · · + qm : (y′ = ym);

endmodule.

To demonstrate the conversion of an Event-B specification

into a PRISM specification, below we present an excerpt

from the PRISM counterpart of the TMR specification. Here

we assume that at each iteration step a module successfully

produces a result with a constant probability p.

SystemTMR

module module1

m1 : [0..1] init 1;
f : [0..1] init 0;

[m] (phase = 0) & (m1 = 1) & (f = 0) →

p : (m′

1
= 1) & (f ′ = 1) +

(1 − p) : (m′

1
= 0) & (f ′ = 1);

[m] (phase = 0) & (m1 = 0) & (f = 0) → (f ′ = 1);

[] (phase = 0) & (f = 1) → (phase′ = 1) & (f ′ = 0);

endmodule

module module2 . . .

module module3 . . .

module voter

res : bool init true;

[] (phase = 1)&(m1+m2+m3 > 1) → (phase′ = 0);

[] (phase = 1)&(m1+m2+m3 ≤ 1) → (res′ = false);

endmodule

While converting an Event-B model into PRISM we could

have modelled the parallel work of the system modules in the

same way as we have done it in the Event-B specifications,

i.e., using non-determinism to represent parallel behaviour

and explicitly modelling the phases of system execution.

However, we can also directly use the synchronisation

mechanism of PRISM because all the modules update only

their local variables and no read-write conflict can occur.

This solution is presented in the excerpt above. In the

SystemTMR specification, the guarded commands of the

modules module1, module2 and module3 are synchronised

(as designated by the m label). In the module1 we addition-

ally update the global variable phase to model transition of

the system to the voting phase.

V. RELIABILITY ASSESSMENT VIA PROBABILISTIC

MODEL CHECKING

In engineering, reliability [7], [8] is generally measured

by the probability that an entity E can perform a required

function under given conditions for the time interval [0, t]:

R(t) = P [E not failed over time [0, t]].

The analysis of the abstract and refined specification shows

that we can clearly distinguish between two classes of

systems states: operating and failed. In our case the operating

states are the states where the variable res has the value

TRUE. Correspondingly, the failed states are the states

where the variable res has the value FALSE. While the

system is in an operating state, it continues to iterate. When

the system fails it deadlocks. Therefore, we define reliability

of the system as a probability of staying operational for a

given number of iterations.

Let T be the random variable measuring the number

of iterations before the deadlock is reached and F (t) its

cumulative distribution function. Then clearly R(t) and F (t)
are related as follows:

R(t) = P [T > t] = 1 − P [T ≤ t] = 1 − F (t).

It is straightforward to see that our definition corresponds

to the standard definition of reliability given above. Now let

us discuss how to employ PRISM model checking to assess

system reliability.

While analysing a PRISM model we define a number of

temporal logic properties and systematically check the model

to verify them. Properties of discrete-time PRISM models,

i.e, DTMC and MDP, are expressed formally in the proba-

bilistic computational tree logic [21]. The PRISM property

specification language supports a number of different types

of properties. For example, the P operator is used to refer

to the probability of a certain event occurrence.

Since we are interested in assessment of system reliabil-

ity, we have to verify invariant properties, i.e., properties

maintained by the system globally. In the PRISM property

specification language, the operator G is used inside the

operator P to express properties of such type. In general,

the property

P=?[G ≤ t prop]

returns a probability that the predicate prop remains TRUE

in all states within the period of time t.

To evaluate reliability of a system we have to assess a

probability of system staying operational within time t. We

define a predicate OP that defines a subset of all system

states where the system is operational. Then, the PRISM

property

P=?[G ≤ T OP] (1)

gives us the probability that the system will stay operational

during the first T iterations, i.e, it is a probability that

29

(a) Resulting Reliabilities (b) Resulting Reliabilities

Figure 4. Case Study Results by PRISM

any state in which the system will be during this time

belongs to the subset of operational states. In other words,

the property (1) defines the reliability function of the system.

Let us return to our examples. As we discussed previously,

the operational states of our systems are defined by the

predicate res = true, i.e., OP=̂ res = true. Then the

PRISM property

P=?[G ≤ T (res = true)] (2)

denotes the reliability of our systems within time T .

To evaluate reliability of our refinement system, let us

assume that a module produces a result successfully with

the probability p equal to 0.999998. In Figure 4 we present

the results of analysis of reliability up to 500000 iterations.

Figure 4 (a) shows the comparative results between single-

module and both of TMR systems. The results show that

the triple modular redundant system with a spare always

gives better reliability. Note that using the simple TMR

arrangement is better comparing to a single module only

up to approximately 350000 iterations. In Figure 4 (b) we

compare single-module and standby spare arrangements.

The results clearly indicate that the better reliability is

provided by the dynamic redundancy systems and that using

of the cold spare arrangement is always more reliable.

It would be interesting to evaluate precision of the results

obtained by the model checking with PRISM. For our case

study it is possible to derive analytical representations of

reliability functions, which then can be used for comparison

with verification results of property (2). It is well-known

that the reliability of a single module system is RM (t) = pt

and it is easy to show that the reliability of a TMR system,

consists of three identical modules, is

RTMR(t) = R3

M (t) + 3R2

M (t)(1 − RM (t)) =

= 3R2

M (t) − 2R3

M (t) = 3p2t − 2p3t.

Indeed, we can also calculate that the standby spare arrange-

ment with a faulty detector has the resulting reliability

RHSS = 1 − (1 − pt)2

for the hot spare, and the resulting reliabilty

RCSS = pt(1 + t(1 − p))

for the cold spare module. Finally, for the TMR arrange-

ment with a spare, the resulting reliability is given by the

expression

RTMRS = (6t − 8)p3t − 6tp3t−1 + 9p2t.

It is easy to verify that the results obtained by the model

checking are identical to those can be calculated from

the formulas presented above. This fact demonstrates the

feasibility of using the PRISM model checker for reliability

assessment.

VI. CONCLUSION

In this paper, we have proposed an approach to integrat-

ing reliability assessment into the refinement process. The

proposed approach enables reliability assessment at early

design phases that allows the designers to evaluate reliability

of different design alternatives already at the development

phase.

Our approach integrates two frameworks: refinement in

Event-B and probabilistic model checking. Event-B sup-

ported by the RODIN tool platform provides us with a suit-

able framework for development of complex industrial-size

systems. By integrating probabilistic verification supported

by PRISM model checker we open a possibility to reason

about non-functional system requirements in the refinement

process.

The Event-B framework has been extended by Haller-

stede and Hoang [22] to take into account probabilistic

behaviour. They introduce qualitative probabilistic choice

operator to reason about almost certain termination. This

operator attempts to bound demonic non-determinism that,

for instance, allows to demonstrate convergence of certain

protocols. However, this approach is not suitable for relia-

bility assessment since explicit quantitative representation of

reliability would not be supported.

30

Kwiatkowska et al. [5] proposed an approach to assessing

dependability of control systems using continuous time Mar-

kov chains. The general idea is similar to ours – to formulate

reliability as a system property to be verified. However, this

approach aims at assessing reliability of already developed

system. In our approach reliability assessment proceeds

hand-in-hand with system development.

The similar topic in the context of refinement calculus

has been explored previously by Morgan et al. [16], [15]. In

this approach the probabilistic refinement was used to assess

system dependability. However, this work does not have the

corresponding tool support, so the use of this approach in

industrial practice might be cumbersome. In our approach

we see a great benefit in integrating frameworks that have

mature tool support [10], [9].

When using model checking we need to validate whether

the analysed model represents the behaviour of the real sys-

tem accurately enough. For example, the validation can be

done if we demonstrate that model checking provides a good

approximation of the corresponding algebraic solutions. In

this paper we deliberately chosen the examples for which

algebraic solutions can be provided. The experiments have

demonstrated that the results obtained by model checking

accurately match the algebraic solutions.

In our future work it would be interesting to further

explore the connection between Event-B modeling and de-

pendability assessment. In particular, an additional study

are required to establish a formal basis for converting all

types of non-deterministic assignments into the probabilistic

ones. Furthermore, it would be interesting to explore the

topic of probabilistic data refinement in connection with

dependability assessment.

ACKNOWLEDGMENT

This work is partially supported by the FP7 IP Deploy.

REFERENCES

[1] J.-R. Abrial, The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 2005.

[2] J.-R. Abrial, “Extending B without changing it (for devel-
oping distributed systems),” in First Conference on the B
method, H. Habiras, Ed. IRIN Institut de recherche en
informatique de Nantes, 1996, pp. 169–190.

[3] Rigorous Open Development Environment for Complex
Systems (RODIN), IST FP6 STREP project, online at
http://rodin.cs.ncl.ac.uk/.

[4] D. Craigen, S. Gerhart, and T. Ralson, “Case study: Paris
metro signaling system,” in IEEE Software, 1994, pp. 32–35.

[5] M. Kwiatkowska, G. Norman, and D. Parker, “Controller
dependability analysis by probabilistic model checking,” in
Control Engineering Practice, 2007, pp. 1427–1434.

[6] N. Storey, Safety-Critical Computer Systems. Addison-
Wesley, 1996.

[7] A. Villemeur, Reliability, Availability, Maintainability and
Safety Assessment. John Wiley & Sons, 1995.

[8] P. D. T. O’Connor, Practical Reliability Engineering, 3rd ed.
John Wiley & Sons, 1995.

[9] PRISM. Probabilistic symbolic model checker, online at
http://www.prismmodelchecker.org/.

[10] RODIN. Event-B platform, online at http://www.event-b.org/.

[11] EU-project DEPLOY, online at http://www.deploy-
project.eu/.

[12] Rigorous Open Development Environment for Complex Sys-
tems (RODIN), Deliverable D7, Event-B Language, online at
http://rodin.cs.ncl.ac.uk/.

[13] E. W. Dijkstra, A Discipline of Programming. Prentice-Hall,
1976.

[14] A. Tarasyuk, E. Troubitsyna, and L. Laibinis, “Reliability
assessment in Event-B,” Turku Centre for Computer Science,
Tech. Rep. 932, 2009.

[15] A. K. McIver and C. C. Morgan, Abstraction, Refinement and
Proof for Probabilistic Systems. Springer, 2005.

[16] A. K. McIver, C. C. Morgan, and E. Troubitsyna, “The
probabilistic steam boiler: a case study in probabilistic data
refinement,” in Proc. International Refinement Workshop,
ANU, Canberra, J. Grundy, M. Schwenke, and T. Vickers,
Eds. Springer-Verlag, 1998.

[17] R. Alur and T. Henzinger, “Reactive modules,” in Formal
Methods in System Design, 1999, pp. 7–48.

[18] W. Feller, An Introduction to Probability Theory and its
Applications. John Wiley & Sons, 1967, vol. 1.

[19] J. G. Kemeny and J. L. Snell, Finite Markov Chains. D. Van
Nostrand Company, 1960.

[20] D. J. White, Markov Decision Processes. John Wiley &
Sons, 1993.

[21] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” in Formal Aspects of Computing, 1994, pp.
512–535.

[22] S. Hallerstede and T. S. Hoang, “Qualitative probabilistic
modelling in Event-B,” in IFM 2007, LNCS 4591, J. Davies
and J. Gibbons, Eds., 2007, pp. 293–312.

