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Abstract

Sample surveys are an inherent part of a democratic society. Every day, impor­
tant decisions are made basing on information that was obtained from a survey. 
Modern sample surveys started to spread after statistician at the U.S. Bureau of 
the Census had developed a sampling design for the Current Population Survey. 
In the beginning of 1950s, the theory was documented in textbooks on survey 
sampling. This thesis is about the development of the statistical inference for 
sample surveys.

For the first time the idea of statistical inference was enunciated by a French 
scientist, Pierre Simon Laplace. In 1781, he published a plan for a partial inves­
tigation in which he determined the sample size needed to reach the desired ac­
curacy in estimation. The plan was based on Laplace’s Principle of Inverse Prob­
ability and on his derivation of the Central Limit Theorem. They were published 
in a memoir in 1774 which is one of the revolutionary papers in the history 
of statistical inference, and its origin. Laplace's inference model was based on 
Bernoulli trials and binominal probabilities. He assumed that populations were 
changing constantly. It was depicted by assuming a priori distributions for param­
eters. Laplace’s inference model dominated statistical thinking for a century.

Selection of the sample in Laplace’s investigations was purposive. In 1894 
in the International Statistical Institute meeting, Norwegian Anders Kiaer pre­
sented the idea of the Representative Method to draw samples. Its idea was that 
the sample would be a miniature of the population.

Arhtur Bowley realized the potentials of the sampling method and in the first 
quarter of the 20th century he carried out several surveys in the UK. As a profes­
sor of statistics, he developed the theory of statistical inference for finite popu­
lations. Bowley’s theory leaned on Edgeworth’s modification of the Laplace’s 
model. Bowley’s theory included also formulas for balanced stratification.

R.A. Fisher contributions in the 1920’s constitute a watershed in the statistical 
science He revolutionized the theory of statistics and initiated estimation and in­
ference theory. In addition, he introduced a new statistical inference model which 
is still the prevailing paradigm. The central idea is based on repeatedly drawing 
samples from the same population, and on the assumption that population pa­
rameters are constants. Fisher’s theory did not include a priori probabilities.

Jerzy Neyman adopted Fisher’s inference model and applied it to finite pop­
ulations with the difference that Neyman’s inference model does not include 
any assumptions of the distributions of the study variables. Applying Fisher’s 
fiducial argument he developed the theory for confidence intervals. In addition, 
Neyman created optimal allocation for stratification.

Neyman’s last contribution to survey sampling presented a theory for double 
sampling. This became the central idea for statisticians at the U.S. Census Bureau 
when they developed the complex survey design for the Current Population Sur­
vey. Important criterion was also to have a method that provided approximately 
equal interviewer workloads, aside of an acceptable accuracy in estimation.
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Tiivistelmä
Otostutkimukset ovat demokraattisen yhteiskunnan luontainen osa. Joka päi­
vä tehdään tärkeitä päätöksiä, jotka perustuvat otostutkimuksista saatuun in­
formaatioon. Nykyaikaiset otantatutkimukset alkoivat levitä sen jälkeen, kun 
Yhdysvaltojen tilastoviraston (Bureau of the Census) tilastotieteilijät olivat 
1940-luvun puolivälissä kehittäneet otanta-asetelman Current Population Sur- 
vey -tutkimuksen tarpeisiin. Menetelmä dokumentoitiin 1950-luvun alussa 
otantateoriaa käsittelevissä oppikirjoissa. Tämä tutkimus käsittelee sitä, miten 
otantatutkimusten tilastollinen päättely kehittyi.

Ranskalainen tiedemies Pierre Simon Laplace muotoili ensimmäisenä tilastol­
lisen päättelyn idean. Vuonna 1781 hän julkaisi osittaistutkimuksen suunnitelman, 
jossa hän määritteli, kuinka suuri otos tarvittaisiin vaaditun estimointitarkkuuden 
saavuttamiseksi. Suunnitelma perustui Laplacen käänteisen todennäköisyyden 
periaatteeseen sekä hänen johtamaansa keskeiseen raja-arvolauseeseen. Nämä oli 
julkaistu vuonna 1774 muistiossa, joka on yksi tilastollisen päättelyn vallankumo­
uksellisista esityksistä ja sen lähtökohta. Laplacen päättelymalli perustui Bernoul- 
lin kokeisiin ja binomi-todennäköisyyksiin. Hän oletti, että perusjoukko muuttui 
koko ajan. Tämän hän otti huomioon olettamalla, että perusjoukon parametreillä 
oli a priori todennäköisyysjakauma. Laplacen päättelymalli hallitsi tilastollista ajat­
telua yli sadan vuoden ajan.

Laplacen tutkimuksessa otos poimittiin harkinnanvaraisesti. Vuonna 1985 nor­
jalainen Anders Kiaer esitteli Kansainvälisen tilastoinstituutin kokouksessa niin sa­
notun edustavan menetelmän otosten poimimiseen. Pyrkimyksenä oli, että otok­
sesta tuli perusjoukon pienoismalli.

Arthur Bovvley oivalsi otantamenetelmän mahdollisuudet ja 1900-luvun en­
simmäisen neljänneksen aikana hän teki useita otostutkimuksia Englannissa. Ti­
lastotieteen professorina hän kehitti kiinteän perusjoukon tilastollisen päättelyn 
teorian. Hän teoriansa perustui Edgevvorthin modifikaatioon Laplacen mallista. 
Bowelyn teoriaan sisältyivät myös kaavat tasapainoiselle ositukselle.

R.A Fisherin kirjoitukset 1920-luvulla olivat tilastotieteen vedenjakaja. Hän 
mullisti tilastotieteen teorian ja pani alulle estimointi- ja päättelyteorian. Lisäksi 
hän esitteli uuden tilastollisen päättelyn mallin, joka on vallitseva edelleen. Kes­
keinen ajatus perustuu siihen, että samasta perusjoukosta poimitaan otoksia tois­
tuvasti ja että perusjoukon parametrit ovat vakioita. Fisherin teoria ei sisältänyt a 
priori -todennäköisyyksiä.

Jerzy Neyman omaksui Fisherin päättely m allin ja sovelsi sitä kiinteän perus­
joukon päättelyssä sillä erotuksella, että Neymanin malliin ei sisälly oletuksia tut- 
kimusmuuttujien jakaumista. Soveltamalla Fisherin niin kutsuttua hdusiaalista 
väitettä Neyman kehitti luottamusvälien teorian. Lisäksi Neyman kehitti optimaa­
lisen allokaation esitteiden laatimiseksi.

Neymanin viimeisessä kirjoituksessa otantateoriasta aiheena oli kaksivaiheinen 
otanta. Tämä tuotti keskeisen oivalluksen Yhdysvaltojen tilastoviraston tutkijoil­
le heidän kehitellessään monimutkaista otanta-asetelmaansa Current Population 
Survey -tutkimukselle. Tärkeä kriteeri oli tuottaa menetelmä, joka työllisti haastat­
telijoita tasaisesti, sen lisäksi, että estimoinnin tarkkuus oli hyväksyttävällä tasolla.
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Preface

The main topic of this thesis is the origin and the historical development of 
statistical inference for finite populations. It is inherently linked with the his­
tory of survey sampling. The stimulus for this study emerged many years ago, 
while I was preparing a study of Anders Kiaer’s influence on the birth of survey 
sampling. That inspired me to gain wider knowledge on the history of survey 
sampling and statistical inference for finite populations.

During the preceding sixty years, some ten well-known articles about the 
history of survey research have been published. Several books have been writ­
ten about the history of statistics and probability and even more articles can 
be found in journals. In addition, few extensive textbooks have been written 
about the general history of statistics. Currently, many original texts -  even very 
old texts -  can be found on the Internet. The topic of this thesis seems to be 
well-covered and the unavoidable question is whether it is possible to discover 
anything new.

A slightly astonishing observation has been that either the published texts 
deal with the history up to the beginning of the 20th century, touching only 
superficially on the later development, or they begin from the first quarter of 
the 20th century and nearly ignore the earlier history. Another slightly astonish­
ing observation was that very few of these texts dealt with statistical inference 
for finite populations. In the process of searching for facts about the growth of 
statistical thinking and the development leading to survey sampling, it slowly 
became apparent that the written history did not adequately cover the subject, 
included obvious misinterpretations, and was biased in some parts.

Survey methodology involves theoretical problems of survey sampling and 
epistemological problems of inference, but it also involves significant practical 
problems of survey undertaking. The practical questions have had an important 
role in the development of sampling methods and hence in inference within a 
finite population framework. The theoretical development cannot be analyzed 
apart from the practices of survey undertaking, but that has been noted only in 
very few of the texts

This thesis follows the development of ideas in a chronological order; this 
seemed a natural approach. There are two parallel streams: development of 
sampling techniques and development in statistical inference. Two streams have 
been followed because developments have advanced at a different pace and 
also because the development has been an interplay between survey practice 
and sampling theory. However, prominence is more on the inferential aspects. 
Development in sampling techniques is described mainly to make it easier to 
understand the development of statistical inference.

It was a slightly unexpected finding that a mathematical theory of statistical 
inference existed already at the end of the 18th century. A common conception 
implicitly given in contemporary statistical literature is that statistical inference 
started from R. A. Fisher’s ideas in the second quarter of the 20th century. This 
finding led to an investigation of whether the history of statistical inference
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shows paradigms and a paradigm shift in the sense Thomas Kuhn (1962) de­
scribed them.

To reach the aim of this study, the original texts are analyzed whenever pos­
sible. The written histories have been mainly used as a guideline. The focus has 
been on the contributions of those persons who have been most influential in 
the development of statistical inference methods. This delimitation has left many 
significant mathematicians and scientists without due attention.

Obviously, there are several angles from which to approach the history of 
survey sampling. One is to examine sampling in the context of the history of 
ideas: who formulated them, and how and why they were formulated, promot­
ed, defended, and discarded or supplanted. Another perspective is to look at 
sampling theory as a branch of mathematics and then to fit this development 
into the general pattern of how mathematics -  especially probability theory -  
evolves. A third approach is through the technical and practical developments, 
which enable applications of different methods. The third approach is relevant 
because much of the development of survey sampling has been motivated by 
practical problems of sample selection, data capture, data processing and data 
analysis, and not as much by abstract ideas.

The approach in this thesis has been to look at the development from the 
perspective of survey practice. Several detailed and extensive accounts about 
the history of survey sampling have been published, but the assessment of the 
development is often done from a theoretical point of view, often focusing 
mainly on the emergence of randomization. The practical approach means that 
development is analyzed more in respect to the implications that practical data 
collection and data processing tasks bring about. The development of methods 
in survey research can also be seen as an interplay between what is possible in 
practice and what is mathematically tractable.

Limitations
Survey research has been used for a variety of purposes, but this thesis is focused 
only on the enumerative use of sample surveys. The analytic applications are 
skipped almost entirely. Superpopulation approaches in the modern sense are 
often connected to analytical problems, and therefore they are touched on only 
on a few occasions. However, the concept of a superpopulation in a different 
sense than the modern one has been an implicit element of statistical inference 
before the current paradigm.

The scope of the current thesis is the early history of survey sampling up to 
1950s. The classical theory of survey sampling was more or less completed in 
1952 when Horvitz and Thompson (1952) published a paper on a general theory 
for constructing unbiased estimates. Most of the classical books about statistical 
sampling theory were also published roughly at the same time (Cochran 1953; 
Deming 1950, Hansen, Hurwitz and Madow 1953). In a manner of speaking, 
Horvitz and Thompson completed the classical theory of sampling techniques, 
and the random sampling approach was almost unanimously accepted.

There has been a lot of development in classical theory since then, but the 
paper by Horvitz and Thompson established the foundations for later develop-
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ment. The most notable development has taken place in the derivation of the 
model-assisted estimators. That is, estimators that utilise auxiliary information 
from the population via modelling. After the mid-1950s, a discussion started 
on the basics of statistical inference, and challenges to the random sampling ap­
proach appeared, but all of this will be excluded from this thesis.

A danger in analyzing the history lies in the fact that the practical problems 
of one hundred or more years ago were quite different from those of the cur­
rent surveys. Undeveloped infrastructure, as compared to modern societies, had 
many implications on the statistical research. There is the risk of projecting the 
current world and ideas to the historical development, and that may lead to 
wrong conclusions.

There is also a risk to project current thoughts and ideas to the historical 
development. If there have been different paradigms, they have also been based 
on different world views. To analyze previous paradigms in terms of current 
knowledge, ideas, and ideals would probably lead to faulty conclusions.

The thesis focuses only on the major contributions to the subject as seen 
from the viewpoint of statistical science. Therefore, many slightly less important 
developments have been left out. However, it is the authors wish that this gives 
a sufficiently accurate description of the history of the prevailing statistical infer­
ence for survey sampling.
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1 Introduction

Statistical inference here means methods that enable drawing probabilistic con­
clusions about a set of units, usually called a population, after observing only 
a part of it. These methods constitute a branch in the statistical science called 
sampling theory. They are inherently mathematical and are based on probability 
calculus. In addition, statistical inference involves significant philosophical, or 
epistemological, questions.

Statistical inference can also be defined as a formalized theory of inductive 
inference. That is, a set of methods that enable rational generalisations from 
observations to a wider domain than the one that has been observed. In this, 
the word “rational” denotes a probabilistic expression for inductive generalisa­
tions. In formal theory, a population is a central concept meaning the domain 
whose characteristics are inferred. Population can have different definitions as 
to intents and purposes. The subject of this thesis is a finite population. A finite 
population consists of distinct units that could be listed at least in theory.

An essential distinction between statistical inference for finite populations 
and for infinite, or hypothetical, populations is that a sample investigation on fi­
nite population could be, at least in theory, replaced by a complete enumeration 
or census. In research concerning an infinite population, a complete enumera­
tion is not possible because the population cannot be defined in such a manner 
that it would be possible know all the units which constitute the population.

Statistical inference for a finite population is an inherent part of a more gen­
eral method called survey research. Their relationship can be expressed by saying 
that statistical inference is a (mathematical) formulation for drawing conclusions 
in survey research. In general, the purpose of a survey is to describe the state (of 
the nature) of a population by estimating the values of some parameters, charac­
terizing the properties of the population, from a sample. In a finite population, 
a parameter is a constant, but in separate samples, its estimates may obtain dif­
ferent values. The distribution of estimates obtained from all possible samples is 
called the sampling distribution. Inference methods also provide measures of the 
accuracy of the estimates obtained by sampling. In complete enumeration, there 
would be no need for statistical inference because there is no sampling error.

In sampling techniques, there are two central problems: (1) how to draw a 
sample from a population so that the sample can be expected to represent the 
population; and (2) how to calculate estimates from the sample. The latter prob­
lem is intrinsically related to the first.

The central concept in statistical inference for finite populations is the so- 
called confidence interval. It is a random interval having a stated probability 
of containing the unknown value of the population parameter that has been 
estimated. Sarndal, Svensson and Wretman (1992) define a confidence interval 
related to a random sample, s, as a random interval CI(s) = [tL(s), ty(s)], where 
tL(s) and tu(s) are the lower and upper endpoints. The endpoints are two sta­
tistics, tL(s )<  tyfs), which can be calculated for every sample obtained by a 
specified sampling design p(s). The random element in the interval estimation
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is the randomly selected sample, s. A confidence level, 1- a, for a parameter, say 
population total t, is given as the probability

P [ t e C I ( s ) ] = \ - a  (1.1)

where a  is the probability that the selected sample s does not include t. The 
confidence level is interpreted to tell that 100*(1- a) percent of the confidence 
intervals of all possible samples contain the parameter of interest. Jerzy Neyman 
introduced this type of confidence interval at the beginning of the 1930s (Ney­
man 1934).

If t is the point estimator for the unknown population total t, a confidence 
interval for t at level 1- a  is usually computed as

t ± Z l - a/ 2S i ( 1-2)

where z,_a/2 is the constant exceeded with probability a  / 2 by the N(0,1)1 ran­
dom variable, and s- is the standard error of the estimate. Frequently in practical 
survey work, a  -  0.05 has been chosen and accordingly z,_a/2= 1-96. However, 
also a  = 0.1 and a  = 0.01 can be found in survey reports.

The 95% confidence interval for the population total t will be

\j -  1.96Sj,t +  1.96s;]

This interval will contain the unknown total t for an approximate proportion of 
1- a  of repeated samples s drawn with the same design, if the sampling distribu­
tion of t is approximately a normal distribution with mean t and standard devia­
tion 5-. Standard deviation s(- is usually called standard error and it varies between 
sampling designs. This condition is essentially equivalent to saying that the Cen­
tral Limit Theorem applies for the random variable t (Sarndal, et. al. 1992).

Current sampling techniques include a large number of different sampling 
designs, and the calculation of estimates and confidence intervals differs consid­
erably due to the applied design. The gist of this study is the historical develop­
ment of the prevailing inference methods in sample surveys.

7.7 Examples of sample surveys

This thesis deals primarily with sample surveys, which are undertaken by gov­
ernment agencies. The first sample survey in which the prevailing standards were 
applied was undertaken in the U.S. in the early 1940s (see Hansen and Madow 
1976). It was called the Current Population Survey (CPS) and a similar survey,

N(0,1) designates the distribution function of the standardised normal distribution.
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based on the same principles as the CPS, was soon started in several other coun­
tries under the name Labour Force Survey (LFS). Currently, nearly all National 
Statistical Institutes in the world conduct the Labour Force Survey.

Currently, the sample for the CPS is a multi-stage stratified sample of ap­
proximately 56,000 housing units from 792 sample areas, covering the entire 
U.S. It is composed of housing units drawn from lists of addresses obtained from 
the previous census. In the first stage of sampling, the country is divided into 
primary sampling units (PSUs). The PSUs are then grouped into strata that are 
sociologically and economically as homogeneous as possible. One PSU is sam­
pled per stratum with the selection probability proportional to the size of the 
population in the stratum.

In the second stage of sampling, a sample of housing units within the sample 
PSUs is drawn. Ultimate Sampling Units (USUs) are clusters of housing units. 
The bulk of the USUs sampled in the second stage consist of sets of addresses, 
which are systematically drawn from sorted lists of addresses of housing units. 
Housing units from blocks with similar demographic composition and geographic 
proximity are grouped together. If addresses are not recognizable on the ground, 
USUs are identified using area-sampling techniques. Occasionally, a third stage of 
sampling is necessary when the actual USU size is extremely large.

Each month, interviewers collect data from the sample of housing units. 
Members of housing unit are interviewed for four consecutive months, then 
dropped out of the sample for the next 8 months, and then brought back for the 
following 4 months. In all, a selected housing unit is interviewed eight times.

During the interview week, field interviewers and telephone interviewers at­
tempt to contact and interview a responsible person living in each sample unit. 
A personal visit interview is required for all households that are in the sample for 
the first time. This is because the sample is a sample of addresses and it is not pos­
sible to know in advance who the occupants of the household are or whether the 
household is occupied or eligible for an interview. The major results of the survey 
are released no later than two weeks after the completion of the interviews.

Based on the CPS, it was estimated in 2006 that 7,668,000 families lived in 
poverty in the U.S., and the upper and lower endpoints of the 90% confidence 
interval were 7,484,000 and 7,852,000, respectively.

Data collection is the major source of survey costs, and its organisation deter­
mines the time required for data collection. Continuous surveys, like the CPS, 
require a permanent interviewer corps to visit households or to call them from 
a telephone interview centre. The U.S. Bureau of the Census has more than 
2,000 field interviewers solely for the CPS and nearly 300 interviewers in three 
telephone interview centres.

In addition, the data processing following the data collection is a very labour- 
and time-consuming phase of the survey process. In the early 1950s, when the 
first computer became available for the CPS, its computational power still had 
to be taken into account when designing sampling (see Bellhouse 2000 and 
Cochran 1942). Before the computer era, data processing and tabulations were 
done using punched card calculators, or Hollerith machines. In the 19th cen­
tury, everything was done manually. Because of the data processing, a popula­
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tion census at that time 
was an enormous un­
dertaking (see Bellhouse 
2000 and Grier2].

The first partial investi­
gation involving the char­
acteristics of a modern 
survey was undertaken in 
France in 1802. Pierre 
Simon Laplace3 carried 
out the partial investiga­
tion to estimate the size 
of the population in the 
country. His design was 
based on the fact that dur­
ing the last quarter of the 
18th century in France, all 
births were registered in parishes. Laplace took a sample of the departments, 
counted the total population in them on one day, and then, using a ratio es­
timator, estimated the population in the whole country (with the help of the 
information on registered births in the whole country]. He concluded: "suppos­
ing that the number of annual births in France is one million, which is nearly 
correct, we find ... the population of France to be 28 352 845 persons.” Before 
the survey was carried out, Laplace calculated what sample size was needed to 
attain the required accuracy in estimation. Finally, Laplace calculated that the 
“standard error”, given the data, was 107,550 persons, and he concluded that it 
makes “the odds about 300 000 to 1 against an error of more than half a million”. 
Laplace’s survey and his method are described in Chapter 4.

Figure 1.1:
Processing of census data at the national statistical 
institute of France in the beginning of the 20th century

1.2 Aims of the thesis

The main topic of this thesis is the origin and the historical development of sta­
tistical inference for finite populations. This is inherently linked with the history 
of survey sampling. Statistical sampling theory was manifested in the beginning

2 David Grier’s article, “The Origins of Statistical Computing”, is published on the website of 
ASA and has no other reference information (see http://www.amstat.org/about/statisticians/ 
index.cfm?fuseaction=papers )

3 Pierre Simon Laplace (1749-1827) was a French astronomer and mathematician. He was 
bom in Normandy, reportedly in a modest family. At a young age, he sent a letter of intro­
duction to the famous French mathematician and philosopher Jean Rond D ’Alembert. The 
paper on the principles of mechanics excited D ’Alembert’s interest, and on his recommen­
dation, a place in the École Militaire in Paris was offered to Laplace at the age of 19. He 
was later appointed as the professor of mathematics there. Despite being an ingenious and 
voluminous writer, Laplace was also a politician. In 1799, Laplace became the Minister of the 
Interior, but only for six weeks -  Napoleon thought he was incompetent. Nevertheless, he 
became a member of the Senate.
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of 1950s in two famous textbooks (Cochran 1953, Hansen, Hurwitz and Ma- 
dow 1953). This period was preceded by a much longer and diversified period of 
a search for methods that could be generally accepted. One aim is to identify the 
most important turning points and developments that led to current theory.

