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Abstract 

In this thesis different tree-related materials were characterized for their acid-base and metal 
ion sorption properties. The materials studied in the work include: 1) birch and spruce wood 
particles, 2) untreated, alkali-treated and peroxide-bleached mechanical pulps, 3) unbleached 
and oxygen-delignified hardwood and softwood kraft pulps, and 4) inner and outer bark of 
spruce. The results of this study provide new information of the fundamental knowledge 
about interactions of metal ions with tree-related materials.  
 
The functional groups (acid groups) in wood, pulp and bark materials were determined for 
their concentrations and protonation constants by a potentiometric acid-base titration method. 
The FITEQL program was used to treat the experimental data, and it was found that a model 
with four acid groups best satisfied the potentiometric titration data. Results showed that of 
the materials studied wood materials generally have the acid groups of the lowest 
concentration. The mechanical and chemical pulping processes slightly increase the total 
concentration of acid groups. The chemical pulps have more carboxylic acid groups than the 
mechanical pulps. Bark in turn contains much more acid groups than wood and pulp materials.  
 
The sorption/desorption time of metal ions to wood and bark particles were investigated in a 
batch system by using wood and spruce outer bark. It was found that the sorption/desorption 
of metal ions to wood and bark samples is quite fast. The equilibrium of sorption of metal 
ions to wood particles usually was reached within 20 min and to bark materials within 5 min.  
 
The metal sorption capacities of different tree-related materials and the affinities of different 
metal ions were characterized by a column chromatographic method. The sorption process is 
dominated by ion exchange reactions mainly by complexation between metal ions and 
carboxyl groups. Based on the experimental results, the concentrations of different metal ions 
adsorbed to different materials have been obtained. The operating capacitates of different 
tree-related materials have been determined. It was found that the bark materials have the 
highest sorption capacities for metal ions and the wood particles (sawdust) generally exhibit 
the lowest sorption capacities. In general the mechanical and chemical treatments of the 
original materials increase their sorption capacities. These sorption results correspond well 
with the total concentrations of acid groups found in the materials. All the tree-related 
materials studied show a rather clear selectivity for different metal ions. By combining the 
results from several sorption experiments using different metal ion loading solutions, the 
affinity order of metal ions to the studied tree-related materials was established in the 
following general sequence: Fe3+ >> Pb2+ >> Cu2+ >> Fe2+ > Cd2+ > Zn2+ > Ni2+ > Ba2+ ≥ Ca2+ 
≥ Mn2+ ≥ Sr2+ > Mg2+ > Rb+ > K+ > Na+ > Li+.  
 
The distribution of metal ions in single kraft pulp fibers was investigated by the laser ablation 
inductively coupled plasma mass spectrometry (LA-ICP-MS) technique. Results showed that 
the distribution pattern of metal ions varies. Iron ions are rather uneven distributed, but the 
other metal ions studied, e.g. Cu, Zn, Mn, K, are quite smoothly distributed in single fibers.  
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Referat 

I denna avhandling har sorptionsreaktioner mellan metalljoner och ved, massafibrer och 
bark undersökts. Protonisationskonstanter och kapaciteter för de funktionella grupperna i 
de olika materialen bestämdes med potentiometriska syra-bas titreringar. De teoretiska 
beräkningarna gjordes med ett FITEQL program. En jämviktsmodell med fyra syra-bas 
grupper, d.v.s. två karboxylgrupper och två fenoliska hydroxylgrupper, satisfierade bäst 
experimentella titrerdata. 
 
Metalljoner binds till de funktionella grupperna i den fasta fasen via jonbyte, främst 
genom komplexbildning. Metalljoners affiniteter till de olika trädbaserade materialen 
undersöktes med en kolonnkromatografisk metod. Genom att använda olika blandningar 
av metalljoner vid sorptionsförsöken kunde följande affinitets serie bestämmas, som med 
några få undantag gäller samtliga material: 

Fe3+ >> Pb2+ >> Cu2+ >> Fe2+ > Cd2+ > Zn2+ > Ni2+ > Ba2+ ≥ Ca2+ ≥ Mn2+ ≥ Sr2+ > Mg2+ > 
Rb+ > K+ > Na+ > Li+.  

 
Trevärt järn binds starkast och förekommer delvis som svårlösliga salter i de olika 
materialen. Också de toxiska tungmetallerna Pb2+, Cu2+ och Cd2+ binds relativt starkt. De 
envärda alkalimetalljonerna binds mycket svagt till alla de undersökta materialen. 
Vattenfasens pH är den viktigaste parametern och bestämmer den totala halten av 
metalljoner som binds till materialen. Ju högre pH desto högre halt av metalljoner är 
bundet till den fasta fasen. De trädbaserade materialens jonbytesegenskaper jämfördes 
med en syntetisk svagt sur katjonbytare. Den syntetiska jonbytaren, som har 
karboxylgrupper som funktionella grupper, uppvisade en mycket liknande 
affinitetsordning som de naturliga materialen. 
 
Resultatet i denna avhandling kan delvis betraktas som grundforskning, men är också av 
stor praktisk betydelse vid t.ex. kontroll av metalljoner när man strävar mot mera slutna 
processer i massafabriker. Ved och speciellt bark kan i framtiden få stor betydelse som 
potentiella material för bio-sorption av tungmetaller från avfallsvatten. Materialen är 
billiga, lätt tillgängliga i stora volymer, kan regenereras och användas på nytt i flera 
sorption-desorption cykler. För granbark bestämdes en jonbyteskapacitet på ca 1 mekv/g, 
vilket är av samma storleksordning som för syntetiska jonbytare. 
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1. Introduction 

Metal ions are known to play an important role in the pulping and bleaching processes 

when they are accumulated in the process liquors in a closed-cycle mill. Some metal ions 

are harmful to the processes causing operational problems and lowering the quality of 

products (Jemaa et al. 1999, 2000). Some metal ions, however, have beneficial effects in 

the processes (Gupta 1970; Lapierre et al. 1995). Metal ions like Ba, Ca, Mg, Al and Si 

tend to cause scaling in digesters and evaporators. Accumulation of K and Mg may 

increase tendency for fouling, plugging and corrosion in recovery boilers (Fiskari 2002; 

Lundqvist et al. 2006; Doldán et al. 2011). In the bleaching processes, however, the 

alkaline earth metal ions (Ca, Mg, Ba) can improve significantly the bleachability and 

color reversion of groundwood pulps (Gupta 1970; Prasakis et al. 1996). Transition metal 

ions, such as Cu, Fe and Mn, have detrimental effects on the bleaching processes. These 

metal ions can catalyze the decomposition of bleaching agents, e.g. hydrogen peroxide, 

increasing the consumption of bleaching chemicals in the bleaching sequences (Bryant 

and Edwards 1994; Devenyns et al. 1994; Lapierre et al. 1995; Prasakis et al. 1996; 

Fiskari 2002; Lastra et al. 2004). This undesirable effect can be inhibited to a large extent 

by having magnesium and silicate ions in the bleaching system (Lundqvist et al. 2006; 

Doldán et al. 2011). In addition, the presence of Fe and Cu in bleached mechanical pulps 

may also cause significant decrease in the brightness of pulps because of the formation of 

highly colored transition metal complexes with lignin (Gupta 1970; Prasakis et al. 1996; 

Ni et al. 1998). Metal ions, such as Cr, Al and Ca, present at high concentration are also 

harmful to pulp brightness and cause color reversion. Lead in small quantities has a 

beneficial effect on hydrosulphite bleaching but becomes extremely harmful if present in 

larger amounts (Gupta 1970).  

 

Therefore metal management in paper mills is critical as mills close up their bleaching 

processes and reduce chlorine containing bleaching chemicals (Bryant and Edwards 

1996). An important aspect of paper mills is to find an efficient treatment for removal of 

the “harmful” metal ions and management of the “good” metal ions. Two methods have 

proven to be successful for control of metal ion contents in pulps prior to peroxide 

bleaching: 1) metal chelation at pH 4-7, followed by standard water wash, 2) thorough 

acid wash at pH 1.5-3.0, followed by replenishment of magnesium ions (Bryant and 

Edwards 1994; Lapierre et al. 1995; Granholm et al. 2010a, b). The success of removing 

metal ions from pulps depends on the method applied and also on the binding mechanism 

of metal ions to pulps. 

 

With the development of industrialization and human activities, the discharge of heavy 

metal ions into the environment has been increasing. When the concentration of heavy 

metal ions exceeds a certain level, most of them become very harmful. They can 
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accumulate in living organisms, causing serious health problems in plants, animals and 

human beings. For example, the lead exposure may cause brain damage and affect 

kidneys, hearing and nervous system (Järup 2003; Bulut and Baysal 2006; Naiya et al. 

2008; Gundogdu et al. 2009; Munagapati et al. 2010). An excessive intake of copper may 

lead to skin itching, liver irritation, stomach intestinal distress and kidney damage (Ajmal 

et al. 1998; Rahman and Islam 2009). The exposure to cadmium may cause kidney and 

skeletal damage, and may also affect nervous system and liver system (Semerjian 2010). 

The intake of nickel may cause vomiting, chest pain and rapid respiration (Subbaiah et al. 

2009).  

 

As a consequence from the environmental point of view, the heavy metal ions in the 

wastewater must be removed or be reduced to the minimum level before discharged to the 

environment. Recently many researchers have been interested in studying the potential 

use of biomass as the bio-sorbent for removal of various metal ions from aqueous solution 

(Hubbe et al. 2011). In the past decade, large number of scientific articles have been 

published on this subject (Babel and Kurniawan 2003; Sud et al. 2008; Wan Ngah and 

Hanafiah 2008; Febrianto et al. 2009; Gupta and Suhas 2009; Farooq et al. 2010; Fu and 

Wang 2011). Many different types of biomass have been found to be successful bio-

sorbents for removal of metal ions from single, binary, ternary and quaternary metal ion 

systems in the laboratory scale experiments. Various biomass materials have also been 

modified in different ways to improve their sorption capacities. However there are not so 

many studies investigating the sorption of metal ions by using biomass from multi-metal 

ion solutions. The success of the removal of metal ions from aqueous solutions, whether 

in the pulping/bleaching processes or in the environment, depends on the method applied, 

on the materials used and also on the types of metal ions of interest.  

 

The objective of this work is to study the interactions of metal ions with tree-related 

materials (wood, pulp and bark). The acid groups (functional groups) in these materials 

are acting as the metal binding sites and their concentrations were determined by 

potentiometric acid-base titrations. A column chromatographic technique was used to find 

the differences in affinity and content of different metal ions bound to the studied 

materials in multi-metal ion loading solutions. The results in this thesis are of importance. 

They may complement the fundamental knowledge of optimal metal management in 

paper mills. The results also may contribute to the applications of biomass for removal of 

heavy metal ions from aqueous solutions in environmental management. 

 

In the following chapters, the tree-related materials used in this work, the fundamental 

principles of ion-exchange reactions, the main analytical techniques as well as the main 

conclusions of the results will be discussed and summarized. The results are based on the 

six publications included in the thesis.  
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2. Fundamentals of wood, pulp and bark 

2.1. Macroscopic structure of a tree stem  

Figure 1 presents the cross section view of a tree stem with different areas, e.g. pith, 

heartwood, sapwood, earlywood, latewood, inner bark and outer bark. The pith represents 

the tissue formed during the first year of growth and can be seen as a dark stripe in the 

middle of the stem (Sjöström 1993). The heartwood is located in the middle of a tree and 

it has dark color. It consists of dead cells, which were once sapwood in the beginning of 

tree growth. The heartwood gives the support and stiffness to the tree. The sapwood 

surrounds the heartwood and it is lightly colored. It contains primarily dead cells, but also 

some living cells for water and nutrient transportation.  

 

The growth ring is a new additional layer of wood stem, which is produced annually. The 

width of the growth ring varies largely, mainly depending on the tree species and climatic 

conditions (Alén 2000a). The age of a tree can be roughly calculated from the number of 

the growth rings. Within a growth ring, the earlywood and the latewood are formed 

during the growth season. The earlywood is formed normally in the spring and is 

composed of large and thin-walled cells. The latewood is produced later in the summer, 

and has small and thick cell wall. The latewood is darker and denser than the earlywood 

(Sjöström 1993).  

 

Bark is the outermost protective layer surrounding wood stem and is roughly divided into 

inner bark and outer bark. The inner bark is a narrow layer of living cells, which has the 

function to transport the liquid and nutrients to the tree (Alén 2000a). The outer bark 

consists of dead cells, which once were part of the inner bark. The function of the outer 

bark is to protect the tree from mechanical injury, microbiological attacks and desiccation 

(Fengel and Wegener 1989; Sjöström 1993). 

 
 

 

Figure 1. Cross-section of a tree stem (© Merriam-Webster Inc.). 
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2.2. Ultrastructure of wood cell wall 

The cell wall of wood is composed of several layers, mainly including primary wall (P), 

secondary wall (S) and middle lamella (ML) as shown in Figure 2. These layers differ in 

their structure and chemical composition (Sjöström 1993). The primary wall is a thin 

layer first formed, in which the microfibrils are loosely packed and arranged in a random 

pattern (Thomas 1991). The secondary wall (S) is subsequently formed, in which the 

microfibrils are closely packed and exhibit a helical winding pattern (Hill 2006). Based 

on the different microfibrils orientation, the secondary wall is further divided into the 

outer layer (S1), the middle layer (S2) and the inner layer (S3). Of these, the outer layer (S1) 

is formed first and has a crossed fibrillar structure (Koch 2006). The middle layer (S2) is 

generally the thickest portion of the cell wall and its microfibrils angle varies between 5-

30°. The inner layer (S3) is the thinnest layer containing microfibrils with an angle of 50-

90° (Sjöström 1993). The middle lamella (ML) is located between the cells, which are 

adjacent to the primary walls on both side and has the function to glue the cells together 

(Alén 2000a). The middle lamella (ML) is difficult to be distinguished from the adjacent 

primary walls (P). The concentration (% in each layer) of lignin is high in the primary 

wall and middle lamella (Gullichsen 2000). The secondary wall (S) contains the highest 

concentration of polysaccharides (Alén 2000a). 

 
 

 
Figure 2. Ultrastructure of a wood cell wall schematically showing a) microfibrils orientation 

(Hill 2006), b) transverse section view (Sjöström 1993). 
 
 

2.3. Chemical composition of wood 

Wood is a natural fiber raw material with varying properties in morphology and chemical 

composition. The major chemical constituents of all wood species are cellulose, 

hemicelluloses and lignin. Cellulose is the main component in wood cell walls 

surrounded by hemicelluloses and lignin. In addition to these three components, wood 

also contains pectin, starch and other various compounds of low molecular masses, such 

L
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as extractives and inorganics, in varying small concentrations. Distribution and 

concentration of the chemical constituents in wood are varying from species to species, 

from tree to tree and even within the same tree. Table 1 lists the average concentrations of 

the main wood constituents in hardwood and softwood stem (Gullichsen 2000).  

 
 
Table 1. Average chemical composition (% of dry wood weight) of softwood and hardwood 
(Gullichsen 2000). 

Component Softwood Hardwood 

Cellulose 41-46 42-49 

Hemicelluloses 25-32 23-34 

Lignin 26-31 20-26 

Extractives 1-2.5 3-8 
 

 

2.3.1. Cellulose 

Cellulose is the main chemical constituent of wood and is serving as the supporting 

material in the wood cells. It approximately accounts for 40-45% of the dry substance 

(d.m.) in most wood species (Sjöström 1993). The cellulose molecules are built up of β-

D-glucopyranose units which are linked together by (1→4)-glycosidic bonds as show in 

Figure 3. Wood cellulose in the native state consists of about 10,000 glucose units and the 

length of native cellulose molecules is at least 5000 nm (Gardner et al. 2008). Cellulose 

has both reducing and non-reducing ends in its molecular structure (Alén 2000a; 

Sundberg and Holmbom 2002).  

 
 

 

Figure 3. Structure of wood cellulose (Sjöström 1993; Gardner et al. 2008). 
 

 

Of the three main wood components, cellulose molecules are completely linear and have 

a strong tendency to form hydrogen bonds between intra- and inter- molecules, resulting 

in the high strength of cellulose fibers. Bundles of some hundred cellulose molecules 
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associate to form elementary fibrils (Meier 1962). These elementary fibrils aggregate 

together in the form of microfibrils, which then form fibers joined with other wood 

constituents, e.g. hemicelluloses and lignin (Sjöström 1993; Taipale et al. 2010). 

Cellulose in wood has 50-70% crystalline structure, which make cellulose resistant to 

chemical attack and degradation (Biermann 1996; Hill 2006). Cellulose is predominantly 

located in the secondary cell wall (S) of wood, for example 48% in poplar wood, 41% in 

pine wood and 94% in cotton fiber (Zhong and Ye 2009). 
 

2.3.2. Hemicelluloses 

Hemicelluloses are a group of heterogeneous polysaccharides, which are mostly branched 

and essentially amorphous. The amount of hemicelluloses in wood is usually 20-30 % of 

the dry weight of wood (Sjöström 1993). Hemicelluloses have lower molecular mass with 

degree of polymerization (DP) of only 100-200 (Alén 2000a). The main chain of 

hemicelluloses consists of one or several sugar (monosaccharide) units. Hemicelluloses 

are generally less ordered than cellulose, and are relatively easily hydrolyzed by acid to 

their monomeric components, such as glucose (Glu), mannose (Man), xylose (Xyl), 

glucuronic acid (GlcA), and galacturonic acid (GalA) (Sjöström 1993; Biermann 1996). 