31

Paper VIII

Quantitative Reasoning about Dependability in

Event-B: Probabilistic Model Checking Approach

Anton Tarasyuk, Elena Troubitsyna and Linas Laibinis

Originally published in: Luigia Petre, Kaisa Sere, Elena Troubitsyna (Eds.),
Dependability and Computer Engineering: Concepts for Software-Intensive
Systems, 459–472, IGI Global, 2012

���

&RS\ULJKW���������,*,�*OREDO��&RS\LQJ�RU�GLVWULEXWLQJ�LQ�SULQW�RU�HOHFWURQLF�IRUPV�ZLWKRXW�ZULWWHQ�SHUPLVVLRQ�RI�,*,�*OREDO�LV�SURKLELWHG�

&KDSWHU����

'2,����������������������������FK���

,1752'8&7,21

)RUPDO� DSSURDFKHV� SURYLGH� XV� ZLWK� ULJRURXV�

PHWKRGV�IRU�HVWDEOLVKLQJ�FRUUHFWQHVV�RI�FRPSOH[�

V\VWHPV��7KH�DGYDQFHV�LQ�H[SUHVVLYHQHVV��XVDELO�

LW\�DQG�DXWRPDWLRQ�RIIHUHG�E\�WKHVH�DSSURDFKHV�

HQDEOH� WKHLU� XVH� LQ� WKH� GHVLJQ� RI� ZLGH� UDQJH�

RI� FRPSOH[� GHSHQGDEOH� V\VWHPV��)RU� LQVWDQFH��

(YHQW�%� �$EULDO�� ������$EULDO�� ������ SURYLGHV�

XV� ZLWK� D� SRZHUIXO� IUDPHZRUN� IRU� GHYHORSLQJ�

V\VWHPV�FRUUHFW�E\�FRQVWUXFWLRQ��7KH� WRS�GRZQ�

GHYHORSPHQW�SDUDGLJP�EDVHG�RQ�VWHSZLVH�UHILQH�

PHQW�DGRSWHG�E\�(YHQW�%�KDV�SURYHG�LWV�ZRUWK�LQ�

VHYHUDO�LQGXVWULDO�SURMHFWV��&UDLJHQ��*HUKDUW��	�

5DOVRQ��������52',1��,67�)3��SURMHFW��������

:KLOH�GHYHORSLQJ�V\VWHP�E\�UHILQHPHQW��ZH�

VWDUW�IURP�DQ�DEVWUDFW�V\VWHP�VSHFLILFDWLRQ�DQG��

LQ�D�QXPEHU�RI�FRUUHFWQHVV�SUHVHUYLQJ�UHILQHPHQW�

VWHSV��LPSOHPHQW�WKH�V\VWHP¶V�IXQFWLRQDO�UHTXLUH�

PHQWV��,Q�RXU�UHFHQW�ZRUN��7DUDV\XN��7URXELWV\QD��

$QWRQ�7DUDV\XN
cER�$NDGHPL�8QLYHUVLW\��)LQODQG�	�7XUNX�&HQWUH�IRU�&RPSXWHU�6FLHQFH��)LQODQG

(OHQD�7URXELWV\QD
cER�$NDGHPL�8QLYHUVLW\��)LQODQG

/LQDV�/DLELQLV
cER�$NDGHPL�8QLYHUVLW\��)LQODQG

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�
'HSHQGDELOLW\�LQ�(YHQW�%�

3UREDELOLVWLF�0RGHO�&KHFNLQJ�$SSURDFK

$%675$&7

)RUPDO�UH¿QHPHQW�EDVHG�DSSURDFKHV�KDYH�SURYHG�WKHLU�ZRUWK�LQ�YHULI\LQJ�V\VWHP�FRUUHFWQHVV��2IWHQ��
EHVLGHV�HQVXULQJ�IXQFWLRQDO�FRUUHFWQHVV��ZH�DOVR�QHHG�WR�TXDQWLWDWLYHO\�GHPRQVWUDWH�WKDW�WKH�GHVLUHG�
OHYHO�RI�GHSHQGDELOLW\�LV�DFKLHYHG��+RZHYHU��WKH�H[LVWLQJ�UH¿QHPHQW�EDVHG�IUDPHZRUNV�GR�QRW�SURYLGH�
VXI¿FLHQW�VXSSRUW�IRU�TXDQWLWDWLYH�UHDVRQLQJ��,Q�WKLV�FKDSWHU��ZH�VKRZ�KRZ�WR�XVH�SUREDELOLVWLF�PRGHO�
FKHFNLQJ�WR�YHULI\�SUREDELOLVWLF�UH¿QHPHQW�RI�(YHQW�%�PRGHOV��6XFK�LQWHJUDWLRQ�DOORZV�XV�WR�FRPELQH�
ORJLFDO�UHDVRQLQJ�DERXW�IXQFWLRQDO�FRUUHFWQHVV�ZLWK�SUREDELOLVWLF�UHDVRQLQJ�DERXW�UHOLDELOLW\�

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

	�/DLELQLV��������ZH�KDYH�H[WHQGHG�WKH�(YHQW�%�

PRGHOOLQJ�ODQJXDJH�ZLWK�SUREDELOLVWLF�DVVLJQPHQW��

0RUHRYHU��ZH� KDYH� VWUHQJWKHQHG� WKH� QRWLRQ� RI�

(YHQW�%� UHILQHPHQW� E\� DGGLWLRQDOO\� UHTXLULQJ�

WKDW�WKH�UHILQHG�PRGHO�ZRXOG�EH�PRUH�UHOLDEOH��
+RZHYHU�� ZKLOH� WKH� (YHQW�%� IUDPHZRUN� SUR�

YLGHV�XV�ZLWK�D�SRZHUIXO�GHYHORSPHQW�SODWIRUP�

�52',1� 3ODWIRUP��� TXDQWLWDWLYH� DVVHVVPHQW� RI�

QRQ�IXQFWLRQDO� V\VWHP� UHTXLUHPHQWV� LV� VRUHO\�

ODFNLQJ��,Q�WKLV�FKDSWHU�ZH�GHPRQVWUDWH�KRZ�WR�

RYHUFRPH� WKLV� SUREOHP�� 6SHFLILFDOO\�� ZH� VKRZ�

KRZ� WKH� (YHQW�%� GHYHORSPHQW� SURFHVV� FDQ� EH�

FRPSOHPHQWHG�E\�SUREDELOLVWLF�PRGHO�FKHFNLQJ�

WR�HQVXUH�WKH�FRUUHFWQHVV�RI�SUREDELOLVWLF�UHILQH�

PHQW��:H�H[HPSOLI\�RXU�DSSURDFK�E\�UHILQHPHQW�

DQG�UHOLDELOLW\�HYDOXDWLRQ�RI�D�VLPSOH�PRQLWRULQJ�

V\VWHP�

7KH�UHPDLQGHU�RI�WKH�FKDSWHU�LV�VWUXFWXUHG�DV�

IROORZV��:H�VWDUW�ZLWK�D�VKRUW�LQWURGXFWLRQ�LQWR�RXU�

PRGHOOLQJ�IRUPDOLVP�±�WKH�(YHQW�%�IUDPHZRUN��

:H�FRQWLQXH�E\�EULHIO\�RYHUYLHZLQJ�RXU�DSSURDFK�

WR�SUREDELOLVWLF�PRGHOOLQJ�LQ�(YHQW�%��1H[W��ZH�

H[SODLQ�KRZ�SUREDELOLVWLF�YHULILFDWLRQ�RI�(YHQW�%�

PRGHOV�FDQ�EH�GRQH�XVLQJ�WKH�35,60�V\PEROLF�

PRGHO�FKHFNHU�DQG�DOVR�VXPPDULVH�RXU�DSSURDFK�

SURSRVLQJ�D�QXPEHU�RI�PRGHOOLQJ�JXLGHOLQHV��,Q�

WKH�ODVW�WZR�VHFWLRQV�ZH�H[HPSOLI\�RXU�DSSURDFK�

E\�SUHVHQWLQJ�D�FDVH�VWXG\�DQG�JLYH�FRQFOXGLQJ�

UHPDUNV��UHVSHFWLYHO\�

,1752'8&7,21�72�(9(17�%

7KH�%�PHWKRG��$EULDO��������LV�DQ�DSSURDFK�IRU�

WKH�LQGXVWULDO�GHYHORSPHQW�RI�KLJKO\�GHSHQGDEOH�

VRIWZDUH��7KH�PHWKRG�KDV�EHHQ�VXFFHVVIXOO\�XVHG�

LQ�WKH�GHYHORSPHQW�RI�VHYHUDO�FRPSOH[�UHDO�OLIH�

DSSOLFDWLRQV�� (YHQW�%� LV� D� IRUPDO� IUDPHZRUN�

GHULYHG� IURP� WKH�%�0HWKRG� WR�PRGHO� SDUDOOHO��

GLVWULEXWHG� DQG� UHDFWLYH� V\VWHPV�� 7KH� 5RGLQ�

SODWIRUP� SURYLGHV� DXWRPDWHG� WRRO� VXSSRUW� IRU�

PRGHOOLQJ�DQG�YHULILFDWLRQ��E\�WKHRUHP�SURYLQJ��

LQ� (YHQW�%�� &XUUHQWO\� (YHQW�%� LV� XVHG� LQ� WKH�

(8�SURMHFW�'HSOR\��'(3/2<��,67�)3��SURMHFW��

������WR�PRGHO�VHYHUDO�LQGXVWULDO�V\VWHPV�IURP�

DXWRPRWLYH��UDLOZD\��VSDFH�DQG�EXVLQHVV�GRPDLQV�

,Q�(YHQW�%�D�V\VWHP�VSHFLILFDWLRQ�LV�GHILQHG�XV�

LQJ�DQ�DEVWUDFW��VWDWH��PDFKLQH�QRWLRQ��$Q�DEVWUDFW�

PDFKLQH�HQFDSVXODWHV�WKH�VWDWH��WKH�YDULDEOHV��RI�

D�PRGHO�DQG�GHILQHV�RSHUDWLRQV�RQ�LWV�VWDWH��7KH�

JHQHUDO� IRUP�RI� DQ�(YHQW�%�PDFKLQH� LV� VKRZQ�

RQ�)LJXUH���

7KH�PDFKLQH�LV�XQLTXHO\�LGHQWLILHG�E\�LWV�QDPH�

0�� 7KH� VWDWH� YDULDEOHV�� Y�� DUH� GHFODUHG� LQ� WKH�
9DULDEOHV�FODXVH�DQG�LQLWLDOLVHG�LQ�WKH�LQLW�HYHQW��
7KH�YDULDEOHV�DUH�VWURQJO\�W\SHG�E\�WKH�FRQVWUDLQ�

LQJ�SUHGLFDWHV� ,� JLYHQ� LQ� WKH� ,QYDULDQWV� FODXVH��
7KH� LQYDULDQW� FODXVH� PLJKW� DOVR� FRQWDLQ� RWKHU�

SUHGLFDWHV� GHILQLQJ� SURSHUWLHV� WKDW� VKRXOG� EH�

SUHVHUYHG�GXULQJ�V\VWHP�H[HFXWLRQ�

7KH�G\QDPLF�EHKDYLRXU�RI�WKH�V\VWHP�LV�GH�

ILQHG�E\�WKH�VHW�RI�DWRPLF�HYHQWV�VSHFLILHG�LQ�WKH�

(YHQWV�FODXVH��*HQHUDOO\��DQ�HYHQW�FDQ�EH�GHILQHG�

DV�IROORZV�

HYW�≜�ZKHQ�J�WKHQ�6�HQG�

ZKHUH�WKH�JXDUG�J�LV�D�FRQMXQFWLRQ�RI�SUHGLFDWHV�
RYHU�WKH�VWDWH�YDULDEOHV�Y�DQG�WKH�DFWLRQ�6�LV�DQ�
DVVLJQPHQW�WR�WKH�VWDWH�YDULDEOHV��,Q�LWV�JHQHUDO�

IRUP��DQ�HYHQW�FDQ�DOVR�KDYH�ORFDO�YDULDEOHV�DV�ZHOO�

DV�SDUDPHWHUV��7KH�JXDUG�GHILQHV�WKH�FRQGLWLRQV�

XQGHU�ZKLFK�WKH�DFWLRQ�FDQ�EH�H[HFXWHG��L�H���ZKHQ�

WKH�HYHQW�LV�HQDEOHG��,I�VHYHUDO�HYHQWV�DUH�HQDEOHG�
DW�WKH�VDPH�WLPH��DQ\�RI�WKHP�FDQ�EH�FKRVHQ�IRU�

H[HFXWLRQ� QRQ�GHWHUPLQLVWLFDOO\�� ,I� QRQH� RI� WKH�

HYHQWV�LV�HQDEOHG�WKHQ�WKH�V\VWHP�GHDGORFNV�

)LJXUH����$Q�(YHQW�%�PDFKLQH

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

,Q�JHQHUDO��WKH�DFWLRQ�RI�DQ�HYHQW�LV�D�SDUDOOHO�

FRPSRVLWLRQ� RI� DVVLJQPHQWV�� 7KH� DVVLJQPHQWV�

FDQ�EH�HLWKHU�GHWHUPLQLVWLF�RU�QRQ�GHWHUPLQLVWLF��

$� GHWHUPLQLVWLF� DVVLJQPHQW�� [� (�[�\��� KDV� WKH�
VWDQGDUG�V\QWD[�DQG�PHDQLQJ��$�QRQGHWHUPLQLVWLF�

DVVLJQPHQW�LV�GHQRWHG�HLWKHU�DV�[�∈4��ZKHUH�4�LV�D�
VHW�RI�YDOXHV��RU�[�_�[�\�[¶���ZKHUH�3�LV�D�SUHGLFDWH�
UHODWLQJ� LQLWLDO� YDOXHV� RI�[� DQG�\� WR� VRPH� ILQDO�
YDOXH�RI�[¶��$V�D�UHVXOW�RI�VXFK�D�QRQGHWHUPLQ�
LVWLF�DVVLJQPHQW��[�FDQ�JHW�DQ\�YDOXH�EHORQJLQJ�
WR�4�RU�DFFRUGLQJ�WR�3��7KH�FKRLFH�RI�WKLV�YDOXH�
LV�FRQVLGHUHG�GHPRQLF��L�H���ZH�GR�QRW�KDYH�DQ\�
FRQWURO�RYHU�LW�

(YHQW�%�HPSOR\V�WRS�GRZQ�UHILQHPHQW�EDVHG�

DSSURDFK�WR�V\VWHP�GHYHORSPHQW��'HYHORSPHQW�

VWDUWV�IURP�DQ�DEVWUDFW�V\VWHP�VSHFLILFDWLRQ�WKDW�

PRGHOV�WKH�PRVW�HVVHQWLDO�IXQFWLRQDO�UHTXLUHPHQWV��

:KLOH�FDSWXULQJ�PRUH�GHWDLOHG�UHTXLUHPHQWV��HDFK�

UHILQHPHQW�VWHS�W\SLFDOO\�LQWURGXFHV�QHZ�HYHQWV�

DQG�YDULDEOHV�LQWR�WKH�DEVWUDFW�VSHFLILFDWLRQ��7KHVH�

QHZ� HYHQWV� FRUUHVSRQG� WR� VWXWWHULQJ� VWHSV� WKDW�

DUH�QRW�YLVLEOH�DW� WKH�DEVWUDFW� OHYHO��%\�YHULI\�

LQJ�FRUUHFWQHVV�RI�UHILQHPHQW��ZH�HQVXUH�WKDW�DOO�

LQYDULDQW�SURSHUWLHV�RI��PRUH��DEVWUDFW�PDFKLQHV�

DUH�SUHVHUYHG��$�GHWDLOHG�GHVFULSWLRQ�RI� IRUPDO�

VHPDQWLFV�RI�(YHQW�%�DQG�IRXQGDWLRQV�RI�WKH�YHUL�

ILFDWLRQ�SURFHVV�FDQ�EH�IRXQG�LQ��$EULDO��������

672&+$67,&�02'(/,1*�

,1�(9(17�%

,Q�JHQHUDO��ZKLOH�UHILQLQJ�D�V\VWHP�LQ�(YHQW�%��

ZH�JUDGXDOO\�LQWURGXFH�FHUWDLQ�GHVLJQ�GHFLVLRQV�

LQWR�WKH�V\VWHP�VSHFLILFDWLRQ��6RPHWLPHV�WKHUH�DUH�

VHYHUDO�UHILQHPHQW�DOWHUQDWLYHV�WKDW�FDQ�DGHTXDWHO\�

LPSOHPHQW� D� FHUWDLQ� IXQFWLRQDO� UHTXLUHPHQW��

7KHVH�DOWHUQDWLYHV�FDQ�KDYH�GLIIHUHQW�LPSDFW�RQ�

QRQ�IXQFWLRQDO�V\VWHP�UHTXLUHPHQWV��VXFK�DV�GH�

SHQGDELOLW\��SHUIRUPDQFH�HWF��2EYLRXVO\��LW�ZRXOG�

EH�DGYDQWDJHRXV�WR�HYDOXDWH�WKLV�LPSDFW�DOUHDG\�

DW�WKH�GHYHORSPHQW�VWDJH�WR�HQVXUH�WKDW�WKH�PRVW�

RSWLPDO� VROXWLRQV� DUH� FKRVHQ�� 7R� DFKLHYH� WKLV��

ZH�ZRXOG�QHHG�WR�SHUIRUP�TXDQWLWDWLYH�DQDO\VLV�

RI��H�J���V\VWHP�GHSHQGDELOLW\��,Q�WKLV�FKDSWHU�ZH�

IRFXV�RQ�DVVHVVPHQW�RI�WKH�V\VWHP�UHOLDELOLW\�DV�

RQH�RI�WKH�PRVW�LPSRUWDQW�GHSHQGDELOLW\�DWWULEXWHV��

7R� DVVHVV� V\VWHP� UHOLDELOLW\�� LW� LV� QHFHVVDU\� WR�

HYDOXDWH� WKH� SUREDELOLW\� RI� V\VWHP� IXQFWLRQLQJ�
FRUUHFWO\�RYHU�WKH�JLYHQ�SHULRG�RI�WLPH��+HQFH��

ZH�QHHG�WR�LQWHJUDWH�WKH�QRWLRQ�RI�SUREDELOLW\�LQWR�

WKH�(YHQW�%�PRGHOOLQJ�IUDPHZRUN�

,Q� RXU� UHFHQW�ZRUN� �7DUDV\XN��7URXELWV\QD��

	�/DLELQLV���������ZH�KDYH�H[WHQGHG�WKH�H[LVW�

LQJ�(YHQW�%�IUDPHZRUN�ZLWK� WZR�QHZ�IHDWXUHV�

WR� HQDEOH� TXDQWLWDWLYH� UHDVRQLQJ� DERXW� V\VWHP�

GHSHQGDELOLW\�DWWULEXWHV��7KH�ILUVW�RQH� LV�D�QHZ�

RSHUDWRU�±��TXDQWLWDWLYH��SUREDELOLVWLF�FKRLFH��DV�
VLJQPHQW��±�WKDW�DVVLJQV�QHZ�YDOXHV�WR�YDULDEOHV�
ZLWK�VRPH�SUHFLVH�SUREDELOLWLHV��,Q�RWKHU�ZRUGV��

LW�EHKDYHV�DFFRUGLQJ� WR�VRPH�NQRZQ��GLVFUHWH��

SUREDELOLVWLF�GLVWULEXWLRQ��)RU�LQVWDQFH��WKH�TXDQ�

WLWDWLYH�SUREDELOLVWLF�DVVLJQPHQW

[⊕_[
�
�#�S

�
�����[

Q
�#�S

Q
�

ZKHUH� p
i

i

n

=

∑ =
�

� �DVVLJQV�WR�WKH�YDULDEOH�[�D�QHZ�

YDOXH�[
�
�ZLWK�WKH�FRUUHVSRQGLQJ�QRQ�]HUR�SURE�

DELOLW\�S
L
��7KH�H[WHQVLRQ�LV�FRQVHUYDWLYH��L�H��WKH�

QHZ�RSHUDWRU�FDQ�EH�LQWURGXFHG�RQO\�WR�UHSODFH�D�

QRQGHWHUPLQLVWLF�FKRLFH��DVVLJQPHQW��VWDWHPHQW�

LQ�WKH�HYHQW�DFWLRQV��6XFK�DQ�H[WHQVLRQ�UHTXLUHV�

RQO\�PLQRU�PRGLILFDWLRQV�RI�WKH�H[LVWLQJ�IUDPH�

ZRUN�EHFDXVH�DOO�WKH�SURRI�REOLJDWLRQV�JHQHUDWHG�

IRU�DEVWUDFW�HYHQWV�ZLWK�QRQGHWHUPLQLVWLF�DVVLJQ�

PHQWV�DUH�DOVR�YDOLG�IRU�WKH�UHILQHG�SUREDELOLVWLF�

RQHV�� ,W� KDV� EHHQ� VKRZQ� WKDW� DQ\� SUREDELOLVWLF�

FKRLFH�VWDWHPHQW�DOZD\V�UHILQHV�LWV�GHPRQLF�QRQ�

GHWHUPLQLVWLF� FRXQWHUSDUW� �0F,YHU� 	� 0RUJDQ��

�������+HQFH�VXFK�DQ�H[WHQVLRQ�LV�QRW�LQWHUIHULQJ�

ZLWK�WUDGLWLRQDO�UHILQHPHQW�SURFHVV�

7KH� RWKHU� IHDWXUH� ZH� KDYH� LQWURGXFHG� LV� D�

QHZ�FODXVH�2SHUDWLRQDO�JXDUGV�FRQWDLQLQJ�VWDWH�

SUHGLFDWHV�SUHFLVHO\�GHILQLQJ�WKH�VXEVHW�RI�RSHUD�
WLRQDO�V\VWHP�VWDWHV��7KLV�LV�D�VKRUWKDQG�QRWDWLRQ�
LPSOLFLWO\�DGGLQJ�WKH�FRUUHVSRQGLQJ�JXDUG�FRQGL�

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

WLRQV�WR�DOO�HYHQWV�H[FHSW�LQLWLDOLVDWLRQ��,Q�JHQHUDO��

RSHUDWLRQDO� VWDWHV� RI� D� V\VWHP�� L�H��� WKH� VWDWHV�

ZKHUH�WKH�V\VWHP�IXQFWLRQV�SURSHUO\�DUH�GHILQHG�

E\� VRPH� SUHGLFDWH� RYHU� WKH� V\VWHP� YDULDEOHV��

8VXDOO\��HVVHQWLDO�SURSHUWLHV�RI�WKH�V\VWHP��VXFK�

DV� VDIHW\�� IDXOW� WROHUDQFH�� OLYHQHVV� SURSHUWLHV��

FDQ�EH�JXDUDQWHHG�RQO\�ZKLOH� WKH�V\VWHP�VWD\V�

LQ�WKH�RSHUDWLRQDO�VWDWHV��7KH�RSHUDWLRQDO�JXDUG�

-�Y��SDUWLWLRQV�WKH�V\VWHP�VWDWH�VSDFH�6�LQWR�WZR�
GLVMRLQW�FODVVHV�RI�VWDWHV�±�RSHUDWLRQDO��6

RS
��DQG�

QRQ�RSHUDWLRQDO��6
QRS
��VWDWHV��ZKHUH�6

RS
�≜�^V∈�6�_�

-�V`�DQG�6
QRS
�≜�6Ú�6

RS
��:H�DVVXPH�WKDW��OLNH�PRGHO�

LQYDULDQWV��RSHUDWLRQDO�JXDUGV�DUH�LQKHULWHG�LQ�DOO�

UHILQHG�PRGHOV�

7KH�H[WHQVLRQ�RI�(YHQW�%�IRU�VWRFKDVWLF�PRG�

HOOLQJ�QHFHVVLWDWHV�VWUHQJWKHQLQJ�RI�WKH�QRWLRQ�RI�

UHILQHPHQW� DV�ZHOO�� ,Q� �7DUDV\XN��7URXELWV\QD��

	�/DLELQLV��������ZH�KDYH�GRQH�WKLV�IRU�(YHQW�

%�UHILQHPHQW�E\�DGGLWLRQDOO\�UHTXLULQJ�WKDW� WKH�

UHILQHG�PRGHO�ZRXOG�EH�PRUH�UHOLDEOH��,Q�HQJL�

QHHULQJ��UHOLDELOLW\��9LOOHPHXU��������2¶&RQQRU��

������ LV�JHQHUDOO\�PHDVXUHG�E\�WKH�SUREDELOLW\�

WKDW�DQ�HQWLW\�(�FDQ�SHUIRUP�D�UHTXLUHG�IXQFWLRQ�
XQGHU�JLYHQ�FRQGLWLRQV�IRU�WKH�WLPH�LQWHUYDO�>��W@�

5�W�� �3^(�QRW�IDLOHG�RYHU�WLPH�>��W@`�

7R�LQWURGXFH�VRPH�³QRWLRQ�RI�WLPH´�WR�(YHQW�

%��ZH� IRFXV�RQ�PRGHOOLQJ� V\VWHPV�ZLWK� F\FOLF�

EHKDYLRXU��L�H��WKH�V\VWHPV�WKDW�LWHUDWLYHO\�H[HFXWH�

D� SUHGHILQHG� VHTXHQFH� RI� VWHSV��7\SLFDO� UHSUH�

VHQWDWLYHV�RI�VXFK�F\FOLF�V\VWHPV�DUH�FRQWURO�DQG�

PRQLWRULQJ� V\VWHPV��$Q� LWHUDWLRQ� RI� D� FRQWURO�

V\VWHP�LQFOXGHV�UHDGLQJ�WKH�VHQVRUV� WKDW�PRQL�

WRU�WKH�FRQWUROOHG�SK\VLFDO�SURFHVVHV��SURFHVVLQJ�

WKH�REWDLQHG�VHQVRU�YDOXHV��DQG�VHWWLQJ�DFWXDWRUV�

DFFRUGLQJ�WR�D�SUHGHILQHG�FRQWURO�DOJRULWKP��,Q�

SULQFLSOH�� WKH�V\VWHP�FRXOG�RSHUDWH�LQ�WKLV�ZD\�

LQGHILQLWHO\�ORQJ��+RZHYHU��GLIIHUHQW�IDLOXUHV�PD\�

DIIHFW�WKH�QRUPDO�V\VWHP�IXQFWLRQLQJ�DQG�OHDG�WR�D�

VKXWGRZQ��+HQFH��GXULQJ�HDFK�LWHUDWLRQ�WKH�V\VWHP�

VWDWXV�VKRXOG�EH�UH�HYDOXDWHG�WR�GHFLGH�ZKHWKHU�LW�

FDQ�FRQWLQXH�LWV�RSHUDWLRQ��+HQFH�UHOLDELOLW\�FDQ�EH�

H[SUHVVHG�DV�WKH�SUREDELOLW\�WKDW�WKH�RSHUDWLRQDO�

JXDUG�-�UHPDLQV�758(�GXULQJ�D�FHUWDLQ�QXPEHU�RI�
LWHUDWLRQV��L�H���WKH�SUREDELOLW\�RI�V\VWHP�VWD\LQJ�

RSHUDWLRQDO�IRU�W�LWHUDWLRQV�

5�W�� 3^��W-`�

+HUH�ZH�XVH�WKH�PRGDO�RSHUDWRU���ERUURZHG�

IURP�D�WHPSRUDO�ORJLF��OLQHU�WHPSRUDO�ORJLF��/7/��

�3QXHOL��������RU�SUREDELOLVWLF�FRPSXWDWLRQDO�WUHH�

ORJLF� �3&7/�� �+DQVVRQ�	� -RQVVRQ�� ������� IRU�

LQVWDQFH���7KH�IRUPXOD��^��W-��PHDQV�WKDW�-�KROGV�
JOREDOO\�IRU�WKH�ILUVW�W�LWHUDWLRQV��,W�LV�VWUDLJKWIRU�
ZDUG�WR�VHH�WKDW�WKLV�SURSHUW\�FRUUHVSRQGV�WR�WKH�

VWDQGDUG�GHILQLWLRQ�RI�UHOLDELOLW\�JLYHQ�DERYH�

)XUWKHUPRUH�� LQ� �7DUDV\XN�� 7URXELWV\QD�� 	�

/DLELQLV��������ZH�KDYH�VKRZQ�WKDW�EHKDYLRXUDO�

VHPDQWLFV�RI�SUREDELOLVWLF�(YHQW�%�PRGHOV�LV�GH�

ILQHG�E\�0DUNRY�SURFHVV�±�D�GLVFUHWH�WLPH�0DUNRY�
FKDLQ� �'70&�� �.HPHQ\�	�6QHOO�� ������ IRU� D�

IXOO\�SUREDELOLVWLF�PRGHO�DQG�D�0DUNRY�GHFLVLRQ�
SURFHVV��0'3���:KLWH��������IRU�D�SUREDELOLVWLF�

PRGHO�ZLWK�QRQ�GHWHUPLQLVP�

)520�(9(17�%�72�352%$%,/,67,&�

02'(/�&+(&.,1*

'HYHORSPHQW�DQG�YHULILFDWLRQ�RI�(YHQW�%�PRGHOV�

LV�VXSSRUWHG�E\�WKH�5RGLQ�3ODWIRUP�±�DQ�LQWHJUDWHG�

H[WHQVLEOH�GHYHORSPHQW�HQYLURQPHQW�IRU�(YHQW�%��

+RZHYHU��DW� WKH�PRPHQW� WKH�VXSSRUW� IRU�TXDQ�

WLWDWLYH�YHULILFDWLRQ�LV�VRUHO\�PLVVLQJ��7R�SURYH�

SUREDELOLVWLF�UHILQHPHQW�RI�(YHQW�%�PRGHOV��ZH�

QHHG�WR�H[WHQG�WKH�5RGLQ�SODWIRUP�ZLWK�D�GHGLFDWHG�

SOXJ�LQ�RU� LQWHJUDWH�VRPH�H[WHUQDO�WRRO��2QH�RI�

WKH�DYDLODEOH�DXWRPDWHG�WHFKQLTXHV�ZLGHO\�XVHG�

IRU�DQDO\VLQJ�V\VWHPV� WKDW�H[KLELW�SUREDELOLVWLF�

EHKDYLRXU�LV�SUREDELOLVWLF�PRGHO�FKHFNLQJ��%DLHU�

	�.DWRHQ��������.ZLDWNRZVND���������,Q�SDUWLFX�

ODU��WKH�SUREDELOLVWLF�PRGHO�FKHFNLQJ�IUDPHZRUNV�

OLNH�35,60�RU�050&��35,60�PRGHO�FKHFNHU��

050&�PRGHO�FKHFNHU��SURYLGH�JRRG�WRRO�VXSSRUW�

IRU�IRUPDO�PRGHOOLQJ�DQG�YHULILFDWLRQ�RI�GLVFUHWH��

DQG�FRQWLQXRXV�WLPH�0DUNRY�SURFHVVHV��7R�HQDEOH�

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

WKH� TXDQWLWDWLYH� UHOLDELOLW\� DQDO\VLV� RI� (YHQW�%�

PRGHOV��LW�ZRXOG�EH�DGYDQWDJHRXV�WR�GHYHORS�D�

5RGLQ�SOXJ�LQ�HQDEOLQJ�DXWRPDWLF�WUDQVODWLRQ�RI�

(YHQW�%�PRGHOV�WR�H[LVWLQJ�SUREDELOLVWLF�PRGHO�

FKHFNLQJ�IUDPHZRUNV��,Q�WKLV�FKDSWHU�ZH�FKRRVH�

WKH�35,60�SUREDELOLVWLF�V\PEROLF�PRGHO�FKHFNHU�

WR�YHULI\�SUREDELOLVWLF�UHILQHPHQW�LQ�(YHQW�%�

6LPLODUO\�WR�(YHQW�%��WKH�35,60�PRGHOOLQJ�

ODQJXDJH�LV�D�KLJK�OHYHO�VWDWH�EDVHG�ODQJXDJH��,W�

UHOLHV�RQ�WKH�5HDFWLYH�0RGXOHV�IRUPDOLVP�RI�$OXU�

DQG�+HQ]LQJHU��$OXU�	�+HQ]LQJHU���������35,60�

VXSSRUWV�WKH�XVH�RI�FRQVWDQWV�DQG�YDULDEOHV�WKDW�FDQ�

EH�LQWHJHUV��GRXEOHV��UHDO�QXPEHUV��DQG�%RROHDQV��

&RQVWDQWV� DUH� XVHG�� IRU� LQVWDQFH�� WR� GHILQH� WKH�

SUREDELOLWLHV�DVVRFLDWHG�ZLWK�YDULDEOH�XSGDWHV��7KH�

YDULDEOHV�LQ�35,60�DUH�ILQLWH�UDQJHG�DQG�VWURQJO\�

W\SHG��7KH\�DOVR�FDQ�EH�ORFDO��L�H���DVVRFLDWHG�ZLWK�

D�SDUWLFXODU�PRGXOH��RU�JOREDO�RQHV�

$Q� H[DPSOH� RI� D� V\VWHP� VSHFLILFDWLRQ� LQ�

35,60�LV�VKRZQ�EHORZ��$�35,60�VSHFLILFDWLRQ�

LV�FRQVWUXFWHG�DV�D�SDUDOOHO�FRPSRVLWLRQ�RI�PRG�

XOHV��0RGXOHV�FDQ�EH�LQGHSHQGHQW�RI�HDFK�RWKHU�

RU� LQWHUDFW�ZLWK�HDFK�RWKHU��(DFK�PRGXOH�KDV�D�

QXPEHU�RI� ORFDO�YDULDEOHV�±�GHQRWHG�DV�Y
�
��Y

�
�±�

DQG�D�VHW�RI�JXDUGHG�FRPPDQGV�WKDW�GHWHUPLQH�

LWV�G\QDPLF�EHKDYLRXU��7KH�JXDUGHG�FRPPDQGV�

FDQ�KDYH�QDPHV��ODEHOV���6LPLODUO\�WR�HYHQWV�RI�

(YHQW�%��D�JXDUGHG�FRPPDQG�FDQ�EH�H[HFXWHG�LI�

LWV�JXDUG�HYDOXDWHV�WR�758(��,I�VHYHUDO�JXDUGHG�
FRPPDQGV�DUH�HQDEOHG�WKHQ�WKH�FKRLFH�EHWZHHQ�

WKHP�FDQ�EH�QRQ�GHWHUPLQLVWLF�LQ�WKH�FDVH�RI�0'3�

RU�SUREDELOLVWLF��DFFRUGLQJ�WR�WKH�XQLIRUP�GLVWULEX�

WLRQ��LQ�WKH�FDVH�RI�'70&��,Q�JHQHUDO��WKH�ERG\�RI�

D�JXDUGHG�FRPPDQG�LV�H[SUHVVHG�DV�D�SUREDELOLVWLF�

FKRLFH�EHWZHHQ�GHWHUPLQLVWLF�DVVLJQPHQWV��)LJXUH�

��VKRZV�DQG�H[DPSOH�RI�'70&�PRGHO�LQ�35,60�

6\QFKURQLVDWLRQ�EHWZHHQ�PRGXOHV�LV�GHILQHG�

YLD�JXDUGHG�FRPPDQGV�ZLWK�WKH�PDWFKLQJ�QDPHV��

)RU�LQVWDQFH��LQ�WKH�35,60�VSHFLILFDWLRQ�VKRZQ�

DERYH��WKH�PRGXOHV�0
�
�DQG�0

�
�KDYH�WKH�JXDUGHG�

FRPPDQGV�ODEHOOHG�ZLWK�WKH�VDPH�QDPH�O��:KHQ�

HYHU�ERWK�FRPPDQGV�DUH�HQDEOHG��WKH�PRGXOHV�0
�
�

DQG�0
�
�V\QFKURQLVH�E\�VLPXOWDQHRXVO\�H[HFXWLQJ�

WKH�ERGLHV�RI�WKHVH�FRPPDQGV�

%HFDXVH�RI�WKH�VLPLODULWLHV�EHWZHHQ�WKH�ODQ�

JXDJHV�� FRQYHUWLQJ� DQ� (YHQW�%� PRGHO� LQWR� LWV�

35,60�FRXQWHUSDUW�LV�UDWKHU�VWUDLJKWIRUZDUG��)LUVW��

ZH�QHHG�WR�UHVWULFW�WKH�W\SHV�RI�(YHQW�%�YDULDEOHV�

WR�WKH�W\SHV�VXSSRUWHG�E\�35,60��7KH�(YHQW�%�

LQYDULDQWV�FDQ�EH�UHSUHVHQWHG�DV�D�VHSDUDWH�OLVW�RI�

35,60�SURSHUWLHV��H[SUHVVHG�DV�WHPSRUDO�ORJLF�

IRUPXODV��DQG�WKHQ�FDQ�EH�YHULILHG�E\�35,60�LI�

QHHGHG��:KLOH�FRQYHUWLQJ�HYHQWV�LQWR�WKH�35,60�

JXDUGHG�FRPPDQGV��ZH�GLVWLQJXLVK�IRXU�GLIIHUHQW�

FDVHV��WKH�LQLWLDOLVDWLRQ�HYHQWV��WKH�HYHQWV�ZLWK�D�

�SDUDOOHO��GHWHUPLQLVWLF�DVVLJQPHQW��WKH�HYHQWV�ZLWK�

D�VLQJOH�SUREDELOLVWLF�DVVLJQPHQW��DQG��ILQDOO\��WKH�

HYHQWV�ZLWK�D�SDUDOOHO�SUREDELOLVWLF�DVVLJQPHQW�

�� 7KH�LQLWLDOLVDWLRQ�HYHQWV�DUH�FRQYHUWHG�LQWR�

WKH�FRUUHVSRQGLQJ�LQLWLDOLVDWLRQ�SDUW�RI�WKH�

YDULDEOH�GHFODUDWLRQ�

�� $Q� HYHQW� ZLWK� D� �SDUDOOHO�� GHWHUPLQLVWLF�

DVVLJQPHQW� FDQ�EH� UHSUHVHQWHG� LQ�35,60�

DV� VKRZQ� RQ�)LJXUH� �� �	� LQ� 35,60�

JXDUGHG� FRPPDQGV� GHQRWHV� WKH� SDUDOOHO�

FRPSRVLWLRQ��

�� $Q� HYHQW�ZLWK� D� SUREDELOLVWLF� DVVLJQPHQW�

FDQ�EH�UHSUHVHQWHG�DV�VKRZQ�RQ�)LJXUH���

�� $Q� HYHQW�ZLWK� D� SDUDOOHO� SUREDELOLVWLF� DV�

VLJQPHQW� FDQ� EH� UHSUHVHQWHG� E\� V\QFKUR�

QLVLQJ� WKH� JXDUGHG� FRPPDQGV� ZLWK� WKH�

)LJXUH����'70&�PRGHO�LQ�35,60

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

LGHQWLFDO� QDPHV� DQG� JXDUGV�� 7KH� ERGLHV�

RI� WKHVH� FRPPDQGV� DUH� IRUPHG� IURP� WKH�

DFWLRQV� RI� WKH� FRUUHVSRQGLQJ� HYHQWV� �VHH�

)LJXUH����

:KLOH�DQDO\VLQJ�D�35,60�PRGHO��ZH�GHILQH�

D�QXPEHU�RI�WHPSRUDO�ORJLF�SURSHUWLHV�DQG�V\V�

WHPDWLFDOO\� FKHFN� WKH� PRGHO� WR� YHULI\� WKHP��

3URSHUWLHV�RI�GLVFUHWH�WLPH�35,60�PRGHOV��L�H���

'70&�DQG�0'3��DUH�H[SUHVVHG�IRUPDOO\�LQ�WKH�

SUREDELOLVWLF�FRPSXWDWLRQDO�WUHH�ORJLF��7KH�35,60�

SURSHUW\�VSHFLILFDWLRQ�ODQJXDJH�VXSSRUWV�D�QXP�

EHU�RI�GLIIHUHQW�W\SHV�RI�VXFK�SURSHUWLHV��)RU�H[�

DPSOH��WKH�3�RSHUDWRU�LV�XVHG�WR�UHIHU�WR�WKH�SURE�

DELOLW\�RI�D�FHUWDLQ�HYHQW�RFFXUUHQFH��7KH�RSHUDWRU�

*��ZKHQ�XVHG�LQVLGH�WKH�RSHUDWRU�3��DOORZV�XV�WR�

H[SUHVV�LQYDULDQW�SURSHUWLHV��L�H���SURSHUWLHV�PDLQ�

WDLQHG�E\�WKH�V\VWHP�JOREDOO\��7KHQ��REYLRXVO\��

WKH�SURSHUW\�����WKDW�GHILQHV�WKH�UHOLDELOLW\�IXQFWLRQ�

RI�D�V\VWHP�FDQ�EH�VSHFLILHG�LQ�35,60�LQ�D�IRO�

ORZLQJ�ZD\�

�3
 "
>*�W-@�� ���

(VVHQWLDOO\��RXU�DSSURDFK�WR�WKH�GHYHORSPHQW�

DQG�DVVHVVPHQW�RI�F\FOLF�GHSHQGDEOH�V\VWHPV�FDQ�

EH�GHVFULEHG�E\�WKH�IROORZLQJ�JXLGHOLQHV�

���� $EVWUDFWO\�VSHFLI\�WKH�V\VWHP�EHKDYLRXU��7R�

DFKLHYH�WKLV�

D��� &UHDWH�DQ�DEVWUDFW�PRGHO�RI�WKH�V\VWHP�

EHKDYLRXU�

E��� 'HILQH� WKH� RSHUDWLRQDO� JXDUG� -� WKDW�
FKDUDFWHULVHV�RSHUDWLRQDO�VWDWHV�RI�WKH�

V\VWHP�

F��� 6WUHQJWKHQ� WKH� JXDUGV� RI� HYHQWV� WR�

HQVXUH�WKDW��ZKHQ�-�LV�QRW�VDWLVILHG��WKH�
V\VWHP�GHDGORFNV�

���� 5HILQH�WKH�V\VWHP�WR�LQWURGXFH�WKH�UHTXLUHG�

LPSOHPHQWDWLRQ�GHWDLOV�

D��� ,I�D�UHILQHPHQW�VWHS�LQWURGXFHV�WKH�UHS�

UHVHQWDWLRQ�RI�XQUHOLDEOH�FRPSRQHQWV�

LQWR�WKH�V\VWHP�VSHFLILFDWLRQ��H[SOLFLWO\�

�QRQ�GHWHUPLQLVWLFDOO\��PRGHO�ERWK�WKH�

IDXOW\�DQG�IDXOW�IUHH�EHKDYLRXU�RI�WKH�

V\VWHP�

E��� ,Q�WKH�PRGHO�LQYDULDQW��H[SOLFLWO\�GHILQH�

WKH� FRQQHFWLRQ� EHWZHHQ� WKH� H[LVWLQJ�

DQG�QHZO\�LQWURGXFHG�YDULDEOHV��JOXLQJ�

LQYDULDQWV���)XUWKHUPRUH�� SURYH� WKDW�

WKH�UHILQHG�V\VWHP�GRHV�QRW�LQWURGXFH�

DGGLWLRQDO�GHDGORFNV�

F��� $W�HDFK�UHILQHPHQW�VWHS�UHIRUPXODWH�-�
LQ�WKH�WHUPV�RI�WKH�QHZO\�LQWURGXFHG�

YDULDEOHV�DQG�IXQFWLRQDOLW\�

G��� ,I�QHHGHG��UHILQH�WKH�QRQGHWHUPLQLVWLF�

EHKDYLRXU� RI� XQUHOLDEOH� FRPSRQHQWV�

E\�SUREDELOLVWLF�RQH�

)LJXUH����&RQYHUVLRQ�RI�GHWHUPLQLVWLF�DVVLJQPHQW

)LJXUH����&RQYHUVLRQ�RI�SUREDELOLVWLF�DVVLJQPHQW

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

���� 7R�YHULI\�SUREDELOLVWLF�UHILQHPHQW�DQG�HYDOX�

DWH�WKH�LPSDFW�RI�XQUHOLDEOH�FRPSRQHQWV�RQ�

WKH�V\VWHP�UHOLDELOLW\��FRQYHUW�WKH�(YHQW�%�

VSHFLILFDWLRQ�LQWR�LWV�35,60�FRXQWHUSDUW�

D��� 7UDQVODWH�DOO�WKH�HYHQWV�RI�WKH�(YHQW�%�

VSHFLILFDWLRQ� LQWR� WKH� FRUUHVSRQGLQJ�

35,60�JXDUGHG�FRPPDQGV��([SOLFLWO\�

GHILQH�WKH�V\QFKURQLVDWLRQ�SRLQWV�EH�

WZHHQ�PRGXOHV�

E��� 9HULI\� WKH� SURSHUW\� ���� WR� HYDOXDWH�

V\VWHP�UHOLDELOLW\�

F��� &RPSDUH� WKH� UHVXOWV� RI� SUREDELOLVWLF�

PRGHO�FKHFNLQJ�WR�HQVXUH�WKH�FRUUHFW�

QHVV�RI�WKH�UHILQHPHQW�VWHS�

���� &RQWLQXH� WKH� UHILQHPHQW�SURFHVV�XQWLO� WKH�

GHVLUHG�DEVWUDFWLRQ�OHYHO�LV�DFKLHYHG�

,Q�WKH�QH[W�VHFWLRQ�ZH�H[HPSOLI\�WKH�SURSRVHG�

DSSURDFK�E\�FRQVLGHULQJ�D�VLPSOH�FDVH�VWXG\�

&$6(�678'<

2XU�FDVH�VWXG\�LV�D�VLPSOH�PRQLWRULQJ�V\VWHP��$�

VHQVRU� SURGXFHV� FHUWDLQ�PHDVXUHPHQWV� WKDW� DUH�

SHULRGLFDOO\�UHDG�E\�D�FRQWUROOHU��7KH�FRQWUROOHU�

DQDO\VHV�HDFK�UHDGLQJ�WR�GHWHFW�ZKHWKHU�WKH�VHQ�

VRU�IXQFWLRQV�SURSHUO\�RU�LW�KDV�IDLOHG��,I�QR�IDXOW�

LV�GHWHFWHG�WKHQ�WKH�V\VWHP�RXWSXWV�WKH�REWDLQHG�

VHQVRU� UHDGLQJ� DQG� FRQWLQXHV� WR� LWHUDWH� LQ� WKH�

VDPH�ZD\��7KLV�FRQVWLWXWHV�D�QRUPDO��IDXOW�IUHH��

V\VWHP�VWDWH�

+RZHYHU�� LI� WKH� FRQWUROOHU� GHWHFWV� D� VHQVRU�

IDLOXUH�WKHQ�WKH�V\VWHP�HQWHUV�D�GHJUDGHG�VWDWH��,Q�

WKLV�VWDWH�LW�RXWSXWV�WKH�ODVW�JRRG�VHQVRU�UHDGLQJ��

$W�WKH�VDPH�WLPH��LW�NHHSV�SHULRGLFDOO\�UHDGLQJ�WKH�

VHQVRU�RXWSXWV�WR�GHWHFW�ZKHWKHU�LW�KDV�UHFRYHUHG��

7KH�V\VWHP�FDQ�VWD\�LQ�WKH�GHJUDGHG�VWDWH�IRU�D�

OLPLWHG�SHULRG�RI�WLPH��ZH�DVVXPH�LW�FDQQRW�H[FHHG�

1�LWHUDWLRQV���,I�VHQVRU�UHFRYHUV�IURP�LWV�IDLOXUH�
ZLWKLQ� WKH� DOORZHG� WLPH� OLPLW� WKHQ� WKH� V\VWHP�

JHWV�EDFN�WR�WKH�QRUPDO�VWDWH�DQG�LWV�QRUPDO�IXQF�

WLRQ�LV�UHVXPHG��2WKHUZLVH��WKH�V\VWHP�DERUWV��$�

JUDSKLFDO�UHSUHVHQWDWLRQ�RI�WKH�V\VWHP�EHKDYLRXU�

LV�JLYHQ�LQ�)LJXUH���

,Q�WKH�PRVW�DEVWUDFW�ZD\�DQ�(YHQW�%�PDFKLQH�

WKDW�QRQGHWHUPLQLVWLFDOO\�PRGHOV�VXFK�D�V\VWHP�

FDQ�EH�VSHFLILHG�DV�SUHVHQWHG�RQ�)LJXUH���

7KH�YDULDEOH�VW�GHILQHV�WKH�VWDWH�RI�WKH�V\VWHP��
,QLWLDOO\�WKH�V\VWHP�LV�LQ�WKH�RN�VWDWH��:H�KDYH�WZR�

HYHQWV� WKDW� DEVWUDFWO\� PRGHO� EHKDYLRXU� RI� WKH�

PRQLWRULQJ�V\VWHP��7KH�ILUVW�RI�WKHP�±�V\VWHP
SURJUHVV

�

±�PRGHOV�EHKDYLRXU�RI�WKH�V\VWHP�LQ�RN�DQG�GH�
JUDGHG� PRGHV�� 7KH� HYHQW� V\VWHP

IDLOXUH
� PRGHOV�

V\VWHP�VKXWGRZQ�LQ�FDVH�WKH�V\VWHP�KDV�IDLOHG�WR�

UHFRYHU��7KH�RSHUDWLRQDO�JXDUG�-�LPSOLHV�WKDW�WKH�
V\VWHP� VWD\V� RSHUDWLRQDO� ZKLOH� VW�IDLOHG�� 7KH�
VSHFLILFDWLRQ� VKRZQ� RQ�)LJXUH� �� �WKH�PDFKLQH�

0&+
�
��LV�RQH�SRVVLEOH�UHILQHPHQW�RI�RXU�DEVWUDFW�

PRGHO�

)LJXUH����&RQYHUVLRQ�RI�SDUDOOHO�SUREDELOLVWLF�DVVLJQPHQW

)LJXUH����7KH�EHKDYLRXU�RI�D�PRQLWRULQJ�V\VWHP

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

,Q�0&+
�
�ZH�LQWURGXFH�WKH�YDULDEOH�SKDVH�WKDW�

PRGHOV�WKH�SKDVHV�WKDW�WKH�V\VWHP�JRHV�WKURXJK�

ZLWKLQ�RQH�LWHUDWLRQ��ILUVW�UHDGLQJ�WKH�VHQVRU��WKHQ�

GHWHFWLQJ� VHQVRU� IDLOXUH�� DQG� ILQDOO\� RXWSXWWLQJ�

HLWKHU�WKH�VHQVRU�UHDGLQJ�RU�WKH�ODVW�JRRG�YDOXH��

7KH�YDULDEOH�V�PRGHOV�VHQVRU�VWDWXV��:KHQ�V�HTXDOV�
���WKH�VHQVRU�LV�³KHDOWK\´��7KH�YDOXH�RI�WKH�YDUL�

DEOH�FQW�FRUUHVSRQGV�WR�WKH�QXPEHU�RI�VXFFHVVLYH�
LWHUDWLRQV�ZKHQ�WKH�VHQVRU�UHPDLQHG�IDXOW\��L�H���

WKH�YDULDEOH�V�KDV�KDG� WKH�YDOXH����7KH�V\VWHP�
IDLOXUH�RFFXUV�ZKHQ�FQW�H[FHHGV�WKH�YDOXH�1��,Q�
WKLV�FDVH�WKH�YDULDEOH�SKDVH�JHWV�WKH�YDOXH�DERUW�
DQG�WKH�VSHFLILFDWLRQ�GHDGORFNV��)RU�WKH�VDNH�RI�

VLPSOLFLW\��ZH�RPLW�UHSUHVHQWDWLRQ�RI�WKH�RXWSXW�

SURGXFHG�E\�WKH�V\VWHP�

/HW� XV� QRWH� WKDW�ZH� FRXOG�KDYH�PHUJHG� WKH�

HYHQWV�VHQVRU
RN
�DQG�VHQVRU

QRN
�LQWR�D�VLQJOH�HYHQW�E\�

GURSSLQJ�WKH�VHFRQG�FRQMXQFWV�IURP�WKHLU�JXDUGV��

7KH�FRPELQHG�HYHQW�ZRXOG�PRGHO�VHQVRU�UHDGLQJ�

LUUHVSHFWLYHO\�ZKHWKHU�WKH�VHQVRU�KDV�EHHQ�IDXOW\�

RU�KHDOWK\��+RZHYHU��ZH�GHOLEHUDWHO\�GHFLGHG�WR�

PRGHO�WKHP�VHSDUDWHO\�KHUH�WR�EH�DEOH�WR�DWWDFK�

GLIIHUHQW� SUREDELOLWLHV� ZKHQ� ZH� IXUWKHU� UHILQH�

WKHVH�HYHQWV��WKXV�GLVWLQJXLVKLQJ�EHWZHHQ�WKH�FDVHV�

ZKHQ�WKH�VHQVRU�IDLOV�DQG�UHFRYHUV��VHH�)LJXUH����

)LJXUH����&DVH�VWXG\��WKH�DEVWUDFW�VSHFLILFDWLRQ

)LJXUH����&DVH�VWXG\��WKH�ILUVW�UHILQHPHQW

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

,Q�WKLV�UHILQHPHQW��ZH�SUREDELOLVWLFDOO\�UHILQH�

WKH�HYHQWV�VHQVRU
RN
�DQG�VHQVRU

QRN
��7KH�FRQVWDQWV�I�

DQG�U�DUH�XVHG�WR�PRGHO�FRUUHVSRQGLQJO\�WKH�SURE�
DELOLWLHV� RI� VHQVRU� IDLOXUH� DQG� UHFRYHU\�� 3OHDVH�

QRWH�WKDW��ZKLOH�WUDQVODWLQJ�WKH�(YHQW�%�VSHFLILFD�

WLRQ�0&+
�
�LQWR�WKH�FRUUHVSRQGLQJ�35,60�VSHFL�

ILFDWLRQ��ZH�FRQYHUW�WKH�W\SH�RI�WKH�YDULDEOH�SKDVH�
WR�HQXPHUDWHG�LQWHJHUV��7KH�HYHQWV�PRGHOOLQJ�WKH�

V\VWHP�EHKDYLRXU�DW�HDFK�SKDVH�DUH�JURXSHG�WR�

JHWKHU�LQWR�WKH�FRUUHVSRQGLQJ�35,60�PRGXOHV��

7KH� 35,60� PRGHO� UHVXOWLQJ� IURP� WKLV� UDWKHU�

VWUDLJKWIRUZDUG� WUDQVODWLRQ� LV� VKRZQ� RQ�)LJXUH�

���

7R�HYDOXDWH�UHOLDELOLW\�RI�WKH�V\VWHP��ZH�KDYH�

WR�YHULI\�WKH�35,60�SURSHUW\�����XVLQJ�WKH�RS�

HUDWLRQDO�JXDUG�-�≜�VW���IDLOHG�

3
 "
>*�W�VW�IDLOHG@�� ���

)LJXUH����&DVH�VWXG\��WKH�VHFRQG�UHILQHPHQW

)LJXUH�����&DVH�VWXG\��35,60�PRGHO�RI�WKH�VHFRQG�UHILQHPHQW

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

7KH�UHVXOWLQJ�UHOLDELOLW\�HYDOXDWLRQ�LV�SUHVHQWHG�

LQ�)LJXUH� ��� WRJHWKHU� ZLWK� WKH� UHOLDELOLW\� RI� D�

PRQLWRULQJ�V\VWHP�WKDW��LQVWHDG�RI�D�VLQJOH�VHQVRU��

HPSOR\V�WZR�VHQVRUV�DUUDQJHG�LQ�D�KRW�VSDUH��DV�

ZH�H[SODLQ�QH[W�

$�KRW�VSDUH�LV�D�VWDQGDUG�IDXOW�WROHUDQFH�PHFKD�

QLVP��,Q�RXU�PRGHO��ZH�LQWURGXFH�DQ�DGGLWLRQDO�

VHQVRU�±�D�VSDUH�±�WKDW�ZRUNV�LQ�SDUDOOHO�ZLWK�WKH�

PDLQ�RQH��:KHQ�D�IDXOW�LV�GHWHFWHG��WKH�V\VWHP�

VZLWFKHV�WR�UHDGLQJ�RI�WKH�GDWD�SURGXFHG�E\�D�VSDUH�

$Q�LQWURGXFWLRQ�RI�WKH�IDXOW�WROHUDQFH�PHFKD�

QLVPV�E\�UHILQHPHQW�LV�D�UDWKHU�VWDQGDUG�UHILQH�

PHQW�VWHS�RIWHQ�SHUIRUPHG�LQ�WKH�GHYHORSPHQW�RI�

GHSHQGDEOH�V\VWHPV��7KH�PDFKLQH�0&+
�
�LV�D�UHVXOW�

RI�UHILQLQJ�WKH�PDFKLQH�0&+
�
�WR�LQWURGXFH�D�KRW�

VSDUH��,Q�WKH�UHILQHG�VSHFLILFDWLRQ��ZH�UHSODFH�WKH�

VHQVRU�V�E\�WZR�VHQVRUV�V
�
�DQG�V

�
��7KH�EHKDYLRXU�

RI�WKHVH�VHQVRUV�LV�WKH�VDPH�DV�WKH�EHKDYLRXU�RI�V��
7KH�JOXLQJ�LQYDULDQW�,

�
�GHVFULEHV�WKH�UHILQHPHQW�

UHODWLRQVKLS�EHWZHHQ�WKH�FRUUHVSRQGLQJ�YDULDEOHV�

±�WKH�V\VWHP�ZRXOG�RXWSXW�WKH�DFWXDO�VHQVRU�UHDG�

LQJV�RQO\�LI�QR�PRUH�WKDQ�RQH�VHQVRU�KDYH�IDLOHG��

7KH�WKLUG�UHILQHPHQW�VWHS�LV�VKRZQ�RQ�)LJXUH����

,Q�WKH�ODVW�UHILQHPHQW�VWHS�ZH�VSOLW�WKH�DEVWUDFW�

HYHQW�VHQVRU
RN
�LQWR�WKUHH�HYHQWV�VHQVRU

ERWKBRN
��VHQ�

VRU
RNB�

�DQG�VHQVRU
RNB�

��DQG�DOVR�UHILQHG�WKH�DEVWUDFW�

HYHQW�VHQVRU
QRN
��0RUHRYHU��LQ�WKH�QH[W�WZR�GHWHF�

WLRQ�HYHQWV�WKH�DEVWUDFW�JXDUGV�V ��DQG�V ��KDYH�
EHHQ�UHSODFHG�E\�JXDUGV�V

�
�V

�
!��DQG�V

�
�V

�
 ��UH�

VSHFWLYHO\��,W�LV�HDVLO\�SURYDEOH�WKDW�WKLV�LV�D�YDOLG�

(YHQW�%�UHILQHPHQW�VWHS�

7R�SURYH�WKDW�0&+
�
�LV�D�SUREDELOLVWLF�UHILQH�

PHQW�RI�0&+
�
��ZH�VWDUW�ZLWK�FRQYHUVLRQ�RI�WKH�

(YHQW�%�PDFKLQH�0&+
�
�WR�LWV�35,60�FRXQWHUSDUW��

7KH�FRUUHVSRQGLQJ�PRGXOH�UHSUHVHQWV�WKH�EHKDY�

LRXU�RI�HDFK�VHQVRU��7KH�V\QFKURQLVHG�JXDUGHG�

FRPPDQGV��ODEHOOHG�VV��DUH�XVHG�WR�PRGHO�SDUDOOHO�
ZRUN�RI�VHQVRUV��,Q�WKH�PRGXOH�VHQVRU

�
�ZH�DGGL�

)LJXUH�����&DVH�VWXG\��WKH�WKLUG�UHILQHPHQW

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

WLRQDOO\�XSGDWH�WKH�JOREDO�YDULDEOH�SKDVH�WR�PRGHO�
WUDQVLWLRQ�RI� WKH�V\VWHP�WR� WKH�GHWHFWLRQ�SKDVH��

$Q�H[FHUSW�IURP�WKH�UHVXOWLQJ�35,60�V\VWHP�LV�

JLYHQ�LQ�)LJXUH����

)XUWKHU�ZH�QHHG�WR�FRPSDUH�WKH�UHVXOWV�REWDLQHG�

IURP�PRGHO� FKHFNLQJ� WR� VKRZ� WKDW� �IURP� UHOL�

DELOLW\�YLHZSRLQW��0&+
�
�LV�LQGHHG�D�YDOLG�SURED�

ELOLVWLF� UHILQHPHQW� RI� 0&+
�
�� ,Q� WKH� UHILQHG�

VSHFLILFDWLRQ�WKH�V\VWHP�RSHUDWLRQDO�VWDWHV�DUH�VWLOO�

FRQILQHG�E\�WKH�SUHGLFDWH�VW���IDLOHG��+HQFH��WR�
DVVHVV�UHOLDELOLW\��ZH�DJDLQ�FKHFN�WKH�SURSHUW\������

)LJXUH����VKRZV�WKH�UHVXOWV�RI�HYDOXDWLRQ�IRU�WKH�

PRUH� DEVWUDFW� DQG� UHILQHG� V\VWHPV��7KH� UHVXOWV�

FOHDUO\�VKRZ�WKDW�WKH�UHGXQGDQW�KRW�VSDUH�V\VWHP�

DOZD\V�JLYHV�D�VLJQLILFDQWO\�EHWWHU�UHOLDELOLW\��'XH�

WR�WKH�ODFN�RI�VSDFH��ZH�RPLW�FRPSDULVRQ�EHWZHHQ�

YDULRXV�IDXOW�WROHUDQFH�PHFKDQLVPV�WKDW�FRXOG�EH�

XVHG� LQ� RXU� V\VWHP�� 6XFK� D� FRPSDULVRQ� IRU� D�

VLPLODU�V\VWHP�FDQ�EH�IRXQG�LQ��7DUDV\XN��7URX�

ELWV\QD��	�/DLELQLV��������

:KLOH�LOOXVWUDWLQJ�RXU�DSSURDFK�IRU�UHOLDELOLW\�

DVVHVVPHQW��ZH�KDYH�GHOLEHUDWHO\�FKRVHQ�D�VLPSOH�

H[DPSOH�� 6LQFH� WKH� 0DUNRY� PRGHOV� IRU� WKHVH�

H[DPSOHV�DUH�UHODWLYHO\�VLPSOH��ZH�FDQ�DOVR�REWDLQ�

WKH� DQDO\WLFDO� UHSUHVHQWDWLRQ� RI� WKH� UHOLDELOLW\�

IXQFWLRQV�LQVWHDG�RI�XVH�RI�PRGHO�FKHFNLQJ��2EYL�

RXVO\��IRU�ODUJH�V\VWHPV��WKH�FRUUHVSRQGLQJ�0DU�

NRY�PRGHOV�ZRXOG�EH�PXFK�PRUH�FRPSOH[��%H�

)LJXUH�����&DVH�VWXG\��35,60�PRGHO�RI�WKH�WKLUG�UHILQHPHQW

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

VLGHV��RXU�UHOLDELOLW\�DVVHVVPHQW�UHOLHV�RQ�WKH�WLPH�

ERXQG�UHDFKDELOLW\�DQDO\VLV��ZKLFK�LV�NQRZQ�WR�

EH�D�GLIILFXOW�SUREOHP�SHU�VH��+HQFH��LQ�JHQHUDO��

WKH�DQDO\WLFDO�DVVHVVPHQW�RI�UHOLDELOLW\�FRXOG�EH�

XQIHDVLEOH��PDNLQJ�XV� WR� UHO\�RQ� WKH� UHVXOWV� RI�

SUREDELOLVWLF�PRGHO�FKHFNLQJ� WR�SURYH�(YHQW�%�

UHILQHPHQW�IURP�UHOLDELOLW\�WKH�SRLQW�RI�YLHZ�

&21&/86,21

,Q�WKLV�FKDSWHU�ZH�KDYH�SURSRVHG�DQ�DSSURDFK�WKDW�

DOORZV�XV�WR�LQFRUSRUDWH�UHOLDELOLW\�DVVHVVPHQW�LQWR�

WKH�UHILQHPHQW�SURFHVV��7KH�SURSRVHG�DSSURDFK�

HQDEOHV� UHOLDELOLW\� DVVHVVPHQW� DW� HDUO\� GHVLJQ�

SKDVHV��ZKLFK�SHUPLWV�WKH�GHVLJQHUV�WR�HYDOXDWH�

UHOLDELOLW\�RI�GLIIHUHQW�GHVLJQ�DOWHUQDWLYHV�DOUHDG\�

DW�WKH�GHYHORSPHQW�SKDVH�

2XU� DSSURDFK� LQWHJUDWHV� WZR� IUDPHZRUNV��

UHILQHPHQW� LQ�(YHQW�%�DQG�SUREDELOLVWLF�PRGHO�

FKHFNLQJ��%\� LQWHJUDWLQJ�SUREDELOLVWLF�YHULILFD�

WLRQ�VXSSRUWHG�E\�WKH�35,60�PRGHO�FKHFNHU��ZH�

RSHQ�D�SRVVLELOLW\�WR�UHDVRQ�DERXW�QRQ�IXQFWLRQDO�

V\VWHP�UHTXLUHPHQWV�LQ�WKH�UHILQHPHQW�SURFHVV��

6XFK�LQWHJUDWLRQ�QRW�RQO\�JXDUDQWHHV�IXQFWLRQDO�

FRUUHFWQHVV� EXW� DOVR� HQVXUHV� WKDW� UHOLDELOLW\� RI�

UHILQHG�PRGHO�LV�SUHVHUYHG�RU�LPSURYHG�

6HYHUDO�UHVHDUFKHV�KDYH�DOUHDG\�XVHG�TXDQWLWD�

WLYH�PRGHO�FKHFNLQJ�IRU�GHSHQGDELOLW\�HYDOXDWLRQ��

)RU�LQVWDQFH��.ZLDWNRZVND�HW�DO���.ZLDWNRZVND��

1RUPDQ�� 	� 3DUNHU�� ������ KDYH� SURSRVHG� DQ�

DSSURDFK� WR� DVVHVVLQJ� GHSHQGDELOLW\� RI� FRQWURO�

V\VWHPV�XVLQJ�FRQWLQXRXV� WLPH�0DUNRY�FKDLQV��

7KH�JHQHUDO�LGHD�LV�VLPLODU�WR�RXUV�±�WR�IRUPXODWH�

UHOLDELOLW\� DV� D� V\VWHP� SURSHUW\� WR� EH� YHULILHG��

7KLV�DSSURDFK�GLIIHUV�IURP�RXUV�EHFDXVH�LW�DLPV�

DW� DVVHVVLQJ� UHOLDELOLW\� RI� DOUHDG\� GHYHORSHG�

V\VWHPV��+RZHYHU��GHSHQGDELOLW\�HYDOXDWLRQ�ODWH�

DW�WKH�GHYHORSPHQW�F\FOH�FDQ�EH�SHULORXV�DQG��LQ�

FDVH�RI�SRRU�UHVXOWV��PD\�OHDG�WR�PDMRU�V\VWHP�

UHGHYHORSPHQW�FDXVLQJ�VLJQLILFDQW�ILQDQFLDO�DQG�

WLPH� ORVVHV�� ,Q� RXU� DSSURDFK� UHOLDELOLW\� DVVHVV�

PHQW� SURFHHGV� KDQG�LQ�KDQG� ZLWK� WKH� V\VWHP�

GHYHORSPHQW�E\�UHILQHPHQW��,W�DOORZV�XV�WR�DVVHVV�

GHSHQGDELOLW\� RI� GHVLJQHG� V\VWHP� RQ� WKH� HDUO\�

VWDJHV�RI�GHYHORSPHQW��IRU�LQVWDQFH��HYHU\�WLPH�

ZKHQ�ZH�QHHG�WR�HVWLPDWH�LPSDFW�RI�XQUHOLDEOH�

FRPSRQHQW�RQ�WKH�V\VWHP�UHOLDELOLW\�OHYHO��7KLV�

DOORZV�D�GHYHORSHU�WR�PDNH�DQ�LQIRUPHG�GHFLVLRQ�

DERXW�KRZ�WR�JXDUDQWHH�GHVLUHG�V\VWHP�UHOLDELOLW\�

$&.12:/('*0(17

7KLV�ZRUN� LV� VXSSRUWHG� E\� ,67�)3��'(3/2<�

SURMHFW��:H�DOVR�ZLVK� WR� WKDQN� WKH� DQRQ\PRXV�

UHYLHZHUV�IRU�WKHLU�KHOSIXO�FRPPHQWV�

5()(5(1&(6

$EULDO��-��5����������([WHQGLQJ�%�ZLWKRXW�FKDQJ�
LQJ� LW� �IRU� GHYHORSLQJ�GLVWULEXWHG� V\VWHPV��� �VW�
&RQIHUHQFH�RQ�WKH�%�PHWKRG���SS�����������

)LJXUH�����&DVH�VWXG\��UHVXOWV�RI�35,60�PRGHOOLQJ��OHIW��I �����U �����1 ���ULJKW��I �����U �����1 ��

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

$EULDO�� -��5�� �������� 7KH� %�%RRN�� $VVLJQ�
LQJ� SURJUDPV� WR� PHDQLQJV�� &DPEULGJH�� 8.��
&DPEULGJH� 8QLYHUVLW\� 3UHVV�� GRL���������

&%2�������������

$EULDO��-��5����������0RGHOLQJ�LQ�(YHQW�%��&DP�
EULGJH��8.��&DPEULGJH�8QLYHUVLW\�3UHVV�

$OXU��5���	�+HQ]LQJHU��7����������5HDFWLYH�PRG�

XOHV��)RUPDO�0HWKRGV�LQ�6\VWHP�'HVLJQ���±����
GRL���������$��������������

%DLHU��&���	�.DWRHQ��-��3����������3ULQFLSOHV�RI�
PRGHO�FKHFNLQJ��7KH�0,7�3UHVV�

&UDLJHQ��'���*HUKDUW�� 6���	�5DOVRQ��7�� ��������

&DVH�VWXG\��3DULV�PHWUR�VLJQDOLQJ�V\VWHP��,(((�
6RIWZDUH����±���

'(3/2<�� ,67�)3�� SURMHFW�� �������� (XURSHDQ�
&RPPLVVLRQ� ,QIRUPDWLRQ� DQG� &RPPXQLFDWLRQ�
7HFKQRORJLHV�)3��'(3/2<� SURMHFW�� 5HWULHYHG�
IURP�KWWS���ZZZ�GHSOR\�SURMHFW�HX�

+DQVVRQ��+���	�-RQVVRQ��%����������$�ORJLF�IRU�

UHDVRQLQJ�DERXW�WLPH�DQG�UHOLDELOLW\��)RUPDO�$V�
SHFWV�RI�&RPSXWLQJ����������

.HPHQ\��-��*���	�6QHOO��-��/����������)LQLWH�0DUNRY�
FKDLQV��9DQ�1RVWUDQG�

.ZLDWNRZVND��0����������4XDQWLWDWLYH�YHULILFD�
WLRQ��0RGHOV� WHFKQLTXHV� DQG� WRROV�� (6(&�)6(�
������(XURSHDQ�6RIWZDUH�(QJLQHHULQJ�&RQIHUHQFH�

DQG�6\PSRVLXP�RQ�WKH�)RXQGDWLRQV�RI�6RIWZDUH�

(QJLQHHULQJ���SS�����������

.ZLDWNRZVND�� 0��� 1RUPDQ�� *��� 	� 3DUNHU�� '��

�������� &RQWUROOHU� GHSHQGDELOLW\� DQDO\VLV� E\�

SUREDELOLVWLF�PRGHO�FKHFNLQJ��&RQWURO�(QJLQHHU�
LQJ�3UDFWLFH������±������GRL���������M�FRQHQJ�
SUDF������������

0F,YHU��$���	�0RUJDQ��&��&����������$EVWUDFWLRQ��
UHILQHPHQW�DQG�SURRI� IRU�SUREDELOLVWLF� V\VWHPV��
6SULQJHU�� 050&� PRGHO� FKHFNHU�� YHU��������

��������050&�±�0DUNRY�UHZDUG�PRGHO�&KHFNHU��
5HWULHYHG�������IURP�KWWS���ZZZ�PUPF�WRRO�RUJ�

2¶&RQQRU��3����������3UDFWLFDO�UHOLDELOLW\�HQJL�
QHHULQJ���UG�HG����-RKQ�:LOH\�	�6RQV�

3ODWIRUP��5��2��'��,��1��YHU���������������52',1�
(YHQW�%� SODWIRUP�� 5HWULHYHG� ����� IURP� KWWS���
ZZZ�HYHQW�E�RUJ�

3QXHOL��$�� �������� 7KH� WHPSRUDO� ORJLF� RI� SUR�
JUDPV��)2&6�������SS����±�����)RXQGDWLRQV�RI�
&RPSXWHU�6FLHQFH�

35,60�PRGHO�FKHFNHU��YHU�����������������35,60�
±�3UREDELOLVWLF�V\PEROLF�PRGHO�FKHFNHU��5HWULHYHG�
������IURP�KWWS���ZZZ�SULVPPRGHOFKHFNHU�RUJ�

52',1��,67�)3��SURMHFW����������5LJRURXV�RSHQ�
GHYHORSPHQW�HQYLURQPHQW� IRU�FRPSOH[�V\VWHPV��
5HWULHYHG������IURP�KWWS���URGLQ�FV�QFO�DF�XN�

7DUDV\XN�� $��� 7URXELWV\QD�� (��� 	� /DLELQLV�� /��

��������5HOLDELOLW\�DVVHVVPHQW�LQ�(YHQW�%���78&6�
7HFKQLFDO�5HSRUW�1������7XUNX�&HQWUH�IRU�&RP�

SXWHU�6FLHQFH�

7DUDV\XN�� $��� 7URXELWV\QD�� (��� 	� /DLELQLV�� /��

��������7RZDUGV�SUREDELOLVWLF�PRGHOOLQJ�LQ�(YHQW�
%�� ,)0������� ,QWHJUDWHG�)RUPDO�0HWKRGV� �SS��
���±������6SULQJHU�9HUODJ�

9LOOHPHXU�� $�� �������� 5HOLDELOLW\�� DYDLODELOLW\��
PDLQWDLQDELOLW\�DQG�VDIHW\�DVVHVVPHQW��-RKQ�:LOH\�

	�6RQV�

:KLWH��'��-����������0DUNRY�GHFLVLRQ�SURFHVVHV��
-RKQ�:LOH\�	�6RQV�

.(<�7(506�$1'�'(),1,7,216

%�0HWKRG�� $� ULJRURXV�� VWDWH�EDVHG� IRUPDO�

IUDPHZRUN�VXSSRUWLQJ�WKH�FRUUHFW�E\�FRQVWUXFWLRQ�

V\VWHP�GHYHORSPHQW�

3URJUDP�5HILQHPHQW���6WHSZLVH��YHULILDEOH�

PRGHO�WUDQVIRUPDWLRQ�SURFHVV�RI�DQ�DEVWUDFW�IRUPDO�

VSHFLILFDWLRQ�LQWR�D�FRQFUHWH�VSHFLILFDWLRQ�WKDW�LV�

FORVH�WR�WKH�GHVLUHG�LPSOHPHQWDWLRQ�

���

4XDQWLWDWLYH�5HDVRQLQJ�$ERXW�'HSHQGDELOLW\�LQ�(YHQW�%

(YHQW�%��$�IRUPDO�IUDPHZRUN�GHULYHG�IURP�WKH�

%�0HWKRG�E\�DGRSWLQJ�WKH�HYHQW�EDVHG�PRGHOLQJ�

VW\OH�WKDW�IDFLOLWDWHV�GHYHORSPHQW�RI�UHDFWLYH�DQG�

GLVWULEXWHG�V\VWHPV�

5HOLDELOLW\��7KH�DELOLW\�RI�D�V\VWHP�WR�SHUIRUP�

D�UHTXLUHG�IXQFWLRQ�XQGHU�JLYHQ�FRQGLWLRQV�IRU�D�

JLYHQ�WLPH�LQWHUYDO�

'LVFUHWH�7LPH�0DUNRY�&KDLQ��$�GLVFUHWH�

WLPH�VWRFKDVWLF�SURFHVV�ZLWK�WKH�SURSHUW\�WKDW�D�

IXWXUH�VWDWH�RI�WKH�SURFHVV�RQO\�GHSHQGV�RQ�WKH�

FXUUHQW�SURFHVV�VWDWH�DQG�QRW�RQ�LWV�SDVW�KLVWRU\�

�0DUNRY�SURSHUW\��

0DUNRY�'HFLVLRQ�3URFHVV��$�GLVFUHWH�WLPH�

VWRFKDVWLF�FRQWURO�SURFHVV�FKDUDFWHUL]HG�E\�D�VHW�

RI�VWDWHV��DFWLRQV��DQG�WUDQVLWLRQ�SUREDELOLW\�PD�

WULFHV�WKDW�GHSHQG�RQ�WKH�DFWLRQV�FKRVHQ�ZLWKLQ�

D�JLYHQ�VWDWH�

3UREDELOLVWLF� 0RGHO� &KHFNLQJ�� $� IRUPDO�

WHFKQLTXH�IRU�DQDO\VLQJ�DQG�YHULI\LQJ�WKH�FRUUHFW�

QHVV�RI�ILQLWH�VWDWH�V\VWHPV�WKDW�H[KLELW�VWRFKDVWLF�

EHKDYLRXU�

Turku Centre for Computer Science

TUCS Dissertations

1. Marjo Lipponen, On Primitive Solutions of the Post Correspondence Problem
2. Timo Käkölä, Dual Information Systems in Hyperknowledge Organizations
3. Ville Leppänen, Studies on the Realization of PRAM
4. Cunsheng Ding, Cryptographic Counter Generators
5. Sami Viitanen, Some New Global Optimization Algorithms
6. Tapio Salakoski, Representative Classification of Protein Structures
7. Thomas Långbacka, An Interactive Environment Supporting the Development of

Formally Correct Programs
8. Thomas Finne, A Decision Support System for Improving Information Security
9. Valeria Mihalache, Cooperation, Communication, Control. Investigations on

Grammar Systems.
10. Marina Waldén, Formal Reasoning About Distributed Algorithms
11. Tero Laihonen, Estimates on the Covering Radius When the Dual Distance is

Known
12. Lucian Ilie, Decision Problems on Orders of Words
13. Jukkapekka Hekanaho, An Evolutionary Approach to Concept Learning
14. Jouni Järvinen, Knowledge Representation and Rough Sets
15. Tomi Pasanen, In-Place Algorithms for Sorting Problems
16. Mika Johnsson, Operational and Tactical Level Optimization in Printed Circuit

Board Assembly
17. Mats Aspnäs, Multiprocessor Architecture and Programming: The Hathi-2 System
18. Anna Mikhajlova, Ensuring Correctness of Object and Component Systems
19. Vesa Torvinen, Construction and Evaluation of the Labour Game Method
20. Jorma Boberg, Cluster Analysis. A Mathematical Approach with Applications to

Protein Structures
21. Leonid Mikhajlov, Software Reuse Mechanisms and Techniques: Safety Versus