Both statistical inference for finite populations and survey sampling can be 
seen as parts of a more general discipline called survey research methodology. 
Survey research methodology also involves the practical problems of survey un­
dertaking, in addition to theoretical problems. The practical questions have had 
an important role in the development of sampling techniques, and therefore in 
statistical inference within a finite population framework, that it cannot be ana­
lysed detached from the practices of survey undertaking.

As noted earlier, survey sampling comprises two distinct but inherently 
linked parts: obtaining a representative sample from a population, and methods 
to draw conclusions from the sample about the population. The first part is prac­
tical, which also involves two distinct but equally important parts: (1) drawing a 
sample from a frame representing the population, and (2) data collection from 
sampled units. The practical problems of data collection are the most significant 
single factor in developing different sampling designs (see also Hansen and Hur­
witz 1943). The latter part is called statistical inference.

Another aim is to find out whether survey sampling and statistical inference 
have involved paradigms and paradigm shifts in the sense Thomas Kuhn defined 
them (see Chapter 1.6).

1.3 Role of population in statistical inference

Population is a central concept in statistical inference because it spans the frame­
work of the inference. In this respect, real populations and hypothetical popula­
tions have conceptually essential differences.

Real populations are composed of distinct real units. Real populations can 
still be divided into two categories: finite populations and infinite populations. 
The basic difference between these two is that a finite population is composed 
of a limited number of members. The number of units in a finite population is 
known, or they could be counted, and they could be labelled. The members of 
an infinite population cannot be counted or labelled. An infinite population is 
an ambiguous concept and in most cases, a hypothetical population better de­
scribes its nature.

Occasionally, finite population and fixed population have slightly different 
definitions. A finite population consists of a finite number of units, but their 
exact number is not known, and therefore they cannot be uniquely identified. 
For example, the fishes in a pond or the whales in a sea compose a finite popula­
tion in this sense. A fixed population is composed of a known number of distinct 
units that have been, or could be, uniquely labelled. For probability sampling, it 
is required that there exists an operational representation of the units, for exam­
ple a list of unit labels, called a frame or a sampling frame. Every unit of a fixed 
population is accessible with the help of the information in the frame.
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In a hypothetical population, there are an infinite number of units. A hypo­
thetical population is not defined through its members but by a rule or defini­
tion that confines them. R.A. Fisher, who introduced the concept of population, 
defined a hypothetical population to be “the conceptual resultant of the condi­
tions we are studying” (see e.g. Fisher 1922). The definition means that popula­
tion is defined through features that every existing or potential member of the 
population possesses. In a hypothetical population, it is not possible to know, or 
to list, its members.

Consequently, a full enumeration of a hypothetical population is not pos­
sible, and neither is it possible to estimate the total sum of any characteristic 
-  actually, it does not even exist. Inference within a hypothetical population 
framework usually aims at revealing an abstract cause mechanism. Inference in a 
fixed population framework aims at estimating population parameters.

Formally, the distinction between inferences for fixed and hypothetical pop­
ulations is in the assumed stochastic structure: in a fixed population, both the 
measured values of sample units’ characteristics and the population parameters 
are constants. No probability distribution is attached to observations. The sto­
chastic element in inference is induced by random selection of a sample. In 
sampling from a hypothetical population, observations are assumed to have a 
known probability distribution/(x), and the probability to obtain a given samplen
xv x2, ... xn of size n is given by the product f ( x t) .  A hypothetical popula-

i
tion is a theoretical quantity that is helpful in designing the mathematical setup 
of statistical inference. A finite population is a real entity whose parameters are 
to be estimated.

Superpopulations
In analytic sample surveys, interest usually is focused on parameters of a "super­
population”. They are associated with a stochastic mechanism that is assumed 
to have generated the observed values. R. A. Fisher coined the concept of su­
perpopulation in the 1920s, but in current statistical texts, superpopulation has 
a slightly different connotation than what Fisher meant. The superpopulation 
approach is often thought to constitute a bridge between analytic and enumera- 
tive surveys.

Deming (1953) considered a "superpopulation” to be a hypothetical infinite 
population from which the finite population is itself a sample. An investigator 
samples the finite population and draws inferences from the sampled values. Un­
like in classical sampling theory, where the targets of inference are parameters 
of a finite population, a stochastic model for the finite-population values is used 
to evaluate and suggest sample designs and estimators. However, for addressing 
scientific questions (as opposed to, e.g., administrative questions), the param­
eters associated with the stochastic model are typically of more interest than the 
finite-population parameters.

Deming (ibid.) refers to inference for superpopulation parameters as an “ana­
lytic” use of survey data. A simple example of superpopulation inference is when 
comparing two domain means, where it is of interest to ask whether the super­
population means are equal, but seldom of interest to ask whether the finite
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population means are equal. (Actually, that question is futile, since the means in 
two real populations would be equal only very rarely.)

In modern superpopulation inference, it is assumed that a process or a model 
has generated the observable population U of size N. The model M is thought to 
describe the relationship between the observable variables y and xu x2, .., x The 
model states, for example, that for each unit of the observable population holds:

h k  =  Pi*u + P2*2* + ■•■ + P px pk + £ k ’ k  =

[Em( ek) = 0-,VM(ek) = o 2

In addition, it is assumed that the random errors Et are independent and normal­
ly distributed. In this mode of inference, the interest is not in the finite populati­
on U at the present time, but rather in the process or the causal system relating 
y and x¡ ,x2, .. ,xp.

1.4 Epistemological features of 
statistical inference

1.4.1 Inductive inference
A central question in scientific inference is how is it possible to draw conclu­
sions of something that we are not capable of observing directly or completely. 
In order to obtain knowledge and understanding about the surrounding world 
it is necessary to have both methods to acquire data and methods to reveal 
particulars and relations between the observed facts to establish generalisations 
and theories. A central part of scientific activity, or the pursuit of knowledge in 
general, is the logic by which investigators end up with conclusions from obser­
vations, experiments, and initial premises.

The two main methods of scientific inference are called deduction and induc­
tion. In some respect, they can be regarded as opposites: deduction goes from 
general to specific, and induction goes from specific to general. Induction is an ar­
gument or theory starting with empirical observations and leading to a conclusion, 
while deduction goes in the opposite direction, from theory to observation.

Deduction is an old method to draw conclusions from given premises, pos­
tulated already by Aristotle. The power of deductive inference comes from the 
fact that from true premises, correctly deduced conclusions are necessarily true. 
A classic example of the competence of deduction is Euclidian geometry, where 
the whole system is deduced from a few axioms. The growth of mathematical 
theories in general, including the probability theory, is an example of the capa­
bility of deductive reasoning.

In scientific experimentation, the so-called hypothetico-deductive method is 
frequently applied. Schematically, the method works as follows: From a general 
hypothesis and particular statements of initial conditions, a particular predictive 
statement is deduced. The statements of initial conditions, at least for the time, 
are accepted as true; the hypothesis is the statement whose truth is at issue.

(1.3)
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By observation or experiment, we determine whether the predictive statement 
turned out to be true. If the predictive consequence is false, the hypothesis is 
discontinued. If the observation reveals that the predictive statement is true, we 
say that the hypothesis is confirmed. The design of a scientific experiment aims 
at creating such an experimental setup that the deductive procedure could be 
applied to draw conclusions.

In empirical research, deductive inference is not sufficient. Francis Bacon4 
recognized that the scientific method embodies a logic essentially different from 
that of Aristotle. Bacon commended the method of careful observation and 
experimentation. He put forward that scientific knowledge must somehow be 
built on inductive generalisation from experience.

A simple example of inductive inference is the following: if we draw balls 
from an urn and we only have white balls, we tend to infer that all balls in the 
urn are white. Every new observation of a white ball strengthens our conviction 
on the rule (that all balls in the urn are white), but we can never be absolutely 
sure. On the other hand, a single observation of a black ball ruins the rule. In­
duction is said to be ampliative and undemonstrative. That is, it expands the 
observations to a wider domain than what was originally observed, but inductive 
inference cannot demonstrate that a rule is true.

More than a century after Bacon’s works, David Hume5 published a book in 
which he criticised the principle of inductive inference. His critique began with a 
simple question: How do we acquire knowledge about the unobserved? (Hume 
1739 and 1748) Hume’s basic problem can be described as follows: Given that 
all the balls that were drawn from an urn have been white so far, and given that 
the conclusion has been entertained that the unobserved balls are also white, do 
the observed facts make up sound evidence for that conclusion? Basically, the 
problem of induction is a problem of explaining the concept of evidence.

Hume’s answer was sceptical. It is out of the scope of this study to deal 
comprehensively with this question, but several authors, for example, Salmon 
(1967), have analysed it thoroughly. Hacking (1975) treated Hume’s philosophy 
in the context of probability theory. In addition, Chatterjee (2003) has analysed 
profoundly Hume’s philosophy in relation to statistical inference.

Hume’s critique essentially rested on his attack on the principle of the uniformi­
ty of nature. It is obvious that inductive inferences cannot be expected to yield cor­
rect predictions if nature is not uniform. For example, if we do not know whether 
the future will be like the past, it is not possible know which facts will hold. Like­
wise, if it is not believed that a population under study is uniform or stable in all of 
its parts, it is not feasible to generalize the results obtained from a sample.

4 Francis Bacon [1561-1626) was an English politician and philosopher. He put forth the 
view that only through reason are people able to understand and have control over the laws 
of nature. His famous adage, 'Knowledge is power’, reflects this conception. Francis Bacon’s 
influence on empirical research has been so strong that he has been called “the Father of 
Modem Science”.

5 David Hume (1711-1776) was a Scottish philosopher and historian who has been regar­
ded as the founder of the sceptical, or agnostic, school of philosophy. He had a profound 
influence on European intellectual life.

18 Statistics Finland



Hume’s problem has been approached from many points of view. An ex­
ample is the so-called induction by enumeration. Suppose that a coin has been 
thrown a large number of times. Given that m/n of observed throws has been 
heads, we infer that the “long run” relative frequency of heads is m/n. It is obvi­
ous that induction by enumeration is closely related to the long-run frequency 
interpretation of probability.

Another, slightly different, example was given by Laplace at the end of the 
18th century. He posed the question: how certain can we be that the sun will 
rise tomorrow, given that we know that it has risen every day for the past 5,000 
years (1,825,000 days). One can be pretty sure that it will rise, but we cannot be 
absolutely sure. In response to this question, Laplace proposed the Law of Suc­
cession. In its simplest form, it means the following: If we have had x successes 
in n trials and ask what is the probability of success in the next trial, we add one 
to the numerator and two to the denominator ((x + l)/(n +  2)) (see Chapter 4, 
Formula 4.7). Applying this procedure, one could be 99.999945% sure that the 
sun will rise tomorrow.

Induction by enumeration and hypothetico-deductive method are inherently 
different approaches. Induction by enumeration actually consists in simple in­
ductive generalisations from instances, and the hypothetico-deductive method 
is in contrast to it. The hypothetico-deductive method aims at confirming or 
disconfirming hypotheses derived from previous knowledge, while induction by 
enumeration aims at deriving scientific hypotheses.

An answer to Hume’s critique is that inductive conclusions are probabilistic, 
not absolutely certain. An inductive inference with true premises only establish­
es its conclusions as probable. At the time when Hume published his critique, 
mathematicians dealt only with the problems of direct probability. The critique 
gradually initiated development of the methods for the calculation of inverse 
probability to address the problems of induction.

Inverse probability and statistical inference can be seen as a formal approach 
to apply induction in empirical research. Inverse probability in statistical science 
involves two problems: the problems of direct probability are mathematical and 
hence involve deductive inference; in inverse probability, known probability dis­
tributions are applied to make inferences about the unobserved part of nature 
and it is inherently inductive. Statistical inference in the modern sense can be 
seen as an outgrowth of inverse probability.

The American mathematician, C.S. Peirce, defined induction to be “reason­
ing from sample taken at random to the whole lot sampled” (see Stigler 1978, 
p. 247).

The famous Theorem of Thomas Bayes (Bayes 1763) is often regarded as the 
first method to calculate inverse probability (see Chapter 3). However, Laplace 
gave the first precise formulation of inverse probability in a careful scientific 
context in a mémoire in 1774. Laplace’s contributions on inverse probability are 
analysed in Chapter 4.
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7.4.2 The inference model

It is obvious that probability and probability models play a central part in induc­
tive inference. A probability model can be seen as an abstract description of mass 
events in the real world by which one is able to predict the frequency of future 
events and to analyze observations from such events, but probability models 
cannot be applied directly in inductive inference.

In direct probability, it is generally conceded that knowing the value of a sto­
chastic probability factor, say s, the probability for an arbitrary or 'random' oc­
currence of a chance event can be determined, like in coin-flipping, dice-rolling, 
or selecting balls from an urn.

In inverse probability, the question is reversed: Given the outcome of an ex­
periment or observations, what can be concluded about the underlying causes of 
outcomes and their stochastic characteristics? Obtaining an answer to the ques­
tion requires the use of direct probability in one way or another.

Thought experiment
Abstract probability models cannot be applied directly in real world phenomena 
because the situations to be analysed are much too diverse and usually too com­
plex. The inference model requires an intermediate model, a thought model, 
which links an abstract probability model to the real-world phenomenon. Char­
acteristic of a thought experiment is that it involves such a setup that can be (or 
could be) tested experimentally if necessary.

One of the oldest thought experiments is the so-called urn problem or urn 
trial. The urn problems have been a part of probability theory since at least the 
publication of the Ars conjectandi by Jakob Bernoulli in the beginning of the 
18th century (see later). Bernoulli considered the problem of determining from a 
number of pebbles drawn from an urn the proportions of different colours. The 
urn trial is often called a Bernoulli trial or Bernoulli experiment.

In an urn trial, an urn is thought to contain n balls (or tickets), % white and 
y black. One ball is drawn randomly from the urn and its colour is observed. It 
is then placed back in the urn6, and the selection process is repeated. Occasion­
ally, the two possible outcomes are called “success” and “failure”. For example, a 
white ball may be called “success" and a black ball “failure”. The urn trial induces 
a Binomial Distribution.

Another example of an inference model is the one which Thomas Bayes’ ap­
plied in formulating his theorem: the model was based on the positions of balls 
on a (billiard) table after they were rolled on it (see Chapter 3).

R.A. Fisher introduced a new inference model in the 1920s. Its central idea is 
to repeatedly draw samples from the same known probability distribution (see 
Chapter 9). Fisher’s thought model is still the predominating one in statistical 
inference. In the 1930s, Jerzy Neyman adapted it in a modified form to finite

6 In the setup with the replacement of balls, the subsequent drawings are independent. In ano­
ther setup, the urn is assumed to contain an infinite number of balls and then the drawings 
can also be regarded as independent.
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population inference (see Chapter 10). Neyman’s idea of drawing samples re­
peatedly from the finite population is the core of modern sampling theory.

Thinking models are also applied in a wider scope. A common thinking 
model up to the 20th century originated from the planetary system, which was 
also incorporated into social research. A parameter describing a state of popula­
tion was paralleled with a planet and its position. Measurements gave varying 
results so that observations had a distribution around the true value. In addi­
tion, the planet was moving all the time, and therefore its position could not be 
considered to be constant. The resulting uncertainty was described by a priori 
probability. In social research, this idea led to thinking that a society should 
be approached as a constantly changing universe, a superpopulation, and every 
observable population was a realization of some phase of the superpopulation. 
The world view behind these thought models was mechanistic, comprising of 
distinct units, and often a Greater Cause was assumed to act behind the events. 
This originated from Newton’s philosophy, and it dominated thinking until the 
beginning of the 21st century.

1.5 Research on the history of survey methods

Currently, survey research is applied in a variety of different areas, such as sci­
entific research, public administration, agricultural research, marketing and 
opinion research, etc. The first applications of sample surveys, in the modern 
sense, concerned human populations. The most significant impetus was to have 
a method to be used alongside a population census to explore population char­
acteristics. An aspiration was to have a method that was faster to carry out and 
less costly than a total enumeration, as well as a method that was easier to apply 
for varying needs, and to focus on more specialized questions than what was 
possible in a census.

1.5.1 Research on the history of sampling techniques
During the past 60 years, several papers have been written about the history of 
survey sampling. For example, Stephan (1948), Yates (1946), Seng (1951), Chang 
(1976), Kruskal and Mosteller (1980), Sukhatme (1966), O ’Muircheartaigh and 
Wong (1981), Hansen, Dalenius, and Tepping (1985), and Bellhouse (1988) 
have written comprehensive accounts on development in the 20th century. In 
most articles, survey research in the modern sense is considered as starting from 
Anders Kiaer’s presentation at the ISI meeting in 1894. Kiaer’s Representative 
Method did not involve sampling methods in the same sense they are presented 
in the classical textbooks, but in the written history, it is a common opinion that 
Kiaer’s contributions were the starting point for the development of current 
sampling techniques.

However, Kendall (1960) argued that the first example of partial investiga­
tion, or survey, was the one that John Graunt carried out in 1662 to estimate 
the size of the population in London. Graunt’s estimation was intuitive and did
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not involve any reference to probability. Nevertheless, Kendal (ibid.) regarded 
Graunt’s investigation as the starting point of statistical science. The early his­
tory of statistics and Graunt’s survey are described more closely in Chapter 2.

The second early example of a partial investigation is Pierre Simon Laplace's 
estimation of the size of the population in France in 1802. Laplace’s method 
involved a sound theoretical setup that was based on probability. Laplace pub­
lished the outline of the theory already in 1783, 20 years before the actual sur­
vey (Laplace 1783). Laplace’s major contribution in the mémoire published in 
1774 was his Principle (of Inverse Probability), which addresses the same ques­
tion as statistical inference: to draw probabilistic conclusions about a population 
from a sample of observations (Laplace 1774).

Using the Principle, Laplace also calculated what sample size was needed to 
obtain the required accuracy of estimation. After the data collection, he calcu­
lated a probabilistic interval estimate of the size of the population. Laplace’s in­
terval estimate is close to the modern confidence interval, although it was based 
on a different probabilistic setup. Therefore, it is often called a credibility inter­
val. Laplace’s survey and the methods he applied are presented in Chapter 4.

Laplace’s Principle is close to Thomas Bayes’ method with equal prior prob­
abilities. Bayes’ Essay was published a few years earlier than Laplace's Principle, 
and there has been some discussion about whether Laplace was aware of Bayes’ 
Essay. The current understanding is that he was not (Laplace was 14 years old 
when Bayes Essay was published in England). Bayes’ Essay did not have greater 
influence on the development of probability theory and statistical science in 
the 19th century. Bayes’ Essay and other contributions during the same era are 
presented in Chapter 3.

Several textbooks deal with the history of official statistics in the 19th centu­
ry and beginning of the 20th century. Westergaard (1932), Porter (1986), Hack­
ing (1990), and Desrosières (1998) give comprehensive accounts of the rise of 
statistical thinking. All three authors analyse and describe how statistics became 
a central part of administration in western countries and how the statistical pro­
fessions started and assumed their current roles. Westergaard (ibid.) describes 
the beginning of statistics and the institutional changes that fostered the status 
of statistics. Hacking describes how the “avalanche of printed numbers” began, 
and how it eventually became possible to think of statistical patterns as natural 
parts of societies. Chapter 6 is devoted to the description of the emergence of 
statistical thinking and the consolidation of the ideas of Laplace (and Gauss) and 
the development that paved the way for the representative method.

Obviously, no surveys or partial investigations within human populations 
were carried out in the course of the 19th century because the prevailing concep­
tion was that such populations were so heterogeneous that only a full enumera­
tion could be truly representative.

Indirectly, the Belgian scientist Adolphe Quetelet was central in justifying 
partial investigations: he was the central pacemaker in the tradition to carry out 
standardized censuses on regular basis, thus providing basic information about 
populations; he was also involved in starting statistical institutions in which new 
statistical methods could be presented and discussed; he was the first to establish 
the regularity of social phenomena; and lastly, he showed that the greatest part
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of social, biological, and economical phenomena followed the Normal Distribu­
tion (see Chapter 6).

The original rationale for this study was the significance of Anders Kiaer in 
bringing forth the Representative Method. He presented this method for the first 
time at the International Statistical Institute (ISI) meeting in Bern (Kiaer 1895). 
Kiaer’s aim was to introduce a new data collection method for social studies 
that was less expensive to carry out than a total enumeration and more flexible. 
The literature of the history of survey sampling emphatically regards Kiaer’s first 
presentation of the method in 1895 as the starting point for survey research and 
sampling techniques. Obviously, that is true in the sense that Kiaer raised the 
topic in the agenda of the ISI and defended the method in subsequent meet­
ings. Because of Kiaer’s persistence, the ISI had to take a stand on the method 
and eventually accept it as a method that national statistical offices could apply. 
However, partial investigations evidently were carried out already before Kiaer’s 
survey. Kiaer’s work and contributions are analysed in Chapter 7.

Arthur Bowley from London University College realized the usefulness of Ki­
aer’s method in shedding light on the living conditions of the working class in 
England. During the first quarter of the 19th century, he carried out several living 
condition surveys in England. In addition, he derived a mathematical apparatus to 
calculate the accuracy of estimates in the form of a credibility interval, which was 
close to a confidence interval. It was published in the mémoire to the ISI in 1926.

A practical problem was that random sampling could not be applied, because 
the only known method, simple random sampling, was not feasible due to practi­
cal constraints. In the 1930s, Jerzy Neyman wrote three papers in which he estab­
lished the basic theory of statistical inference for finite populations. In the third 
paper, published in 1938, he directly addressed the practical problem of taking a 
survey of a large human population. Only that paper gave tools to design complex 
sample surveys with reasonable costs and sufficient accuracy. After that paper, 
a period of rapid developments in sampling methods took place in the United 
States. The most important contributions came from the U.S. Bureau of the Cen­
sus and the practical impetus game from the need to design a sampling method 
for the newly estabfished Current Population Survey (CPS). Hansen and Hurvitz, 
applying the principles Neyman had presented, developed a method by which the 
data collection of a large social survey could be undertaken with acceptable costs 
and manageable fieldwork. After that, the development was very rapid, and by 
the first half of the 1950s, the classical sampling theory was established. The final 
formulation of modern sampling techniques is described in Chapter 12.