The structure and the content of hemicelluloses in softwood and hardwood are 

significantly different (Sjöström 1993; Sixta 2006). Even within the same species, their 

contents and compositions are also considerably different between stems, branches and 

roots. Like cellulose, the main function of hemicelluloses is also to act as supporting 

material in the cell wall. 

 

In softwood the principal hemicelluloses are galactoglucomannans (15-20%, d.m.) and 

arabinoglucuronoxylan (5-10%, d.m.) (Sjöström 1993). Galactoglucomannans are often 

called glucomannans and the structure is shown in Figure 4a. It has a linear chain built up 

of glucopyranose and mannopyranose units or possibly slightly branched with side groups 

of galactose by (1→6)-bonds (Alén 2000a). The hydroxyl groups at C2 and C3 positions 

in the chain units of glucomamans are partially acetylated, which are easily cleaved by 

alkali (Sjöström 1993). Arabinoglucuronoxylan is often called xylan and its principal 

structure is shown in Figure 4b. Arabinoglucuronoxylan is composed of (1→4)-linked β-

D-xylopyranose units which are partially substituted by side chains of 4-O-methyl-α-D-

glucuronic acid groups at C2 position (Alén 2000a). On the average every ten xylose 

units carry two glucuronic acid residues at the C2 position. These uronic acid substituents 

protect the xylan chain against alkali-catalyzed degradation (Hill 2006). 
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Figure 4. Principal hemicelluloses structure in softwood, a) Galactoglucomannans, b) 
Arabinoglucuronoxylan (Sjöström 1993; Hill 2006). 

 
 
In hardwood the major hemicelluloses are glucuronoxylan, which backbone composes of 

β-D-xylopyranose units, linked by (1→4)-bonds (Sjöström 1993). The content of 

glucuronoxylan in hardwood is approximately 20-30% of the dry wood mass. Figure 5 

shows the principal structure of glucuronoxylan. Within the xylan chain, the hydroxyl 

groups at C2 and C3 positions are partly substituted by acetyl groups which are easily 

cleaved by alkali to form acetate. The xylose units in xylan chain also contain 4-O-

methyl-glucuronic acid residues. The linkages between the uronic acid groups and xylose 

units are very acid resistant. The distribution of the uronic acid units is uneven within the 

xylan chain, and on the average there is one uronic acid unit present in every ten xylose 

units (Sjöström 1993; Alén 2000a). Therefore the number of uronic acid substituents in 

hardwood xylan chain is much lower than in softwood. 

 

 
Figure 5. Principal structure of glucuronoxylan in hardwood (Sundberg and Holmbom 2002). 
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2.3.3. Pectin 

Beside cellulose and hemicelluloses, wood also contains other polysaccharides, e.g. 

pectin and starch. Pectin is a group of heterogonous acidic structural polysaccharides, 

which provide the flexibility and mechanical strength to the cell wall (Fengel and 

Wegener 1989; Sjöström 1993). Both in softwood and hardwood cells the dominant 

structure of pectin is made up of galacturonic acid (GalA) units, which are linked by 

(1→4)-bonds as shown in Figure 6. In native wood most of the carboxyl groups in 

galacturonic acid units are methyl esterified (Hafren and Daniel 2003; Putoczki et al. 

2008). The protonation constants ( ,lg H R
HRK ) of pectin acids are in the range of 3.5-4.5, 

depending on the de-esterification (ionization) degree of the pectin (Sundberg et al. 2000; 

Ralet et al. 2001; Monge et al. 2007; Saarimaa 2007). Generally the content of pectin in 

both softwood and hardwood is less than 1-2% (d.m.). The pectin is mainly located in the 

primary cell wall (P) and the middle lamella (ML) (Hafren and Daniel 2003; Putoczki et 

al. 2008). 

 
 

 

Figure 6. An example stucture of pectin (Zamora 2012). 
 

 

2.3.4. Lignin 

Next to cellulose, lignin is the most abundant and important polymeric substance in wood. 

Lignin is an amorphous polymer which is built up of phenylpropane units with many 

different linkages. Lignin glues the fibers together in the cell wall, and provides the 

mechanical strength and stiffness to the wood. The content of lignin is quite variable in 

different tree species and also within the same tree. Softwood contains 26-32% (d.m.) 

lignin while hardwood contains 20-25% (d.m.) lignin (Sjöström 1993). Native lignin is 

very complex and it is not possible to isolate it completely for analysis. Therefore the 

structure of lignin molecule has not yet been completely indentified. Several lignin 

models have been proposed. The structure model for lignin commonly used was 

presented by Freudenberg in 1968 for spruce lignin, and later developed by Adler and 

others researchers (Adler 1977). A representative lignin structure is shown in Figure 7 

(Biermann 1996). The lignin polymer contains characteristic methoxyl groups and 

phenolic hydroxyl groups (Sjöström 1993). The content of phenolic hydroxyl groups is 

15-30% in softwood lignin and 10-15% in hardwood lignin. Figure 7 represents only a 
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segment of the lignin macromolecule and shows some of the most important linkages in 

the structure (Dence and Lin 1992). Lignin is present in all parts of the cell wall. The 

concentration of lignin is highest in the middle lamella (65%, of the dry matter of the 

layer), whereas most of the lignin (79%, of the total amount of the constituent) is located 

in the secondary cell wall because of its thickness (Beall 1969; Alén 2000a). The native 

lignin has a very low solubility in most solvents. 

 
 

 

Figure 7. A structural model for softwood lignin (Adler 1977). 
 

 

2.3.5. Extractives 

In addition to the major components, wood also contains a minor fraction of extractives. 

Extractives in wood are of large variety and almost entirely composed of compounds of 

low molecular weight. They mainly serve as an energy source for wood cells and protect 

wood against insect attacks. These compounds are soluble in organic solvents or in hot 

water. The content of extractive is usually less than 10% of the dry wood mass. 
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2.3.6. Inorganic components 

Wood contains only rather low concentrations of inorganic components, often measured 

as ash content (0.1-5%, d.m.) (Sjöström 1993; Saarela et al. 2005). The inorganic 

components are mainly composed of various metal salts, such as carbonates, silicates, 

oxalates and phosphates, deposited in the cell walls and lumina. Table 2 shows the 

occurrence of metal ions and their concentration ranges in stem wood of a Scots pine 

(Ivaska and Harju 1999). The most abundant metal ions in stem wood are Ca, K and Mg 

amounting up to 100 ppm. Some metal ions, for example Fe, Mn and Na, present in wood 

are in concentrations less than 100 ppm. Most of the other metal ions usually occur only 

at trace levels below 10 ppm. The metals in wood are partially bound as cations to the 

acid groups present in xylan and petins. These metal ions can only be displaced and 

washed out from wood by acids or by chelating agents (Sjöström 1993). Some of the 

metal ions are present in inaccessible regions in the wood structure and are in form of 

sparingly soluble salts. Therefore the wood materials are difficult to wash completely free 

from metal ions.  

 
 

Table 2. Occurrence of metal ions and their concentration ranges in stem wood of a Scots 
pine (Pinus sylvestris) tree (Ivaska and Harju 1999). 

Concentration range, ppm (mg/kg) Elements 

100-1000 Ca, K, Mg 

10-100 Fe, Mn, Na 

1-10 Zn, Sr, Al, Si, Ti 

0.1-1 Cu, Cd, Ba, Ni, Rb, Ag, Cr, Sn 

0.01-0.1 Pb, Li, Bi, Br, Co, Se, La 

0.001-0.01 Hg, Mo, As, Sb, Nd, Sc, Gd 
 

 

The content of inorganic components largely depends on the wood species, the location in 

the tree and the environmental conditions (temperature, soil, fertilization and air pollution) 

(Koch 2006; Saarela 2009). Saarela et al. (2005) analyzed over 160 wood samples of 

birch, pine and spruce in Finland and found their inorganic components as the ash content 

in the range 0.2-0.5%. They showed that the mean ash content for spruce is higher than 

for birch and then for pine. The inorganic content also varies within the tree itself. Saarela 

(2009) has studied the distribution of elements from pith to bark of pine wood. The 

concentrations of metal ions are clearly highest in pith. In the rest of stem wood the 

elements are quite evenly distributed. Harju et al. (1996) have studied seasonal variations 

of trace element concentrations within annual tree rings by thick-target particle induced x-
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ray emission (PIXE). The highest concentrations for most elements were found in 

earlywood in the beginning of the growth season. Werkelin (2008) investigated the 

inorganic elements in different parts of a tree by chemical fractionation analysis. The 

results showed that the contents of inorganic elements in the samples range over several 

orders of magnitude and the element concentrations are highest in the foliage, followed 

by needles, twigs, bark and then wood. Tokareva et al. (2007) studied the spatial 

distribution of metal ions on the surfaces of the spruce and aspen stem woods and found 

the distribution patterns of metal ions in ray cells, vessels and fibers were different. 
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2.4. Wood pulping 

The main purpose of wood pulping processes is to separate the fibers from the wood and 

to make the fibers suitable for papermaking (Salmén et al. 1999). There are two 

technological principles to produce wood pulps, i.e. mechanical process and chemical 

process. All the main chemical constituents in wood behave differently during pulping 

processes (Alén 2000b). In the mechanical pulping, the lignin and hemicelluloses are 

more or less softened. In the chemical pulping, however, the lignin is removed or 

dissolved to a large extent as well as hemicelluloses. On a global scale, the chemical 

pulping has become the predominating process and most of the chemical pulps are 

produced by the kraft cooking process. The pulps used in this work are of 

thermomechanical pulp (TMP) and kraft pulp. A brief description of the mechanical and 

kraft pulping processes are given in this chapter. 

 

2.4.1. Mechanical pulping 

Mechanical pulping is to separate the fibers from wood by mechanical force. The main 

mechanical pulps of today are the thermomechanical pulps (TMP), chemimechanical 

pulps (CMP), pressure groundwood (PGW) and stone groundwood (SGW) pulps. There 

are two major ways to produce mechanical pulps, including a grinding process and a 

refining process. The thermomechanical pulping process is the dominating refiner-based 

mechanical pulping process (Tienvieri et al. 1999). Figure 8 illustrates the basic principle 

of TMP refining. The wood raw material is cut into chips and then fed into the refining 

zone between two metal discs which are rotating with high speed (Salmén et al. 1999; 

Tienvieri et al. 1999). The chips are steamed and pressurized on their way to the refiners. 

During their passage through the unit the chips are ground and broken up to small 

fragments and fibers. 

 
 

 

Figure 8. Principle of refiner mechanical pulping (Tienvieri et al. 1999). 
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The mechanical pulps contain all components of the wood raw material in about the same 

ratios as in wood. The yield of mechanical pulping is high, normally 80-95%, while that 

of chemical pulping is normally 45-50%. Mechanical pulping usually causes physical 

damage on the fibers and the strength of the mechanical pulps thus is rather low. 

Mechanical pulps are mainly used for the production of non-permanent papers, like 

newspapers and magazine papers. Mechanical pulping process demands high energy and 

requires high-quality wood raw materials, mainly spruce wood (Tienvieri et al. 1999; 

Blechschmidt et al. 2006). 

 

2.4.2. Chemical pulping 

The principle of chemical pulping is to dissolve lignin from wood to such an extent that 

the fibers are easily liberated from wood matrix without being too damaged. The 

chemical pulping is mainly based on the sulfite and sulfate pulping processes, of which 

the latter predominates (Sjöström 1993). Sulphite pulps are produced by cooking wood 

chips in a pressurized vessel in the presence of bisulphite ( 3NaHSO ) liquor. In sulfite 

pulping mills the cooking chemicals are costly and difficult to be completely recovered, 

and the emission can cause serious environmental problems. Thus the number of sulfite 

processes has clearly decreased during the recent decades.  

 

Sulfate pulps (kraft pulps) are produced by cooking wood chips in a pressurized digester 

with a solution containing sodium hydroxide ( NaOH ) and sodium sulfide ( 2Na S ). The 

process is performed at high pH (>12) and high temperature (160-180℃) (Gullichsen 

2000). The lignin in wood is broken down by cleavage of the ether linkages and then 

dissolved in the cooking liquor. The delignification in the chemical pulping, however, is 

unfortunately not a selective process. In addition to the removal of lignin, a significant 

part of hemicelluloses and some cellulose are also degraded. As a consequence the yield 

of cellulose in chemical pulping is lower than in mechanical pulping, i.e. the average 

yield in the range 45-55% (Alén 2000b). The sulfate pulping process is the dominating 

method in the world today to produce chemical pulps. The spent liquor can be clarified 

and recovered as the white liquor containing NaOH and 2Na S . The kraft pulps are used 

widespread, for instance, with bleached pulps particularly for graphic papers, tissue and 

carton boards. Unbleached pulps are commonly used in liner for corrugated boards, 

wrappings, sacks, bag papers and envelopes (Leithe-Eriksen 2001). 

 

2.5. Bleaching 

The purpose of bleaching is to brighten the pulps and also to improve the cleanliness of 

the pulps (Sjöström 1993; Lindholm 1999). The color of the pulps is mainly due to the 

lignin remained in pulps after pulping. Figure 9 shows the most common chromophores 
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in lignin residues. To reach an acceptable brightness, the residual lignin should be 

removed from pulps (delignifying), or the strongly light-absorbing groups should be 

converted to non-chromophores (lignin-preserving). The delignifying bleaching is 

commonly applicable to chemical pulps, which results in both high and reasonably 

permanent brightness. Bleaching of chemical pulps is usually performed in a bleaching 

sequence consisting of several treatment stages with bleaching chemicals and sodium 

hydroxide. The bleaching chemicals commonly used are chlorine, chlorine dioxide and 

oxygen. Due to the environmental reasons, the chlorine-containing bleaching chemicals 

are gradually replaced with chlorine-free chemicals, such as oxygen, hydrogen peroxide 

and ozone. Lignin-preserving bleaching is the appropriate method for mechanical pulps, 

which usually gives a moderate brightness increase. The typical bleaching chemicals used 

are sodium dithionite ( 2 2 4Na S O ) and hydrogen peroxide. The oxygen delignification and 

the peroxide bleaching will be described briefly in the following sections. 
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Figure 9. Various groups in lignin contributing to the pulp color (Lindholm 1999; Sundberg and 
Holmbom 2002). 

 
 

2.5.1. Oxygen delignification  

Oxygen delignification can be considered as an extended delignification step that is used 
after the pulping process but before the traditional bleaching steps (Gullichsen 2000). It 
can also be regarded as a bleaching stage combined with other bleaching chemicals in the 
subsequent stages. The basic process involving oxygen delignification in pulp bleaching 
is shown in Figure 10. 
 

 
Figure 10. Incorporation of oxygen delignification in pulp lines (Gullichsen 2000). 
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Oxygen delignification is normally performed in alkaline conditions. The aromatic rings 

substituted with free phenolic hydroxyl groups in the residual lignin are primarily 

attacked and cleaved to unsaturated dicarboxylic acid structures (Sjöström 1993; 

Sundberg and Holmbom 2002). Introduction of oxygen delignification stage is to lower 

the demand of other bleaching chemicals in the subsequent stages and to reduce the 

environmental impact of the bleaching plant effluents. Oxygen delignification, however, 

is less selective toward lignin removal than other bleaching chemicals. Carbohydrates are 

also attacked during alkaline oxygen delignification process. For example, cellulose is 

degraded by random chain cleavages and peeling reactions. Thus oxygen delignification 

has to be stopped when about 50% of the residual lignin has been dissolved. The severe 

degradation of polysaccharides can be inhibited to some extent by the presence of 

magnesium salts in the oxygen delignification process (Alén 2000b; Gullichsen 2000; 

Sixta et al. 2006). 

 
 
2.5.2. Hydrogen peroxide bleaching 

Hydrogen peroxide bleaching is usually used for brightening mechanical pulps, via 

modifying chromophonic groups in wood lignin (Gullichsen 2000). The condition for 

hydrogen peroxide bleaching is similar to those used for oxygen delignification. 

Hydrogen peroxide bleaching is only a complementary bleaching stage to be used in 

combination with other bleaching chemicals for production of fully bleached pulps 

(Sjöström 1993). The transition metals, such as copper, manganese and iron, can induce 

severe decomposition of hydrogen peroxide. The concentration of metal ions in pulps, 

therefore, has to be reduced prior to the peroxide bleaching stage by treatment with acid 

or chelating agents (Lindholm 1999). The hydroxyl radicals formed after peroxide 

decomposition are powerful lignin oxidants, but they are nonspecific, attacking 

carbohydrates as well (Sjöström 1993). To avoid or limit the decomposition of hydrogen 

peroxide, the bleaching must be performed under carefully controlled conditions by using 

stabilizing agents. Normally sodium silicate (Na2SiO3) and magnesium salt 

(MgSO4·7H2O) are added to the bleaching liquor in order to stabilize the hydrogen 

peroxide.  
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2.6. Bark 

Bark is the outmost layer surrounding the wood stem, branches and root. The bark 

constituents amounts to 10-20% of the total weight of the tree, depending on the species 

and on growing conditions (Fengel and Wegener 1989; Mun et al. 2010). The structure 

and chemical composition of bark are more complicated in comparison with wood. They 

vary not only among the different tree species but even within the same species 

depending on, e.g. the age, the height and the growth conditions of the tree (Laver 1991; 

Sjöström 1993; Biermann 1996). Bark has negative effects on pulping and papermaking 

processes, and thus has to be removed from stem wood prior to pulping. 