Flexibility
22. Timo Kaukoranta, Iterative and Hierarchical Methods for Codebook Generation in

Vector Quantization
23. Gábor Magyar, On Solution Approaches for Some Industrially Motivated

Combinatorial Optimization Problems
24. Linas Laibinis, Mechanised Formal Reasoning About Modular Programs
25. Shuhua Liu, Improving Executive Support in Strategic Scanning with Software

Agent Systems
26. Jaakko Järvi, New Techniques in Generic Programming – C++ is more Intentional

than Intended
27. Jan-Christian Lehtinen, Reproducing Kernel Splines in the Analysis of Medical

Data
28. Martin Büchi, Safe Language Mechanisms for Modularization and Concurrency
29. Elena Troubitsyna, Stepwise Development of Dependable Systems
30. Janne Näppi, Computer-Assisted Diagnosis of Breast Calcifications
31. Jianming Liang, Dynamic Chest Images Analysis
32. Tiberiu Seceleanu, Systematic Design of Synchronous Digital Circuits
33. Tero Aittokallio, Characterization and Modelling of the Cardiorespiratory System

in Sleep-Disordered Breathing
34. Ivan Porres, Modeling and Analyzing Software Behavior in UML
35. Mauno Rönkkö, Stepwise Development of Hybrid Systems
36. Jouni Smed, Production Planning in Printed Circuit Board Assembly
37. Vesa Halava, The Post Correspondence Problem for Market Morphisms
38. Ion Petre, Commutation Problems on Sets of Words and Formal Power Series
39. Vladimir Kvassov, Information Technology and the Productivity of Managerial

Work
40. Frank Tétard, Managers, Fragmentation of Working Time, and Information

Systems

41. Jan Manuch, Defect Theorems and Infinite Words
42. Kalle Ranto, Z4-Goethals Codes, Decoding and Designs
43. Arto Lepistö, On Relations Between Local and Global Periodicity
44. Mika Hirvensalo, Studies on Boolean Functions Related to Quantum Computing
45. Pentti Virtanen, Measuring and Improving Component-Based Software

Development
46. Adekunle Okunoye, Knowledge Management and Global Diversity – A Framework

to Support Organisations in Developing Countries
47. Antonina Kloptchenko, Text Mining Based on the Prototype Matching Method
48. Juha Kivijärvi, Optimization Methods for Clustering
49. Rimvydas Rukšėnas, Formal Development of Concurrent Components
50. Dirk Nowotka, Periodicity and Unbordered Factors of Words
51. Attila Gyenesei, Discovering Frequent Fuzzy Patterns in Relations of Quantitative

Attributes
52. Petteri Kaitovaara, Packaging of IT Services – Conceptual and Empirical Studies
53. Petri Rosendahl, Niho Type Cross-Correlation Functions and Related Equations
54. Péter Majlender, A Normative Approach to Possibility Theory and Soft Decision

Support
55. Seppo Virtanen, A Framework for Rapid Design and Evaluation of Protocol

Processors
56. Tomas Eklund, The Self-Organizing Map in Financial Benchmarking
57. Mikael Collan, Giga-Investments: Modelling the Valuation of Very Large Industrial

Real Investments
58. Dag Björklund, A Kernel Language for Unified Code Synthesis
59. Shengnan Han, Understanding User Adoption of Mobile Technology: Focusing on

Physicians in Finland
60. Irina Georgescu, Rational Choice and Revealed Preference: A Fuzzy Approach
61. Ping Yan, Limit Cycles for Generalized Liénard-Type and Lotka-Volterra Systems
62. Joonas Lehtinen, Coding of Wavelet-Transformed Images
63. Tommi Meskanen, On the NTRU Cryptosystem
64. Saeed Salehi, Varieties of Tree Languages
65. Jukka Arvo, Efficient Algorithms for Hardware-Accelerated Shadow Computation
66. Mika Hirvikorpi, On the Tactical Level Production Planning in Flexible

Manufacturing Systems
67. Adrian Costea, Computational Intelligence Methods for Quantitative Data Mining
68. Cristina Seceleanu, A Methodology for Constructing Correct Reactive Systems
69. Luigia Petre, Modeling with Action Systems
70. Lu Yan, Systematic Design of Ubiquitous Systems
71. Mehran Gomari, On the Generalization Ability of Bayesian Neural Networks
72. Ville Harkke, Knowledge Freedom for Medical Professionals – An Evaluation Study

of a Mobile Information System for Physicians in Finland
73. Marius Cosmin Codrea, Pattern Analysis of Chlorophyll Fluorescence Signals
74. Aiying Rong, Cogeneration Planning Under the Deregulated Power Market and

Emissions Trading Scheme
75. Chihab BenMoussa, Supporting the Sales Force through Mobile Information and

Communication Technologies: Focusing on the Pharmaceutical Sales Force
76. Jussi Salmi, Improving Data Analysis in Proteomics
77. Orieta Celiku, Mechanized Reasoning for Dually-Nondeterministic and

Probabilistic Programs
78. Kaj-Mikael Björk, Supply Chain Efficiency with Some Forest Industry

Improvements
79. Viorel Preoteasa, Program Variables – The Core of Mechanical Reasoning about

Imperative Programs
80. Jonne Poikonen, Absolute Value Extraction and Order Statistic Filtering for a

Mixed-Mode Array Image Processor
81. Luka Milovanov, Agile Software Development in an Academic Environment
82. Francisco Augusto Alcaraz Garcia, Real Options, Default Risk and Soft

Applications
83. Kai K. Kimppa, Problems with the Justification of Intellectual Property Rights in

Relation to Software and Other Digitally Distributable Media
84. Dragoş Truşcan, Model Driven Development of Programmable Architectures
85. Eugen Czeizler, The Inverse Neighborhood Problem and Applications of Welch

Sets in Automata Theory

86. Sanna Ranto, Identifying and Locating-Dominating Codes in Binary Hamming
Spaces

87. Tuomas Hakkarainen, On the Computation of the Class Numbers of Real Abelian
Fields

88. Elena Czeizler, Intricacies of Word Equations
89. Marcus Alanen, A Metamodeling Framework for Software Engineering
90. Filip Ginter, Towards Information Extraction in the Biomedical Domain: Methods

and Resources
91. Jarkko Paavola, Signature Ensembles and Receiver Structures for Oversaturated

Synchronous DS-CDMA Systems
92. Arho Virkki, The Human Respiratory System: Modelling, Analysis and Control
93. Olli Luoma, Efficient Methods for Storing and Querying XML Data with Relational

Databases
94. Dubravka Ilić, Formal Reasoning about Dependability in Model-Driven

Development
95. Kim Solin, Abstract Algebra of Program Refinement
96. Tomi Westerlund, Time Aware Modelling and Analysis of Systems-on-Chip
97. Kalle Saari, On the Frequency and Periodicity of Infinite Words
98. Tomi Kärki, Similarity Relations on Words: Relational Codes and Periods
99. Markus M. Mäkelä, Essays on Software Product Development: A Strategic

Management Viewpoint
100. Roope Vehkalahti, Class Field Theoretic Methods in the Design of Lattice Signal

Constellations
101. Anne-Maria Ernvall-Hytönen, On Short Exponential Sums Involving Fourier

Coefficients of Holomorphic Cusp Forms
102. Chang Li, Parallelism and Complexity in Gene Assembly
103. Tapio Pahikkala, New Kernel Functions and Learning Methods for Text and Data

Mining
104. Denis Shestakov, Search Interfaces on the Web: Querying and Characterizing
105. Sampo Pyysalo, A Dependency Parsing Approach to Biomedical Text Mining
106. Anna Sell, Mobile Digital Calendars in Knowledge Work
107. Dorina Marghescu, Evaluating Multidimensional Visualization Techniques in Data

Mining Tasks
108. Tero Säntti, A Co-Processor Approach for Efficient Java Execution in Embedded

Systems
109. Kari Salonen, Setup Optimization in High-Mix Surface Mount PCB Assembly
110. Pontus Boström, Formal Design and Verification of Systems Using Domain-

Specific Languages
111. Camilla J. Hollanti, Order-Theoretic Mehtods for Space-Time Coding: Symmetric

and Asymmetric Designs
112. Heidi Himmanen, On Transmission System Design for Wireless Broadcasting
113. Sébastien Lafond, Simulation of Embedded Systems for Energy Consumption

Estimation
114. Evgeni Tsivtsivadze, Learning Preferences with Kernel-Based Methods
115. Petri Salmela, On Commutation and Conjugacy of Rational Languages and the

Fixed Point Method
116. Siamak Taati, Conservation Laws in Cellular Automata
117. Vladimir Rogojin, Gene Assembly in Stichotrichous Ciliates: Elementary

Operations, Parallelism and Computation
118. Alexey Dudkov, Chip and Signature Interleaving in DS CDMA Systems
119. Janne Savela, Role of Selected Spectral Attributes in the Perception of Synthetic

Vowels
120. Kristian Nybom, Low-Density Parity-Check Codes for Wireless Datacast Networks
121. Johanna Tuominen, Formal Power Analysis of Systems-on-Chip
122. Teijo Lehtonen, On Fault Tolerance Methods for Networks-on-Chip
123. Eeva Suvitie, On Inner Products Involving Holomorphic Cusp Forms and Maass

Forms
124. Linda Mannila, Teaching Mathematics and Programming – New Approaches with

Empirical Evaluation
125. Hanna Suominen, Machine Learning and Clinical Text: Supporting Health

Information Flow
126. Tuomo Saarni, Segmental Durations of Speech
127. Johannes Eriksson, Tool-Supported Invariant-Based Programming

128. Tero Jokela, Design and Analysis of Forward Error Control Coding and Signaling
for Guaranteeing QoS in Wireless Broadcast Systems

129. Ville Lukkarila, On Undecidable Dynamical Properties of Reversible One-
Dimensional Cellular Automata

130. Qaisar Ahmad Malik, Combining Model-Based Testing and Stepwise Formal
Development

131. Mikko-Jussi Laakso, Promoting Programming Learning: Engagement, Automatic
Assessment with Immediate Feedback in Visualizations

132. Riikka Vuokko, A Practice Perspective on Organizational Implementation of
Information Technology

133. Jeanette Heidenberg, Towards Increased Productivity and Quality in Software
Development Using Agile, Lean and Collaborative Approaches

134. Yong Liu, Solving the Puzzle of Mobile Learning Adoption
135. Stina Ojala, Towards an Integrative Information Society: Studies on Individuality

in Speech and Sign
136. Matteo Brunelli, Some Advances in Mathematical Models for Preference Relations
137. Ville Junnila, On Identifying and Locating-Dominating Codes
138. Andrzej Mizera, Methods for Construction and Analysis of Computational Models

in Systems Biology. Applications to the Modelling of the Heat Shock Response and
the Self-Assembly of Intermediate Filaments.

139. Csaba Ráduly-Baka, Algorithmic Solutions for Combinatorial Problems in
Resource Management of Manufacturing Environments

140. Jari Kyngäs, Solving Challenging Real-World Scheduling Problems
141. Arho Suominen, Notes on Emerging Technologies
142. József Mezei, A Quantitative View on Fuzzy Numbers
143. Marta Olszewska, On the Impact of Rigorous Approaches on the Quality of

Development
144. Antti Airola, Kernel-Based Ranking: Methods for Learning and Performace

Estimation
145. Aleksi Saarela, Word Equations and Related Topics: Independence, Decidability

and Characterizations
146. Lasse Bergroth, Kahden merkkijonon pisimmän yhteisen alijonon ongelma ja sen

ratkaiseminen
147. Thomas Canhao Xu, Hardware/Software Co-Design for Multicore Architectures
148. Tuomas Mäkilä, Software Development Process Modeling – Developers

Perspective to Contemporary Modeling Techniques
149. Shahrokh Nikou, Opening the Black-Box of IT Artifacts: Looking into Mobile

Service Characteristics and Individual Perception
150. Alessandro Buoni, Fraud Detection in the Banking Sector: A Multi-Agent

Approach
151. Mats Neovius, Trustworthy Context Dependency in Ubiquitous Systems
152. Fredrik Degerlund, Scheduling of Guarded Command Based Models
153. Amir-Mohammad Rahmani-Sane, Exploration and Design of Power-Efficient

Networked Many-Core Systems
154. Ville Rantala, On Dynamic Monitoring Methods for Networks-on-Chip
155. Mikko Pelto, On Identifying and Locating-Dominating Codes in the Infinite King

Grid
156. Anton Tarasyuk, Formal Development and Quantitative Verification of

Dependable Systems

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www. tucs.fi

Turku
Centre for
Computer
Science

University of Turku
Faculty of Mathematics and Natural Sciences
 • Department of Information Technology
 • Department of Mathematics and Statistics
Turku School of Economics
 • Institute of Information Systems Science

Åbo Akademi University
Division for Natural Sciences and Technology
 • Department of Information Technologies

ISBN 978-952-12-2832-2
ISSN 1239-1883

A
nton Tarasyuk

Form
al D

evelopm
ent and Q

uantitative Verification of D
ependable System

s