1.5.2 History of statistical inference
The history of probability and the development of its theory is a well-covered 
topic. For example, the books written by Stephan Stigler (1986) and Anders 
Hald (1998 and 2007) give very detailed accounts up to the beginning of the 
20th century. In addition, Todhunter’s (1886) textbook7 on this topic is worth men-

7 Obviously, Gouraud (1848) published the first book on the history of probability, but Stigler 
(1978) says that it is outdated. Todhunter’s book was the first comprehensive account of the 
history of probability.
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tioning. Statistical inference is not treated much in these books, and statistical infer­
ence for finite populations is not touched on at all. Dale (1999) analyses the history 
of inverse probability, and hence the history of statistical inference, from a general 
point of view, but not specifically in connection with finite populations. Character­
istically, all these authors focus their attention on developments in the 19th century 
or earlier, and they only briefly comment on developments after the beginning of 
the 20th century.

Recently, a number of textbooks have been published on the contemporary 
history of statistical science and probability theory. Textbooks by Kruger, et al. 
(1987 and 1989), Gigerenzen et al. (1989), and Salsburg (2001) give a com­
prehensive account of the development of statistical methods during the past 
century. A common feature in all these books is that they do not mention statis­
tical inference for finite populations and survey sampling, or they mention them 
only superficially. These authors mainly deal with the development since the 
1920s and only briefly mention earlier development. Ian Hacking has written 
several textbooks (e.g., Hacking, 1965, 1975, and 1990) about the philosophy of 
statistical science and scientific inference, but he only treats statistical inference 
within a hypothetical population framework.

Besides textbooks, there is an abundance of articles giving historical accounts 
of the development of probability theory. All the texts that touch on the history 
of statistical inference before 1930 deal only with statistical inference within 
infinite hypothetical populations.

Stigler (1986), Hald (1998, 2007), and Dale (1999) all recognize the impor­
tance of Laplace's Principle of Inverse Probability in the history of statistical infer­
ence. Laplace’s mémoire published in 1774 was the first attempt to attack analyti­
cally the problem of induction. Later, Laplace wrote two well-known textbooks on 
probability (Laplace 1812 and 1814), which were frequently referred to by math­
ematicians in the first half of the 19th century. His most famous followers were 
Siméon-Denis Poisson and Adolphe Quetelet, who both strongly fostered Lapla- 
cian science. Later, Quetelet wrote a very popular book on probability (Quetelet 
1849), which was based on Laplace’s ideas. This book, “Quetelet's letters”, was the 
basis for subsequent developments for Francis Galton, among others.

After Laplace, the problems of partial investigation were not noticeably treat­
ed, More than a century after Laplace’s contributions, Arthur Bowley derived 
formulas for both random sampling and purposive selection (Bowley 1926). He 
applied Laplacian methodology in deriving the formulas for random sampling. 
Bowley also introduced formulas for proportional stratification and pointed out 
the circumstances when it was gainful. Obviously, it was the first English text on 
sampling theory. Bowley’s impact on survey sampling is the topic of Chapter 8.

The decade of 1920-1930 can be regarded as a watershed in the develop­
ment of statistical theory. All English statisticians before that, including Karl 
Pearson, Gosset, Edgeworth, and Bowley, were working from the Laplace theory 
(or paradigm). In the 1920s, R.A. Fisher sharply attacked that theory, especially 
the method of inverse probability, and presented his estimation theory. In doing 
that, Fisher completely renewed statistical theory. Later, Fisher presented his 
method of statistical inference that he called fiducial inference. It seems that 
Fisher developed the theory alone and outside academia while working at the
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Rothamsted experimental station. Fisher did not contribute directly to the finite 
population inference, but his indirect influence was vital. Fisher’s contributions 
and his influence on survey sampling is analysed in Chapter 9.

A common conception is that Jerzy Neyman is the architect of the theory of 
statistical inference for finite populations. In the 1930s, he wrote three papers 
on statistical inference for finite populations and sampling theory in which es­
tablished the foundations of modern statistical sampling theory. Neyman applied 
Fisher’s estimation theory and inference method (repeated samples from the same 
population} to sampling from finite populations. The impetus for Neyman came 
from Bowley’s mémoire to the ISI (Neyman 1934], and his main target was the 
purposive selection that Bowley had presented. Only later, Neyman presented a 
mathematically sound theory for inference within a finite population framework 
(Neyman 1937). Neyman’s works are described and analysed in Chapter 10.

Neyman discarded Fisher’s inference model, inductive reasoning, and instead 
proposed inductive behaviour. It has proved to be essential for the development 
survey method because it gives a quick and objective interpretation to episte­
mological probability. Survey statisticians soon unequivocally accepted this and 
discussion about the nature of inductive inference disappeared from the discus­
sion on statistical inference and from the sampling literature.

Neyman’s third paper on survey sampling, published in 1938, directly ad­
dressed a practical problem in undertaking a survey in a large human population. 
Only that paper gave tools to design complex sample surveys. After Neyman’s 
contribution, a period of rapid development of sampling methods started.

Hansen and Hurwitz started to develop a new sampling design for the CPS, 
which was based completely on probability sampling. The result of this work 
is best documented in the paper titled “On the Theory of Sampling from Finite 
Populations" by Hansen and Hurwitz (1943). They developed the basic theory 
of stratified two-stage sampling with one primary sampling unit (PSU) within 
each stratum drawn with a probability proportional to size measure (PPS sam­
pling) and then sub-sampled at a rate that ensured self-weighting within strata. 
In Hansen’s and Hurwitz’ (ibid.) method, the possibility to have varying prob­
abilities in selecting sampling units was explicitly articulated for the first time. 
Unequal inclusion probabilities were already implicitly present in Neyman’s op­
timal allocation designs, although he did not pay attention to that.

An important breakthrough in the classical theory of survey sampling theory 
was the paper of Horvitz and Thompson in 1952 on a general theory for con­
structing unbiased estimates (Horvitz and Thompson 1952). Hansen and Hurwitz 
(1943) obtained results on sampling with probability proportional to size and 
with replacement. Horvitz and Thompson extended this idea to sampling without 
replacement. After the Horvitz and Thompson paper, development was very rap­
id, and by the first half of the 1950s, the classical sampling theory was established. 
The final formulation of modern sampling techniques is analysed in Chapter 12.

A peculiar detail is that in the 1930s and 1940s, Cochran did not contribute 
on sampling from finite (human) populations, although he has been referred 
to frequently. In modern terminology, Cochran’s approach in his early papers 
was model-based. Only later did Cochran develop methods for finite and fixed 
populations. In his famous textbook (Cochran 1953), he deals with sampling 
from finite (human) populations, and his approach is design-based.
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1.6 Paradigm shifts in the development 
of scientific disciplines

According to popular conception, science is supposed to be a steady and cumu­
lative acquisition of knowledge where new findings and results of experiments 
are added to previous knowledge to form more accurate or extensive theories, 
and typical scientists are considered to be objective and independent thinkers.

In his famous book, The Structure of Scientific Revolutions, Thomas Kuhn (Kuhn 
1962] brought this view under suspicion. He argued that scientific research and 
thought are defined by paradigms, or conceptual world views, which consist of 
formal theories, classic experiments, and trusted methods. Scientists typically ac­
cept a prevailing paradigm and try to extend its scope by refining theories, ex­
plaining puzzling data, and establishing more precise measures of standards.

The thesis of Kuhn was that scientific disciplines, once they have emerged 
from the pre-paradigmatic stage, undergo periods of so-called normal science, 
which allow them to obtain rapidly a high degree of precision and progress. 
During the period of normal science, acquisition of knowledge is a more or less 
steady and cumulative process. Normal science is dependent on the adoption of 
a universally accepted paradigm that defines research problems for the scientist, 
tells him or her what to expect, and provides the methods that he or she will 
use in solving them.

For Kuhn ‘normal science’ meant research based on past achievements that 
a scientific community acknowledges for a time as supplying the foundation 
for its further practice. Today such achievements are told and described both in 
elementary and advanced textbooks. These textbooks explain the body of ac­
cepted theory, illustrate many of its applications, and compare these applications 
with exemplary observations and experiments.

Kuhn says that he used the term ‘paradigm’ in two different senses. On the 
one hand, it stands for entire constellation of beliefs, values, techniques, and so 
on shared by the members of a scientific community. On the other, it denotes 
one sort of elements in that constellation, the concrete solutions which, em­
ployed as models or examples, can replace explicit rules as a basis for the solu­
tion of the remaining problems of normal science.

The first sense Kuhn called sociological and says that the definition is intrinsi­
cally circular. A paradigm is what the members of a scientific community share, 
and, conversely, a scientific community consists of men and women who share 
the paradigm. He claims, however, that all circularities are not vicious and de­
fends his argument at length.

In the course of research, scientists stumble upon anomalies that the para­
digm is unable to explain. If the paradigm repeatedly fails to explain the anomaly, 
a crisis ensues and alternative theories develop. Eventually a competing theory 
proves relatively successful in explaining the anomaly and it replaces the old 
paradigm. Kuhn called this replacement a scientific revolution or paradigm shift. 
At first, the scientific community resists the replacement, but with time, the suc­
cess of the new paradigm gains enough support to win out. The scientists within 
the discipline thus see the world in a different way than it “was” under the old
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paradigm. Once the old paradigm is replaced and the revolution has ended, nor­
mal science re-emerges only to await the discovery of new anomalies.

Kuhn also claims that the ultimate resolution of the conflict between com­
peting paradigms is not wholly the result of reasoning and comparative analysis; 
it is also affected by external factors. In the process of debating the merits of 
respective paradigms, theorists tend to “talk through” each other. Kuhn argued 
that a scientific revolution is a non-cumulative developmental episode in which 
an older paradigm is replaced in whole or in part by an incompatible new one. 
However, the new paradigm cannot build on the preceding one. Rather, it can 
only supplant it, for “the normal-scientific tradition that emerges from a scien­
tific revolution is not only incompatible but actually incommensurable with that 
which has gone before." (Kuhn 1962)

In addition, Kuhn argued that typical scientists tend to be conservative indi­
viduals in the sense that they agree to what they have been taught and apply their 
knowledge to solving the problems that their theories point out. The training of 
new scientists partly aims at teaching the paradigm so that they would continue 
to foster the established tradition. The study of paradigms is what mainly pre­
pares the student for membership in the scientific community. Scientists whose 
research is based on shared paradigms apply the same rules and standards for sci­
entific practice. This dedication is a prerequisite for normal science, i.e., for the 
genesis and continuation of a particular research tradition. From the very begin­
ning, new scientists are indoctrinated to the prevailing paradigm. Only young 
scientists who are not yet so deeply indoctrinated into accepted theories -  like 
Newton, Lavoisier, or Einstein -  can manage to sweep an old paradigm away.

One should also bear in mind that paradigms can also exist on a smaller scale. 
Probably in any science, one can identify “sub paradigms” and “sub paradigm 
shifts” within a general paradigm. A new paradigm can also surface when two or 
more related paradigms merge.

Kuhn was mainly thinking about natural sciences and astronomy (he received 
his Ph. D. in physics), and he illustrated his theory of the evolution of science 
with examples from the physical sciences. As examples of major paradigm shifts, 
Kuhn mentions the overthrow of Ptolemaic cosmology by Copernican heliocen­
trism, and the displacement of Newtonian mechanics by quantum physics and 
general relativity.

Kuhn’s book has revolutionized the history and philosophy of science, and 
his concept of paradigm shifts has been extended to such disciplines as political 
science, economics, and sociology. Can Kuhn’s theory also be applied to formal 
or methodological sciences like statistical science? Many formal or methodo­
logical sciences are closer to the traditional conception of science with gradual 
progress and cumulative acquisition of knowledge because of their deeply de­
ductive natures.

In a methodological discipline, an anomaly is rarely something that the para­
digm cannot explain. Rather it is the inability to solve or explain certain prob­
lems, or the paradigm is not able to respond to the needs. The anomalies that 
methods face may be in their capabilities to provide answers to questions arising 
in other (real) sciences.
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In mathematics, including probability theory, it is difficult to imagine a revo­
lution like the one that took place in physics. Statistical inference is inherently 
based on probability theory, but it differs from many other methodological dis­
ciplines due to its intimate connection to inductive reasoning. It is not straight­
forward how to attach to an estimate a measure of probability, which indicates 
how certain it is that the estimate reflects the true state of nature. Real world 
observations cannot be linked with probability distributions using merely deduc­
tive reasoning.

1.6.1 Research on paradigms in survey sampling
The history of statistics or statistical science has not been analysed much in 
respect to paradigms, but it is not a totally nonexistent topic. A central theme 
in many writings on the history of survey sampling has been the use of randomi­
zation in sampling. In some papers, for example, Brewer (1999) and Bellhouse 
(1988), this theme was prominent. A typical feature in nearly all papers, not 
only in the two mentioned, is that randomisation is assessed from a current per­
ception of survey sampling techniques rather than through an attempt to figure 
out the reasoning in each epoch.

Brewer (1999) divided the history of survey sampling into three parts. He 
argues that in the first part, from the end of the 19th century up to around 1945, 
survey designers could select between randomisation sampling and purposive 
sampling “...on an arbitrary basis, apparently without serious fear of criticism”. 
During the next 25 years, Brewer claims, the random selection of samples went 
virtually unchallenged. Then during the 1970s, the choice re-emerged in the 
form of balanced sampling. Brewer (ibid.) calls the first period ‘pre-paradig- 
matic’ in the sense Kuhn defined it. The next period, according to Brewer, was 
dominated by the randomisation paradigm.

In Kuhn’s theory, the paradigms are closely related to ‘normal science'. Dur­
ing periods of normal science, the primary task of scientists is to bring accepted 
theory and facts into closer agreement or in methodological sciences, to develop 
the accepted methods to better address practical needs. During these periods, 
the scientific community works from a single paradigm or from a closely related 
set. Kuhn’s argument that a scientific community is defined by its adherence to 
a single paradigm implies that at the pre-paradigmatic (or multi-paradigmatic) 
phase of a discipline, scientists do not form a truly scientific community8.

Is Brewer’s characterization justified? Obviously it is, if the only criterion 
considered relevant is whether selection probabilities of sample units are used in 
statistical inference (implying randomisation in the selection of a sample). How­
ever, sample surveys were already an important method to collect data during 
the period Brewer called pre-paradigmatic. Did they lack scientific basis?

Probability as a central factor in statistical inference is a distinct issue from 
that of random selection of units. Random selection as a method providing rep-

8 Kuhn also suggested that questions about whether a discipline is or is not a science can be 
answered only when members of a community who doubt their status achieve a consensus 
about their past and present accomplishments.
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resentative samples has a considerably longer history than its role in estimation 
(see Bowley 1906). Brewer’s evaluation of the historical development of sur­
vey sampling seems slightly contemptuous because it is quite obvious that the 
virtues of random selection were already known before Hansen and Hurwitz 
designed the sampling scheme for the Current Population Survey (Hansen and 
Hurwitz 1943).

In the beginning of the 20th century there were serious statisticians and sci­
entists who applied partial investigations, and it seems an underestimation of 
their professional ethics to say that they did not use scientific methods, even 
though their methods were different from the methods that are currently ap­
plied. Brewer talks about randomization induced by selection probabilities of 
sampling units, but there are also other lines of thought about how probability is 
assumed to enter the inference setup. Brewer’s claim that the sampling method 
could be selected freely between random and purposive sampling on an arbi­
trary basis without fear of criticism appears somewhat doubtful.

Bellhouse (1988) argues that the initial paradigm in survey sampling is that 
of the desire to collect a representative sample as presented by Anders Kiaer in 
the 1890s. Bellhouse also says that there are earlier examples of partial investiga­
tions but that they illustrate the randomness in research as is typical for the pre- 
paradigmatic times. Bellhouse also analyses the development of survey sampling 
in relation to the adoption of randomisation in statistical inference. Another 
paradigm that Bellhouse identifies is the one starting from Neyman’s paper in 
1934. In Bellhouse’s mind, the reasons are twofold: the first is that by that paper, 
randomization was pointed to as the recommended solution in sample selection 
(and the problems of purposive selection were shown indisputably); the second 
reason was that it provides a theory of point and interval estimation under ran­
domisation. An apparent question is: did not there exist formalized statistical 
inference for finite populations before Neyman?

Kish (2002) argues that sampling is a branch of and a tool for statistics, and 
that field of statistics was founded as a new paradigm in 1810 by Quetelet. That 
happened, according to Kish, when the predictable, meaningful and useful regu­
larities in the behaviour of population aggregates of less predictable individuals 
were named “statistics”. Kish (ibid.) maintains that it was a great discovery at 
that time. Kish’s arguments do not seem to be well-grounded, however. Quete­
let never carried out a survey or partial investigation because he believed that 
populations are so heterogeneous that only a full enumeration could be repre­
sentative (see Chapter 6).

Although paradigms of randomisation have been a topic in some studies, the 
development of statistical inference through the history has not been analysed 
in respect to paradigms. The documented history suggests that there occurred 
paradigm shifts in the method called statistical inference, first because of the 
contributions of Ronald Fisher, and then by Jerzy Neyman. Neyman’s work re­
sulted in a new paradigm in statistical inference for fixed populations as Bell­
house (Bellhouse 1988) argued. However, there existed a method for statistical 
inference before Fisher’s and Neyman’s contributions. The paradigm that Ney­
man initiated replaced an older paradigm that was based on Laplace’s Principle 
of Inverse Probability.
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Another paradigm shift took place when Anders Kiaer introduced the Rep­
resentative Method to be used instead of censuses to explore population charac­
teristics. It was a revolution in the Kuhnian sense, but it was not truly a paradigm 
shift because the representative method and census continued to exist side by 
side. This was also Kiaer’s intention.

The view of randomization that the papers of Brewer and Bellhouse reflect 
seems ill-founded. The merits of randomization in sample selection were ac­
knowledged already at an early stage. Before the modern age, randomization was 
not applied in sampling from human populations because of practical reasons. 
Drawing a (simple] random sample was not possible or it was too difficult, and 
data collection from a truly random sample had been too labour- and time- 
consuming. Another aspect of randomization is its role in statistical inference. 
The argumentation about randomisation inference has been slightly confused: 
what is meant by randomisation inference and when did it start?
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2 Origins of statistical science

Some years ago, Maurice Kendall wrote an article asking, “Where shall the his­
tory of statistics begin?" (Kendall 1960). He opens with a paradox: “A history 
must start somewhere, but history has no beginning.” By this, Kendall means that 
history is a continuous flow of ideas and activities, which could be followed end­
lessly. However, a starting point has to be selected in order to be able to assess 
the paths of development.

What does “statistics” means? In modern usage, “statistics” as a word and as 
a concept has two different meanings: Statistics may mean a systematic collec­
tion of facts and their organization, usually in tables. This is occasionally called 
official statistics because it is typically an activity of administration. The other 
meaning is related to analyzing the data and drawing conclusions from it. The 
latter will be called here statistical science9. Statistical science also includes ap­
plications of probability in statistics.

2.1 Early examples of official statistics

Activity that can be described as statistical in the wide sense has been pursued 
for a very long time. It is possible that all organized societies have practiced some 
sort of statistical activity. The first known censuses of agriculture were already 
undertaken in Babylonian times (3000 B.C.). That means that the first statistics 
were compiled relatively soon after the art of writing was invented. According to 
Rao (2006), in India a treatise called Arthasastra by Kautilya, probably written 
during 321-296 B.C., had a detailed description of the system of data collection 
relating to agricultural, population, and economic censuses in villages and towns 
during that period. Much later, the tradition of collecting data in detail contin­
ued in India during the period around 1590 A.D. Ancient China also counted 
its people to determine the revenues and the military strength of the different 
provinces. There are also accounts of statistical overviews compiled by the Egyp­
tian rulers long before Christ. Rome regularly took a census of people and of 
property. This was used to establish the political status of citizens and to assess 
their military and tax obligations to the state. There is a very famous example of 
counting the people of Israel, leading to the birth of Jesus in Bethlehem.

Recently, Missiakoulis (Missiakoulis 2020) has discovered evidence that Ce- 
crops, the legendary first king of Athens, may have take a census of his subjects 
in the 16th century B.C.: Each person was commanded to cast a single stone 
on a pile, and by counting the stones, it was established that they were twenty 
thousand inhabitants. However, Missiakoulis (ibid.) is a little hesitant about the 
census because Cecrops is a mythical figure, who may or may not have existed in

9 In later chapters, the word statistics means statistical science unless otherwise indicated 
explicitly.
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person, and the evidence of Cecrops’ census is all from classical literary sources 
and not from archaeological sources.

In the Middle Ages, attempts to conduct a census were rare. The most fa­
mous one was the census of England taken by the order of William the Con­
queror, King of England. The compilation of this Doomsday Book started in the 
year 1086 A.D. The book records a wealth of information about each manor and 
each village in the country.

Another interesting example of the history of official statistics can be found 
in the Inca Empire that existed between 1000 A.D. and 1500 A.D. in South 
America. Incas did not have a written language, but each Inca tribe had its own 
statistician, called the Quipucamayoc. He kept records of the number of people, 
the number of houses, the number of llamas, the number of marriages, and the 
number of young men who could be recruited for the army. All these facts were 
recorded on a quipus, a system of knots in coloured ropes.

At regular intervals, couriers brought the quipus to Cusco, the capital of the 
kingdom, where all regional statistics were compiled into national statistics. The 
system of Quipucamayocs and quipus worked well, but the system vanished 
with the fall of the Inca Empire.

An early census also took place in Canada in 1666. Jean Talon, the intend- 
ant of New France (later Quebec), ordered an official census of the colony to 
measure the increase in population since the founding of Quebec in 1608. The 
enumeration, which recorded a total of 3,215 persons, included the name, age, 
sex, marital status, and occupation of every person. The first censuses in Europe 
were undertaken in the Nordic countries. The first census of modern times was 
carried out in Iceland in 1703; the first census in Sweden-Finland took place in 
1746; and in Denmark-Norway, the first census was done in 1769.

The first statistical account of Scotland has been considered one of the cor­
nerstones of modern statistics. It was undertaken at the end of the eighteenth 
century under the direction of Sir John Sinclair. It was published in twenty-one 
volumes between 1791 and 1799. Sinclair’s plan involved a pre-planned set of 
160 questions sent to all parishes in Scotland: 40 questions covered the geogra­
phy and topography of the parish, its climate, natural resources, and natural his­
tory; 60 questions addressed population and related matters; and the remaining 
questions concerned the parishes’ “agricultural and industrial production” and 
miscellaneous matters. In 1799, Sinclair was able to lay before the General As­
sembly “a unique survey of the state of the whole country, locality by locality”.