 

Bark contains some constituents similar as in wood, such as cellulose, hemicelluloses and 

lignin, but in very different proportions (Sjöström 1993). The polysaccharides are present 

in bark by a lower percentage. Typically the content of cellulose in bark is roughly 20-30% 

and the lignin content in the range 15-40%, of the dry weight of bark (Mun et al. 2010). 

The contents of extractives, pectins and phenolic compounds are much higher in bark 

than in wood, for instant, the content of extractive in spruce bark is 20-40% and the pectin 

5.7-7.1% (Mun et al. 2010; Krogell et al. 2012). Bark contains a much higher content of 

inorganic components than wood. Saarela et al. (2005) analyzed 25 spruce samples from 

south-western Finland and showed that the mean content of inorganics (ash-%) in bark is 

9 times higher than in stem wood, i.e. 3.85 vs 0.42. The main metal ions and their mean 

contents (mg/g) in spruce bark were: Ca 20, K 5.0, Mn 0.39, Zn 0.15 and Fe 0.073. 

Calcium is the predominant metal ion and it is mainly in form of calcium oxalate crystals 

deposited in lumina (Fengel and Wegener 1989).  

 

In addition to the same components as present in wood, bark also contains significant 

high concentrations of other complex constituents. Tannins are one of the complex 

compounds occurring in the bark. They have similar structure as lignin and are present as 

condensed polyphenolics possessing free phenolic functional groups. The molecular 

weight of tannins varies in the range 1600-5500 (Laver 1991). The content of tannins in 

barks varies widely from 5-50% (Fengel and Wegener 1989). The condensed tannins do 

not readily break down under mild condition of hydrolysis, but the low molecular-weight 

tannins are readily hydrolyzed into a phenol carboxylic acid (Laver 1991). 
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3. Metal sorption to wood, pulp and bark materials 

3.1. Functional groups in wood, pulp and bark 

Wood, pulp and bark materials can exhibit ion-exchange properties due to the presence of 

certain type of functional groups (anionic groups). In this thesis, the functional groups in 

wood, pulp and bark materials are defined as the negatively charged acid groups. These 

acid groups are mainly the carboxyl groups and the phenolic hydroxyl groups, acting as 

the binding sites for sorption of metal ions to wood, pulp and bark materials. The 

functional groups partly originate from the constituents in the materials themselves, and 

some are formed during the pulping and bleaching processes (Fardim and Holmbom 

2003). The total content of acid groups and their distribution in pulps differ with wood 

raw materials, and also with processes in which the mechanical or chemical treatments 

are applied. In general, the total concentration of functional groups in mechanical pulps is 

higher than that in chemical pulps, particular because mechanical pulps contain much 

more lignin carrying phenolic hydroxyl groups. The distribution of acid groups is 

expected to be very uneven in mechanical pulps, but in chemical pulps they are more 

uniformly distributed (Fardim and Holmbom 2005).  

 

In native wood there are various types of acid groups, e.g. carboxyl and phenolic 

hydroxyl groups as shown in Table 3 (Sjöström 1993). Most of the carboxyl groups are of 

the uronic acid type, mainly chemically bound to the xylan in hemicelluloses. Some of 

them are present in pectic substances. In addition, carboxyl groups may also be present in 

native lignin and extractives, but their concentrations in these compounds are relatively 

low (Bhardwaj et al. 2004). The phenolic hydroxyl groups are mainly related to lignin. In 

both softwood and hardwood the main uronic acid groups originate from 4-O-methyl 

glucuronic acid units (GlcA) in xylan and D-galaturonic acid units (GalA) in pectins, and 

to minor extent D-glucuronic acid units in arabinogalactan (Laine et al. 1996; Koljonen et 

al. 2004). Their chemical structures are shown in Figures 4 and 5 in the previous chapter. 

These groups are mostly methyl-esterified and lactonized to various degrees in different 

wood species (Konn et al. 2007). In softwood the molar ratio of glucuronic acid to xylan 

is roughly 1:5 and in hardwood it is 1:10 (Fengel and Wegener 1989; Sjöström 1989; 

Lindström 1992). Thus the number of these acid groups in softwood xylan is two times 

higher than that in hardwood xylan. Hardwood species, however, contain in average 1.5 

times more hemicelluloses than softwood species. The total amount of the carboxyl 

groups in hardwood and softwood is approximately the same. During pulping and 

bleaching operations these original acid groups in wood will be exposed to the chemicals 

and converted to other forms or even removed from the original molecules. 
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Table 3. Types of acid groups in wood (Sjöström 1993).  

Acid group Structure pKa 
Degree of ionization at pH 7 

(%) 

Carboxylic 
R-CH(OR’)COOH 3-4 99.9-99.99 

R-CO2H (minor) 4-5 99-99.9 

Phenolic 
OHCR

O

(minor) 7-8 10-50 

OHR
 9.5-10.5 0.03-0.3 

Alcoholic R-CH(OR’)CH(OH)-R” 13.5-15 10-6-3·10-5 

 
 

During mechanical pulping, the chemical components in wood are mainly maintained. 

Thus the acid groups in untreated mechanical pulps are similar to those originally in 

native wood, i.e. mainly the carboxyl groups of 4-O-methyl-glucuronic acid (GlcA), 

galacturonic (GalA) and glacuronic acids (Fardim and Holmbom 2005). During grinding 

or refining, some carboxyl groups are lost from wood due to the dissolution of xylan in 

hemicelluloses and fatty acids in extractives (Diniz 1995). Only few new carboxyl groups 

are generated during mechanical treatments (Koljonen et al. 2004). The alkaline treatment 

of mechanical pulps increases the content of free carboxyl groups due to the hydrolysis of 

the methyl-ester groups in pectin (i.e. exposure of galacturonic acid groups in pectin) 

(Fardim and Holmbom 2005).  

 

During kraft pulping, most of the lignin and part of the hemicelluloses are removed. The 

acid groups in kraft pulps are mainly the hexenuronic acids (HexA), the glucuronic acids 

(GlcA) on the remaining xylan and the carboxyl groups in the lignin residue, as well as 

the phenolic hydroxyl groups in the residue lignin (Fengel and Wegener 1989; Sjöström 

1989; Lindström 1992). Part of the initial 4-O-methyl glucuronic acid groups in native 

wood xylan are dissolved along with the degradation of xylan chain and the cleavage of 

glycosidic bonds between xylose units (Simão et al. 2005). Part of them is converted to 

hexenuronic acid groups (HexA) (Laine et al. 1996). In alkaline condition the HexA was 

observed to be dissolved along with the degradation of xylan chain and with the 

degradation of HexA itself, by alkaline splitting of HexA from the xylan backbone 

(Simão et al. 2005). The formation and the degradation of the HexA are strongly 

influenced by the temperature and the alkaline concentration. On the other hand, some 

new carboxyl groups are formed during alkaline pulping, i.e. formation of alkali stable 

saccharinic acids or other types of alkali stable carboxyl groups by peeling reactions of 

cellulose (or hemicelluloses) chains (Sjöström 1993; Athley et al. 2001; Fardim and 

Holmbom 2005). Carboxyl groups are also introduced into lignin fractions through 



Metal Sorption 

 

19 

alkaline oxidation during kraft pulping, but only to a minor extent (Sjöström 1989; 

Lindström 1992; Laine et al. 1994; Laine et al. 1996). Stenius and Laine (1994) 

confirmed the formation of the acid groups bound to lignin during alkaline pulping by 

ESCA characterization. It has been reported that kraft pulping processes reduce the total 

number of carboxylic acid groups present in wood pulps (Diniz 1995; Laine et al. 1996). 

The content of these acid groups in hardwood kraft pulps is higher than in softwood kraft 

pulps due to higher content of hemicelluloses in the hardwood pulps (Horvath and 

Lindström 2007). During kraft pulping, a significant proportion of lignin with phenolic 

units are degraded and new phenolic groups are formed to a large extent (Liitiä and 

Tamminen 2007). It has been reported that the total content of acid groups depends on the 

kappa number of kraft pulps and it increases with increasing kappa number of unbleached 

kraft pulps (Stenius and Laine 1994). 

 

During bleaching processes oxidizing agents, such as oxygen and hydrogen peroxide, 

introduce new anionic groups into pulps. During peroxide bleaching of mechanical pulps, 

the methyl-esterified galacturonic units in pectin may be demethylated and thus new 

galacturonic acids are formed (Diniz 1995; Mosbye et al. 2001; Fardim and Holmbom 

2005). In addition, some new carboxyl groups also are generated in lignin structures by 

oxidation of the lignin moieties (Diniz 1995; Fardim and Holmbom 2005). Goulet and 

Stratton (1990) reported that peroxide bleaching of TMP increased the total content of 

weak acid groups. However, Fardim and Holmbom (2005) reported that the peroxide 

bleaching reduced the amount of acid groups in TMP, probably due to removal of 

hemicelluloses and lignin as well as degradation of saccharinic acid units by oxidative 

reactions. For kraft pulps, the oxygen delignification and bleaching introduce some new 

phenolic groups to lignin residues (Liitiä and Tamminen 2007). The formed hexenuronic 

acids and the remaining 4-O-methylglucuronic acids in kraft pulps are not degraded 

during the oxygen delignification. Athley et al. (2001) reported that the hexenuronic acid 

is the main contributor to the acid groups in the oxygen-delignified kraft pulps.  

 

3.2. Characterization of the functional groups 

3.2.1. General aspects  

As described in a previous section, wood, pulp and bark materials contain different types 

of weak acid groups as functional groups participating in ion exchange reactions with 

metal ions. The protonation of the functional groups (acid groups) depends on the pH of 

the medium in which they are dispersed. Generally the carboxyl groups are dissociated in 

neutral or weakly acidic conditions. However, the ionization of phenolic hydroxyl groups 

demands rather alkaline conditions. The degree of dissociation of the functional groups in 

wood, pulp and bark materials has been modeled by using one or more dissociation 

constants (Stenius and Laine 1994; Laine et al. 1996). Studies have shown a relatively 
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rapid increase in the negative charge on the fibers when the pH of the surrounding 

solution was increased (Wang and Hubbe 2002).  

 
The total content of acid groups (anionic groups) on fibers have been investigated by 

different titration and sorption methods, such as potentiometric titration, conductmetric 

titration, polyelectrolyte titration, methylene blue (MB) sorption as well as ion exchange 

methods. These methods have been compared in several studies (Holmbom et al. 2002; 

Fardim and Holmbom 2005; Fardim et al. 2005). The potentiometric, conductometric and 

polyelectrolyte titration methods are very time-consuming. The MB sorption method is 

fast, simple and repeatable (Fardim and Holmbom 2003). The content of total acid groups 

obtained from the conductometric and the potentiometric titrations were rather similar. 

However, the potentiometric titration can also be used to determine the protonation 

constants of acid groups. The polyelectrolyte titration gave consistently larger values for 

the number of carboxyl groups than the potentiometric titration method (Stenius and 

Laine 1994; Fardim et al. 2005). The polyelectrolyte adsorption strongly depends on the 

molar mass of the polyelectrolyte used and the ionic strength of the solution. Thus, it has 

also been reported in some studies that the polyelectrolyte adsorption gave lower values 

than the conductometric or potentiometric titration for the total content of acid groups 

(Lloyd and Horne 1993; Koljonen et al. 2004; Zemljič et al. 2008). The polyelectrolyte 

titration also gave information of accessibility of the carboxyl groups by using different 

molecular weights of polyelectrolytes. The methylene blue sorption gave similar results 

as the conductometric titration, but lower than the polyelectrolyte titration (Fardim et al. 

2005; Holmbom et al. 2002). The MB sorption can be used for a fast determination of the 

total content of anionic groups. The ion exchange method gave clearly lower values for 

the number of carboxyl groups and the obtained results varied very much depending on 

which metal ions were used in the experiments.  

 

In this thesis, the potentiometric acid-base titration method has been used to determine the 

protonation constants and the concentrations of acid groups in tree-related materials. The 

principle of the acid-base titration method will be described in the following section, as 

well as the methods used to evaluate the titration data. 

 

3.2.2. Acid-base titration of the functional groups 

The protonation of functional groups in wood, pulps and bark can be described by the 

following general reaction, where R  refers to functional groups in the sample matrix and 

HR  is its protonated form. 

 

H R HR    (1) 
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The protonation constant, ,H R
HRK , is defined by: 

 

 ,H R
HR

HR
K

H R 


      
 (2) 

 

or in the logarithmic form: 

 

 ,lg lgH R
HR a

HR
K pK

H R 
 

      
 (3) 

 

where apK  is the negative logarithm of the dissociation constant aK  of HR . 

 

The traditional way to treat the titration data is to plot the measured pH as function of the 

added volume, i.e. V, of a strong base. For a sample solution containing several acids, 

such analysis will be successful only if the titration curve has clearly distinguished pH 

jumps for each of the acid groups in the sample. To fulfill these requirements the 

protonation constants ,( )H R
HRK of the acids should be less than 107 and the difference 

between the constants larger than 104 (Ingman and Still 1966). These requirements will 

guarantee that the equivalence point of the stronger acid is the starting point for titration 

of the weaker acid. However, such requirements are not fulfilled in the titration of acid 

groups in wood, pulp and bark materials, because the acid groups in these tree-related 

materials have rather similar values of ,H R
HRK . In order to obtain the concentration of the 

acid groups in wood, pulp and bark materials, two different methods were employed to 

evaluate the titration data in this thesis work, i.e. the FITEQL program and the method of 

linear titration curves, the so called Gran method. 

 

The FITEQL program 

The FITEQL program is designed to calculate the optimal values for the protonation 

constants and the total concentrations of different species from experimental data based 

on equations of chemical equilibria (Herbelin and Westall 1999). Experimental data 

(concentration of the strong base 
OH

C  , pH, dilution factor, ionic strength) can be used as 

parameters in the computer program. The unknown protonation constants ,lg H R
HRK  and 

concentrations of the different species are initially guessed for the equilibrium calculation. 

The protonation constant and the concentration of each species are then optimized by an 

iterative procedure on the adjustable parameters in the FITEQL computer program 

(Herbelin and Westall 1999). The procedure when using the FITEQL program comprises 

the following basic steps: 
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1. Definition and input of the chemical equilibrium model 

2. Input of free concentration, total concentrations and ,H R
HRK  values of known species  

3. Input of the initial guesses for concentrations and ,H R
HRK  values of unknown species 

4. Input of the experimental titration data, i.e.
OH

C  , pH, dilution factor, ionic strength 

5. Start the FITEQL calculations 

6. The initial guesses are set to the equilibrium values by proceeding the iterations on 

the adjustable parameters in the FITEQL computer program  

7. Output of optimum values for the concentrations and the protonation constants,
,lg H R

HRK  

 

The Gran method 

The potentiometric titration data can also be evaluated by the Gran method to obtain the 

total concentration of acid groups. The Gran method is a graphical method to determine 

the equivalence point in potentiometric acid-base titration by converting the titration 

curve to straight lines (Gran 1950, 1952). This method was improved by Ingman and Still 

(1966) and Johansson (1970) to determine more accurately the equivalence point in 

titrations of very weak acids. Ivaska has further developed the method for titration of 

weak acids and their mixtures (Ivaska 1974; Ivaska and Wänninen 1974).  

 

In this work the equations (4) and (5) were used to convert the titration data, V and pH 

data pairs, to the linear lines for determination of the total concentration of weak acid 

groups in tree-related materials. The concentration of strong acid in the mixture is 

determined by equation (4) and the total concentration of all acids is determined by 

equation (5). These equations are based on the expression made by Johansson (1970). 

 

0( )
( ) 10 pH

OH

V V
f V

C


   on the acid side of the equivalence point   (4) 

 

0( )
( ) 10 wpH K

OH

V V
f V

C


  on the alkaline side of the equivalence point  (5) 

 

0V  is the initial volume of the mixture. V  is the volume of the added strong base with 

concentration of OHC , and wK  is the ionic product of water. Two straight lines are 

obtained by plotting ( )f V  as a function of the volume, V , of the added standard base 

solution. These lines intersect with the x-axis, separately. The point of intersection of the 

line obtained with equation (4) gives the concentration of strong acid present in the 

sample suspension. The point of intersection of the line obtained with equation (5) gives 
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the total concentration of acids in the sample suspension. The difference between the two 

intersection points gives the volume of strong base consumed by the weak acids in the 

sample. The total concentration of acids calculated with the Gran method is mostly in 

good agreement with the values obtained with the FITEQL program. 

 

3.3. Theory of ion exchange reactions  

Ringbom (1963) has given a through description of the theory of complexation in cation 

and anion exchange reactions. As described by Ringbom ion exchange is a reversible 

process in which the ions in the solid phase are exchanged with the ions in the solution 

phase. An ion exchanger can be any insoluble material that has the ability to take up ions 

from a solution, with the simultaneous releasing of a chemically equivalent number of 

ions into the solution. The ion exchange reaction of a binary system, involving hydrogen 

ions and metal ions, can be expressed by the following general equation: 

 

2
22 2HR M MR H    (6) 

 

where R  is the anionic group in the solid matrix. In this work it is the functional groups 

present in wood, pulp or bark material. 2M   is a metal ion with divalent charge, which 

undergoes ion exchange reaction with the hydrogen ions and is bound to the solid phase. 