Obviously for a very long time, records of population and related matters 
have been collected intermittently in a variety of places. Usually, the chief pur­
pose of statistical activity has been the promotion of bureaucratic efficiency. 
Without detailed records, centralized administration is almost inconceivable.

These examples can be described as bookkeeping of the population in a coun­
try without any attempts to reason about the data. They can hardly be called 
examples of statistical science. Kendall (ibid.) argues that “the true ancestor of 
modern statistics is not seventeenth-century statistics, but Political Arithmetic”. 
By modern statistics, Kendal meant statistical science.
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2.2 Political Arithmetic
William Petty10 coined the term "political arithmetic” in the middle of the 17th 
century for a discipline of empirical collection of population records and the prep­
aration of accurate life tables. In his view, political arithmetic was an application 
of “Baconian principles to the art of government” (see Porter 1986). He is best 
known for his economic history and statistic writings, but he also attempted to do 
some simple statistical analysis. Petty’s work in political arithmetic, along with the 
work of John Graunt11, laid the foundation for modern census techniques.

The third important person behind political arithmetic was Edmond Hal­
ley12. In 1693, Halley published an article on life annuities, which presented an 
analysis of age-at-death taken from archives in Breslau, which was known for 
keeping careful and exact records. Halley’s work had a strong influence on the 
development of actuarial science. The construction of the life-table for Breslau 
has been regarded as a major event in the history of demography.

Political arithmetic had a strong influence on early statistical thinking, and 
it dominated the thinking right up to the beginning of the nineteenth century, 
when political arithmetic gradually gave way to the new social science of statis­
tics (social calculus). This coincided with a profound change in the social infra­
structure which was caused by the age of industrialisation and as a consequence 
of rapid urbanisation. According to Porter (ibid.), by that time, statistical writers 
had become increasingly convinced that society was more than a passive recipi­
ent of legislative initiatives. Rather, society was considered dynamic, sometimes 
intractable, and also possessing some autonomy, and therefore had to be under­
stood before the aims of the state could be put into effect.

2.3 First sample survey

The first documented attempt to make statements about a population by using 
information only about a part of it was made by John Graunt. In a famous tract 
(Graunt, 1st edition 1662), he described a method to estimate the population 
of London, based on a sample. His motivations were somewhat obscure, but 
obviously the main motive was not to conduct a scientific investigation. In the 
beginning of his tract he said:

“I Have been several times in company with men of great experience in this City, 
and have heard them talk seldom under Millions of People to be in London, all 
which 1 was apt enough to believe, untill, on a certain day, one of eminent Repu­
tation was upon occasion asserting, that there was in the year 1661 two Millions 
of People more than Anno 1625, before the great Plague; I must confess, that, 
untill this provocation, I had been frighted with that misunderstood Example of

10 William Petty (1620-1683) was an English economist, scientist, and philosopher
11 John Graunt (1620-1674) was an English merchant and a collaborator of William Petty
12 Edmond Halley (1656-1742) was an English astronomer, geophysicist, mathematician, me­

teorologist, and physicist.
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David, from attempting any computation of the People of this populace place; but 
hereupon I both examined the lawfulness of making such enquiries, and, being 
satisfied thereof, went about the work itself in this manner: “ (Graunt 1662)

Graunt’s survey was based on the fact that from the beginning of the 17th cen­
tury in England, parishes were obliged to keep records on births, christenings, 
marriages, and burials. He surveyed families in a sample of parishes where the 
registers were well kept. He found out that on the average there were 3 buri­
als per year in 11 families. Assuming this ratio to be more or less constant for 
all parishes, and knowing the total number of burials per year in London to be 
about 13,000, he concluded that the total number of families was approximate­
ly 48,000. Obviously, this estimation is the first documented example of using a 
ratio estimator. Putting the average family size at 8, he estimated the population 
of London to be 384,000. The estimated number of inhabitants in London was 
one-third of what was commonly believed.

Although Graunt was aware of the fact that averages like the number of buri­
als per families and family sizes varied in space and time, he did not make any 
provisions for it. In Graunt's time, there were no known methods to take into 
account such a variation in estimation. On the other hand, he tried to verify his 
estimate by calculating it with another method.

“And lastly I took the Map of London set out in the year 1658 by Richard New- 
court, drawn by a scale of Yards. Now I guessed that in 100 yards square there 
might be about 54 Families, supposing every house to be 20 foot in the front: for 
on two sides of the said square there will be 100 yards of housing in each, and in 
the two other sides 80 each; in all 360 yards: that is 54 Families in each square, 
of which there are 220 within the Walls, making in all 11880 Families within the 
Walls. But forasmuch as there dy within the Walls about 3200 per Annum, and in 
the whole about 13000; it follows, that the housing within the Walls is 1/4. part of 
the whole, and consequently, that there are 47520 Families in, and about London, 
which agrees well enough with all my former computations: the worst whereof 
doth sufficiently demonstrate, that there are no Millions of People in London, 
which nevertheless most men do believe, as they do, that there be three Women 
for one Man, whereas there are fourteen Men for thirteen Women, as elsewhere 
hath been said.” (Graunt 1662)

Apart from using a ratio estimator, Graunt made two significant inventions, 
which later appeared to be important in survey sampling. First he observed, 
and rested on, the fact that some social and demographic indicators and ratios 
remained stable in time and space. Stability of social phenomena is an essential 
assumption, without which social surveys would not be justified. For example, 
he observed that nearly the same proportion of boys and girls were born -  but 
slightly more boys. This proportion remained constant in all parishes in London 
and the surrounding countryside and over time. These facts were not known be­
fore Graunt established those using church records. Graunt’s estimates had not 
been plausible without the awareness of the stability of the ratios.

Graunt’s second invention was to use averages to estimate total values. Es­
sential to his method was the observation that the proportion of burials in a year 
remained around 3 to 11 families, and that the average family size was 8 persons. 
These averages were first expanded to estimate the number of families and then 
the number of people.
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2.4 The origin of averages in estimation
The use of averages as the basis of estimation of the total amount is central in 
sample surveys. The way in which Graunt used average values in estimation 
was ingenious, but the very use of average values has a longer history. Actually, 
the idea of combining observations to reduce variation is very old. According to 
Plackett (1958], the problem of estimating parameters from observations ap­
pears to have been presented itself already to the Babylonian astronomers a few 
centuries B.C. Between 500 and 300 B.C. they developed a systematic math­
ematical theory to account for the motions of the sun, moon, and planets. Also 
the Greeks had mathematical techniques to combine observations in astronomy. 
According to Plackett (ibid.], the technique of repeating and combining obser­
vations made on the same quantity appears to have been introduced into the 
scientific method by Tycho Brahe ̂  at the end of the 16th century.

13 Tycho Brahe [1546-1601), bom Tyge Ottesen Brahe, was a Danish nobleman known for 
his accurate and comprehensive astronomical and planetary observations. He adopted the 
Latinized name «Tycho» at around age fifteen. In his lifetime, Tycho was well known as an 
astronomer and alchemist.
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and Bayes' Theorem
3.1 Beginnings of probability theory

The origins of probability theory can be found in the period from 1650 to 1700 in 
the mathematical analyses of “games of chance” and in the systematic study of mor­
tality data. A possibility to have a better understanding of future events -  or maybe 
to predict them -  has always enchanted people, but gambling has a special role be­
cause of the immediate benefits. Therefore, analysis of the games of chance was the 
source of the greatest impetus for the early contributions to the probability calculus. 
The second half of the 17th century has come to be known as the age of scientific 
revolution. The thoughts of famous scientists such as Newton, Leibniz, and Halley 
indirectly also paved the way for the development of probability theory (see Hald 
1990). Especially Newton's contributions have been regarded as being important 
because his research eventually brought about a new world view and his philosophy 
of science dominated the intellectual world for more than two centuries.

At the end of the 17th century, the central problem in probability theory was
the calculation of probabilities in 
different (game) events. The main 
interest was in the problems of di­
rect probability. That consisted of 
descriptions of the distributions of 
outcomes of experiments, which 
were composed of equally likely 
simple events. Hald (1990) claims 
that during the decade from 1708 to 
1718, there was a great leap forward 
(in probability theory) because of 
the great number of significant con­
tributions published in that period. 
Probability theory expanded gready 
from its original questions.

Jakob Bernoulli’s14 famous book 
Ars Conjectandi was published in

3 Inverse probability
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The cover page of Ars Conjectandi.

14 Jakob Bernoulli (1654-1705), is also known by names Jacob, Jacques and James Bernoulli, was 
a Swiss mathematician and scientist and was one of the many prominent mathematicians in the 
Bernoulli family. Jakob Bernoulli studied theology and entered the ministry. But he also studied 
mathematics and astronomy. He traveled throughout Europe from 1676 to 1682, learning 
about the latest discoveries in mathematics and the sciences. He became familiar with calculus 
through a correspondence with Gottfried Leibniz, then collaborated with his brother Johann 
on various applications. In 1690, Jakob Bernoulli became the first person to develop the tech­
nique for solving separable differential equations. Upon returning to Basel in 1682, he founded 
a school for mathematics and the sciences. He was appointed professor of mathematics at the 
University of Basel in 1687, remaining in this position for the rest of his life
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171315, and it turned out to be very influential all over Europe. In this book, Ber­
noulli analyzed probability and stochastic phenomena (as they would be called 
today] from a wider perspective and more systematically than his precursors had 
done (see Stigler 1986 and Hald 1990]. Bernoulli created many central concepts 
that have remained in probability theory. Maybe the best known is the Bernoulli 
trial. He also coined the terms a priori and a posteriori to distinguish two ways 
of deriving probabilities. He presented several central inventions in Ars Con- 
jectandi, but the most influential was the Law of Large Numbers16. Bernoulli's 
book is claimed to be the first systematic treatment on probability theory and 
to be groundbreaking on the topic (see Stigler 1986], It was soon translated 
into English, and it had a strong influence on English mathematicians such as 
Abraham De Moivre17 and Thomas Simpson, and obviously it eventually led to 
Thomas Bayes’ Essay (see Schneider 2006].

Five years after Ars Conjectandi was published, Abraham de Moivre published 
a book entitled The Doctrine of Chances18. De Moivre drew from the results that 
Bernoulli had attained, but he also elaborated many of those problems that Ber­
noulli was not able to solve. Eventually, de Moivre also managed to solve some of 
the mathematical problems Bernoulli could not (see Stigler, ibid.). Published in 
1738, the second edition of de Moivre’s book was considerably more elaborate 
than the first edition: In it he already foreshadowed the idea of normal distribu­
tion as an approximation of binomial distribution, but he did not firmly establish 
it. That was done by Laplace a half century later, and therefore this approxima­
tion has occasionally been called the de Moivre-Laplace Theorem19. The works 
of de Moivre had a profound influence in the 18th century, and many of the pub­
lications on probability theory have been said to take up their motivation from 
his writings. The title of de Moivre’s book came to be synonymous with probabil­
ity theory (see Stigler, ibid.). That was also the source for the title used in Bayes’ 
essay ("An Essay Toward Solving a Problem in the Doctrine of Chances”).

Although mathematicians during the first half of the 18th century mainly dealt 
with problems of direct probability induced by the games of chance, there were

15 In fact, Jakob Bernoulli (1654-1705) wrote the book already in 1705, but it was published 
eight years after his death by his nephew Nicholas.

16 The Law of Large Numbers says that in repeated, independent trials with the same proba­
bility p  of success in each trial, the chance that the percentage of successes differs from the 
probability p  by more than a fixed positive amount, e > 0, converges to zero as the number of 
trials n goes to infinity, for every positive e. It follows from the law that the empirical proba­
bility of success in a series of Bernoulli trials will converge to the theoretical probability.

Originally the law was called Bernoulli’s Theorem. In 1835, Poisson elaborated it further 
and coined the name «L a  loi d es g ran d s rwmbres» («The law of large numbers»). After Ber­
noulli and Poisson, especially Russian mathematicians contributed to refinement of the law, 
including Chebyshev, Markov, Kolmogorov, and Khinchin..

17 Abraham D e Moivre (1667-1754) was bom in France but he fled to England because of 
religious reasons at the age of 21 after being in prison for two years. He stayed in England the 
rest of his life and wrote only in English, except one paper in Latin.

18 The whole title of the book was “The Doctrine of Chances: or a Method of Calculating the 
Probability of Events in Play”

19 Karl Pearson held the association of the Normal curve to Gauss one of the four capital flaws 
in the history of statistics. He said (see Pearson 1978) “There is a fundamental curve in sta­
tistical theory which goes by the name Gauss. Laplace discovered it ten years at least before 
Gauss, and its real discoverer was De Moivre -  some half-century before Laplace."
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also more "serious” areas of application. They were motivated by problems from 
annuities, insurance, or sciences like meteorology and especially astronomy. In an­
nuities and in the insurance business, direct probability played an important role 
because probability theory provided a tool to determine the risks and payments. 
In empirical research, or for example in astronomy, direct probability usually is 
not sufficient. Often the problem is the reverse: based on observations at hand, 
what can be concluded about the cause system that has brought about these 
observations? In their books, both Bernoulli and de Moivre had trains of thoughts 
concerning inverse probability in the context of games of chance (see Dale 1999), 
but they never explicitly treated the topic. Only after Hume had published his 
critique on the inductive method in 1748 did mathematicians become captivated 
with questions about inductive inference and inverse probability.

R.A. Fisher claimed that Bayes’ Essay was the first attempt to systematically 
treat inductive reasoning (see Fisher 1935). On the other hand, Stigler (1986) 
claims that the first attempts to deal with the problem took place in England by 
two persons: Thomas Simpson and Thomas Bayes. Bayes’ formula is one of the 
best known formulas in probability theory, and it is the first formula to explicitly 
address the inverse problem. Simpson published his papers before Bayes did, but 
they addressed a slightly different inference problem than Bayes did in his Essay.

As the topic of the thesis is the path how statistical inference, or inverse 
probability, for finite populations has developed into a mature discipline, a natu­
ral starting point is the work of both Thomas Simpson and Thomas Bayes.

3.2 Simpson's analysis of error

Next to de Moivre, Thomas Simpson20 was the most important writer on prob­
ability theory and actuarial mathematics in Britain in the first half of the 18th 
century (Hald 1998). He wrote two textbooks in 1740s which were partly based 
on the early works of de Moivre. Stigler claims that Simpson’s motivation was to 
popularize de Moivre’s works (Stigler 1986). However, Simpson also made an 
original contribution on statistical error theory, which has proved to be signifi­
cant for the later development of statistical inference.

The Simpson’s work on error distribution was written in the form of a letter, 
which was read to the Royal Society in 1755. It carried the title: “On the Ad­
vantage of Taking the Mean of a Number of Observations in practical Astronomy". 
(Simpson 1755)

Simpson's treatment of this problem was fairly limited. He showed that it is 
better to take a mean than a single observation, provided that the mean is based on 
6 measurements. The idea to combine observations in a mean to reduce the influ­
ence of variation was not new. The novelty in Simpson’s idea was that it was ap­
plied to inaccurate observations (in astronomy). He started his letter,"... in order to 
diminish the error arising from the imperfection of instruments, and of the organs

20 Thomas Simpson (1710 -  1761) was and English mathematician and inventor. Besides his 
books on probability, he is known by the Simpson’s rule to approximate definite integrals.
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of sense, by taking a Mean of several observations...”. In this short letter, Simpson 
focused on two important points: the conceptual and technical developments.

In the conceptual development, Simpson did not focus on observations, i.e., 
the actual position of the astronomical object, but on the errors made in the ob­
servations, i.e., the difference between the recorded observations and the actual 
position of the observed object. According to Stigler [ibid.] this was a critical 
opening in the mid-eighteenth century mathematics that lacked theories of in­
ference. It was the first step to a more successful analysis of uncertainty.

Simpson assumed a specific distribution for the errors. Because of the known 
error distribution, he was able to focus his attention on the mean error instead 
of the mean observation. This way, he could avoid the problem arising from the 
stochastic structure for the unknown position. The induced inferential problem 
was similar to what R. A. Fisher later called the fiducial argument21.

Simpson supposed that each of the n independent observations was suscep­
tible to the errors [with discrete values]

-v, -v+1, ... , -2, -1, 0, 1, 2, ... , v-\, v

and the probability distribution of the errors proportional to either 

f v, ... r~2, r~\ r°, r \  r2, ... A or

r~v, 2r~v+\  3r~v+2, ... , (v+\)i°, ... , 3t^2,2 r^ \  A, where r > 0.

The error distributions were derived from those of de Moivre, but the use to 
which Simpson put them was new. He was actually interested in the case where 
r=l [i.e., symmetric error distribution], Stigler [Stigler, ibid.] claims that Simp­
son did not recognize the advantage of writing it in a more general way. Ac­
cording to Stigler, this way he had been able to anticipate the use of generating 
functions in statistics, which was the technique to be used later in the works of 
Lagrange and Laplace.

Later Lagrange embraced the idea of Simpson and presented a detail discus­
sion of discrete error distributions on the lines essentially the same as those fol­
lowed by Simpson [see Plackett 1958]. Lagrange also purported to show that the 
mode of the distribution of sample means is the same as the populations mean. 
Lagrange’s mathematical developments and results were appreciated by Laplace 
who subsequently made the technique a basic part of his attack on the problem 
of combining observations and the analysis of error (see Plackett, ibid.].

21 Fisher’s argument runs as follows: If e represents the error, O the observation and P  the point 
observed, then O = P  + e can be written as well P  = O -  e. Fisher argued: “Its is not important 
which end is considered as fixed.” In fiducial argument the symmetrical difference, or the 
error, e = O -  P  is treated as randomly distributed (see Chapter 9).
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3.3 Bayes' inverse probability
In its modern form22 for the discrete case, Bayes’ Theorem is:

P(a, | E) =
P(E  | a ,)P (0/) 

^ P Ç E  | a,)P{a,)
(3.1)

In the current literature, the formula is said to provide an answer to the question: 
what is the probability of an "event” if we know that “event” E has happened. 
In the common mathematical interpretation of the theorem, a i corresponds to 
outcomes at some intermediate stage of a compound experiment, or events, and 
£ to some final outcome that is readily observed.

The probability P(aJ is often called the a priori probability of a{. A special 
situation where all events a{ are equally likely is found by setting all P(aJ equal 
to each other. Then P(aJ factors out of the denominator and cancels the term 
in the numerator, and the formula gives the same result without any a priori 
probabilities P(aJ:

E(a, I E ) =
P(E  | a,-) (3.2)

In some writings, the Bayes’ formula has been given an epistemological interpreta­
tion: given that event £ has occurred, the probability that it was due to the hypo­
thetical cause flj is equal to the probability that a t should produce the event times 
the probability that a{ should occur in the first place, all divided by a scaling factor 
that is equal to the sum of such terms over all i’s. This interpretation involves the 
idea of the inverse probability which is thought to address the question: Given 
that an event that may have been the result of any of two or more causes has oc­
curred, what is the probability that the event was the result of a particular cause? 
Bayes himself did not explicitly mention this epistemological interpretation, al­
though that may have been his ultimate motivation (see Hald 1998).

In the continuous case of Bayes’ rule, there is a continuous range of possible 
causes with a continuous range of probabilities, 9, ranging from 0 to 1. The prob­
ability that one particular cause should produce p successes in n = p + q trials is

(£ + g)!
p\q\

0^(1 - 0 ) *

This is divided by the sum of all possible causes, which in the continuous case 
becomes an integral. The continuous form of the Bayes’ rule is usually written as

Qp(l - Q Y
P (S) =  , > ’----

J e 'C i - e ^ d e

22 The modem forms of the Bayes' Theorem have been given only after his death. In the Essay, 
they cannot be found. According to Fienberg (2006) the modem formula was introduces in 
the beginning of 19th century.

(3.3)
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The combinatorial coefficients in the numerator and denominator are the same 
and have been cancelled out.

3.3.1 The Bayes' Essay
It is well known that the Presbyterian minister Thomas Bayes (1701-1761) in­
vented the Bayes’ Theorem. It was published as a paper often called the Essay 
of Bayes (Bayes 1763). Its complete tide was “An Essay Toward Solving a Prob­
lem in the Doctrine of Chances"23. Stigler (1986) claims that he has found some 
evidence indicating that Bayes got interested in this topic because of Simpson’s 
earlier paper (see also Bellhouse 2004).

Bayes never published the Essay by himself, though. Richard Price, another 
Presbyterian minister and a friend of Bayes, found it from his left property and 
sent it to the Royal Society two years after Bayes’ death. Although Price is not 
as well known in the statistical literature as Bayes, he was not a layman in what - 
comes to probability. Already the fact that he realized the value of the Essay 
proves it. In addition, he wrote an introduction and an appendix in the Essay, 
commented and explained Bayes results, and obviously added a few details to 
the text (see Hald 1998 or Dale 1999).There have even been some speculations 
about Price’s role and about how much he really changed the text (see Fienberg 
2006), and even about the true origin of the Essay (see Stigler 1983). The Price’s 
Appendix was called "Containing an Application of the foregoing Rules to some 
particular Cases". In that, he discusses a number of examples which illustrate 
the use of the results of the Essay. Dale (ibid.) gives a detailed analysis of Price’s 
Appendix. Also Hald (2007) makes interesting comments about it.

Bayes started the Essay by defining the problem that he was addressing and 
went on to prove nine propositions which eventually solved the problem: •

"Problem: Given the number of times in which an unknown event has happened 
and failed: Required the chance that the probability of its happening in a single 
trial lies somewhere between any two degrees of probability that can be named."

In modem notation, the problem could be written as follows: Let X  be the number 
of times the event happens in n trials and 0 the probability it happens in a single 
trial. Bayes sought to find the probability P(b < 0 < /| X) for any given b and/.

The formulation of the problem aims explicitly at finding an interval es­
timate for an unknown parameter based on observations. Price observed the 
importance of this problem and he wrote a long paragraph devoted to a discus­
sion of this matter. He notes that the discussion of the problem was needed to 
determine "in what degree repeated experiments confirm a conclusion”. Later 
he mentions that the problem “is necessary to be considered by any one who

23 Bayes’ Essay was first published in 1763 but it has been published later in Biometrika in
1958 accompanied with biographical notes by G. A. Barnard (Bayes 1958). The Essay can be 
found also from the Internet.
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would give a clear account of the strength of analogical or inductive reasoning." 
In effect, Price was saying that solving the problem was essential to the solving 
of the problem of induction (see also Hacking 1975).