 

The degree to which this process takes place depends on the ion exchange equilibrium 

constant (Ringbom 1963), which is given by the following equation: 

 

 

2

2

2 22

M
H

MR H
K

M HR





      
  

 (7) 

 

where 2MR   and  HR  are the concentrations of metal ions and protons bound to the 

solid phase. 2M     respective H     are their concentrations in the aqueous phase. In 

general, when discussing the ion exchange processes it is more convenient to express 

concentrations in solid phase in milli-equivalents per gram ( meq g ) or micro-equivalents 

( eq g ) per gram. These units take into consideration the reaction stoichiometry. 

 

The total number of exchange sites in the solid phase in general is defined as the total 

capacity of the ion exchanger and is denoted by C (on dry weight basis). In practice all of 

the functional sites in an exchanger are not completely occupied by the ions of interest. 

The number of these sites taken up by the ions of interest can be defined as the operating 
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capacity, i.e. OC , of the ion exchanger under the particular experimental conditions. Load 

of the ion exchangers, L , is used to indicate the percentage of exchange sites that are 

occupied by the particular ions under experimental conditions. It can be expressed by 

equation (8): 

 
 

100% 100%nn MROC
L

C C
    (8) 

 

where n is the charge of the ion M  and  nMR
 
the concentration of M bound to the 

solid phase.  

 

 

3.4. Interaction of metal ions with wood, pulp and bark  

As mentioned in an earlier section, metal ions may deposit in wood and bark materials in 

salt forms, such as hydroxides, oxalates, sulfates, phosphates and carbonates. Most metal 

ions are, however, supposed to be associated to the functional groups like carboxyl 

groups and phenolic hydroxyl groups in wood, pulp and bark. In this thesis, the 

interaction of metal ions with these tree-related materials was studied under weak acidic 

or neutral experimental conditions. The functional groups involved in the reactions are 

mainly the carboxyl groups, because they partially dissociate in the pH range used in the 

experiments. The metal ions are bound to the tree-related materials mainly by ion-

exchange reactions. Figure 11 illustrates a simplified model of ion-exchange reactions 

occurring between the metal ions in the solution and the hydrogen ions in carboxyl groups 

in the solid phase. The ion exchange that may take place between two metal ions with 

different valences is also involved in this figure. It has been expected that the divalent 

metal ions have a higher affinity to the acidic sites (carboxyl groups) in comparison with 

the monovalent cations. The equilibrium reactions of these ion exchange reactions are 

stoichiometric, i.e. approximately 1:2 for exchange of divalent metal ions to hydrogen 

ions and ca. 1:1 for exchange of monovalent metal ions to hydrogen ions. This has been 

demonstrated in few studies (Karhu et al. 2002; Crist et al. 2003).  
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Figure 11. Ion exchange of metal ions with hydrogen ions to carboxyl groups. 

 

 

Many studies have demonstrated the importance of the carboxyl groups in the sorption of 

metal ions to biomass materials (Merdy et al. 2002; Bakir et al. 2009; Hubbe et al. 2011). 

The capacity of sorption of metal ions to the biomass materials is mainly due to the 

concentration of the carboxyl groups. The interaction of metal ions with the carboxyl 

groups takes mainly place by ion exchange. The sorption of metal ions is also pH-

dependent and an increase in the sorption capacity has been found when the pH of the 

aqueous solution was increased (Ofomaja et al. 2010; Semerjian 2010; Reddy et al. 2011; 

Rafatullah et al. 2012). This can be explained by increasing dissociation of functional 

groups with increasing pH, in turn resulting in an increase in the ion exchange capacity of 

the materials (Hubbe et al. 2011). It has also been reported that the sorption of metal ions 

is not only based on the ion-exchange mechanism, but also the unspecific Donnan 

adsorption is involved (Pesavento et al. 1994; Towers and Scallan 1996; Bygrave and 

Englezos 1998; Yantasee and Rorrer 2002; Duong et al. 2004; Sundman et al. 2008).  

 

Many different biomass materials have been studied for the sorption of metal ions from 

aqueous single, binary, ternary or quaternary metal ion batch systems. The sorption 

capacity varies with the materials and the metal ions studied. The hardwood sawdust 

showed sorption capacities in the range 10-100 µmol/g and the softwood sawdust in the 

range 27-80 µmol/g, depending on the tree species and the metal ions studied. The 

unbleached kraft pulps showed sorption capacities of 20-50 µmol/g for Ca2+ and 90 
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µmol/g for Fe2+ (Duong et al. 2004; Chia et al. 2007). The sorption capacities of bark for 

different metal ions were reported to vary from 36-2100 µmol/g. These values have been 

summarized in an extensive review paper (Hubbe et al. 2011). In the studies listed in the 

review paper the ion-exchange sorption mechanism has also been confirmed by 

measuring the amount of hydrogen ions released from the biomass and it was found that 

that number matched the total number of metal ions adsorbed from the solution. 
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4. Analytical techniques 

This chapter briefly describes the main analytical techniques used in this thesis. An 

automatic titrator was used for the acid-base titrations of wood, pulp and bark materials. 

A column chromatographic method was developed to study the sorption of metal ions to 

the wood, pulp and bark samples. The inductively coupled plasma optical emission 

spectrometry (ICP-OES) technique was applied to determine the concentrations of metal 

ions in the liquid samples. The laser ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS) technique was used to study the distribution of metal ions in 

the solid samples.  

 

4.1. Acid-base titrator 

In this thesis an automatic titrator (Mettler Toledo DL 50, Schwerzenbach, Switzerland) 

was used in determination of the concentration of the functional groups in the wood, pulp 

and bark materials (Figure 12). This titrator is a microprocessor-controlled analytical 

instrument which includes a DG111 combined glass-reference electrode with a ground-

glass sleeve junction for potentiometric measurement (Toledo 1997). 

 

  
Figure 12. Mettler Toledo DL 50 titrator (© Mettler-Toledo International Inc.). 

 
 

The standard KOH  solution used as the titrant is pumped from a sealed bottle to the 

burette, and then delivered to the sample vessel. The titration is controlled by a program 

in which the measurement conditions, i.e. the potential change within preset time, the 

volume of the titrant added within a defined potential difference and waiting time up to 

the next increment addition etc., can be defined (Toledo 1997). The equilibrium potential 

and the volume of the titrant added are recorded after each addition. These data are 

transferred to a computer after the titration, and are used to calculate the concentration of 

acid groups in samples by the FITEQL program and the Gran method. 
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4.2. Ion exchange techniques 

The ion exchange analysis is generally performed by two techniques: batch operation and 

column technique. In the batch operation, the ion exchanger is mixed with the solution 

containing ions of interest in a suitable vessel. The suspension is stirred until reaction 

equilibrium has been reached. After mixing, the two phases are then separated by 

filtration for further chemical analysis. This operation is simple and quite suitable for the 

basic study of a specific ion exchange reaction.  

 

In the column chromatography the ion exchange material is packed in a column, usually 

in a glass column. Solution containing metal ions of interest is loaded to the column. The 

metal ions pass through the ion exchanger inside the column and are bound to the solid 

phase of the exchanger according to their selectivity. After this step the bound ions can be 

eluted out from the column with some suitable solutions. The eluate is collected in small 

fractions for analysis of metal ions that were bound to the materials in the column. The 

column technique is the most frequently used ion exchange method (Willard et al. 1988; 

Bobleter and Bonn 1991). This method is more effective than the batch method, and gives 

far better separations. However this method is more time consuming because a large 

number of eluate fractions must be collected and analyzed. 

 

In column operations, the following terms are commonly used: influent, eluent, effluent, 

eluate and elution (shown in Figure 13). Influent refers to the solution entering the 

column. If it is used to remove the ions adsorbed on the solid phase of the ion exchanger, 

it is called the eluent. The solution coming out from a column is called the effluent. If it 

contains the ions that were bound to the ion exchanger, it is called the eluate. The whole 

process of removing adsorbed ions is called elution (Ringbom 1963). 

 
 

 

Figure 13. Important chromatographic terms related to the column technique. 
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During the ion exchange process, when the metal ions pass through the solid phase in the 

column, their rate of movement (elution) is affected by their sorption tendency to the 

solid phase. The metal ions having the highest selectivity to the solid phase are firstly 

bound and eluted out last from the column. The metal ions having the lowest affinity are 

weakly bound and they are eluted first from the column. A schematic diagram of a 

chromatographic process is shown in Figure 14a. The loading solution applied to the 

column contains metal ions of A, B and C; they have different affinity to the solid phase 

of the ion exchanger. Of them, A has the highest bounding strength and C has the lowest 

bounding strength. If the difference between their selectivity is large enough, their elution 

curves are separated and the metal ions come out one by one as shown in the 

chromatogram (Figure 14b). In the ideal case the elution curves of the metal ions are 

Gaussian (symmetric). 

 

 
Figure 14. Elution of a metal mixture  from a chromatographic column, a) a solution containing 

3 different ions (A, B and C) is loaded to a column, b) the chromatogram of  these three ions 
(Seidman and Mowery 2006). 

 
 

In this thesis work, the wood, pulp and bark materials studied have functional groups with 

negative charges that can react with metal ions mainly by ion exchange. These functional 

groups are generally protonated at acidic pH values with dilute nitric acid. When a 

solution containing metal ions of interest is mixed with or loaded to these tree-related 

materials, the metal ions are exchanged with the hydrogen ions in the solid phase of the 

material studied. That process can be described by the following general ion exchange 

equilibria (9)-(11): 
 

H R HR    (9) 

HR N NR H    (10) 
n

nnHR M MR nH    (11) 
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N and M are metal ions with the charge 1+ and n  . The hydrogen ions released from 

the material are stoichiometrically equivalent to the total number of metal ions bound to 

materials. The ion exchange reactions between the functional groups in the solid phase 

and the metal ions in the solution phase are not simple processes, mainly due to the 

complexity of the ion binding sites in wood, pulp and bark materials. In addition, the 

metal ions participating in the reactions can have mono-, di- or even trivalent charge. 

During the course of interaction of metal ions with tree-related materials, the metal ions 

having the higher affinity replace the metal ions having the lower affinity.  

 
In the column operations, dilute solutions of nitric acid are commonly used as the eluent 
and the bound metal ions are replaced by the hydrogen ions. When the metal ions bound 
to the solid phase are eluted out from the column with diluted nitric acid solution, an 

excess of hydrogen ions, ( )a n H , are also simultaneously eluted out from the column. 

This is described by the following general ion exchange equilibrium:  

 

( )n
nMR a H n HR M a n H       (12) 

 

In this thesis, the batch method was used to investigate the equilibration time for the 

sorption of metal ions to the materials studied under particular experimental conditions. 

The column chromatographic method was used to study the ion exchange reactions of 

metal ions with different tree-related materials. The operating capacity and the affinity 

order of metal ions adsorbed to wood, pulp and bark materials were established by 

column technique. 

 

4.3. ICP-OES technique  

The ICP-OES technique is an atomic spectroscopic method and commonly used for 

determination of the concentrations of elements in liquid samples. In principle, ICP-OES 

can be used to determine over 70 elements simultaneously and it can be performed over a 

wide concentration range. 

 

The main components included in the ICP-OES system are the nebulizer, the ICP torch 

and the spectrometer as shown in Figure 15 (Boss and Fredeen 1997). The sample is 

usually a liquid sample; it is transported into the nebulizer through a very thin tube by a 

pump. A high-speed argon gas flows through the nebulizer and the liquid is broken up to 

droplets and converted into an aerosol. The created sample aerosol is then transported into 

a spray chamber, which is placed between the nebulizer and the torch. Inside the spray 

chamber, the large droplets in the sample aerosol are removed, and only small droplets of 

uniform size are injected into the plasma. Inside the ICP torch, the atoms and ions of the 

elements are excited by the high temperature argon plasma (as high as 10000 K). The 
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excited atoms and ions emit their characteristic radiations at specific wavelengths. A 

monochromator is used to separate the wavelengths and the intensities of the radiations 

are measured with a detector system. The measured emissions intensities are then 

converted into concentration information using the calibration curves obtained with 

standard reference solutions. In this thesis, the ICP-OES (Optima 5300 DV, PerkinElmer, 

Ontario, Canada) was used to determine the concentration of metal ions in liquid samples 

collected in the experimental work. 

 
 

 

Figure 15. The principle and major components of a typical ICP-OES instrument (Boss and 
Fredeen 1997). 

 
 

4.4. LA-ICP-MS technique 

LA-ICP-MS is a powerful and versatile technique for direct analysis of solid samples to 

determine trace element concentrations and their distributions. With the mass 

spectrometer as the detector even the different isotopes of the elements can be detected. 

The general layout of a laser ablation inductively coupled plasma mass spectrometer 

system is shown in Figure 16. 

 
 

 

Figure 16. Schematical configuration of a LA-ICP-MS system (Figure 1 in Paper V). 
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A solid sample is placed inside an ablation chamber and a laser beam is focused directly 

on the surface of the solid sample. A certain amount of sample is ablated, i.e. partially 

vaporized and ionized to form a dry aerosol. The ablated sample is then transported to the 

ICP-MS instrument by a carrier gas, usually by the argon gas. The sample aerosol is 

firstly atomized or ionized by the high temperature plasma in the ICP torch. The ions 

produced in the ICP-torch pass through the ion lenses and then enter the mass 

spectrometer. In the MS part of the instrument, the ions are separated and analyzed based 

on their specific mass-to-charge ratio ( m z ). 

 

There are many advantages to use the LA-ICP-MS technique, including direct analysis of 

solid sample, reducing sample preparation and minimizing the risk of sample 

contamination (Masters and Sharp 1997; Durrant 1999; Hoffmann et al. 2000; Heinrich et 

al. 2003; Lee et al. 2003). Due to the unique advantages, LA-ICP-MS technique has been 

widely applied to analyze a variety of solid materials, such as human hair and nails, wood 

and archaeological samples (Prohaska et al. 1998; Devos et al. 2000; Hoffmann et al. 

2000; Rodushkin and Axelsson 2000; Tokareva et al. 2010). However the quantification 

of the analytical results are rather difficult due to a number of problems (Cromwell and 

Arrowsmith 1995; Bellotto and Miekeley 2000; Ødegård et al. 2001; Ohata et al. 2002). 

Therefore LA-ICP-MS technique is mostly commonly used to investigate the distribution 

of elements by surface mapping, providing semi-quantitative analytical data. 

 

In this thesis, The LA-ICP-MS was used to study the distribution of metal ions in single 

pulp fibers. The analytical results were quantified by using calibration curves obtained 

both with prepared standard single fibers and with standard cellulose pellets. 
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5. Experimental 

5.1. Materials 

The materials studied in this work include wood particles from spruce and birch, 

thermomechanical pulps (TMP) treated with different chemicals, unbleached/oxygen-

delignified hardwood and softwood kraft pulps, and inner and outer bark of spruce. A 

synthetic weakly acidic cation exchanger and pure cotton fibers were also studied for the 

comparison of the sorption properties. The wood, pulp and bark materials were stored in a 

freezer until used in the experiments. Their water content was determined by oven drying 

at 105°C for ca. 24 hours. All results presented in this thesis are given on oven dry weight 

(d.m.) of the solid samples. 

 

The wood samples were prepared from Norway spruce (Picea abies, 47-years old) and 

birch (Betula pendula, 25-years old) trees. Of Norway spruce, the sapwood and 

heartwood were separated for the study. The wood materials were milled to particles of 1-

mm and 2-mm. Before used in the sorption experiments, all the wood samples were 

extracted with acetone in a Soxhlet apparatus. The preparation procedure for wood 

samples is presented in detail in the experimental part in Paper I. 

 

The original TMP, made from Norway spruce (Picea abies), was taken out from a second 

refiner in a Finnish pulp mill. Different treatments were done in the laboratory on the 

original TMP. The TMP samples used for experiments are untreated TMP, alkali-treated 

TMP and peroxide-bleached TMP. The treatment processes are described in detail in the 

experimental part in Paper II. The unbleached/oxygen-delignified hardwood and 

softwood kraft pulps were obtained from a Finnish kraft mill. The preparations of 

unbleached kraft pulps for metal sorption experiments are presented in Papers III and IV. 

The preparations of single fibers for the LA-ICP-MS analysis are described in Paper V.  

 

Bark samples were taken from Norway spruce (Picea abies) trees and milled to particles 

of 0.5-mm in a laboratory mill. Inner bark and outer bark were separated manually for the 

study. Prior to sorption experiments, the bark samples were treated with acetone, ethanol, 

distilled water and distilled hot water. The details for the sample preparation are described 

in the experimental part in Paper VI. 

 

The commercial weakly acidic cation exchanger is Amberlite IRC-76 in hydrogen form 

(Sigma, St Louis, USA). The cotton fibers are of 100% pure cotton for medical purposes 

(Tamro Oyj, Finland). These samples were acid washed until free from metal ions, before 

used for further sorption experiments. 
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5.2. Main chemicals 

The stock solutions (0.1 M) of most metal ions used in this work were prepared from their 

respective nitrate salts (Merck, Darmstadt, Germany). The divalent iron stock solution 

(0.1 M) was prepared by dissolving FeSO4·7H2O in deionized water. All the salts used 

were of pro analysi grade. Deionized water (≥18.2 MΩ·cm, Purelab Ultra MK2, ELGA) 

was used throughout this work. 

 

5.3. Methods  

5.3.1. Batch method 

The batch method was used for the characterization of sorption properties of different 

tree-related materials in this work, including potentiometric acid-base titration and batch 

metal sorption method. The potentiometric acid-base titration method was used to 

determine the concentrations of functional groups and their protonation constants in all 

the materials studied in this work. All the samples for the titrations were prepared by 

washing with 0.01 M 3HNO , deionized water and 0.1 M 3KNO  in sequential order. 

Accurately weighed samples were dispersed in a 0.1 M 3KNO  solution and then acidified 

to pH 2 with a solution containing 1 M 3HNO  and 0.1 M 3KNO . The potentiometric 

titrations were carried out up to pH ca. 12.5. The sample preparation and titration 

procedure are described in detail in Papers II and III. 

 

The batch method was also used to study the equilibrium time for the sorption of metal 

ions to wood and bark materials. Before the batch metal sorption experiments, the sample 

had to be washed free from the naturally occurring metal ions. An accurately weighed 

sample (ca. 4 g, d.m.) was mixed with 100 ml deionized water in a glass beaker. In the 

adsorption experiments, a mixture of metal ions studied was added to react with the acid 

groups in the sample and the pH in the suspension was recorded as the function of time 

during the course of the adsorption. In the desorption experiments, the sample was first 

loaded with the metal ions of interest. A nitric acid solution was added to release the 

metal ions from the samples. The pH of the suspension was recorded as the function of 

time during the desorption course. The experimental procedures are described in detail in 

Papers I and VI. 

 

5.3.2. Column method 

The column chromatographic method was used to investigate the sorption capacities 

(operating capacities) of the materials studied and to establish the orders of affinity of 

different metal ions bound to these materials, as well as the contributions of each metal 

ion to the sorption capacities. A glass column was used in the column chromatographic 



Experimental 

 

35 

experiments for metal sorption studies. The size of the glass column used, e.g. diameter 

and length, varied in the course of this thesis. The mass (d.m.) of sample packed in the 

column also varied in different sorption experiments. The steps for the column 

chromatographic sorption experiments are presented schematically in Figure 17. The 

details for the whole procedure are described in the experimental parts in Papers II and 

III. 

 
 

 
Figure 17. Column chromatographic procedure for metal sorption experiments (Figure 1 in 

Papers II and VI). 
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6. Results and discussion 

6.1. Protonation constants and concentrations of acid groups in wood, 
pulp and bark  

Protonation constants of the functional groups in wood, pulp and bark materials and their 

concentrations have been determined in Papers I-IV and Paper VI. At the beginning of 

this thesis work, a model with three acid groups was used in the FITEQL program in 

running the experimental data obtained in titrations of the unbleached softwood kraft 

pulps (Paper III). Later, a model with four acid groups was found to give a slightly better 

fitness to the recorded potentiometric titration data. The protonation constants of the acid 

groups and their concentrations in all the materials studied in this thesis are summarized 

in Tables 4 and 5. The sums of these concentrations, given in the last line of Table 5, are 

regarded as the total sorption capacity of the materials studied. 

 

Of the acid groups determined in wood and pulp samples, two are of carboxyl types and 

the other two are of phenolic hydroxyl type. The protonation constants ( ,lg H R
HRK ) for the 

strongest carboxyl groups ( 1HR ) are in the range 3.3-4.2. These groups can be assigned to 

uronic acids contained in hemicelluloses and pectin substances. The second carboxyl 

groups ( 2HR ) have protonation constants in the range of ,lg H R
HRK  ~ 4.7-5.9, and they may 

be the carboxyl groups associated with lignin structure. Those two groups with the 

protonation constants in the range of ,lg H R
HRK ~ 6.5-8.0 and 8.4-10.4 are obviously phenolic 

hydroxyl groups in lignin.  

 

The value of the protonation constants of the acid groups in wood and pulp depends on 

the side groups conjugated to them. The side groups vary with the type of the materials 

and with the chemical treatments of the samples. The protonation constants of the acid 

groups in the untreated mechanical pulps are close to those in the native wood, because 

the main components in native wood are maintained in the mechanical pulping. Chemical 

treatments of TMP, e.g. the alkaline treatment and the peroxide bleaching, change the 

acid groups and increase the strength of the acid groups. The kraft pulps contain stronger 

acid groups compared to the native wood, since the acid groups in the native wood are 

changed and converted during kraft pulping, for instance, methylglucuronic acid groups 

in xylan are converted to hexenuronic acid units. The oxygen delignification further 

increases the strength of these acid groups. This is more pronounced for oxygen 

delignification of hardwood kraft pulps (Table 4). 

 

The strongest carboxyl groups ( 1HR ) present in spruce bark are similar to those in native 

wood. These groups have the ,lg H R
HRK  value of 3.9. They might mainly be of uronic acid 



Results and Discussion 

 

37 

type in the pectin substances which are present both in native wood and bark. The other 

three acid groups in bark slightly differ from those in the native wood. The second acid 

groups, 2HR , is most probably also a carboxyl group with ,lg H R
HRK  values of 5.9-6.1. The 

3HR  and 4HR  are phenolic hydroxyl groups having ,lg H R
HRK  values in the range 8.2-10.7. 

The bark contains tannins, which probably contribute to the contents of carboxyl and 

especially the phenolic hydroxyl groups. 

 

Sjöström (1993) has reported apK  values ( ,lg H R
HRK ) in wood of around 3-4 for major 

carboxyl groups, 4-5 for minor carboxyl groups, 7-8 for minor phenolic acidic groups and 

9.5-10.5 for major phenolic hydroxyl groups. Koljonen et al. (2004) found carboxyl 

groups in CTMP pulps with apK ~ 3-5 and apK ~ 5-6. Both in native wood and in 

mechanical pulps the majority of the carboxyl groups are of uronic acid types mainly 

attached to the xylan. Some of the carboxyl groups originated from pectin substances and 

a relatively small amount was also found in lignins. Laine et al. (1996) found that both 

unbleached softwood and hardwood kraft pulps contained two types of carboxyl groups, 

with apK ~ 3.3 and apK ~ 5.5. For the unbleached softwood (pine) kraft pulps two 

different carboxyl groups with the apK values of 3.6 and 5.7 have also been reported 

(Stenius and Laine 1994). Karhu (2008) and Karhu et al. (2000) have determined 

protonation constants and concentrations of both the carboxyl and phenol groups at 

different temperatures (25, 45, 65 and 85°C) for unbleached and oxygen-delignified 

softwood and hardwood kraft pulps. They reported protonation constants ( ,lg H R
HRK ) of 

carboxyl groups in the range 3-6 and ,lg H R
HRK of phenol groups in the range 9-10. The 

temperature was found to have a remarkable influence on the concentration of phenolic 

groups. So far quite a few studies have been done on the protonation of phenol groups in 

pulps. Karhu (2008) has also shown that during potentiometric re-titration of pulps at 

25°C the components containing both carboxyl and phenol groups were dissolved to the 

solution phase. The dissolved compounds have the similar protonation constants as the 

original pulp sample. The phenolic acid groups in particular were found to dissolve in the 

solution during both first and second titrations, and the total content of acid groups in the 

two phase system increased.  
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A comparison of the concentrations of acid groups in different samples shows that the 

total content of acid groups in native woods, unbleached mechanical pulps and 

unbleached kraft pulps are quite similar (Table 5). The alkaline treatment and peroxide 

bleaching of mechanical pulps significantly increase the total content of acid groups in 

samples. Both inner bark and outer spruce bark contains much more acid groups than 

wood and pulp samples.  

 

The native hardwood (birch) contains more acid groups than the native softwood 

(spruce), mainly due to the higher concentration of phenolic hydroxyl groups ( 4HR ). 

Concentration of the phenolic hydroxyl groups in hardwood is almost double that in 

softwood. The spruce heartwood contains somewhat more acid groups than the spruce 

sapwood, also mainly due to the higher concentration of 4HR . Concentrations of the two 

strongest acid groups, 
1HR  and 2HR  types, in hardwood and softwood are almost the 

same. The uronic type of acid groups (
1HR ) contributes to the total acid groups by 39-

42% in softwood, and by 30% in hardwood.  

 

During the mechanical pulping, some acid groups of uronic type and of phenolic type are 

decreased due to partial dissolution of hemicelluloses and lignin. Some new free phenolic 

hydroxyl groups are simultaneously formed in the lignin structure, mainly due to the 

fragmentation of lignin during the mechanical treatment. On the whole, the concentration 

of 
1HR

 
type acid groups in the mechanical pups (untreated TMP) decreased by 24% and 

the concentration of 4HR  type acid groups increased by 59%, compared with their 

average concentration in the native wood (spruce). Total concentration of all the four acid 

groups in the untreated TMP has a similar value as that in the spruce native wood.  

 

The chemical treatments (i.e. alkaline treatment and peroxide bleaching) of spruce TMP 

increase the concentration of carboxyl groups, especially the peroxide bleaching. The 

concentration of carboxyl groups ( 1 2HR HR ) in the alkali-treated TMP is twice, and in 

the peroxide-bleached TMP almost three times, higher than that in the untreated TMP. 

Koljonen et al. (2004) revealed that alkaline treatment of TMP mainly hydrolyzes the 

methyl ester groups in pectin, while peroxide bleaching increases also the amount of 

lignin-bound carboxyl groups. The concentration of phenolic hydroxyl groups decreases 

during these chemical processes. Approximately 33% of the phenolic hydroxyl groups 

( 4HR ) was eliminated from the untreated-TMP during alkaline treatment, and about 47% 

of 4HR  was released during peroxide bleaching. In general the alkaline treatment and 

peroxide bleaching of spruce TMP increases the total content of the acid groups. This was 

also found by Goulet and Stratton (1990). 
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Kraft pulping creates some new acid groups, but some acid groups are simultaneously 

lost. In general, the total content of acid groups in unbleached kraft pulps is slightly 

higher than that in native wood. The concentration of uronic type of acid groups 
1HR  

increased during kraft pulping, accounting for 49-72% of the total content of acid groups 

in unbleached kraft pulps (30-43% in wood, Table 5). Oxygen delignification of kraft 

pulps slightly increases the concentration of this type of acid groups. It can also be 

observed in Table 5 that the concentration of the hydroxyl groups, as 4HR
 
type, decreased 

to a large extent during kraft pulping obviously due to the removal of lignin. Comparing 

hardwood kraft pulps with softwood kraft pulps, more acid groups were found in 

hardwood kraft pulps. This is mainly due to the higher concentration of the uronic acid 

carboxyl groups (
1HR ) in hardwood kraft pulps. Similar results have also been observed 

by other groups (Herrington and Petzold 1992; Athley et al. 2001). Holmbom et al. (2002) 

found that in unbleached kraft pulps about 50% of the total acid group consisted of the 

uronic acids and in bleached kraft pulps uronic acid groups was 20-40% of the total 

content of acid groups.  

 

Spruce bark contains much more acid groups, especially much higher content of the 
1HR

and 4HR
 
type acid groups, compared with spruce stem wood. The higher 

1HR  content is 

mainly due to high content of pectin substances abundant in bark. The higher 4HR
 

content in bark probably can be assigned to the higher content of phenolic compounds 

associated with lignin and also tannins. The total concentration of the acid groups 

determined in bark of spruce is approximately 7~9 times higher than that in stem wood of 

spruce. Of spruce bark, inner bark contains higher concentrations of 
1HR

 
and 4HR  types 

of acid groups than outer bark. The concentration of 
1HR  

in inner bark of spruce is almost 

double that in outer bark, indicating a higher content of pectin in inner bark. The 

concentration of 4HR  type groups is ca. 13% higher in inner bark than in outer bark. The 

total concentration of functional groups in inner bark of spruce is higher than that in outer 

bark (Table 5). 
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6.2. Equilibration time for sorption of metal ions to wood and bark  

The metal sorption experiments were carried out in a batch system to investigate the 

minimum time required to reach the reaction equilibrium. The details of the experiments 

are described in Papers I and VI. In these papers the time required for sorption respective 

desorption of metal ions to wood and bark materials has been studied. The sorption of 

metal ions to bark particles was found to be faster than to wood particles under the same 

experimental conditions. In Paper I it was shown that the reaction of metal ions with 

wood particle is quite fast during both sorption and desorption processes. The equilibrium 

of these reactions was attained within ca. 20 min for all the wood samples studied. During 

the first few minutes, the sorption/desorption was fast, then the rate gradually decreased 

and after ca. 20 min reaction equilibrium was reached. In Paper VI where spruce outer 

bark was studied it was shown that the equilibrium of these reactions was attained within 

ca. 5 min.  

 

When the sorption of metal ions to tree-related materials were studied by column 

chromatographic technique in this thesis, the loading time (when all metal ions loaded to 

column pass through the sample inside) and the elution time (when metal ions bound are 

nearly completely washed out from column) were approximately 3-5 h. These times 

depend on the type and the mass of samples in the packed column. These results indicate 

that the time of the column chromatographic experiments was long enough for sorption 

equilibrium to be reached in the column.  

 

The effect of the size of wood particles on the sorption time was also studied by using the 

batch technique. The birch wood was milled to particles with sizes of 1-mm and 2-mm. 

The sorption/desorption process was followed by measuring the pH of the solution phase 

(Figure 18). When metal ions are adsorbed or desorbed, hydrogen ions are released or 

taken-up, respectively. It was found that the reaction rate of metal ions with the smaller 

size wood particles is slightly faster than with the larger size particles in the beginning of 

the adsorption experiments. A similar result was also found in the desorption process. A 

possible explanation for this may be that the sample with the smaller particle size offers a 

larger total surface area, and therefore the accessibility of the binding sites on the sample 

surface is higher. Studies by other researchers also showed that the particle size and the 

available sorption sites on the materials affected the time needed to reach the sorption 

equilibrium (Naiya et al. 2008; Subbaiah et al. 2009; Reddy et al. 2010).  
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Figure 18. Reaction time for sorption respective desorption of metal ions to birch wood particles 

of different sizes. 
 

 

6.3. Results of metal ion sorption using the column chromatographic 
technique  

In this thesis work the materials studied included: spruce and birch wood particles (Paper 
I); untreated, alkali-treated and peroxide-bleached TMP (Paper II); unbleached/oxygen-
delignified hardwood and softwood kraft pulps (Papers III-IV); spruce inner and outer 
bark (Paper VI); and synthetic weakly acidic cation exchanger (Amberlite IRC-76) and 
pure cotton fibers. Different metal ion mixtures, given in Table 1 in Paper II, were used 
to load the solid phase of samples in the chromatographic column. The affinity orders of 
metal ions to these materials were established by combining the results from several 
sorption experiments. The sorption capacities of materials (operating capacities) were 
also calculated by summing the concentration of each metal ion adsorbed to the materials. 
 
Because the natural properties of the materials studied and their total capacities varied a 
lot (see Table 5), columns of different sizes were used in the experimental work in this 
thesis. The weight (d.m.) of the samples used and the height of the packed bed in the 
column (packed-bed height) also varied between the sorption experiments. In every 
experiment, the number equivalents of each metal ion in the loading mixtures were in 
excess compared to the total capacity of the material determined by the acid-base 
potentiometric titration method. In this chapter, the results from sorption experiments 
with different materials are summarized and briefly discussed, according to the different 
metal ion mixtures loaded to column. More detailed information about the experimental 
conditions and results can be found in Papers I-IV and VI. 
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6.3.1. Sorption of Ba, Sr, Ca and Mg ions 

The elution curves of the sorption experiments with alkaline earth metal ions (Ba2+, Sr2+, 

Ca2+ and Mg2+) performed on pulp and bark materials are summarized in Figure 19. The 

x-axis is the volume of the eluate (ml) and y-axis is the concentrations of the metal ions in 

each eluted fraction collected in Step 4 (Figure 17). The pH of eluate in each fraction is 

given to the right on the y-axis. The elution curves in Figure 19 show that the metal ions 

have been adsorbed by different strength to the samples in the sorption process (Step 3 in 

Figure 17).  
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Figure 19. Concentrations of alkaline earth metal ions and pH in the collected fractions as 

function of the elution volume for different pulp and bark samples. 
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As can be seen in Figure 19, the alkaline earth metal ions generally show elution curves 

of different shapes. For all the samples studied barium ions show the broadest elution 

curves and highest concentration peaks compared with the other three alkaline earth metal 

ions. Thus of the alkaline earth metal ions barium is the most strongly bound to pulp and 

bark materials. Magnesium ions show the smallest concentration peaks and has the 

narrowest elution curves. Magnesium ions thus are most weakly adsorbed to pulp and 

bark materials. The affinity order can also be established as these metal ions were eluted 

out at different elution volumes. In all the sorption experiments with alkaline earth metal 

ions, magnesium ions were first completely eluted out from the column and barium ions 

were the last to be eluted from the column. This is most pronounced in those sorption 

experiments with TMP and bark samples. The following affinity sequence can be 

obtained from the elution curves in Figure 19: Ba2+ > Ca2+ > Sr2+ > Mg2+. 