It is not known whether the problem that Bayes put forward was new, but at 
least it had not been solved before. One reason why Bernoulli or de Moivre did 
not treat the problem may have been the fact that at the beginning of the 18th 
century the problem of induction had not been brought up as a central problem 
of philosophy (see Hacking, ibid.).

At the time when Bayes prepared his Essay, the concept of probability was vague, 
and mathematicians gave the concept different meanings or they did not give it a 
definite meaning at all. Wanting to make his point clear, Bayes first defined what he 
meant by probability. He defined the “ground laws” in the following manner:

“Definition 1. Several events are inconsistent, when if one of them happens, none
of the rest can.
2. Two events are contrary when one, or other of them must; and both together 

cannot happen.
3. An event has said to fail, when it cannot happen; or, which comes to the same 

thing, when its contrary has happened.
4. An event is said to be determined when it has either happened or failed.
5. The probability of any event is the ratio between the value at which an expec­

tation depending on the happening of the event ought to be computed, and 
the value of the thing expected upon it’s happening.

6. By chance I mean the same as probability.
7. Events are independent when the happening of any one of them does neither 

increase nor abate the probability of the rest.”

In the introduction to the Essay, Price wrote: “He [Bayes] has also made an apol­
ogy for the peculiar definition he has given to the word chance or probability. 
His design herein was to cut off all dispute about the meaning of the word,... of 
the proper sense of the word probability, he has given that which all will allow 
to be its proper measure in every case where the word is used.”

Bayes’ Essay was composed of what he called propositions and some of their 
corollaries. Only in Proposition 9 does he address the problem and derive a so­
lution to it using the previous propositions. Propositions 1 through 8 define rules 
of probability calculus and define the intermediate results needed to establish 
Proposition 9.

Proposition 1 : "When several events are inconsistent the probability of the hap­
pening of one or other of them is the sum of the probabilities of each of them.” 
Proposition 2: “If a person has an expectation depending on the happening of an 
event, the probability of the event is to the probability of its failure as his loss if it 
fails to his gain if it happens.”
Proposition 3: “The probability that two subsequent events will both happen is 
a ratio compound of the probability of the 1 st, and the probability of the 2d on 
supposition the 1st happens.”
Corollary: “Hence if of the two subsequent events the probability of the 1st be 
a/N and the probability of both together be P/N, then the probability of the 2d 
on supposition the 1st happens is P/a.”
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In modern notation, this means that if E j and E 2 are any two events, ordered in 
time so that E j happens earlier than E 2, then

P(E2 \ E l) = P ( E , n E 2)
P (E t)

(3.4)

This is the first explicit formulation of conditional probability. It was significant 
because conditional probability is a central concept in inverse probability.

Proposition 4: “If there be two subsequent events to be determined every day, 
each day the probability of the 2d is b/N  and the probability of both P/N, and I 
am to receive N  if both the events happen the 1st day on which the 2d does; I say, 
according to these conditions, the probability of my obtaining N  is P/b." 
Proposition 5: “If there be two subsequent events, the probability of the 2d b/N 
and the probability of both together P/N, and it being 1st discovered the 2d event 
has happened, from hence I guess that the 1st event has also happened, the prob­
ability I am in the right is P/b.”

In modern notation, this proposition says that if E j and E 2 are two events, or­
dered in time [E^ < E 2), then

P(E X | E2) =
P (E , n E 2) 

P(E 2)
(3.5)

This proposition addresses the problem of induction, or inverse problem24, as it 
gives a probability for an unknown event based on an observed event. Proposi­
tion 5 can be considered as the first formulation of the Bayes’ Theorem. Hald 
(1998) regarded this proposition as Bayes' most important result — not because 
of Bayes’ proof, but because of his interpretation and because its application 
to statistical inference. It is important to note that Bayes regarded propositions 
3 and 5 fundamentally different. Shafer (1982) has given a careful analysis of 
Bayes’ reasoning between these two propositions.

Proposition 6: "The probability that several independent events shall all happen is 
the ratio compounded of the probabilities of each.”

Bayes gave two corollaries to this proposition dealing with failures of events: 
“Failure of an event may always be considered as the happening of its contrary.”

Proposition 7: "If the probability of an event be a, that of its failure be b in each 
single trial, the probability of its happening p times, and failing q times in p + q tri­
als is EaPlP if E be the coefficient of the term in which occurs when the binomial
------------ 1 P + q

a + b\ is expanded.”

In essence, Bayes derived the binominal distribution in this proposition with the 
help of proposition 6 . In modern notation, when n = p +  q and probability of 
success is 9, it can be written

24 Bayes spoke about converse problem, not inverse problem.
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10) = (3.6)9p(l - 0 ) ?
A

To solve the initial problem, Bayes created a though-experiment which was 
based on the positions of balls on a flat square table25 marked ABCD. To begin, 
he gives a postulate:

Postulate 1 :1 suppose the square table or plane ABCD to be so made and leveled, 
that if either of the balls o or W be thrown upon it, there shall be the same prob­
ability that it rests upon any one equal part of the plane as another, and that it 
must necessarily rest somewhere upon it.

First, one ball, W, is rolled onto the table, ABCD, with unit width, and the position 
of the ball, line os, is observed. W corresponds to the unknown parameter T (see 
Figure 3.2). Next, another ball, O, is rolled n times onto the same table, p of which 
end up in a position to the left of the original ball and q to the right (p + q = n). 
The number of times the ball O is to the right of the line os is marked X.

Next Bayes proves a lemma:

Lemma 1: “The probability that the point o will fall between any two points in the 
line AB is the ratio of the distance between the two points to the whole line AB.”

Bayes assumed that 9 has uniform 
distribution on the unit interval and 
once 9 is determined X  has a binomial 
conditional distribution with 9 repre­
senting success (or failure) on a single 
trial. A consequence of this thought 
experiment is that the distribution of 
9 can be considered as continuous. In 
a Bernoulli trial, 9 had had a discrete 
distribution. Stigler (1986) noted that 
the continuous nature of 9 provided 
a new symmetric character for the 
problem which opened a new way of 
solving it.

Geometrically, the position where 
the ball W comes to rest determines a 
line os parallel to sides BC and AD; 9 
is the ratio of Ao to AB. X  is then the 
number of times O comes to rest in 
the rectangle osDA. Bayes called this 
event M.

Bayes wrote the next propositions 
using geometrical expressions related 
to the table in Figure 3.2. In modem 
notation, Proposition 8 can be written as follows:

Figure 3.2:
Bayes' table: the square ABCD and two balls 
W and 0. The ball W is rolled once and stops 
on line os. The ball O is rolled n times and 
the number of times it is in osDA is counted. 
(Bayes 1764 or Stigler 1986).

25 Some writers have later said that Bayes spoke or meant a billiard table (see e.g. Bellhouse 
2004].
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Proposition 8: Before the ball W is thrown, the probability that the point O 
should fall between /  and b, and withal that the event M should happen p times 
and fail q times in n = p + q trials is

P(b  < 0  < /  n  Mn
n

P
9p(i - e )V e

y
(3.7]

Corollary:

1 /G \
p (M n = p )  = ]\n 0p( i - e )V e

0\ p j

1
n +  1

In the Essay, Bayes gave a ratio of surface areas in the figure instead of the for­
mula. Finally, Proposition 9 addresses the inverse problem given in the begin­
ning of the Essay.

Proposition 9: “If before any thing is discovered concerning the place of the point 
O, it should appear that the event M  had happened p times and failed q times in n 
= p + q trials, and from hence I guess that the point o lies between two points such 
as b and /, and consequently that the probability of the event M in a single trail 
was somewhere between b and /, the probability I am in the right is [in modern 
notation]

/
J e p( i -ejde

P(b  < e  < / 1 Mn = P ) =  j ----------------- C3-8)
j*0p (i -  0 )? ¿/0
o

Also this expression cannot be found in the Essay. The proof was based com­
pletely on Newtonian geometric reasoning using both the corollary of Proposi­
tion 8, Proposition 8, and Proposition 5.

The problem (of inverse probability] was to determine P(b < 0 < /  | X) for 
any given b, /. Using modern notation, the problem which Bayes treated can be 
stated in the following manner: Given the number p of balls to the left, what is 
the probability of 0 lying in the interval (b,f) z> [0, 1 ]?

This can be rewritten as follows: Let X  be a random variable, indicating the 
number of times an event happens in N  trials, and 0 is the probability that the 
event happens in a single trial. In the modern literature, the distribution for 0 is 
referred as the “prior” distribution, as it represents the uncertainty about 0 prior to 
making any observation X. The resulting conditional distribution for (0 I X  = p) is 
called “posterior” distribution. Bayes considered only a uniform prior distribution 
for 0 because there was no reason to believe any value more probable than others. 
Bayes said many times in the Essay that the principle is to be used only in cases 
where we have no grounds for choosing between the alternatives. Later, Laplace 
has called this principle the principle of insufficient reason, and later it has been 
ironically said to indicate equal distribution of ignorance (see Fisher 1930],
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3.3.2 Discussion

Evidently, Bayes’ Essay was the first explicit formal treatment of inverse prob­
ability. The Essay is difficult to read today even though it is quite obvious what 
to look for. Mostly the difficulty is due to the applied geometric mode of rea­
soning. Stigler [1982] says that “Bayes’ essay is one of the more difficult works 
to read in the history of statistics”. According to Stigler (1986], Bayes adopted 
the non-analytical geometric mode from Newton. Also Bellhouse (2004) ar­
gued that “Bayes was a strong Newtonian in his scientific outlook”. However, 
the Newtonian method was uncommon among mathematicians of the time. For 
example, neither Bernoulli, de Moivre, nor Simpson embraced it.

As noted earlier, Bayes himself did not publish the Essay. His friend Richard 
Price, who found the manuscript among Bayes’ papers, communicated it to the 
Royal Society in 1763. There have been speculations about the reasons why 
Bayes wrote about the topic but did not publish it (see Stigler 1986, Bellhouse 
2004, or Fienberg 2006). One possibility is that he wanted to take up some of 
Simpson’s ideas and find a more plausible explanation, but he was not satisfied 
with the result or he was to develop it further. Another theory is that Bayes was 
not satisfied with what he had achieved and hoped to be able to solve some 
more mathematical problems during his lifetime. There have also been specula­
tion on what the real contribution of Bayes was and how much Price changed 
the text (see Fienberg 2006).

Bayes’ Essay did not raise much interest in the beginning. According to Sti­
gler (1982, 1986, and 1999), it remained nearly unnoticed for ten years. Hald 
(2007) contemplated why it it did not evoke any response from British math­
ematicians and natural scientists. It was only rarely referred to in the early 19th 
century writings on probability. Todhunter (1865) only briefly mentions Bayes, 
and in the early textbooks on statistics, such as Yule (1911) and Bowley (1901, 
1910) Bayes was not mentioned at all. Also Westergaard (1932) dos not mention 
Bayes in his account of the history of statistics. A greater interest in it was shown 
only in the second quarter of the 20th century, and its current significance has 
been greatly borne only after World War II (see Fienberg, 2006). Today, Bayes’ 
formula is one of the best known formulas in probability calculus, and it is the 
basis of a branch of statistical science. However, the origin of Bayes formula is 
rarely recognized and its original meaning has not been retained in the current 
applications.

A significant insight of Bayes was that the basic problems of induction or 
inductive inference incorporate inverse probability, or converse probability as 
he called it. He also understood that inverse inference couldn’t be a straight­
forward or mechanical application of direct probability but required a different 
approach.
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4 Laplace and estimating 
the population of France

4.1 Introduction

In the second half of the 18th century, France was rich in prominent mathemati­
cians dealing with problems of probability theory or topics around probability 
calculus: such as Jean le Rond D'Alembert (1717-1783), Joseph Louis Lagrange 
(1736-1813), Marie Caritat de Condorcet (1743-1794), Antoine Lavoisier 
(1743-1794), Andrien-Marie Legrendre (1752-1833), and Pierre Simon Laplace 
(1749-1827)26. Their works were frequently published in the memoirs of the 
French Academy of Science. The French school, consolidated by the ideas of the 
Enlightenment, developed many central ideas and methods in mathematics and 
probability theory on which modern probability theory and statistical science rest. 
Karl Pearson gave a series of lectures on the history of statistics in the 17th and 18th 
centuries in France. Egon Pearson later edited and published them as a textbook 
(Pearson 1978). In these lectures, Karl Pear­
son gave a thorough account of the lives and 
works of all these French mathematicians 
and their collaboration.

The French mathematicians also had 
connections with Daniel Bernoulli (1700—
1782), Leonhard Euler (1707-1783)27, 
and Fleinrich Lambert (1728-1777), who 
mainly worked in Switzerland. Euler’s con­
tributions in mathematical analysis and 
series expansions paved the ground for 
Condorcet’s and Laplace’s developments 
in probability theory. Laplace’s mathemati­
cal analysis leaned heavily on Euler28. It is 
evident that the French mathematicians 
were also aware of some of the works of 
the British mathematicians. De Moivre's 
and Simpson’s works were especially well-

Figure 4.1:
Portrait of Pierre Simon Laplace.

26 Many of the French mathematicians were in a way or another involved in the French Revolu­
tion. The life of Lavoisier ended on a guillotine and Condorcet died in custody for unknown 
reason during the French revolution, (see Pearson 1978)

27 Leonhard Paul Euler was a Swiss mathematician and physicist who spent a great part of his 
life in St. Petersburg and Berlin. Aside from Gauss, he is considered to be the preeminent ma­
thematician of the 18th century, and one of the greatest of all time. He is also one of the most 
prolific mathematicians ever: he wrote some 25 monographs and about other 850 publica­
tions. He made important discoveries in fields as diverse as infinitesimal calculus and graph 
theory. He also introduced much of the modem mathematical terminology and notation, 
particularly for mathematical analysis.

28 Laplace gave three advices to his students how to leam mathematics: "Read Euler! Read 
Euler! Read Euler!”
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Both Dale (1999) and Hald (1998) give comprehensive accounts of the 
mathematical contributions of the French 18th century mathematicians. Both 
authors also analyse and comment on the mathematical side of inverse probabil­
ity and describe how the ideas were developed in the course of time. The French 
mathematicians’ contributions were so influential that it is justified to say that 
the foundations of inverse probability (and hence statistical inference) were laid 
in France at the end of the 18th century. In particular, Laplace’s and Condorcet’s 
contributions were central29. Pearson (1978) and Flacking (1975) claim that 
they developed together central parts of the theory of inverse probability. How­
ever, Condorcet’s writing style was very difficult and his papers never gained a 
wider audience. Dale (1999) gives a comprehensive account and analysis about 
Condorcet’s papers, though. Laplace’s contributions, on the other hand, gained 
a wide audience and they were path-breaking, not only for the development 
probability theory and for statistical methods in the 19th century, but also for 
statistical science in general (see Hald 1998 and Stigler 1986).

Unlike Bayes, Laplace developed an analytic approach, obviously inspired 
by Euler’s mathematical innovations. Laplace’s thought model was urn trial 
and mathematical analysis typically involved (Euler’s) series expansions, solving 
large factorials with Stirling’s formula30, and omitting terms that were negligible 
in large samples. Laplace’s mathematical developments and the contributions 
on probability theory, especially on inverse probability, are comprehensively 
and minutely explored and analysed by Stigler (1986), Dale (1999), and Hald 
(1998, 2007).

Within probability theory, Laplace dealt with a great variety of different top­
ics, as well as gave examples on how probability could be applied in science and 
in social situations. For example, he developed a “test” for evaluation of reliabil­
ity of a witness in court. In this context, it is not possible, even superficially, to 
touch all topics that Laplace dealt with in probability theory. Only those topics 
that are directly or indirectly related to survey research and inverse probability 
will be touched on, and in that the mathematics is explored only to an extent 
that illustrates the lines of thought that explain how Laplace ended up with his 
statistical methods. A more thorough analysis can be found from the extensive 
literature covering Laplace’s contributions.

According to Pearson (1978), Laplace wrote some eighteen memoirs dealing 
with the theory of the probability. Pearson (ibid.) also maintained that the most 
significant were written in the years 1772-1783. Two of them, “Mémoire sur la 
probabilités des causes par les évènemens”31 (PCE) in 1774 (at the age of 25) and 
“Mémoire sur les probalités”32 (MOP, written in 1778 but published in 1781) 
were so influential that they can be regarded as the first significant contributions

29

30

31
32

Many other famous mathematicians lived during the same period, such as Gauss, whose 
works have remained in the history of statistical science but they did not contribute directly 
to statistical inference (see Hald 1998 and Stigler 1986).
Strirling’s formula for ln(nl):

ln(n!) = — in(2it ) + (« + —) ln(n) - n  + — n ~ '--- — n"3 H— !— i
2 2 12 360 1260

"Memoir on the Probability of the Causes of Events" (PCE)
“Memoir on Probabilities” (MOP)
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on inverse probability. When referring to Laplace’s contributions, it is customary 
to refer to Laplace’s later publications, “Essai Philosophique sur les Probabilités" 
and “Théorie Analytique des Probabilités". They were both first published in 1812 
(Laplace 1812a, 1812b], and several editions were published in the first half 
of the 19th century. Although these two (and few others] are the best-known 
contributions of Laplace, they were partly composed of the results already pub­
lished in the earlier memoirs.

In the first of the two early memoirs (PCE], Laplace had already presented 
his idea of inverse probability. Compared to some of Laplace’s other works, this 
memoir reads fairly clearly and effortlessly and, as Stigler (1986) points out, even 
after more than two centuries, it seems almost like a contemporary work. Stigler 
(ibid.) also claims that the influence of this piece of work was immense. It was 
from this memoir that the ideas, now called “Bayesian”, first spread through the 
mathematical world. Hald (1998) also considers Laplace’s 1774 memoir as one 
of the revolutionary papers in the history of statistical inference. The second of 
these two memoirs (MOP) deals with more topics than the first one and is more 
elaborate. In it, Laplace completed his application of probability calculus to the 
analyses of errors in observations, which was left unfinished in the previous mem­
oir. He also introduced the principle of probabilistic inferences in a more explicit 
manner. For example, he introduced the principle of statistical hypothesis testing, 
which actually existed latently already in the earlier text (see Hald, ibid.).

4.2 Laplace's inverse probability33

In the beginning of MOP, Laplace identified three different types of probabilities:

"In the analysis of chance, we intend to know the probability of composite events, 
following any law, of simple events of which the possibilities are given; these are 
able to be determined in these three ways: 1 ° a priori, when, by the like nature of 
the events, we see that they are possible in a given ratio; it is in the same way, in 
the game of heads and tails, if the piece that we cast into the air is homogeneous 
and if its two faces are entirely similar, we judge heads and tails equally possible; 
2° a posteriori, by repeating a great number of times the experience which can 
bring about the event of which there is question, and by examining how many 
times it has happened; 3° finally, by the consideration of the grounds which can 
resolve for us to say on the existence of this event; if, for example, the respective 
skills of two players A and B are unknown, as we have no reason to suppose A 
more strong that B, we conclude from it that the probability of A to win a game is 
Vi. The first of these ways gives the absolute probability of the events; the second 
makes it known very nearly as we will just see in the following, and the third gives 
only their possibility relative to the state of our knowledge.

Each event being determined by virtue of the general laws of this universe, it 
is probable only relatively to us, and, for this reason, the distinction of its abso­
lute possibility and of its relative possibility can seem imaginary; but we must 
observe that, among the circumstances which compete in the production of the 
events, there are some variables at each instant, such as the movement that the

33 Laplace did not use the term inverse probability. It was first used by the English scientist, 
August de Morgan in the 1830s (see Dale 1999, p. 4).
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hand imprints on the dice, and it is the reunion of these circumstances which we 
name: it is of others which are constant, chance such as the ability of the players, 
the inclination of the dice to fall on one of their faces rather than on the others, 
etc.; these form the absolute possibility of the events, and their knowledge more 
or less extensive forms their relative possibility; alone, they do not suffice to pro­
duce them; it is more necessary that they be joined to the variable circumstances 
of which I speak; they serve thus only to augment the probability of the events, 
without determining necessarily their existence.” (Laplace 1778)

Following the contemporary classification of probabilities (see, e.g., Weatherford 
1982), Laplace’s first definitions correspond to the definition of classical prob­
ability, and the second to the definition of frequentist probability. They are both 
regarded as definitions of objective probability. The third definition of Laplace’s 
corresponds to the modern meaning of subjective probability. Unlike in the 
modern statistical texts, for Laplace, a priori probability meant objective prob­
ability. In modern writings, a priori probability is obtained usually by subjective 
judgements. In this chapter, there is a danger of mixing up the modern defini­
tions of probability with those of Laplace’s. However, it will be indicated in 
which meaning of the concept of probability is used. In all direct citations from 
Laplace’s text, the concept naturally denotes the same as he had intended.

4.2.1 The Principle of Inverse Probability
Laplace introduced the Principle of Inverse Probability in his Memoir on the 
Probability of the Causes of Events to the Royal Academy of Sciences (Laplace 
1774)34. Laplace’s Principle and Bayes’ method are similar, and some writers, 
e.g., Pearson (1920) and Fisher (1930), claim that Laplace had copied the Princi­
ple from Bayes. However, according to Stigler (1978), Bayes’ Essay was ignored 
until after 1780 and played no important role in the scientific debate until the 
20th century. Todhunter (1865) is the first thorough account on the history of 
probability. There he says:

"This memoir [Laplace 1774] is remarkable in the history of the subject, as being 
the first which distinctly enunciated the principle of estimating the probabilities 
of the causes by which an observed event may be produced." (Todhunter 1865)

Todhunter considers this memoir as the first contribution on inverse probability, 
and not that of Bayes’.

In the introduction to the memoir, Laplace says:

“I propose to determine the probability of the causes of events, a question which 
has not received due consideration before, but which deserves even more to be 
studied, for it is principally from this point of view that the science of chances can 
be useful in civil life.” (Laplace 1774)

An obvious conclusion from this citation is that Laplace was not aware of 
Bayes’ Essay. Stigler (1978) claims that there are many reasons why it is reason-

34 Stephan Stigler has translated the memoir and it was published in Statistical Science 
(Stigler 1986b).
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ably certain that Laplace was unaware of Bayes' earlier work. Hald [1998) held 
that Bayes’ and Laplace’s theories are conceptually and mathematically so dif­
ferent that they cannot be related.