 

The shapes of the elution curves of the alkaline earth metal ions differ with the type of 

materials studied. The elution curves of each metal ion are rather well separated for the 

TMP and bark samples. However, the elution curves of these metal ions are rather similar 

and not so well separated for the kraft pulps. Variations of the elution curves may be due 

to the variable total capacities of different materials studied and also to the different types 

of functional groups in the materials. Of the mechanical pulps (TMP) studied, the 

peroxide-bleached TMP shows the broader elution curves and higher concentration peaks 

for each alkaline earth metal ion. This can be explained by a higher content of acid groups 

in the peroxide-bleached TMP. Of the kraft pulps studied, the unbleached kraft pulps 

show broader elution curves than the oxygen-delignified pulps. A most probable reason 

for this is that in these sorption experiments more unbleached kraft pulps were packed, 

e.g. 16.1 g of unbleached hardwood pulps vs 7.9 g of oxygen-delignified hardwood pulps, 

in the column. 

 

It also can be observed in Figure 19 that the volumes of breakthrough of the elution 

curves vary a lot with different samples. This is mainly due to the different length of 

samples packed in the column and the diameter of the column used, and also due to the 

variable mass of samples used in the experiments. Other studies found that the 

breakthrough volume and time of elution curves were dependent on bed height and flow 

rate (Chen et al. 2011; Ramesh et al. 2011; Chowdhury et al. 2012; Nwabanne and 

Igbokwe 2012). The steeper curves were obtained after breakthrough volume with lower 

bed height and the breakthrough time decreased with increasing flow rates. 
 

The amount of samples (d.m.) packed in the column varied from experiment to 

experiment, thus the contents of the metal ions adsorbed to the materials cannot directly 

be read and compared from the elution curves. Table 6 summarizes the operating 
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capacities of the materials studied and the concentrations of each alkaline earth metal ion 

adsorbed under the experimental conditions.  

 

Table 6. Operating capacities and concentrations of each metal ion adsorbed to pulp and bark 
samples. Weights (d.m.) of samples packed in column also included in the table. 

Materials 
Weight

g 

Ba 

µeq/g 

Ca 

µeq/g 

Sr 

µeq/g 

Mg 

µeq/g 

Operating 
Capacity 

µeq/g 

Untreated TMP 5.0 15 13 11 8.9 48 

Alkali-treated TMP 6.6 24 19 16 11 70 

Peroxide-bleached TMP 7.7 27 22 19 13 81 

Unbleached softwood pulp 11.7 9.6 8.4 8.1 8.2 34 

Oxygen-delignified softwood pulp 6.0 13 12 11 11 47 

Unbleached hardwood pulp 16.1 14 14 13 9.6 51 

Oxygen- delignified hardwood pulp 7.9 13 13 11 10 47 

Inner bark of spruce 2.1 140 120 89 41 390 

Outer bark of spruce 2.0 90 88 58 21 257 

 
 

It can be seen in Table 6 that different materials show different sorption capacities 

(operating capacities) for alkaline earth metal ions in these sorption experiments. The 

peroxide-bleached TMP has a higher operating capacity than the alkali-treated TMP, 

followed by the untreated TMP. This indicates that of the mechanical pulps studied the 

peroxide-bleached TMP has highest number of binding sites (acid groups). This agrees 

well with the results obtained from potentiometric acid-base titrations given in Table 5. In 

those sorption experiments with chemical pulps, the operating capacity of the softwood 

kraft pulps (unbleached) is lower than that of the hardwood kraft pulps (unbleached). The 

oxygen-delignified softwood pulps show a higher sorption capacity than the unbleached 

softwood pulps. However for hardwood pulps, the sorption capacities of the unbleached 

and oxygen-delignified pulps are similar. In the experiments with spruce bark, the inner 

bark of spruce has a higher operating capacity for the alkaline earth metal ions than its 

outer bark, but both the inner bark and the out bark show much higher operating capacity 

than the wood and pulp materials. The results in this part show that the operating 

capacities of the materials are generally related to the total concentrations of their acid 

groups. The more acid groups are in the material, the higher is the operating capacity.  

 

From Table 6 it can also be observed that in the all sorption experiments with alkaline 

earth metal ions the concentrations of barium adsorbed to pulp and bark are the highest 
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and the concentrations of magnesium are the lowest. Calcium and strontium are adsorbed 

approximately in equal amounts to pulp samples, but in clearly different amounts to bark 

samples. The concentration of calcium ions in bark is much higher than that of strontium 

ions. Of the alkaline metal ions, therefore, barium is the strongest bound and magnesium 

the weakest bound to the pulp and bark materials. Calcium ions are bound stronger than 

strontium ions to bark sample, but their affinity to kraft pulps is similar. From Table 6 the 

following general affinity order can also be estimated: 

For mechanical and kraft pulps: Ba2+ ≥ Ca2+ ≥ Sr2+ > Mg2+ 

For spruce bark: Ba2+ > Ca2+ > Sr2+ > Mg2+. 

 

6.3.2. Sorption of Cd, Zn, Ni, Mn, Ba, Sr, Ca, Mg, Rb, K, Na and Li ions 

Figure 20 shows the elution curves obtained from the sorption experiments with wood, 

pulp and bark materials using a solution containing Cd2+, Zn2+, Ni2+, Mn2+, Ba2+, Sr2+, 

Ca2+, Mg2+, Rb+, K+, Na+ and Li+. It can clearly be observed in this figure that for all the 

materials studied cadmium ions have the broadest elution curves and the highest 

concentration peaks, followed by Zn2+ and then Ni2+. Thus these metal ions are most 

strongly bound in these sorption experiments. The differences in the elution curves of 

alkaline earth metal ions are not as clear as they showed in Figure 19. This is due to the 

competition with the strongly binding metal ions, e.g. Cd2+ and Zn2+, to the functional 

groups in samples. Of the divalent metal ions, magnesium shows the narrowest elution 

curves with the lowest concentration peaks. The alkali metal ions, i.e. Rb+, K+, Na+ and 

Li+, show the smallest concentration peaks in the elution curves. With the scale used for 

the y-axis, their elution curves are almost invisible for some samples, e.g. the untreated 

and the alkali-treated TMP. They were first completely eluted out from the column and 

thus most weakly bound to the materials studied in these experiments. From the elution 

curves in Figure 20 the following affinity order can roughly be established for all 

materials studied: Cd2+ > Zn2+ > Ni2+ > Ba2+, Mn2+, Sr2+, Ca2+ > Mg2+ > Rb+, K+, Na+, Li+. 

 

Comparing the different types of materials studied, the elution curves of Cd2+ and Zn2+ 

are quite well separated from those of the other metal ions for wood and bark materials 

(Figure 20). This might be mainly due to the type of acid groups and also the total content 

of acid groups involved in the sorption experiments. The masses of wood samples packed 

in the column were much higher than of other samples (Table 7), leading to higher total 

number of binding sites participating in the sorption experiments. The bark materials have 

much higher contents of acid groups than the other materials used (Table 5), also leading 

to more binding sites involved in the column sorption experiments. For the unbleached 

softwood pulps the differences in the elution curves of metal ions studied are less 

noticeable, since the concentration of acid groups in this type of pulps is lower and also a 

lower amount of sample was used for the sorption experiments.  
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Figure 20. Concentrations of 12 metal ions in the collected fractions as function of the elution 

volume for wood, pulp and bark samples. 
 
 

In the experiments with the wood materials (same amount of birch and spruce samples 

were used), birch shows the lowest concentration peaks in the elution curves of the heavy 

metal ions, i.e. Cd2+, Zn2+ and Ni2+. In the experiments with the mechanical pulps, the 

untreated TMP bound lower content of metal ions and shows the smallest elution curves 

for all the metal ions studied. This means that the total number of metal ion binding sites 

is lower in the sorption experiment with the untreated TMP, compared to that in the 

experiments with the alkaline-treated and peroxide-bleached TMP. In the experiments 

with bark materials, the outer bark bound less metal ions and shows the smaller elution 
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curves compared to the inner bark. This result indicates that the outer bark has the lower 

concentration of acid groups than the inner bark. This was also shown by the 

potentiometric pH titrations (Table 5). 
 

Table 7 summarizes the operating capacities of different materials studied and the 

concentrations of the 12 metal ions bound in these sorption experiments. The dry masses 

of the samples used in the column sorption experiments are also included in Table 7. In 

these sorption experiments the operating capacity of spruce is slightly higher than that of 

birch. The native wood of spruce shows the lower operating capacity than its mechanical 

pulps (untreated TMP) and its kraft pulps (unbleached softwood pulps). Of the 

mechanical pulps, the operating capacity of the untreated TMP is 51 µeq/g. The alkaline 

treatment and the peroxide bleaching of the untreated TMP increased the sorption 

capacity by 59% and 84%, respectively. Both the inner bark and outer bark of spruce 

show much higher sorption capability than the wood and pulp materials. The operating 

capacity of inner bark of spruce is higher than that of outer bark. The operating capacities 

of most materials obtained in these experiments with 12 metal ions (Table 7) are higher 

than the results obtained in the sorption experiments with alkaline earth metal ions (Table 

6). 

 

From Table 7 it can be seen that for all the studied materials Cd2+, followed by Zn2+ and 

Ni2+, are strongest bound. For other divalent metal ions in these sorption experiments, the 

differences in their binding strength are quite small, but can still be distinguished in Table 

7. The sorption of monovalent metal ions to materials is minimal when also divalent 

metal ions are present in the loading solution. The concentrations of alkali metal ions 

bound to samples are thus very low, in some cases even lower than the detection limit of 

the analytical method used. According to the concentrations of metal ions bound to the 

materials (Table 7), the following affinity orders were obtained: 
 
For wood particles: Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ ≥ Mn2+ ≥ Sr2+ > Mg2+ > 

Rb+~K+~Na+~Li+ 

For mechanical pulps: Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Mn2+ ≥ Sr2+ > Mg2+ > 

Rb+~K+~Na+~Li+ 

For chemical pulps: Cd2+ > Zn2+ > Ni2+ > Ba2+ > Mn2+ ≥ Ca2+ >Mg2+ > Rb+~K+~Na+~Li+ 

For bark materials: Cd2+ > Zn2+ > Ni2+ > Ba2+ ≥ Ca2+ > Sr2+ > Mn2+ > Mg2+ > 

Rb+~K+~Na+~Li+ 
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6.3.3. Sorption of Pb, Cu, Cd, Zn, Ni, Mn, Ba, Sr, Ca, Mg, Rb, K, Na and 
Li ions 

In this section, the sorption results will be discussed when Pb2+ and Cu2+ were added to 

the loading solution described in the previous section. In these experiments, there will be 

a sorption competition between 14 different metal ions. Figure 21 shows the elution 

curves obtained for wood, pulp and bark materials. Of the 14 metal ions studied Pb2+ and 

Cu2+ are clearly most strongly bound to all the samples studied. They dominate the 

sorption process in these sorption experiments. The presence of lead and copper ions 

radically decrease the sorption of the other metal ions in the mixture. With the scale used 

on the y-axis in Figure 21 the elution curves for the other 12 metal ions are small and 

somewhat overlap. The affinity order of the twelve other metal ions thus cannot 

accurately be established from these experiments. From the elution curves obtained in 

these sorption experiments, only the following affinity order can be established: Pb2+ >> 

Cu2+ >> Cd2+.  

 

It can also be observed in Figure 21 that for bark materials the separation of the elution 

curves of Pb2+ and Cu2+ is not as big as observed between the elution curves of these two 

metal ions obtained for wood and pulp materials, even though bark has much higher 

concentration of acid groups (binding sites, Table 5). The reason might be that the 

functional groups participating in the sorption reactions in bark are different from that in 

wood and pulp materials. It has been stated that bark tannins were active species in the 

metal sorption processes (Randall et al. 1974; Vázquez et al. 1994).  
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Table 8 summarizes the operating capacities of the materials studied and the 

concentrations of different metal ions adsorbed to the samples in the sorption experiments 

with 14 metal ions. It can be seen that the operating capacity of spruce heartwood is 

slightly higher than that of spruce sapwood. This is mainly due to the higher 

concentration of acid groups in the heartwood of spruce. Both the heartwood and 

sapwood of spruce exhibit slightly higher operating capacities than birch. In these 

sorption experiments with 14 metal ions the operating capacities of wood materials are 

lower than these of their mechanical pulps and chemical pulps. Of the mechanical pulps, 

the untreated TMP shows a lower operating capacity than the alkali-treated and 

peroxided-bleached TMP. The alkaline treatment of mechanical pulps increases the 

content of acid groups, thus resulting in a higher operating capacity of the alkaline-treated 

TMP than the untreated TMP. Peroxide bleaching of mechanical pulps in alkaline 

condition further increases the operating capacity by producing some new acid groups. It 

can be seen in these sorption experiments that the alkaline treatment increased the 

operating capacity by 52% and the peroxide bleaching by 94%. Of the chemical pulps, the 

hardwood kraft pulps show higher operating capacities than the softwood kraft pulps 

when using similar metal ion mixtures to load the samples. This is most probably because 

of that the hardwood kraft pulps have a higher concentration of acid groups. The 

operating capacities of the unbleached and oxygen-delignified kraft pulps do not differ 

significantly in these sorption experiments.  

 

The operating capacities of bark materials are much higher than those of wood and pulp 

materials. This is due to the fact that much more acid groups were found in bark (Table 5). 

Of the spruce bark, the inner bark shows stronger adsorption tendency to most metal ions 

than the outer bark, since more acid groups were found in the inner bark of spruce. 

 

For all the materials studied in these experiments, Pb2+ and Cu2+ are strongly bound and 

they clearly dominate the sorption process. The other metal ions are adsorbed to the 

materials in rather low concentrations (Table 8). Approximately 51-54% of the active 

binding sites (operating capacity) in wood materials are occupied by lead, in TMP 

materials 44-46%, in kraft pulp materials 40-55 % and in bark materials 51-53%. The 

concentrations of copper adsorbed stands for 23-29% of the operating capacities of wood 

and pulp materials, and 37-38% of bark materials. From Table 8, the following affinity 

order can be established for all the materials studied: Pb2+ >> Cu2+ >> Cd2+ > Zn2+ > Ni2+. 

For the rest of the metal ions studied in these experiments, their affinity order cannot 

accurately be distinguished from each other because their sorption is so much decreased 

by the presence of Pb2+ and Cu2+. However their affinity order has already been 

established with loading solutions described in the previous sections (Tables 6 and 7).  

 



 

   
 T

ab
le

 8
. O

pe
ra

ti
ng

 c
ap

ac
it

ie
s 

an
d 

co
nc

en
tr

at
io

ns
 o

f 1
4 

di
ff

er
en

t m
et

al
 io

ns
 a

ds
or

be
d 

to
 w

oo
d,

 p
ul

p 
an

d 
ba

rk
 s

am
pl

es
. W

ei
gh

ts
 (

d.
m

.)
 o

f s
am

pl
es

 p
ac

ke
d 

in
 

th
e 

co
lu

m
n 

ar
e 

al
so

 in
cl

ud
ed

 in
 th

e 
ta

bl
e.

 

M
at

er
ia

ls
 

W
ei

gh
t

g 

P
b 

µ
eq

/g
 

C
u

 

µ
eq

/g

C
d 

µ
eq

/g

Z
n 

µ
eq

/g

N
i 

µ
eq

/g

M
n

 

µ
eq

/g

B
a 

µ
eq

/g
 

S
r 

µ
eq

/g

C
a 

µ
eq

/g

M
g 

µ
eq

/g

R
b 

µ
eq

/g

K
 

µ
eq

/g

N
a 

µ
eq

/g

L
i 

µ
eq

/g

O
pe

ra
tin

g 
ca

pa
ci

ty
 

µ
eq

/g
 

B
ir

ch
 

18
.2

 
22

 
12

 
2.

0 
1.

6 
1.

2 
0.

9 
1.

1 
0.

8 
0.

8 
0.

6 
0.

1 
bd

l 
bd

l 
0.

1 
43

 

S
pr

u
ce

 s
ap

w
oo

d 
18

.1
 

26
 

13
 

2.
0 

1.
7 

1.
2 

0.
8 

1.
1 

0.
7 

0.
8 

0.
6 

bd
l 

bd
l 

bd
l 

bd
l 

48
 

S
pr

u
ce

 h
ea

rt
w

oo
d 

18
.2

 
28

 
15

 
2.

0 
1.

8 
1.

3 
0.

8 
1.

1 
0.

8 
0.

8 
0.

6 
0.

1 
0.

1 
bd

l 
0.

1 
53

 

U
n

tr
ea

te
d 

T
M

P
 

5.
0 

27
 

16
 

3.
7 

3.
1 

2.
5 

2.
0 

2.
4 

1.
9 

1.
9 

1.
5 

/ 
bd

l 
bd

l 
/ 

62
 

A
lk

al
i-

tr
ea

te
d 

T
M

P
 

6.
6 

42
 

27
 

5.
1 

4.
6 

3.
4 

2.
6 

3.
3 

2.
4 

2.
5 

1.
9 

/ 
0.

1 
0.

1 
/ 

94
 

P
er

ox
id

e-
bl

ea
ch

ed
 T

M
P

 
7.

7 
55

 
33

 
5.

7 
5.

1 
3.

8 
2.

8 
3.

7 
2.

7 
2.

5 
2.

0 
/ 

bd
l 

bd
l 

/ 
12

0 

U
n

bl
ea

ch
ed

 s
of

tw
oo

d 
pu

lp
 

3.
5 

26
 

16
 

4.
0 

3.
8 

/ 
2.

9 
3.

2 
/ 

/ 
2.

6 
/ 

/ 
0.

1 
/ 

58
 

O
xy

ge
n

-d
el

ig
n

if
ie

d 
so

ft
w

oo
d 

pu
lp

 
6.

0 
33

 
17

 
4.

2 
3.

3 
3.

4 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

60
 

U
n

bl
ea

ch
ed

 h
ar

dw
oo

d 
pu

lp
 

13
.6

 
31

 
18

 
4.

9 
4.

3 
3.

9 
3.

3 
3.

1 
3.

4 
3.

5 
2.

4 
0.

2 
0.

2 
0.

1 
bd

l 
78

 

O
xy

ge
n

- 
de

lig
n

if
ie

d 
h

ar
dw

oo
d 

pu
lp

 
18

.3
 

32
 

16
 

5.
7 

4.
8 

/ 
3.

7 
4.

3 
/ 

/ 
3.

3 
/ 

/ 
0.

5 
/ 

70
 

In
n

er
 b

ar
k 

of
 s

pr
u

ce
 

2.
1 

19
0 

14
0 

10
 

9.
8 

5.
0 

3.
0 

4.
0 

2.
7 

2.
7 

1.
6 

/ 
0.

1 
bd

l 
0.

1 
37

0 

O
u

te
r 

ba
rk

 o
f 

sp
ru

ce
 

2.
0 

14
0 

99
 

6.
0 

5.
7 

3.
4 

1.
9 

3.
0 

2.
1 

3.
3 

1.
1 

/ 
bd

l 
0.

1 
0.

1 
27

0 

bd
l -

 b
el

ow
 d

et
ec

tio
n 

lim
it

 
/ -

 n
ot

 in
cl

ud
ed

 in
 th

e 
m

ix
tu

re
s 

Results and Discussion 

53 



Results and Discussion 

 

 
54 

The affinity series obtained for various tree-related materials in this thesis are in good 

agreement with those presented by other authors in literatures. Saeed et al. (2005) studied 

adsorption of metal ions from contaminated water by papaya wood. They found the 

following sorption order: Cu2+ > Cd2+ > Zn2+. Lim et al. (2008) found the affinity order of 

metal ions to the sawdust of Pinus koraiensis: Pb2+ > Cu2+ > Zn2+. A very similar affinity 

orders for spruce wood were also obtained by Marin and Ayele (2002; 2003): Pb2+ > 

Cu2+ > Cd2+ > Zn2+ > Ni2+. Pine bark has been reported to have the following order for 

uptake of metal ions: Pb2+ > Cu2+ > Cd2+ > Ni2+ (Gundogdu et al. 2009). The affinity of 

Pb2+ to Moringa oleifera bark was also found to be much higher than that of Ca2+ and 

Mg2+ (Reddy et al. 2010).  

 
.
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6.3.4. Sorption of Fe, Pb, Cu, Cd, Zn, Ni, Mn, Ba, Sr, Ca, Mg, K, Na and 
Li ions 

The sorption of Fe3+ and Fe2+, respectively together with the other 14 metal ions 

discussed earlier, is discussed in this section. Figure 22 shows the elution curves obtained 

from sorption experiments with trivalent iron on wood and bark samples. The elution 

profiles of Fe3+ differ clearly from the elution curves of the other metal ions. A huge 

concentration peak with a strong tailing can be seen in the elution curves of Fe3+. The 

elution curves of Pb2+ and Cu2+ are small, however, for the rest of the metal ions the 

elution curves are hardly visible with the scales used in Figure 22. It can be concluded 

from these elution curves obtained in the sorption experiments that trivalent iron ions are 

most strongly bound to all the materials studied, much stronger than Pb2+ and Cu2+. The 

long Fe3+ tails at the end of the chromatogram may be due to the presence of trivalent iron 

hydroxide and other precipitates formed on the solid phase of samples. The remaining 

trivalent iron ions in the column are difficult to remove completely, even with a large 

volume of nitric acid. From these elution curves in Figure 22, the following affinity order 

can be obtained: Fe3+ >> Pb2+ >> Cu2+ > Cd2+.  

 

A sorption experiment including divalent iron (Fe2+) with spruce sapwood is presented in 

Figure 23. It can be seen that the elution curves obtained in this experiment completely 

differs from those obtained in sorption experiments including Fe3+. In this column 

experiment Fe2+ was found to have a lower affinity than Cu2+. A clear tailing is also 

observed in the elution curve of Fe2+, which probably is due to the oxidization of a part of 

Fe2+ to Fe3+. The trivalent iron ions then form salts of low solubility in the column, as 

discussed in the previous paragraph. The sorption experiment including Fe2+ gave the 

following affinity order for spruce sapwood (Figure 23): Pb2+ >> Cu2+ >> Fe2+ > Cd2+. 
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Figure 22. Concentrations of trivalent iron and 14 other metal ions in the collected fractions as 
function of the elution volume for wood and bark samples. 
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Figure 23. Concentrations of divalent iron and 14 other metal ions in the collected fractions as 

function of the elution volume for spruce sapwood. 
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Table 9 summarizes the operating capacities of the materials studied and the 

concentrations of each metal ion bound in the sorption experiments described in this 

chapter. In the sorption experiments with Fe3+, the trivalent iron ions dominate the 

sorption process and very strongly adsorbed to the wood and bark materials. The 

operating capacity of wood materials is in the range 40-61 µeq/g, and over 90% is due to 

the sorption of trivalent iron. Inner bark and outer bark of spruce have the operating 

capacities of 427 and 303 µeq/g, respectively, and approximately 78% originates from the 

sorption of Fe3+. The presence of Fe3+ in the loading solution depresses to a large extent 

the sorption of the other 14 metal ions. Even lead and copper generally having relatively 

strong affinity become less competitive in these experiments. For wood material, lead and 

copper ions stand for only ca. 4% respectively ca. 2% of the operating capacity. Their 

contributions to the sorption capacity of bark materials are somewhat higher, ca. 10% and 

ca. 5% respectively. In these sorption experiments, the affinity of the meal ions studied 

has the following order to the wood and bark materials: Fe3+ >> Pb2+ > Cu2+ > Cd2+ etc. 

 

Table 9 also summarizes the results obtained from the sorption experiment with spruce 

sapwood in which Fe2+ was included in the loading solution. The sorption capacity of 

spruce wood for Fe2+ is much less than for Fe3+ (5.8 µeq/g for Fe2+ and 33 µeq/g for Fe3+). 

In this experiment, Pb2+ and Cu2+ are the main metal ions bound to the spruce sapwood. 

Based on the results in Table 9 the following affinity order of metal ions in this loading 

mixture can be established for spruce sapwood: Pb2+ >> Cu2+ >> Fe2+ > Cd2+ etc.  
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6.3.5. Sorption of Rb, K, Na and Li ions 

As discussed earlier the alkali metal ions are the most weakly bound ions to tree-related 

materials and are first eluted from the column. When divalent metal ions are present in 

the loading solutions, the concentration of alkali metal ions bound to the solid phase is too 

low to obtain any reliable order of affinity between them. The alkali metal ions were 

therefore studied in separate sorption experiments with TMP materials containing only 

these metal ions (Paper II). The elution curves are shown in Figure 24 (Figure 3 in Paper 

II). For the untreated TMP, the shapes of the elution curves are almost symmetrical 

(Gaussian). For the alkali-treated and peroxide-bleached TMP, the elution curves of the 

alkali metal ions, however, are distorted and not symmetrical any more. The asymmetry is 

even more pronounced for the peroxide-bleached TMP. These experiments gave the 

following affinity order: Rb+ > K+ > Na+ > Li+. 

 
 

100 200 300
0.0

0.5

1.0

1.5

100 200 300
0.0

0.5

1.0

1.5

100 200 300
0.0

0.5

1.0

1.5

2

4

6

Li+
Na+

K+

V, mlV, ml

C
, 

m
m

o
l/l

V, ml

Rb+

UntreatedTMP

pH

Alkali-treatedTMP

Rb+

K+

Na+

Li+

Na+

Peroxide-bleachedTMP

Li+

Rb+

K+

 
Figure24. Concentrations of alkali metal ions in the collected fractions as function of the elution 

volume for TMP (Figure 3 in Paper II). 
 

 

6.3.6. Sorption of metal ions to a synthetic cation exchanger and to pure 
cotton fibers 

The sorption properties of a synthetic weakly acidic cation exchanger and pure cotton 

fiber were studied in order to compare with the sorption properties of wood, pulp and 

bark materials. The weakly acidic cation exchanger used is Amberlite IRC-76 (Sigma, 

USA), which contains carboxyl groups as the functional groups. The cotton fibers (Tamro 
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Oyj, Finland) used are of chemically purified cotton bud and are used for medical 

purposes. Due to the higher capacities of Amberlite IRC-76 (11 meq/g) compared to the 

wood, pulp and bark materials, the concentration of each metal ions in loading solution 

was 0.05 M. The concentration of nitric acid used to elute the bound metal ions was 0.01 

M. A comparison between the ion-exchange properties of wood materials and a synthetic 

weakly acidic cation exchanger was made in Paper I. 

 

The elution curves of metal ions obtained with the weakly acidic cation exchanger is 

shown in Figure 25. Three different sorption experiments were done with the synthetic 

resin. Both similarities and differences compared with the sorption data obtained for the 

wood, pulp and bark materials can be observed. The elution curves of the alkaline earth 

metal ions (Figure 25a) are more separated and the content of the metal ions bound are 

clearly different. The affinity order of the metal ions for the synthetic resin is: Ba2+ > Sr2+ > 

Ca2+ > Mg2+, which is quite similar to that obtained for the tree-related materials, only the 

order between Sr2+ and Ca2+ is exchanged. Figure 25b presents the elution curves for the 

sorption experiment with a metal ion mixture containing Cd2+, Zn2+, Ni2+, Mn2+, Ba2+, 

Sr2+, Ca2+, Mg2+, K+, Na+ and Li+. It can be seen that Cd2+ are clearly most strongly 

bound to the weakly acidic cation exchanger. The elution curves of the monovalent metal 

ions can be distinguished from each other and are more separated than when wood, pulp 

and bark materials were studied. Their maximum concentration peaks occur in the 

beginning of the elution and they were eluted out from column before the divalent metal 

ions. Figure 25c presents the elution curves for the sorption experiment with a metal ion 

mixture containing Pb2+, Cu2+, Cd2+, Zn2+, Ni2+, Mn2+, Ba2+, Sr2+, Ca2+, Mg2+, K+, Na+ 

and Li+. In this experiment Pb2+ and Cu2+ are clearly most strongly bound to the synthetic 

weakly acidic cation exchanger. The elution curve of barium is below of cadmium, but 

higher than of other metal ions in the mixture. By combining the results from the 

experiments with these three different metal ion mixtures, the following affinity order can 

be obtained for sorption of metal ions to the weakly acidic cation exchanger: Pb2+ >> 

Cu2+ >> Cd2+ >> Ba2+ > Sr2+ > Zn2+, Ca2+, Ni2+, Mn2+ > Mg2+ > K+ > Na+ > Li+.  

 

By comparing the above order with the affinity series determined for wood, pulp and bark 

materials in the present work, it can be observed that the affinity of the alkaline earth 

metal ions of Ba2+ and Sr2+ to the synthetic weakly acidic cation exchanger are stronger 

than the affinity of Zn2+ and Ni2+. The differences in affinities for the natural materials 

(i.e. wood, pulp and bark) and the synthetic exchanger are probably best explained by 

their different types of functional groups. The synthetic resin contains only one type of 

carboxyl groups. Wood, pulp and bark as natural materials contain more than one type of 

carboxyl groups, and also contains different phenolic hydroxyl groups (Tables 4 and 5). 

The complexity of functional groups in natural materials probably increases their relative 

affinity to the transition metal ions, such as Pb2+, Cu2+, Cd2+, Zn2+, and Ni2+, compared to 
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the alkaline earth metal ions. In addition, the big differences in the concentrations of the 

acid groups (total capacities) can also affect the sorption properties of the materials 

studied. 
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 Figure 25. Concentrations of metal ions and pH in the collected fractions as function of the 
elution volume for the weakly acidic cation exchanger Amberlite IRC-76. 

 

 

Figure 26 shows the elution curves of metal ions from a column filled with the pure 

cotton fibers. The elution curves have similar shapes and the retention times of the metal 

ions are the same. The concentration of adsorbed metal ions is, however, different for 

each cation. For the alkaline earth metal ions the affinity order to the cotton fibers can be 

established to: Ba2+ > Ca2+ > Sr2+ > Mg2+, which is same as that obtained for the wood, 

pulp and bark materials. For the metal ions in the experiment shown in Figure 26b the 

affinity order is: Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Mn2+ ~ Sr2+ > Mg2+. The 

concentrations of the eluted alkali metal ions of K+, Na+ and Li+ were below the detection 

limit of the analytical method used. Figure 26c shows the elution curves for sorption 

experiment with a metal ion mixture containing Pb2+, Cu2+, Cd2+, Zn2+, Ni2+, Mn2+, Ba2+, 
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Sr2+, Ca2+, Mg2+, K+, Na+ and Li+. It can be seen that the highest affinity to the pure 

cotton fibers is shown by Pb2+ and then by Cu2+. The elution profiles in Figure 26c are 

slightly tilted and not strictly symmetrical anymore. The elution curves of lead and copper 

ion in Figure 26c are clearly shifted from the rest of the curves due to much stronger 

sorption of these ions to cotton fibers. In all these three experiments the pH drops from ca. 

4.5 to 2.4 during elution of the metal ions from the column. 
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 Figure 26. Concentrations of metal ions and pH in collected fractions as function of the elution 
volume for pure cotton fibers. 

 

 

Table 10 summarizes the concentrations of metal ions adsorbed to the weakly acidic 

cation exchanger (Amberlite IRC-76) and to pure cotton fibers. The operating capacities 

of these materials obtained in the different experiments are also shown in this table. For 

the experiments with alkaline earth metal ions, the pH of the loading solution is ca. 5.4 

and approximately 1.2 meq metal ions in total are bound to per gram of the weakly acidic 

cation exchanger (ca. 11% of the total capacity of 11 meq/g). For the experiments with 

mixture 4 (Table 10) the pH of the loading solution is ca. 3.2 and approximately 2.7 

meq/g of metal ions is adsorbed (ca. 25% of the total capacity). The operating capacity 
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obtained from experiments with mixture 3 (Table 10) is ca. 1.7 meq/g (ca. 15% of the 

total capacity). All the values of the operating capacities are clearly below the total 

capacity of the weakly acidic cation exchanger, ca. 11 meq/g. From the results showed in 

Table 10, the following affinity order can be obtained for the synthetic acidic cation 

exchanger: Pb2+ >> Cu2+ >> Cd2+ >> Ba2+ > Sr2+ > Zn2+ > Ca2+ ≥ Ni2+ > Mn2+ > Mg2+ > 

K+ > Na+ > Li+.  

 

Cotton fibers are mainly of cellulose, except of small amount of pectin.  They only 

contain a small amount of acid groups, resulting in very low sorption capacities (only 6-

15 µeq/g, Table 10). The affinity order obtained for the pure cotton fibers is quite similar 

to the order obtained for the wood, pulp and bark materials, i.e. Pb2+ > Cu2+ > Cd2+ > 

Zn2+ > Ni2+ > Ba2+ > Ca2+ > Mn2+ ~ Sr2+ > Mg2+. 
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6.3.7. Effect of pH on metal ion sorption 

Dissociation of the acid groups in the solid phase of samples is associated with the pH of 

the surrounding solution. Therefore the content of metal ions adsorbed to the materials 

studied is expected to be affected by the pH of the loading solution in Step 3 (Figure 17). 

The effect of pH on the metal sorption has been studied in Paper II. The sorption 

experiments were carried out at pH 4.5, 8 and 10, by applying the loading solution of 

Ba2+, Sr2+, Ca2+ and Mg2+ to the peroxide-bleached TMP. The study shows that the 

adsorption capacity increases with increasing pH of the loading solution. This is due to 

the fact that the competition of hydrogen ions to the binding sites on the material is 

reduced with the increasing pH of the solution. The sorption capacity of the untreated 

TMP is 80 µeq/g at pH 4.5. It increased by ca. 2.5% to 82 µeq/g at pH 8, and at pH 10 

increased by ca. 21% to 97 µeq/g. The higher capacity at pH 10 is also probably due to 

the contribution of phenolic groups to the metal complexation in the pulp phase. The 

effect of pH on the sorption of metal ions to the peroxide-bleached TMP was also studied 

with only one metal ion, i.e. Mg2+, present in the loading solution. The experiments were 

performed at pH 5.5 and 8. The operating capacity obtained at pH 5.5 is 77 µeq/g and it 

increased by 47% to 110 µeq/g when the pH of the Mg2+ solution was increased to 8.  