First Laplace defines the difference between direct and indirect [or inverse) 
probability. An example of direct probability is an urn that is known to contain 
only white and black tickets in a given ratio, and one seeks the probability that 
a ticket drawn by chance will be white. Laplace says that in this case, the event 
is uncertain but the cause on which the probability of occurrence depends is 
known. He continues by defining the Problem [of inverse probability) for which 
he later gives solutions in different formats:

“An urn is supposed to contain a given number of white and black tickets in an 
unknown ratio; if one draws a ticket and finds it white, determine the probability 
that the ratio of white and black tickets is that of p to q. The event is known and 
the cause is unknown.” [Laplace 1774)

In order to solve the Problem, he defined the Principle [of inverse probability)35:

“If an event can be produced by a number n of different causes, the probabilities 
of these causes given the event are to each other as the probabilities of the event 
given the causes, and the probability of the existence of each of these is equal to 
the probability of the event given that cause, divided by the sum of all the prob­
abilities of the event given each of these causes.” (Laplace, ibid.)

In modern mathematical form36, Laplace’s Principle can be written as follows: If 
the “event” is denoted by E and a v a 2, ■ ■ ■ ,<*„ the n potential causes, then

P{at \E) _  P(E  | a,)
P ( a j \ E )  P ( E \ a j )

and

P{fl,\E) = P(E  1 ai) [4.1)

It is easy to notice that Laplace’s Principle has the same form as the Bayes’ 
formula with equal a priori probabilities [see formula 3.2). Hald [1998) argued 
that Laplace did not know of Bayes’ Essay, and did not realize that his Principle 
could be derived as a conditional probability under the assumption that the 
causes are uniformly distributed. Only in the second edition of Théorie Analyt­
ique des Probabilités [published in 1814), did Laplace prove the general version 
of his Principle, which is the same as Bayes’ theorem [see Hald, ibid.).

In effect, the formula (4.1) says that the probability of a{ being the cause of 
the observed event E is proportional to the direct probability of the event being

35 Later, the Principle refers to this definition.
36 Laplace never used the discrete form. All his mathematical treatments were composed of 

continuous functions. The discrete forms of the formula appeared later.

Statistics Finland 51



the cause, that is P(ai \ E ) °c P(E  | a . ) . Laplace applied this idea in solving his 
problems where the observations, say x}, ... ,xn, are obtained for a given value of 
a continuously varying parameter 0, i.e.

P(Q P(xv ...,xn |0) (4.2]

Hald (ibid.) concluded that the intuitive background of the Principle may have 
been the same reasoning that led Lambert (1760) to the Maximum Likelihood 
principle: If the probability of the observed event for a given cause is large rela­
tive to the other probabilities, then it is more likely that the event has been 
produced by this cause than by the other causes.

To illustrate an application of the Principle, Laplace gave an example: There 
are two urns, A and B. The first contains p white tickets and q black tickets, and 
the second contains p' white tickets and q' black tickets. One draws /white and 
h black tickets from either of these urns, but not knowing which of the urns. It 
is required to determine what is the probability that the urn where the tickets 
were drawn was A or B?

Laplace gave the following solution using the Principle: Assuming that the 
urn was A, the probability of getting/white and h black tickets from it is

K  = P ( f ,h \A )  =

( f  + h)\(p + g - f - h ) \  /
f \ h \ ( p  — f ) l ( q  — h)\ /

A p +g)l
/  P W

(4.3)

The probability that the urn was B, i.e., K' = P(f, h\B), can be obtained in a 
similar way replacing p and q by p' and q', respectively. Applying the Principle, 
Laplace concluded that the probability that the urn was A is P(A) = K /  (K + K ’) 
and the probability that it was B is P(B) = K ' /  (K + K'). (See Laplace 1774)

Hald (1998) argues that this example, in modern terminology, may be re­
garded as an example of testing a simple hypothesis against a simple alternative 
if “causes” are replaced by “hypotheses”.

The same idea by which Laplace solves the previous problem, i.e., the Princi­
ple, he applied in many different instances, also in the planning and the realiza­
tion of the survey to estimate the population of France.

4.2.2 The Principle of Insufficient Reason
A priori probability was a significant element in both Bayes’ and Laplace’s in­
verse probability. There is little evidence that its use had been notably challenged 
before R.A. Fisher in the first quarter of the 20th century. Some critical writings 
concerning a priori probabilities were published during the 19th century, but 
they did not seem to have greater influence. One reason for the use of a priori
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probability obviously was the implicit idea of a superpopulation37, which was 
involved in all inferential developments. Obviously, this was a consequence of 
the Newtonian worldview, which assumed that observations of the real world 
were realizations of an unknown cause system, which governed the world in the 
background. The parameters of the superpopulation (“states of the nature”) were 
considered as unknown and therefore random variables, which had a probability 
distribution. This distribution was usually unknown and therefore, according to 
the Principle of Indifference, the rectangular prior distribution was necessary.

The principle of indifference: if on the background information B the hy­
potheses (Hj, H2, ... Hn) are mutually exclusive and exhaustive and B does 
not favor any one of them over any other, then

P(H i \B) =  — , \ < i < N  
' N

The principle of indifference or the principle of insufficient reason is often dedi­
cated to Laplace. Stigler (1986) claims that the application of the principle of 
indifference was not a metaphysical assumption concerning the unknown struc­
ture of the world (equally likely causes). Rather, it was an implicit assumption 
that for ease of analysis, the problem had been specified in such a manner that 
this principle of insufficient reason was reasonable. Laplace writes:

"When we have nothing given a priori on the possibility of an event, it is necessary 
to assume all the possibilities, from zero to unity, equally probable; thus, observa­
tion can alone instruct us on the ratio of the births of boys and of girls, we must, 
to consider the thing only in itself and excepting of the events, to assume the law 
of possibility of the births of a boy or of a girl constant from zero to unity, and to 
start from this hypothesis into the different problems that we can propose on this 
object.” (Laplace 1778)

Fienberg (2006) argues that Laplace’s introduction of the notion of "indiffer­
ence” as an argument in specifying a prior distribution was the first in a long 
line of efforts “to discover the statistical holy grail”: prior distributions reflecting 
ignorance.

In the 1774 memoir, Laplace writes:

“...we assume that the coin which was tossed in the air had no tendency to favor 
either heads or tails. Now, this supposition is only mathematically admissible be­
cause physically there must be an inequality. But as the [players] are ignorant ... 
of which side has greater tendency, we can believe that this uncertainty neither 
increases nor decreases the advantage. We shall see, however, that nothing is less 
founded than this supposition, that it follows that the science of chances must be 
used with care, and must be modified when we pass from mathematical case to 
the physical.” (Laplace 1774)

37 The concept of superpopulation was not used nor even recognized by Laplace or any of his 
contemporaries or followers. Only R.A. Fisher introduced it (Fisher 1922).
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4.2.3 Applications of the Principle in statistical inference38

For analyzing the causes of events, Laplace continues by applying his Principle 
to solve three different problems.

The first problem was defined in following way:

"If an urn contains an infinity of white and black tickets in an unknown ratio, and we 
draw p + q tickets from it, of which p are white and q are black, then we require the 
probability that when we draw a new ticket from the urn, it will be white.”

Laplace assumed that the unknown ratio, %, of white tickets to all tickets in the 
urn has a continuous range of probabilities, 0 < x <  1 , all values equally possible. 
The probability of drawing p white tickets and q black tickets from the urn in a 
single drawing is xp( l- x )q. It should be noted that Laplace assumed the urn to be 
infinite, and therefore subsequent drawings were independent. Laplace concluded 
by applying the Principle39 that the probability that % is the true ratio is:

P(x\p ,q )
xp(l — x)qdx

J jc'XI - x ) qdx
[4-4]

The right-hand side of the formula is the form that Laplace used. Actually, it 
gives the probability that x falls in the range [x, x + dx].

Assuming that x is the true ratio of white tickets to all tickets, the probability 
of drawing a white ticket from the urn is %. The probability of drawing a white 
ticket from the urn with true ratio x is obtained by multiplying [4.4] "by the 
probability of the supposition” (probability of drawing a white ticket from an 
urn with true ratio x x probability that x is the true ratio]:

D. . . x p+'(\ - x ) qdx
x x P ( x \ p ,q )  = —i---------------

j^xp( l -  x)qdx
[4-5]

And the total probability of drawing a white ticket from the urn, E, Laplace 
shows to be

P (E ) =
^ x p+\ \  — x)q dx 

^ x p{ \ - x ) qdx
[4.6]

The expression for probability of E, i.e., the ticket in a new drawing being white, 
reduces after repeated integration by parts to

P(E) = P + 1 
p + q + 2

[4-7]

38 In this chapter, Laplace’s original style of writing about mathematical topics is used, to 
demonstrate his reasoning and how he derived formulas. In general, his style was complicated 
and difficult to read for a modem reader.

39 Only continuous distributions were analyzed in all 18th century writings on probability.
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This result was later called Laplace’s Rule of Succession. Using his Principle and

“Euler’s series”, Laplace continues to show that if m + n new tickets are 
drawn from the urn, the probability of getting m white tickets and n black 
tickets is

P (E ) =
m n

p  q
(p + q r n

(4.8]

Due to approximations, Laplace expected this to hold “without fearing any ap­
preciable error” when p and q are very large, and m and n very small in compari­
son to p and q. However, he points out immediately that this approximation is 
inadequate for larger values of n and m. If m = p and n -  q, the probability should 
be approximated by

P(E) = J U 2 —2-2----- (4 9]
(P + qT+n 1 J

Laplace concluded that the solution to this problem provided a direct method 
to determine the probability of future events after those that have already oc­
curred. This principle later came to be called the Principle of Learning from Ex­
perience. Laplace maintains that it is a broad subject and therefore gives only a 
“rather singular proof’ of the following theorem:

One can suppose that the numbers p and q are so large that it becomes as close to 
certainty as one wishes that the ratio of the number of white tickets to the total 
number of tickets contained in the urn is included between the two limits p/(p+q) 
-  w and p/(p+q) + w, one can suppose w to be less than any given quantity.

Using the results of the preceding examples, Laplace concludes that the prob­
ability of ratio x being between the given limits is

P { p / ( p  + ^ ) - ^ ^ x < p / ( p  + q ) + w )
j x p( 1 —x)qdx

J  jcp(1 - x ) qdx
(4.10)

if the integral in the numerator is taken from p/(p+q) -w  to p/(p+q) + w. Mark­
ing the ratio x = p/(p+q) + z, Laplace shows, using approximations, that for 
infinitely large p and q, and “w infinitely less than (p+q) '1/3 and infinitely greater 
than [p+q] the probability (4.10) is approximately

^  q)- f 2e-{p+qfz2/2pqdz 
yjhipq i

(4.11)

Then using "M. Euler’s integral calculus”, Laplace shows that this integral is ap­
proximately 1 and concludes that

"...neglecting infinitely small quantities, we can consider it certain that the ratio 
of the number of white tickets to the total number of tickets is between the limits 
p/(p+q) -  w and p/(p+q) + w , where w is equal to 1/yj(p + q) and n is greater than 
2 and less than 3, a fortiori when n is greater than 3 and therefore w can be sup­
posed smaller than any given quantity.”
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The second problem that Laplace treated in PCE dealt with the division on 
wins in a game of chance, which had to broken before an orderly end. It is not 
strictly related to the current topic of this thesis and is therefore passed over.

The third and obviously most famous problem of inverse probability in PCE 
that Laplace described was “to determine the mean that one should take among 
three given observation of the same phenomenon”. The motivation to take up 
this problem originated from a writing of Daniel Bernoulli, who in a footnote 
stated that this was an important problem, which he had not solved. Lagrange 
had also touched on the problem, but had not solved it. Laplace’s treatment of 
this topic was important because he was able to show how the new Principle of 
Inverse Probability could be applied to nontrivial practical problems.

Laplace phrased the problem as follows (see Figure 4.2]:

Given three observations a, b, c of a phenomenon along a time axis AB. The time 
interval between a and b is p seconds and between b and c, q seconds. We wish to 
find the point V on the line where we should fix the mean that we should take 
between the three observations. It is supposed to represent the “true time” of the 
phenomenon.

He assumed that any observation differing from V by a factor x would lead to a 
probability which could be represented by a curve y  = cp(x). He stated three condi­
tions for the error curve cp(x), which should help to determine its true form:

1. cp(x) must be symmetrical about V, since errors occur in both directions 
equally likely;

2. cp(x) must decrease asymptotically to ordinate as \ V —x\ gets greater, because 
“the probability that the observations differs from truth by an infinite dis­
tance is evidently zero”;

3. jcp(x)dx = 1 since it is certain that the observation will fall on a point under 
the curve.

Laplace concluded that the probability that three observations deviate from 
point V by distances Va, Vh, and Vc is cp(x) (p(p-x)-(p(p-Rj-x). If it is assumed 
that the true instance is V  and that V'a = x ’ then the probability would be 
(p(x')-(p(p-x')-(p(p+q-x'). Applying the “fundamental Principle”, Laplace conclud­
ed that the probabilities that the true instance is at the point V or V  are related 
to each other as

<?(x)-<p(p-x)-q>(p + q - x )  4̂ 12-j

<P (*') • ■<P(P ~  x ') • ■q>(p +  q -  x ')

Next, Laplace noted that in seeking the mean to be chosen, there are two things 
that may occur: it is equally probable that the true instant of the phenomenon 
falls before or after it. Laplace called this the mean of probability. The second is
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the instant that minimizes the sum of the “er­
rors to be feared”40 multiplied by their prob­
abilities. Laplace called this the mean of error, 
or the astrological mean.

Laplace continues by a similar approach 
by which Simpson had derived his error dis­
tribution (see Chapter 3): Given the true in­
stant V, the posterior probability of the three 
observations a, b, and c can be expressed as:

<P(*IP,q) =Mx)<p(p-x)(f>(p+q-x)

The point, V, has disappeared and it is in­
volved only in the first error term, x, which 
was an unobserved and random quantity.
The error term, x, became the object of La­
place’s investigation, the “cause” to be found 
from the observable “events" p and q. The 
distribution of "events” p and q, given the 
cause, x, 9(p,q I x) was proportional to cp(x,p,g). Therefore, by his principle, the 
distribution of x was

<?(x\p,g)<xy(x,p,q) (4.13)

Diagrams in the Laplace's memoire of 
1774. The figure 2 shows the double 
exponential density.

Laplace had a small error in his formula, and therefore he ended up with an er­
ror distribution that had a wrong "shape”, the double exponential distribution 
in Figure 4.2. Stigler (1986) analysed in detail Laplace’s ideas and his further 
discoveries. In his later writings, Laplace, after a debate with Gauss, ended up 
with the correct form for the distribution. Later, this "law of error” has come to 
be known as Normal Distribution.

4.2.4 Plan to estimate the population of France
Laplace presented the idea for estimating the population of France in a memoir 
already in 178341, nearly 20 years before the survey actually was undertaken. In 
20 years, Laplace had gained respect as a scientist and attained a high position in 
the French administration. Hald (1998) claims that the execution of the survey 
should also be seen in relation to the fact that the French government in 1800 
had established a Central Statistical Office and prescribed a general enumera-

40 Laplace’s “error to be feared" (“errour a  craindre") is conceptually close to the modem notion 
of standard error.

41 “On the births, the marriages and the deaths at Paris, from 1771 to 1784; & at the whole 
extent of France, during the years 1781 & 1782" or “Sur les Naissances, les Manages et les 
Morts” (Laplace 1783)
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tion of the population in 180 142. It took more than two years before the census 
returns were received and processed, and the resulting figure of 27,349,003 in­
habitants was considered unreliable. The next census, which took place in 1806, 
gave 29,107,425 inhabitants.

Laplace’s plan was based on the fact that during the last quarter of the 18th 
century in France, all births were registered in parishes and published. Laplace 
writes in the beginning of the memoir:

"... The Academy is determined ... to insert each year into its Mémoires, the list 
of births, of marriages & of deaths in the whole extent of France. A respectable 
magistrate by his light & and his zeal for the public good, & who since longtime 
occupies himself with success on research on the population, has well wished to 
produce to himself all the information which it was able to desire on this matter; 
it is to him that we are indebted of the following lists.” (Laplace 1783)

According to Bru (1988), the "respectable magistrate” who had placed some of 
his tables at the disposal of Laplace, was a French demographer, Intendant Fran­
çoise de la Michodiére43. Bru (ibid.) gives a detailed account on Michodiére’s 
contributions and demographic analyses in France.

Laplace's plan was to take a sample of the departments (small administrative 
districts), count the total population in the sampled departments for a single 
day, and then estimate the population of the whole country, using that informa­
tion combined with information on registered births in France. Based on earlier 
demographic studies (e.g., Graunt’s and Michodiére’s), Laplace assumed that 
the ratio of population to births during a year was relatively stable. Another es­
sential assumption was that the proportion of women of childbearing age in the 
population remained stable.

4.2.5 Determining the required sample size
Laplace selected 30 departments distributed over the area of France applying 
two criteria. First, all types of climates were represented. In this way, the effects 
of climate on the birth rate were compensated. Second, Laplace selected depart­
ments that had communes with mayors he thought were capable of providing 
accurate information. In modern terms, Laplace applied a two-stage cluster de­
sign. The method is close to modern cluster sampling except that the depart­
ments were selected with a purpose.

It is not known how Laplace ended up with exactly 30 departments, but the 
size of the sample was based on calculations on how large a sample was needed 
to obtain the required precision. In the memoir of 1783, Laplace showed how 
he estimated the needed size of the sample. His reasoning in the memoir seems 
surprisingly modern:

42 Perrot and Woolf (1984) give an extensive and detailed account of the statistical activity in 
France 1789-1815.

43 Françoise de la Michodiére (1720-1797) was a very productive and influential person in 
France. He became ‘conseiller d’Etat’ already at the age of 19. He was the first to use empiri­
cal data to argue for a positive association between wheat prices and excess mortality, which 
was later called the Michodiére’s law.
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"The ratio of the population to the births ... can never be rigorously exact: by 
supposing in it even a rigorous precision, there would remain still on the popula­
tion of France, the incertitude which is born of the action of the variable causes. 
The population of France, drawn from the annual births, is therefore only a prob­
able result, & consequently susceptible to errors. It is to the analysis of chances 
to determine the probability of these errors, & to what point we must carry the 
denumeration, in order that it be very probable that they are contained within 
narrow limits. These researches depend on a new & yet little known theory, that 
of the probability of future events takes from observed events; they lead to some 
formulas of which the numerical calculation is impractical, because of the great 
numbers which we consider: but having given in this Volume & in the preceding, 
the principles necessary to resolve this kind of questions, & a general method to 
have in highly convergent series, the functions of great numbers; I have made 
application of it to the theory of the population deduced from births. The denu­
merations already made in France, & compared to the births, give very nearly 26 
for the ratio of the population to the annual births; now if we take a mean among 
the births of the years 1781 & 1782, we have 973054V2 for the number of annual 
births in the whole extent of the Realm, containing in it Corsica; by multiply­
ing therefore this number by 26, the population of the whole of France, will be 
25299417 inhabitants. Now 1 find by my analysis, that in order to have a prob­
ability of a thousand to one, of not being deceived by a half-million in this evalu­
ation of the population of France, it would be necessary that the denumeration 
which has served to determine the factor of 26 had been of 771469 inhabitants. 
If we would take 26'/2 the ratio of the population to the births, the number of the 
inhabitants of France will be 25785944; & in order to have the same probability 
of not being deceived by a half-million on this result, the factor 26'/2 must be 
determined after a denumeration of 817219 inhabitants. It follows thence that 
if we wish to have for this object the precision which its importance requires, it 
is necessary to carry this denumeration to a million or twelve hundred thousand 
inhabitants.” (Laplace 1783)

At the end of this citation, Laplace discusses how large a sample is needed to 
attain the required accuracy with a given probability. The end of the citation 
reads almost like contemporary text. It is noteworthy that Laplace realized that 
an estimate of the accuracy of the estimate was needed and that the accuracy 
depended on the size of the sample. He does not explain which analysis led to 
this conclusion or whether it was based on intuition. Twenty years later, Laplace 
published the Central Limit Theorem, which might have alluded to this.

Laplace continues explaining how he applied his Principle for inverse prob­
ability to calculate the size of the sample:

“We consider an urn which contains an infinity of white & black tickets in an un­
known ratio, & and we suppose that in a first drawing we have extracted p white 
tickets & and q black tickets; we suppose next that in a second drawing we have 
extracted q ’ black tickets, but we are ignorant of the number of white tickets 
brought forth in this drawing; the mean which naturally presents itself in order to 
know this number in an approximate manner, is to suppose it with q' in the ratio 
of p to q, that gives pq'/q for this number. We determine presendy the probability 
that the true unknown number will be contained in the limits

- ^ - ( l  - c o ) , - ^ - ( l  +co)
<7 q

or that which returns to the same, that the error of the result P9 will not surpass 
pq ,(a ” (Laplace 1783) q

q
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The ratio estimate of population is the number of white tickets, that is, p'=pq'/q. 
Karl Pearson (1928) pointed out that his model was unsatisfactory in several re­
spects (in view of modern understanding): the births are not regarded as part of 
the population, and the sample is not considered as part of the finite population. 
Nevertheless, Laplace creates some novel and useful ideas in statistical science, 
even though they might not be exactly correct.

In order to find out how large a sample would be needed, it was necessary to 
derive the (sampling) distribution of p'. This Laplace solved using his Principle 
for inverse probability in a manner that does not open readily (see Dale 1999, 
p. 218). If the unknown ratio of white tickets to the total number of ticket is x, 
and the unknown number of white tickets in the second drawing is p t h e  prob­
ability is

P ( p \ q ' \ x )  = +JL£-xp\ \ - x f  (4.14)
V ’ p'\q'\

Laplace assumed that p ’ may obtain all values from p' = 0 to p' = co and "these 
values are more or less probable, according as they render the second drawing 
more or less probable.” ( n’+ a'V 1

Since P(q'  I x)  =  V  -----------xp (1 — x)q =  ——  it follows that the
probability is: p'\q'\

P{p '  | q \ x )  = P ( p \ q '  1 x) 
P(q'  I x)

(p'+q'V-
p'W'.

xp'{\ -  x)q

(pl +qy xp\\ - x f
p'lq'l

(p '+  _ x )q'+\ p '  =  0,1,2,...
p'lq'l

(4.15)

Laplace assumed that all values of the ratio are equally probable in the range 
from x = 0 to x = 1, i.e., that the a priori distribution of x is uniform.

The formula (4.4) gives the probability of x, given p and q. By multiplying 
the probabilities of p ’ and x, Laplace obtained the “entire probability” of p ’ as

P (p ' \  p,q,q' ) =
p ' -q ’! f1 x p{\ -  x)qdxJ *=0

(4.16)

Both Hald (1998) and Stigler (1986) maintain that at the time of this mem­
oir, Laplace had not found the asymptotic expansion solutions, which were so 
typical in his later works. Therefore, he had to attack the problem in a different 
manner.

To find probability P(0 <p ' <s), one needs to sum the terms in the numerator, 
depending on p ’. For this purpose, Laplace (using results from another memoir), 
assuming that q’ and s are “very large numbers”, shows that:
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1' ( p ' + g ' v  =
,•=0 p

1 |  x 'J(l -  x')q dx'

0 - x f +' f' V ( l - x T ' A ’
J x ’= 0

Hence, the probability is

f [ x p(i -  x )qdx ■ x' s(\ -  x ')q dx'
P ( 0 <  p'  < s \  p,q,q' )  =  ------------------------------ ;----

| I xp(i — x)qdx • x " ( l  — x')q dx'
J x = 0 J x ’=0

(4.17)

Based again on earlier results, Laplace concludes that if s is less than and hardly 
different from pq’/q, then (4.17) can be approximated by an integral, which in 
modern probability theory is called the normal probability:

P(0 < p ’ < s  \ p,q,q') =  - j = \  e~r 
yjn J7

(4.18)

where T z = p  +  q s +  q'
(p +  q)3(s + q 'f

2 s q ’(p  + q) + 2  pq(s + q ’)

The right hand side of formula 4.18 is approximately the normal distribution 
with zero mean and unit variance, i.e. N[0,\). The approximation holds ‘near 
the most probable values’ ofp'. If s is greater than pq’/q but close to it, the prob­
ability becomes

P (0 < p ' < s | p,q,q' ) =  1 -  - ) = \  e“'2
Vit JT

(4.19)

) = i - 4 - f - v  - ' i Vj-tr ir J-n- J r

Hence, it follows that

P ( s < P ^ < s ' ) -  . r J  .
p  V7t J1 v K ■

where T’ is defined as T replacing s with s ’. If one sets

J  =  £ ^ ( 1  = ^ ( I + a ) )
q q

and disregards terms of order co3 and two values of T2 and T ’2 and takes
.2

V =
2 (p + q)(q + q')

then
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Laplace continues considering how p (the “size of sample”) should be deter­
mined to obtain a large probability that the error in p' (the predicted population 
size) is small. For this purpose, he denotes that proportion of white tickets to

black by i = p/q and the accepted error by a =  ^ - ( 0
9

and hence co = . The
iq'

previous expression of V2 yields P =
2i2(i +  \)q'2 V2 

a 2 -  2i(i + l)q'V2
. The value of a  de-

pends on the limits between 
which the error of the estimate 
is supposed to be.

Laplace gives an example 
by first letting a  = 500000. The 
value of q ’ was the number of 
annual births in France, which 
was known to be q’ = 973054.5 
(the decimal expression result­
ed from a three-year average). 
The value of V depends on the 
probability, P, that the popula­
tion would be enclosed within 
the limits

v q q

Laplace set the probability to 
“a thousand to one”, that is P 
=  1000/ 1001;

2j e  ' dt

■ Jïï

i e" 1(il

1= ----- ,or
1001

yjn
2002

7 * 4  M é m o i r e s  d e  l ' A c a d é m i e  R o t a l b

r** =  —
Suppofons

s z=z • ' f  ( i  —  tr )  , &  x '  r r :  ■ r  • ■ /  i  H — ••or )  ,

v  étant une trê»-pctîti fraclinn; ft l'on néglige U* quantité* 
Je  l’ordre tr! , les Jeux valeurs de T ‘ 5i de T ' * ,  uevien-

■iront «raies entr elles fit à — ——.-y- •’ aiufi en 

nommant Y1, cette Jecnièie quantité, &  en défîgnant par 
P  la probabilité que le nombre p ' fera compris dans les

limites J  (  i —  te J ,  Si { r -t— <v) . on aura

l’intégrale étant prilc Jepuîs t =  V, julqu a t zsz OO. Cctfe 
f.vftrelfion fort lîmple Je  P .  a l'avantage d'être exacte 
jusqu'aux quantités de l'ordre ; car les termes de l'ordre 
t?1, que nous avons négligés, fe détruifent d'eux -  memes 
dans la quantité

__ _____/>>.<-•*
*(-*) *

que nous avons trouvée ci-detTus pour l'exprclTion de P, 
il d l ixicile d'appliquer ces réfuliais à la théorie de la po­

pulation déduite des naitfances ; car on peut conhdércr chaque 
naîtfatice annuelle comme étant repré le niée par une boule 
noire, &  chaque individu exlltam comme étant reprélênté 
par une boule blanche ; le premiec.tirage fera le dénombrement 
dans lequel on a obfcnrc que fur q naiiTances, le nombre des 
habitans fil p ; & le fécond tirage fera la population de la 
France entière dont le nombre <]' des naiiEuicw annuelles eit 
connu , tandis que la population correfpondantc p ' étf in­
connue : P  fera dans ce cas Ja probabilité que la population p ‘

Figure 4.3:
Copy of a page in Laplace's 1783 memoir.

where the integral is taken from t = V to t =  ° ° . Laplace concludes, “it is clear 
that this equation determines V”, which is V 2 = 5.415. Hence the number i 
could be obtained from an enumeration, but the purpose of the memoir was to 
make a plan for the enumeration. Therefore, p and q were unknown. Based on 
the earlier enumerations, it was known "very nearly” that i = 26. Laplace does 
not publish or discuss la Michodiere data leading to the value of i. He just takes 
it into use. However, Laplace also carries out similar calculations for i = 25.5 and 
i = 26.5, which give values p -  727520 and p -  817219. Obviously, there was 
some uncertainty in his mind concerning the value of i.
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His conclusion was that in order to have a "probability of one thousand 
against one, of not being deceived by more than one half-million in the evalu­
ation of the population of France”, it is necessary that the "sample size”, p, is 
727,210 inhabitants (in the case where it is expected to give the first factor), 
771,469 inhabitants (in the case of the second factor), and 817,219 inhabitants 
(if it is expected to lead to the third factor).

Finally, Laplace concluded that “if we wish to have for this object, the prob­
ability that its importance requires, it is necessary to carry to a million or twelve 
hundred thousand inhabitants, the denumeration p which must determine the 
factor i.” Obviously, he had doubts concerning the assumed value for i and there­
fore ended up to suggest larger sample size than what his calculations showed.

4.3 Estimating the population size

Earlier works in actuarial mathematics by Halley, de Moivre, and Simpson had 
shown that the size of a population could be calculated from yearly number 
of births and the life table, assuming a stationary population (see Hald 1990). 
The problem was that populations are rarely stationary and life tables at that 
time were not representative. This may have been one reason why Laplace pro­
posed to use a ratio estimator. Ratio estimation was not invented by Laplace. 
Graunt had estimated the population of London in 1662 by a similar method 
(see Chapter 2). However, Laplace extended the survey to the whole of France 
while Graunt investigated only London and in a more intuitive manner44.

When the estimation took place, Laplace applied a slightly more elaborate 
method in estimation than he had proposed earlier in the derivation of the re­
quired sample size. Since the first paper, he had managed to solve some math­
ematical problems, and he had also developed new mathematical tools for prob­
ability calculus (see Hald 1998 and Stigler 1986). The inference model was still 
based on a Bernoulli trial, i.e., a box with white and black tickets.

A black ticket still represents a birth and each white ticket represents an 
individual living in the country. The first drawing represents the enumeration in 
which it is observed y births and the number of inhabitants is %45. The second 
drawing represents the population of the whole of France and the total number 
of births, X, is known while the corresponding population, Y, is unknown.

From the known total number of registered births, x, during the preceding 
year in the selected departments and that in the whole country, X, the ratio es­
timate of the population of France, Y, could be calculated as:

44 Graunt also planned to estimate the population of England but he never put his plan into 
action (see Hald 1998].

45 In this chapter, Laplace’s notations are replaced by a more modem style found, e.g., in 
Cochran’s book on sampling (Cochran 1953).

Statistics Finland 63



The combined population of the sampled Departments as of September 22, 
1802, was 2,037,615. As for births, Laplace totalled the sample births for the 
three-year period from September 22, 1799, to September 22, 1802, obtaining 
a value of 215,599, so that his sample x is 215599/3. By taking the average of 
the number of births, he hoped to eliminate random variation (or ‘fluctuation’, 
as it was called). Finally, in the numerical estimate of the sample ratio, y/x, was 
28.352845 and then

"supposing that the number of annual births in France is one million, which is 
nearly correct, we find, on multiplying by the preceding ratio (y/x), the popula­
tion of France to be 28 352 845 persons.”

Laplace assumed that an infinite urn consisted of white and black tickets repre­
senting a population of French citizens on a specified day. In modern terms, he 
regards the number of known births in the country, X, as a random variable from 
a sample of unknown size Y, the population of France.

White tickets represented registered births in the preceding year. The ratio 
p (proportion of white tickets) is unknown. Fie regarded the ratio x/y from the 
sample as a binomial estimate of p. Cochran (ibid.) says that the choice of the 
model presupposes that the birth rate p varies from department to department.

Laplace assumed that the unknown ratio of births to population, p, follows 
uniform prior dp (0<p< 1). Cochran (1978) argued that obviously an essentially 
tighter prior had been justified, for example, p < 0.2. Hald (1998) pointed out 
that this had complicated significantly Laplace’s theoretical analysis. Given the 
binomial sample data from the communes (x successes out of y  trials), the pos­
terior distribution of p is then

px<y-py-x
/0V ( 1  -  P Y~xdp

(4.21)

which is an application of Laplace’s Principle (giving the relative likelihoods of 
various values of unknown ratio p).

In the second drawing, only X  (the total number of births) is supposed to 
be known. The problem was to find the distribution Y for given values of X, x, 
and y. Cochran claims that Laplace assumed (implicitly) that he had a second 
independent binomial sample,

For a given value of X, the probability is

p (X  | Y ,p) =
X\

P XV - P ) Y~X
J

(4.22)

and combining it with the posterior distribution of p from the first sample 
gives

/ v \ . ,
« r-x w -^ d p

—  (4-23)p (X  | Y ,x ,y ) =
X f  p x+x0 - p )(

J  o = 0

f P x( l - p ) iy-x)dp
J  p - 0
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According to the Principle of Inverse Probability, p(Y \ X , x, y) <x p (X  \ Y ,x,y) 
In order to analyse the error in the ratio estimate, Laplace marked Y = YR +z  

and focuses on the distribution of z. The probability of X  successes in (Xy/%) + z 
trials is

Xy + z

X\ X (y  -  x)
+ z

p * ( \ - p ) [X (y~ x ) lx ]+ z (4.24)

To find an approximate form of the distribution function f(z) when x, X, and y 
are all large, Laplace first multiplies (4.21) by (4.24), implicitly assuming that 
the two samples are independent. Drawing tickets two times from an infinite 
urn can be regarded as two independent trials, but that does not hold with a 
finite population. The error is insignificant, however (see Cochran, ibid.).

Then by applying Stirling’s approximation to n! and expanding to a Taylor 
series up to terms z2, he ends up with the approximation of the frequency dis­
tribution of z. (For details, see Cochran 1978, or Hald 1998.)

f ( z )  =  exp<
1
2 X (X  +  x)y(y  -  x)

z> + z - 2 X ( y - x ) z (4.25)

Laplace thus showed that in large samples, the distribution of the error z in 
the ratio estimate YR was approximately normal, with a bias whose leading term 
is Xfy-xJ/x2 if x/X  is negligible, and a variance

V(z) = X (X  + x)y (y  -  x) / x 3 (4.26)

Laplace calculated that the “standard error”, given the data, was 107.550 per­
sons, and he concluded that it makes “the odds about 300,000 to 1 against an 
error of more than half a million”.

This conclusion is basically the same as the modern expression concerning 
the accuracy of a sample estimate, bearing in mind the different conceptions 
and definitions of probability. In another context, Laplace also defined an “error 
to dread”, which in modern terms can be described as a probabilistic interval 
estimate, which is a kind of confidence interval.

Thatcher (1964) compared so-called binomial prediction, based on Laplace’s 
theory, and the theory of confidence limits. The interpretations of the inference 
models are different, but the comparison is interesting anyway. He found that 
the confidence limits lie outside the Laplacian limits, but the difference between 
them is no larger than the effect of one extra observation.

Statistics Finland 65



4.4 Laplace's and Brewer's ratio estimators
Ratio estimator has been included in all textbooks on survey sampling. However, 
Cochran (1978) claimed that an infinite superpopulation to study the proper­
ties of estimators had not been applied in the same manner as Laplace did since 
Brewer published his paper in 1963 (Brewer 1963).

Brewer assumed that the population values (jr, x;) are a random sample from 
a superpopulation in which

y, = Pc+e,

where st and x( are independent and x, > 0. In arrays in which x; is fixed, s, has 
mean 0 and variance cxt. The values x{ (i = 1, 2, ... , N) are known. In other

words, the population total (the population of France), Y = (3X + ^ £ . , is as-
i

sumed to be a random variable (X is the number of known births in the country, 
see Cochran 1978).

Applying Brewer’s model to Laplace’s problem, results conditional on the 
known value of X  are obtained by writing YR =  and Y = , where

py and pY are estimates of p obtained from binomialsamples of sizes y and Y, 
respectively. Then

Yr - Y  = X {—  ) = X {p y - p Y) l p 2 (4.27)
Py Py

Averaging over repeated selections of both drawings (France and a sample of 
communes) gives (see Cochran 1978)

E(YR- Y )  = EV(YR) = X 2pq  1 1

p y  y

X 2q ( Y - y )

yp3 Y
(4.28)

This is nearly the same as that of Laplace’s estimate if the binominal selection was 
replaced by the hypergeometric. Cochran (ibid.) pointed out that the difference is 
caused by Laplace’s (implicit) assumption that France itself and the sample of de­
partments were independent binomial samples from an infinite superpopulation, 
or from an infinite urn, with an unknown ratio of births to population. In Brewer’s 
model, the sample of communes is a subsample drawn from France.

4.5 Laplace's other contributions 
to probability theory

Laplace’s contributions in probability theory were diversified, and only part of 
them can be explored here. He had a great number of ideas but he was not able
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to finalise all of them, and some of them were in a hidden form. For example, 
Laplace’s Principle involves a similar reasoning as the idea of maximum likeli­
hood. Another example is his work on a topic that is currently known as suffi­
ciency. Stigler (1973) notes that Laplace did similar investigations as Fisher did 
a century later. Stigler states that it was surprising how close Laplace came to 
discovering sufficiency in 1818.

4.5.1 Central limit theorem
From the standpoint of statistical inference, probably the most important inven­
tion of Laplace was the Central Limit Theorem (CLT), where “Central” should 
be understood as a synonym for fundamental46. Stigler (1986) and many others 
consider this theorem as Laplace’s major result in probability theory. The CLT 
asserts that, under certain general conditions, the sum of a large number of in­
dependent variables is approximately normally distributed. In modern form, the 
theorem is:

If x is the mean of a sample of size n from a distribution having finite variance 
a 2 and mean p, then

1 -v - i „2
.—  [ e 2 du = 0(y) 

v2tt Clim ^
-Jn{x -  p)

s  y

where 0(y)= N (0,1), the normal distribution function.
Before Laplace published the CLT, the distribution of the arithmetic mean 

had been studied for many error distributions, resulting in very complicated for­
mulas, and therefore the need for approximations was obvious (see Ffald 1998, 
especially Chapter 3). The only previous theorem, according to Hald (Ibid.), was 
due to de Moivre, who in 1730 proved that

r2n 1

and in 1733, de Moivre had derived the normal approximation to the binomial 
distribution.

Laplace realized that a new mathematical technique was required. He obtained 
the necessary new method for approximating P(sn -  s), sn = x, + x 2 + ... xn, (x{ is 
the number of points at the ith throw), by a combination of two of his main lines 
of mathematical methods: the theory of generating functions and the method 
of asymptotic expansions of an integral. The characteristic functions, or Fourier 
transforms, were an outgrowth of a technique Lagrange had employed a few 
years earlier (see Stigler 1986).

46 The actual term “central limit theorem” [in German: “zentraler Grenzwertsatz”) was first 
used by George Polya in 1920 in the title of a paper. Polya [1920], “Über den zentralen 
Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem”, Mathemati­
sche Zeitschrift 8: 171-181.
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The paper where the CLT was 
published was read to the Academy 
of France in 1810 (Laplace 1810). La­
place’s work did not include the regu­
larity conditions familiar in the modern 
form of CLT. They and the exceptional 
cases came later, and they were treated 
by several mathematicians e.g., Pois­
son, Cauchy, Liapounov, Lindeberg, etc. 
Hald (1998) wondered why Laplace, 
being so near the general solution to 
CLT, did not continue his analysis, and 
answers that Laplace took up this prob­
lem very late in his career. Hald (ibid.) 
suspects that an explanation may be the 
fact that from 1786 on, Laplace con­
centrated on one of his major works in 
astronomy Mécanique Céleste, which he 
completed in 1805.

The importance of CLT for all sta­
tistical inference is undeniable. Only 

after the CLT was invented could the development of partial investigations, or 
sample surveys, be justified. However, it took nearly a century before the appli­
cations started to appear.

Laplace also treated, and partly derived, the Law of Error (Normal Distribu­
tion) together with Gauss, although the origins of the distribution are older (see 
Stigler 1986 or Cramér 1970). In older textbooks on probability, the Normal 
Distribution is occasionally called the Gauss-Laplace distribution (see Cramér 
1970). In Russian texts in the early 20th century, Normal Distribution was often 
called the Gauss-Laplace law.

4.5.2 Hypothesis testing
Laplace was also keen in applying his methods on new areas. For example, as 
an application of tools he had developed using binomial probability, he undertook 
an analysis on the sex ratio at birth. He had data from a twenty-six-year series 
in Paris. He found the total number of births to be y = 251527 for boys and z 
= 241945 for girls. If x  represents the probability that a given birth is male, he 
calculated in a straightforward application the posterior probability:

P (x  < 14 | y  = 251527,z = 241945) = 1.1521*10-42

THÉORIE
ANALYTIQUE

DES PROBABILITES;
Pi* M  LE COMTE LAPLACE,

CfeMcdâtrâMfetCMMmtaor.OrnAOfichrfelit-KtMlBeiMv;
ÏÏTmtn i‘ ifTuiTftM i^ iÎ iU il 1«l u —  " — ni

le p to  A» Uofrw  m *»  CaOtop»; 4 «  A aA teè *
4 i n n w I i . i Y F l r i n w r l  L f r r f h  — *~|

PARIS,
M- V COO&CCER, ptm  1»  Tr-*f-nffn~.

fa i M Aagulfe», ** Sj.

»8»*.

Figure 4.4:
Cover page of Théorie analytic des 
probabilités

He therefore regarded it as certain that the probability for a male birth is px > Vi. 
This is clearly an example of a test of a hypothesis the null hypothesis being H0: 
p x < 'A .
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Below is a citation of another application that is also close to modern hy­
pothesis testing.

"We have observed that, in the interval of the 85 years elapsed from 1664 to 1757, 
there are born, in London, 737629 boys and 698958 girls, which gives around 
19/18 for the ratio of births of boys to those of girls; this ratio being greater than 
the one of 105 to 101 which took place in Paris, and the number of births ob­
served in London being very considerable, we would find for this city a greater 
probability that the births of boys are more possible than those of girls; but, when 
the probabilities differ likewise little from unity, they can be counted equal and 
confused with certitude.

The preceding method gives a quite simple solution to an interesting problem, 
which it is perhaps very difficult to resolve by other methods: we have seen that 
the ratio of the births of boys to those of girls is sensibly greater in London than 
in Paris; this difference seems to indicate in London a greater facility for the birth 
of boys: the question is to determine how much this is probable.
This value of P (the probability that the birth of a boy is less possible in London 
than in Paris = 1/410458) is a little too great; but, since taking in it only the first 
two terms of the series we would have a value too small, it is easy to conclude 
from it that the preceding can differ from the truth by the 1/142 part of its value, 
so that it is a strong approximation: there is therefore odds of more than four 
hundred thousand against one that the births of boys are more facile in London 
than in Paris. Thus we can regard as a very probable thing that it exists, in the first 
of these two cities, a cause more than in the second, which facilitates the births 
of boys, and which depends either on the climate or on the nourishment of the 
mothers.” (Laplace 1783)

4.6 Laplace's influence on statistical science

Laplace has been regarded as a Newtonian scientist (see e.g. Stigler 1986). 
Newtonianism is the doctrine of following the principles and making use of 
the methods of the natural philosopher Isaac Newton. Newtonianism was an 
influential intellectual program during the 18th century Enlightenment. The fol­
lowers of Newton tried to apply Newtonian principles to a wide variety of new 
fields. Other famous Newtonian scientists of that time were Leonhard Euler and 
David Hume.

Weatherford (1982) claims that the classical theory of probability reached its 
zenith in the work of Laplace and that Laplace solved more problems and de­
veloped more important mathematical tools, including statistical methods, than 
any of his predecessors. His contributions were so influential that they domi­
nated statistical thinking nearly for a century. His mathematical treatment of the 
statistical problems also provided new tools for the development of the theory. 
Laplace's contributions can be regarded as the origin of statistical science. They 
opened a new era in the development of probability theory and its application 
to empirical sciences. In the context of this thesis, Laplace’s derivation and ap­
plication of the inverse probability are of central importance.

Hald (1998) concludes that Laplace is a pioneer in sample surveys, and that 
his theory is essentially correct for simple random sampling, although his model 
actually did not correspond to this mode of sampling. Laplace conducted the
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first scientifically ambitious partial investigation and thus created a method of 
statistical inference. Laplace’s method can be partly seen as a response to Hu­
me’s critique of the inductive method because it aims at providing tools for 
inductive reasoning.