 

There are several studies reporting that the pH of aqueous solution is the most important 

parameter governing the sorption process (Saeed et al. 2005; Shukla and Pai 2005; Acar 

and Eren 2006; Ahmad et al. 2007; Argun et al. 2007; Reddy et al. 2010; Semerjian 2010; 

Reddy et al. 2011). These studies showed that the sorption of metal ions is favored by 

increasing pH in the solution phase (Ajmal et al. 1998; Gundogdu et al. 2009; Rafatullah 

et al. 2012) and was, in general, explained by the fact that dissociation of the acid groups 

in the solid phase increase with increasing pH, resulting in an increasing sorption capacity 

of the materials (Srinivasa Rao et al. 2007; Öztürk et al. 2009; Ofomaja et al. 2010; 

Hubbe et al. 2011).  

 

The sorption capacities are generally affected by the pH of the loading solution, and the 

sorption capacity for one specific cation is also significantly affected by the presence of 

other cations in the solution. It has been reported earlier that in the experiments with bark 

the optimum pH for Pb2+ sorption was 4, for Cu2+  6, for Cd2+ and Ni2+ 5 and for Zn2+ 6.5 

(Vázquez et al. 1994; Subbaiah et al. 2009). Ahmad et al. (2007) found that in a single-

metal batch system the metal uptake capacity of Pinus roxburghii at pH 6.5 was in the 

order: Zn2+ > Cu2+ > Ni2+ > Cd2+. When all the metal ions were present in equal 

concentrations in the same solution, the selectivity order of these metal ions on the 

adsorbent was: Cu2+ > Cd2+ > Zn2+ ~ Ni2+. Al-Asheh and Duvnjak (1997) reported that in 

a single-metal system at pH 4 the uptake of metal ions by pine bark was observed in the 
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order: Pb2+ > Cd2+ > Cu2+ > Ni2+. In a mixed metal ions system, however, the relative 

affinity of different metal ions was: Pb2+ > Cu2+ > Cd2+ > Ni2+. 

 

6.3.8. Effect of particle size on metal ion sorption 

Birch wood was ground to two different particle sizes of 1-mm and 2-mm, and was used 

to study the effect of particle size of the materials on the metal sorption. A metal solution 

containing Pb2+, Cu2+, Cd2+, Zn2+, Ni2+, Mn2+, Ba2+, Sr2+, Ca2+, Mg2+, Rb+, K+, Na+ and 

Li+ was used as the loading solution in column chromatographic experiments. The results 

of the study show that there is no any notable changing in sorption capacity when the 

particle sizes of the birch were decreased from 2-mm to 1-mm. It has been reported in 

literatures, however, that a decrease in particle size in batch sorption experiments resulted 

in an increase in adsorption capacity, due to a larger available surface area of finely 

ground samples (Al-Asheh and Duvnjak 1997; Ajmal et al. 1998; Ahmad et al. 2005; 

Bulut and Baysal 2006; Naiya et al. 2008). Such an observation was not found in the 

current study with our column sorption experiments.  

 

6.3.9. Effect of mass of materials on metal ion sorption 

Unbleached softwood pulps were used to study the effect of the mass of the materials on 

the metal sorption in the column experiments. The loading solution used for this study 

contained Pb2+, Cu2+, Cd2+, Zn2+, Ba2+, Mn2+, Mg2+ and Na+. Two experiments were 

performed with different adsorbent masses: 13.2 g and 3.5 g. The unbleached softwood 

pulps were found to show a lower operating capacity when more material was packed in 

the column (43 µeq/g vs 58 µeq/g, respectively). The shapes of the elution curves 

obtained for these two experiments, however, were similar. Acar and Eren (2006) have 

shown an increase in the sorption capacity with the increasing material dosage in batch 

system. This may be due to the availability of more adsorption sites on the increased 

surface area. This is in contradiction with our results obtained with column 

chromatographic method.  

 

6.3.10. Competitive sorption of metal ions 

A series of experiments were carried out to investigate the sorption ability of the materials 

in the presence of different combinations of metal ions. Unbleached softwood pulps were 

used for this study. The operating capacity of the unbleached softwood pulps is 59 µeq/g 

when the loading solution contained Zn2+, Ba2+, Mn2+, Ca2+, Sr2+, Mg2+, K+ and Na+. 

When Ba2+ was absent from the loading solution, the corresponding operating capacity 

decreased by 8% to 54 µeq/g. When both Zn2+ and Ba2+ were absent, the corresponding 

operating capacity decreased more (15%) to 47 µeq/g. Results of these experiments 

indicate that the operating capacity of the studied material is slightly decreased when Ba2+ 
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being the second in the affinity series of these metal ions was absent. The operating 

capacity decreased further when Zn2+ having highest affinity in the mixture was not 

present in the loading solution. Results reveal that the sorption capacity of the materials 

obtained is related to the metal ions present in the loading solution. The concentrations of 

each metal ion adsorbed are also influenced by the presence of other metal ions in the 

mixed metal ion system. Similar conclusions have also been obtained in other studies (Al-

Asheh and Duvnjak 1997; Igwe et al. 2005; Gundogdu et al. 2009; Ofomaja et al. 2010). 

 

6.3.11. Regeneration of tree-related materials for metal sorption 

The metal ions bound to the solid phase of three-related materials are replaced by 

hydrogen ions when the column is eluted with dilute nitric acid. Several consecutive 

sorption experiments performed on the same packing of the materials in column show the 

possibility to regenerate the materials used. The metal ions bound to the materials could 

nearly completely be desorbed with a 0.005 M HNO3 solution. During repeated sorption-

desorption experiments for at least three cycles, the sorption capacities of the materials 

remained unchanged or in some cases slightly decreased. Thus from this aspect the 

materials studied could be regarded as potential bio-sorbents for treatments of water 

contaminated with metal ions. The tree-related materials, however, cannot be reused after 

the sorption of iron ions because the insoluble iron precipitates are formed in the solid 

phase, and it is not easy to completely remove all iron ions from the solid phase (Figures 

22 and 23). 

 

Saeed et al. (2005) have found a negligible loss in the sorption capacity of papaya wood 

after several experiments. In some studies, a decrease in the adsorption capacity with an 

increase in the number of loading cycles, relative to the original capacity, has also been 

observed (Bulut and Baysal 2006; Reddy et al. 2011). This might be due to the damages 

of the metal binding sites or the release of small amounts of dissolved organics to 

aqueous phase during sorption processes (Khokhotva and Waara 2010). Gundogdu et al. 

(2009) have found that higher concentration of acid was more efficient in releasing metal 

ions. Some studies have demonstrated that regeneration of sorbing materials can also be 

achieved by using strong base (Shukla and Pai 2005; Chen et al. 2011). 

 

6.3.12. Mass balance in sorption experiments 

In the column experiments, the hydrogen ions that were exchanged by metal ions in 

sorption step (Step 2 in Figure 17) were collected and their total concentration was 

determined by the acid-base titrations. It was found that the number of hydrogen ions 

released to the aqueous phase is equal to the equivalent amount of metal ions bound to the 

solid phase of materials. This confirms that the ion exchange is the main reaction 

mechanism for the sorption of metal ions to tree related-materials. 
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During sorption-desorption experiments, the number of each metal ion that was loaded to 

the column (Step 2 in Figure17), not bound in the collected solution in Step 3 (Figure17) 

and bound to the solid phase in the column (Step 4 in Figure17) were determined. Results 

show the mass balance for “input” metal ions and “output” metal ions, i.e. the number of 

the equivalents of the metal ions poured through the materials is equal to the sum of 

equivalents of the metal ions bound and not bound to the materials. This confirms the 

validity of the analytical method and the quality of the ion exchange procedure used. An 

example of the mass balance of a column sorption-desorption experiment is shown in 

Table 11. The experiment was conducted by using the peroxide-bleached TMP and a 

loading solution containing 14 metal ions.  
 

Table 11. Numbers of moles of metal ions that were loaded to the column, not bound detected in 
the collected solution and bound to the solid phase in experiments with peroxide-bleached TMP. 

Metal ions 
in loading solution 

Pb Cu Cd Zn Ni Mn Ba Sr Ca Mg K Na 

Cload (mmol) 1.28 1.24 1.34 1.38 1.31 1.29 1.33 1.31 1.26 1.28 1.04 1.06

Cunbound (mmol) 1.05 1.11 1.31 1.37 1.29 1.27 1.35 1.25 1.29 1.27 1.06 1.08

Cbound (umol) 211 125 22 19 15 11 14 10 10 8 bdl bdl 

Csum (mmol) 1.26 1.24 1.33 1.38 1.30 1.28 1.36 1.26 1.30 1.27 1.06 1.08

Cload - content of metal ions loaded to the column 
Cbound - content of metal ion bound to the solid phase of pulp 
Cunbound - content of metal ions not bound 
Csum - sum of content of metal ions bound and not bound  
 
 
6.4. Distribution of metal ions in single fibers 

In Paper V the distribution of metal ions in single fibers was investigated by the laser 

ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The single fibers 

studied were of softwood kraft pulps sampled from a Finnish pulp mill. The metal ions of 

interest are K, Mg, Mn, Zn, Cu and Fe. Figure 27 presents the distribution patterns of 

metal ions in single unbleached and oxygen-delignified softwood kraft pulp fibers. As can 

be seen in these figures, the metal ions of K, Mn, Zn and Cu are quite smoothly 

distributed. The even distribution patterns indicate that the metal ions are mainly attached 

to the acid groups in fibers, for example to the carboxylic groups. Magnesium ions are 

also quite evenly distributed, but several distinct peaks can even be observed in the 

distribution curves. Snickars et al. (2001) have explained that this is probably due to 

particles deposited on the fiber when magnesium salts were added to the pulping process. 

It also might result from the fiber fragments from the bulk of fibers.  
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The distribution of iron ions is rather uneven with quite sharp peaks, which obviously is 

due to the formation of iron oxide deposits on fibers. Iron-containing particles originating 

from the process equipments may also be found in fibers and caused the distribution 

peaks. The distribution pattern of metal ions varies between different single fibers, due to 

the inhomogeneous characteristics of pulps. 
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Figure 27. Concentrations and distribution of metal ions in single softwood kraft pulp fibers 
determined by LA-ICP-MS. 

 
 

Among the metal ion studied, potassium was found in the highest concentration. The 

concentration of zinc is higher than that of magnesium, followed by copper. The 

concentration of copper is slightly higher than that of manganese. Comparing the metal 

distribution patterns in Figure 27, the concentrations of metal ions in single oxygen-

delignified softwood fibers are in general higher than those in single unbleached softwood 

fibers. This may be explained by the formation of some new carboxylic acid groups 

during bleaching processes resulting in increased amount of metal ion adsorbed on fibers.  
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7. Conclusion 

Metal ions are known to have detrimental effects on the processes in the papermaking 

mills. From the environmental point of view they also are harmful to human beings and 

other living organics when their concentrations exceed certain thresholds. In this thesis, 

different tree-related materials (wood, pulp and bark) were investigated for their 

concentrations of acid groups and their sorption capacities for different metal ions. Both 

batch and column chromatographic methods were used for sorption/desorption 

experiments. 

 

The functional groups (acid groups) in the materials studied are key units in the sorption 

processes of metal ions to wood, pulp and bark materials. The sum of the concentrations 

of all the acid groups in the materials is regarded as the total sorption capacity. 

Potentiometric titrations and model calculations showed that tree-related materials 

contain four main types of acid groups, of carboxylic and phenolic types. The total 

concentrations of acid groups in wood materials, untreated mechanical pulps and 

unbleached chemical pulps are not in big difference. The mechanical pulps contain less 

carboxylic acid groups but more phenolic groups than the chemical pulps. The chemical 

treatments of original pulps generally increase the content of their acid groups. It was 

found that the alkali-treated and peroxide-bleached TMP contain more acid groups than 

the untreated TMP. The oxygen delignification of chemical kraft pulps increases the 

content of carboxyl groups. Inner bark and outer bark of spruce show the highest total 

concentrations of acid groups (1.2 mmeq/g and 0.99 meq/g, respectively). 

 

The operating capacity of the tree-related materials in the sorption experiments were 

determined by the column chromatographic techniques by using different metal ion 

loading solutions. The bark materials show the highest sorption capacity for metal ions, 

and wood sawdust (particles) exhibits the lowest sorption capacity. The mechanical and 

chemical treatments of the original materials generally increase their operating capacities. 

All the results showed that the operating capacities of the materials are generally related 

to the concentration of their acid groups. 

 

The operating capacity also depends on the pH of the loading solution and the type of 

metal ions adsorbed on the materials. It was shown that a higher pH favors the adsorption 

of metal ion to materials, resulting in higher operating capacities. The operating capacities 

also increase when metal ions with higher binding affinity are present in the solution.  

 

Studies have shown correlations between the total numbers of weak acid groups in 

materials and the content of all metal ions that can be adsorbed on their solid phase. The 

total sorption capacity (total content of acid groups) obtained by acid-base titrations is 
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usually higher than the operating capacity obtained in sorption experiments. The lower 

operating capacity is mainly due to the fact that the hydrogen ions are competing 

effectively with metal ions for the binding sites on the solid phase of materials, especially 

at lower pH. The phenolic hydroxyl groups are only partially dissociated even at higher 

pH values. Therefore all functional groups are not coordinated by metal ions at slightly 

acidic and neutral pH values. Results from the column sorption experiments showed that 

in the column ion-exchange process the load of the wood particles by metal ions is in the 

range 20-43%, of the mechanical pulps 22-50%, of the bark materials 26-38%, and of the 

synthetic cation exchanger 11-25%. 

 

The sorption-desorption experiments done in this work showed that various metal ions are 

bound to tree-related materials with different strengths. The column chromatographic 

method is a method of competition between metal ions, and even small differences in 

affinities can be detected. Results obtained in this work showed that all materials studied 

have clear selectivity for different metal ions. By combining several sorption experiments 

performed with different metal ions mixtures, the following orders of metal affinities for 

the studied materials were obtained: 

 

For wood samples: Fe3+ >> Pb2+ >> Cu2+ >> Fe2+ > Cd2+ > Zn2+ > Ni2+ > Ba2+ ≥ Ca2+ 

≥ Mn2+ ≥ Sr2+ > Mg2+ > Rb+ ~ K+ ~ Na+ ~ Li+ 

For mechanical pulps: Pb2+ >> Cu2+ >> Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Mn2+ ≥ 

Sr2+ > Mg2+ > Rb+ > K+ > Na+ > Li+ 

For chemical pulps: Pb2+ >> Cu2+ >> Cd2+ > Zn2+ > Ni2+ > Ba2+ > Mn2+ ≥ Ca2+ ≥ Sr2+ > 

Mg2+ > Rb+ ~ K+ ~ Na+ ~ Li+ 

For bark materials: Fe3+ >> Pb2+ > Cu2+ >> Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Sr2+ > 

Mn2+ > Mg2+ >K+ ~Na+ ~ Li+ 

 

The metal ions studied appear to have quite similar affinity orders to all the tree-related 

materials. It can thus be concluded that the main mechanism for sorption of metal ion are 

the same for all the tree-related materials studied. The differences in binding strength of 

metal ions to different materials, however, slightly vary. 

 

It can be seen from the above affinity series that for all the materials studied the 

monovalent metal ions, i.e. alkali metal ions, show the weakest binding affinity. Of 

divalent metal ions, lead and copper ions are most strongly bound. Trivalent irons have 

the highest binding strength. They show completely different sorption behavior to the 

materials compared to the other metal ions studied in this work. In the column 

experiments, trivalent irons could not completely be removed from the materials. This is 

most probably due to that a part of iron ions in the sample is present in salts of low 

solubility.  
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The wood, pulp and bark materials have good metal sorption capacities and the operating 

capacities almost remaine unchanged even after several adsorption-desorption cycles. 

These results indicated that the tree-related materials would be promising bio-sorbents for 

removal of metal ions from aqueous solutions. When metal ions are adsorbed to a 

protonated sample, an equivalent amount of hydrogen ions are released. This confirmed 

that ion exchange is the main mechanism involved in the sorption processes of metal ions 

to tree-related materials.  

 

For comparison, the sorption properties of a commercial synthetic cation exchanger 

(Amberlite IRC-76) and pure cotton fibers were also studied. The adsorption capacities of 

the tree-related materials are lower than that of the synthetic cation acid exchanger resins, 

but much higher than that of the pure cotton fibers. The following affinity order was 

obtained:  

 

For Amberlite IRC-76: Pb2+ >> Cu2+ >> Cd2+ >> Ba2+ > Sr2+ > Zn2+ > Ca2+ ≥ Ni2+ > 

Mn2+ > Mg2+ > K+ > Na+ > Li+  

For cotton fibers: Pb2+ > Cu2+ > Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Mn2+ ≥ Sr2+ > 

Mg2+ > K+ ~ Na+ ~ Li+. 

 

By comparing the above orders with the affinity series determined for wood, pulp and 

bark materials, both similarities and differences can be found. The affinity order of some 

metal ions to the synthetic cation exchanger differs to some degree from the affinity series 

which have been determined for the different tree-related materials. The binding strength 

of different metal ions to the synthetic cation exchanger is distinctly different. The 

affinity order obtained for cotton fibers is similar to that for tree-related materials. 

However, the differences in the affinity of most metal ions to the pure cotton fibers are 

not quite clear. 

 

I hope that the results presented in this thesis have provided new information about 

sorption reactions of metal ions to tree-related materials, i.e. wood, pulp and bark. This 

new information may be of a great use for the metal management in pulping/bleaching 

processes and can also contribute to the application of biomass for removal of heavy 

metal ions in environmental management.  
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