It is surprising how little attention Laplace’s work has received in textbooks 
on statistical science. It seems that his contributions have nearly completely fall­
en into oblivion. For example, Hansen and Hurwitz wrote in their account of the 
historical basis for modern sampling theory:

“The theory for independent random sampling of elements from population 
where the unit of sampling and the unit of analysis coincide was developed by 
Bernoulli more than 200 years ago. The theory that would measure the gains to 
be had from introducing stratification into sampling was indicated by Poisson a 
century later. Subsequently, Lexis systematized previous work and provided the 
theoretical basis for sampling clusters of elements. The adaptation of the work 
of Bernoulli and Poisson to sampling from finite populations was summarized by 
Bowley in 1926 approximately a century after the work of Poisson." (Hansen and 
Hurwitz 1943)

The authors mention Poisson, a disciple of Laplace who developed Laplace’s 
ideas but not Laplace.

As late as in 1978, Cochran was also surprised by the discovery of the use of 
the ratio estimator by Laplace (Cochran 1978). It is a slightly peculiar nuance in 
the history of statistics that R.A. Fisher regarded Bayes’ contribution as the.first 
attempt to formalize inductive reasoning while not giving any credit to Laplace. 
However, he obviously knew Laplace’s works well because he sharply attacked 
them several times47.

There is little evidence available on how Laplace originally derived the gen­
eral theory. He was only 25 when he wrote PCE.The greatest motivation for his 
work, at least in the beginning, may have been the problem of merging discrep­
ant observations in astronomy (see Stigler 1986).

Laplace was primarily an astronomer. His interest in population statistics was 
apparently less motivated by social or political concerns than by the scientific 
aim of making evident that the social world can basically be approached by the 
same probabilistic methods as the physical world (see Fischer 2001). However, 
his work and his teaching had a far-reaching influence on the social sciences in 
the 19th century. For example, Quetellet’s Social Physics was essentially based on 
Laplace’s idea of social phenomena being analogous to natural ones. The basic 
ideas of Laplace influenced the 19th century mathematicians with the resulting 
expectancy that all random fluctuations in nature and in society could be treated 
correspondingly to a pattern of errors in observations. Fischer (2001) claims that 
this concept, together with Laplace’s frequent approximations by normal distri­
butions, paved the way for the latter “Quetelism”.

47 Fisher explained that the reason why he appreciated Bayes and did not appreciate Laplace 
was the fact that Bayes did not publish his results! (See Fisher 1936)
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5 Laplace-Bayes paradigm 
for statistical inference

In developing his Principle of Inverse Probability, Laplace created a method that 
in modern terminology can be called statistical inference. In modern statisti­
cal science, inference is based on a different inference model than in Laplace’s 
method, but the purpose is the same: to infer from sample to population. 

Typical features of Laplace’s method are:

1. The inference model that is based on Bernoulli trials introducing a binominal 
setup and binominal probabilities.

2. The universe (population in modern terms) is supposed to change constantly. 
Therefore, its parameters cannot be considered as constants but as having 
(a priori) probability distributions. In modern terms, the inference setup is 
close to the superpopulation approach in which the observable population is 
a sample of a superpopulation.

3. The inference setup is formed by using the inverse probability principle of 
Laplace.

4. The indifference principle (or the principle of insufficient reason) is an in­
herent part of inference, and it is usually considered to justify the use of the 
rectangular distribution for a priori probabilities.

The concept of a priori probability should not be confused with concepts like 
"credibility” or “degree of confirmation,” or “strength of expectation,” etc. as is 
often done in modern Bayesian theory. In Laplace’s and Bayes’ theory, a priori 
probability is an objective probability, but its value is not known and its value 
cannot be found experimentally.

In the writings on probability theory, Laplace's patterns of thought are preva­
lent throughout the 19th century (see e.g. Chang 1976). For example, Poisson’s, 
Quetelet’s and Lexis’ contributions are based on these ideas, as well as the the­
ory building in Russia (e.g., Tchuprov, Splawa-Neyman, and Kovalevsky). There 
is indirect evidence that the texts of Laplace, Poison, and Quetelet were in com­
mon use both in European and Russian universities. Maybe the most assuring 
indication is what R.A. Fisher wrote in 1936:

“ ...In the latter half of the nineteenth century the theory of inverse probability 
was rejected more decisively [than Boole] by Venn and by Chrystal, but so reten­
tive is the tradition of mathematical teaching that I may myself say that I learned 
it at school as an integral part of the subject, and for some years saw no reason to 
question its validity.” (Fisher 1936)

Another indirect evidence of the predominant role of Laplace’s inference model 
is Karl Pearson’s article from 1920, The Fundamental Problem of Practical Sta­
tistics. In this article, Pearson referred to “inverse probabilities” and concluded 
that in practical statistics, it takes the following form:
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“An ‘event’ has occurred p  tim es ou t o f  p  +  q  =  n  trials, where w e have no a  
p r io r i  knowledge o f  the frequency o f  the event in the total population  o f  oc­
currences. W hat is the probability o f  its occurring r  tim es in a further r  +  s  =  m  
trials?” (Pearson 1920],48

Pearson continued that the problem had been considered in 1774 by Laplace 
“whose approximation by aid of Stirling’s Theorem leads us directly to the nor­
mal curve”. In this article, Pearson analyzed and modified “Laplace’s investiga­
tion on a broader basis”.

The inference model in Jerzy Neyman’s early paper was based on draw­
ing balls simultaneously from several urns (Splawa-Neyman 1923, p. 467]. His 
probabilistic setup was an elaborated version of the classical urn model (balls in 
urns have labels giving the values of the variable]. This setup originated from 
Lexis and it was common in Russian writings before World War I. For example, 
Tchuprov applied a similar setup in his analysis of distributions (see Tchuprov 
1918, 1923a, and 1923b], In addition, Kovalevsky applied the Bernoulli trial in 
deriving estimators for sample surveys. He started his paper on sampling by say­
ing: “Suppose we have an urn containing white and black balls in an unknown 
ratio...” (Kovalevsky 1924],

Hald (1998) called this method the Bayes-Laplace model, and Stigler (1986) 
called it the Bayes-Laplace method, but it also fulfils the characteristics of a 
paradigm in the sense Kuhn described it. In the 19th century, Laplace’s inference 
model had a central role; obviously Laplace’s method was the dominant one in 
universities. At that time, it was a method that was taught in universities all over 
Europe as a self-evident and natural approach.

Up to the beginning of the 20th century, Laplace’s and later Poisson’s and 
Quetelet’s textbooks were important study materials for new students. On the 
other hand, the writings of that time do not project rival methods (see Chapter 
6). As a result, calling Laplace's method a paradigm seems warranted.

The method is mainly a creation of Laplace, and obviously partly Condorcet’s, 
but Bayes’ influence was not noticeable (see also Chang 1976). In fact, it is not 
very important whether Laplace was aware of Bayes’ Essay or not. During the 
19th century, neither the Bayes inference model nor Bayes’ thought patterns 
were referred to in writings on probability theory. Hence, the method could 
only be called the Laplace paradigm, although there are similarities with Bayes’ 
thinking model. The term Bayesian is strongly attached to modern statistical lan­
guage, while Laplacean is not. Mentioning both gives a more illustrative expres­
sion of the nature of the paradigm. Therefore, calling the method the Laplace- 
Bayes paradigm is warranted.

48 At the same time, Pearson was also extremely critical of Laplace. First he claims that 
Laplace was really only following Bayes; he continues in a footnote:

"... I do not think it is correct to say that Laplace was the first to treat the problem 
analytically. It all turns on the evaluation of the incomplete beta function. The methods 
of quadrature of Bayes and Price may be somewhat primitive, but I cannot see that they 
are much rougher than those used on this occasion by Laplace. There is no special merit 
in reducing any integral to terms in exponentials, unless these give an adequate approxi­
mation to the sought value. And Laplace does not really measure the closeness of his 
approximation nor indicate where it fails.” (Pearson 1920)
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6 The rise of statistical thinking 
in the 19th century

6.1 Development of probability theory 
after Laplace

The foundations of direct probability and inverse probability were laid at the 
end of 18th century and in the beginning of 19th century and the French math­
ematicians, especially Laplace, made the most important contributions in both. 
Another central figure of that time was Carl Friedrich Gauss49, who contrib­
uted nearly as extensively on probability theory as Laplace but from a slightly 
different perspective. Gauss and Laplace partly dealt with the same or similar 
problems and thus paved the way for each other. Hald (1998 and 2007) gives a 
thorough account of their contributions and “collaboration”. Also Stigler (1986) 
devoted several pages to describe so-called Gauss-Laplace synthesis. Gauss has 
not been referred to here because he did not contribute much on inverse prob­
ability, which is the main topic of this thesis. Nevertheless, Gauss' impact on 
the development of probability theory and later on statistical science has been 
momentous, especially his contributions to the development of the least square 
method and the Normal Distribution and applications linked to it. These topics 
have been vital in shaping statistical science in its current form.

Since Laplace and Gauss, the development of probability theory subsided for 
a long time. In 1924, Rietz wrote:

“The mathematical theory of statistics dates back to the first publication relating 
to Bernoulli’s theorem in 1713. The line of development started by Bernoulli 
was carried forward by DeMoivre, Stirling, Maclaurin, and Euler culminating in 
the formulation of the Bernoulli theorem by Laplace in substantially the form in 
which it still holds a fundamental place in mathematical statistics.
The Théorie Analytique des Probabilités of Laplace is undoubtedly the most sig­
nificant publication at the basis of the development of mathematical statistics. 
Strangely enough, for a period of more than fifty years following the publication 
of the work of Laplace in 1812, little of importance was contributed to the sub­
ject. To be sure, the second law of error of Laplace was developed by Gauss and 
given its important place in the adjustment of observations, but there was on the 
whole relatively little progress....” (Rietz 1924)

Rietz, in fact, referred to the development in Western Europe where the period 
1830-1890, starting after Laplace’s and Gauss’ most productive times, has been 
described as the one of clarification and consolidation of the works of Laplace

49 Johann Carl Friedrich Gauss (1777-1855), a German mathematician and scientist, contrib­
uted to many fields, such as statistics, number theory, analysis, differential geometry, geodesy, 
electrostatics, astronomy, and optics. Gauss had an outstanding influence in many fields of 
mathematics and science and is often ranked as one of history’s most influential mathemati­
cians.
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and Gauss. During that period, probability theory was extended to applications 
from the natural sciences to the social and biological sciences [see Hald 1998). 
The applications to social sciences led to the emergence of statistics [official 
statistics) and eventually to modern survey research. A significant line of devel­
opment can be found in Germany, where the sovereign states founded statistical 
bureaus starting from the beginning of the 19th century, thus laying the founda­
tions for economic and moral statistics.

Simeon-Denis Poisson [1781-1840) is a person who needs to be mentioned 
in this context. He was one of the most important apprentices of Laplace, and 
he is said to be the first to understand the fundamental importance of Laplace’s 
probabilistic work. He was the one who introduced Laplacian theory on proba­
bilistic problems to practical problems. Poisson was also a central person who 
systematized and extended Laplace’s works and extended its application to vital 
statistics and law. Bru [2001) called him “the apostle of Laplacian science”.

Poisson has been regarded as a mathematical genius. He published over 300 
mathematical works covering a wide range, including applications from pure 
mathematics and probability theory to electricity, magnetism, and astronomy. In 
probability theory, Poisson is probably best known because of the distribution he 
invented, the Poisson Distribution, as a limiting distribution of binomial distribu­
tion. The Poisson distribution describes the probability that a random event will 
occur in a time or space interval under the conditions that the probability of the 
event occurring is very small, but the number of trials is very large so that the 
event actually occurs only a few times (Poisson 1829). According to Bru (ibid.), 
Poisson himself did not much appreciate his discovery. Its importance was ob­
served only a century later in specific applications like queue theory. Poisson dis­
tribution is also in the kernel of von Bortkewicz’ Law of Small Numbers (Bortke- 
witcz 1898), which eventually indicated the value of Poisson Distribution.

One of the Poisson’s best known achievements in probability theory is cur­
rently known as the Weak Law of Large Numbers or the Poisson law of large 
numbers50. This provided a rationale for applying probability to social matters. It 
was deemed to explain how the statistical stability of social affairs was possible 
(see Hacking 1990). Poisson also extended Laplace’s theory of errors to a situa­
tion in which the distribution of errors is not necessarily normal.

Poisson was a highly appreciated person, and he held several high academic 
positions and positions in the central administration. Bru (2001) claims that in 
every position he held, Poisson tried to demonstrate how Laplacian theory could 
be used to validate statistical data. He sought to popularize the statistical theories 
of Laplace also among “practical men”. It has been credited to Poisson that La­
place’s ideas spread so quickly and widely in France and other parts of Europe.

For nearly a century after Laplace, there were no noteworthy new develop­
ments in the theory of direct or inverse probability in Western Europe. However, 
important developments in probability theory emerged in Russia. Mathemati­
cians like Bunyakovsky, Chebysev, Markov, Liabounov, Bernstein, andTchuprov, 
to mention a few, made several important contributions in probability theory in 
the course of the 19th century. Their writings were often very theoretical, pub-

50 Poisson coined the phrase ’law of large numbers’ (see Hacking 1990).
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lished in Russian, and their applications in empirical research were rare. There­
fore, their influence in Western Europe was slight and slow.

Statistical thinking and statistics concerning human population started to 
emerge only at the end of Napoleon’s era. In the beginning, the statistics were 
put together according to diverse principles, and therefore they were incoherent, 
irregularly collected, and difficult to have access to. One of the greatest obstacles 
for studying human population was the general belief that it was too heteroge­
neous, irregular, and unstable to be a subject of research. During the first half 
of the 19th century, research on human populations started to extend rapidly as 
a consequence of the increasing observations on invariances in social phenom­
ena. An outcome of this was that statistics was perceived as a function with an 
autonomous role. As Armatte [2001] put it, the period 1820-1845 meant the 
hibernation of probabilities but a golden age of statistics.

Westergaard, in turn, called the period from 1830 to 1849 the Era of Enthu­
siasm. He wrote:

"But enthusiasm is particularly evident in the two decades concerned. During this 
period statistics attracted public interest to an unusual degree. Official statistical 
institutions were founded or re-established in several countries, and numerous sta­
tistical societies sprang up and worked in co-operation with these institutions. Sta­
tistical journals were started. Highly talented authors, as, for instance, A. Quetelet, 
made the statistical results accessible in lucidly written books, in which the appar­
ently dry observations were interpreted in an attractive manner. O f course this was 
not without drawbacks: there was a great temptation to dilettantism, and many 
statistical publications were superficial and full of hastily acquired results. No 
wonder that a reaction took place later on, with a deeply rooted suspicion against 
the statisticians. It proved necessary to pull down several badly constructed build­
ings and to replace them by more solid structures. But statistics profited from this 
passing popularity, inasmuch as large fields came under tillage, and the mass of 
statistical observations got an enormous increase.” [Westergaard 1932)

The development took place in two different but related areas: in the develop­
ment of statistical institutions and infrastructures; and in the discovery of social 
structures and their regularity -  occasionally called social laws.

6.2 Establishment of
the infrastructures of statistics

Westergaard (ibid.) called 1853-1888 the period of statistical congresses because 
during that period a series of international statistical congresses were organized. 
The importance and status of statistics was corroborated in successive meetings. 
Westergaard (ibid.) claims that the initiative leading to the establishment of the 
international statistical congress was principally due to Quetelet51. The first con-

51 Adolphe Quetelet (1796-1874) was a Belgian scientist. He received his first doctorate in 
1819 and after receiving this doctorate he taught mathematics for a while. In 1823, he went 
to Paris to study astronomy. Aside of astronomy he learned the theory of probability under 
Fourier and Laplace. In Belgium he first worked at an observatory but later he was appointed 
as the director of statistical bureau.

Statistics Finland 75



gress was held in Brussels in 1853 with Quetelet as main organizer and chairman. 
In the following 23 years, eight other congresses took place.

The activity around statistics was remarkable already before statistical Con­
gresses, and throughout Europe, different bodies for statistics were established, 
such as statistical institutions and statistical societies. Especially the impact of 
the statistical societies was significant for the development of modern statistics 
and the professional principles of statistical work.

6.2.1 First statistical societies
Willcox (1934) listed fifteen statistical societies founded between 1834 and 1844. 
There existed some societies already before that period, such as the French Sta­
tistical society and those of Württemberg, Marseilles and Saxony. Westergaard 
(ibid.) commented that “Everybody seemed to have got statistics on the brain!” 
The societies were mainly founded as citizens’ organizations outside statistical 
institutions. The most prominent motive seems to have been the interest in 
social questions (see Westergaard 1932 and Desrosiéres 1998). It is noteworthy 
that the foundations of the professional character of statistics and statistical 
work were laid by the first statistical societies.

Statistical societies in England
According to Westergaard (ibid.), the most noticeable development in statistical 
societies took place in England because in a short period more societies were 
founded there than anywhere else. The first statistical society in England was 
founded in Manchester in 183352. Only few of the founding members were 
statisticians in the modern sense. The founders were partly driven by alarm over 
the acute social conditions in Manchester. The population of Manchester had 
grown by 45 per cent between the censuses of 1821 and 1831 as a consequence 
of rapid industrialization. This, in turn, caused an expansion in employment and 
it brought acute housing problems and diseases in its train. The objects of the 
Society were stated as “The collection of facts illustrative of the condition of 
Society and the discussion of subjects of Social and Political Economy, totally 
excluding party politics”53.

The Manchester Statistical Society was a pioneering organization also in an­
other respect. It was the first institute in Britain to systematically study social 
problems and to collect statistics for social purposes. In 1834, it carried out 
the first house-to-house social survey in England. The survey was composed 
of interviews of 4,102 families of working men in Manchester. One of the first 
published reports of social surveys was that of Hey wood’s Report of an Enquiry, 
conducted House to House, into the state of 176 Families in Miles Platting, within 
the borough of Manchester, in 1837 (Heywood 1838). Later, the members of the 
society carried out several other surveys, including a survey of the state of educa­
tion in Manchester and the surrounding boroughs.

52 Statistical Society of Manchester still exists and is working actively.
53 The early history of the Society has been well documented by Thomas S. Ashton (1934).
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The best known statistical society in Great Britain is the London Statistical 
Society [LSS], founded in 1834. The society grew rapidly, and in 1838 it started 
to publish a journal which is now known as the Journal of the Royal Statistical 
Society (JRSS). In 1887, the society was granted a royal charter and the Statisti­
cal Society of London became the Royal Statistical Society54.

Soon after the Statistical Society of London was founded, similar societies 
were founded in larger industrial cities in Great Britain. This rapidly growing 
interest in statistical matters was associated with the British Statistical Move­
ment, which was actively taking part in the work of the statistical societies. As 
an offspring of this activity, Charles Booth [1840-1916] devoted his fortune to 
surveying poverty in London. Among other things, he carried out a survey. Its 
results were published in a book entitled “Life and Labour of the People in Lon­
don” [Booth 1889-1903]. Benjamin Seebohm Rowntree [1871-1954] adopted 
Booth’s method to study other English towns and compared them to London. 
The most famous of these is a comprehensive survey that he carried out on 
the living conditions of the poor in York. It was a complete enumeration dur­
ing which investigators visited every working class home [see Rowntree 1901]. 
Arthur Bowley has been regarded as a successor of this Statistical Movement 
[see Chapter 8].

Other famous statistical societies
One of the most famous statistical societies was founded in the Kingdom of 
Saxony in 1831. Already in the same year, the society published the first issue 
of its journal, Mittheilungen des statistischen Vereins für das Königreich Sachsen. 
The initiative to form the association came from the government and it got its 
mandate from the king of Saxony. In addition, a considerable number of private 
persons, “patriotic citizens”, interested in statistics assisted the Society. In 1850, 
it was converted into a public institution of Saxony.

The American Statistical Association was founded in Boston in 1839. It was 
originally called the American Statistical Society, but the name was changed to 
the American Statistical Association [ASA] at its first annual meeting in 1840. 
In 1888, the society started a new publication that later became the Journal of 
the American Statistical Association (JASA).

6.2.2 Statistical institutes
During the Era of Enthusiasm, official statistics made considerable steps for­
ward, not only as to the quantity o f collected data but also as to its quality. 
This fact, in combination with the work of statistical societies, made the 
avalanche of printed numbers possible [Hacking 1990].

In the Era of Enthusiasm, there was also remarkable activity in Germany. 
The Tariff Union was founded in 1833. It required regular censuses in all the 
German States that joined the Union, because the income from the tariffs

54 The history of the society has been documented in great detail for example by Mouat (1885] 
and Hill (1984).
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was distributed according to the number of inhabitants. Therefore, there 
were regular triennial enumerations until 1866.

Statistical activity in German states was already notable before the Tar­
iff Union. The first statistical bureau in Germany, Königlich Preußische Sta­
tistische Bureau, was established in 1805 in Prussia. In 1808, the Statistisch 
Topografisches Bureau was established in the Kingdom of Bayern and in the next 
year it published its first yearbook. In 1807, it had already published a statisti­
cal atlas (Statistische Darstellung der Königlich-Baierischen Staaten). In 1821, in 
the Kingdom of Württemberg, a statistical bureau, Statistisch Topografisches Bu­
reau des Königreichs Württemberg, was established. In 1826, it published its first 
yearbook [Württenbergische Jahrbücher für Vaterländische Geschichte, Geographie, 
Statistik und Topographie).

According to Westergaard (1932), noticeable progress was also made in Eng­
land, where a statistical department was added to the Board of Trade in 1833. 
Equally important was the establishment of civil registration of vital statistics in 
1837 for the registration of marriages, births, and deaths.

In France, the Bureau de la Statistique generale was re-establishment in 
1833. I had been suppressed in 1812. The bureau had charge of several 
important subjects, such as population, finance, foreign trade and prices. But 
there was no decided centralisation, various branches being treated separate­
ly. A statistical service was created in 1844 and the following years in the 
Ministry forTravaux public (Westergaard 1932).

In Belgium, a Statistical Commission was organized in 1841 with the ob­
ject o f controlling the various branches of statistics, and Adolphe Quetelet 
became its president. The most significant event was the census of 1846, em­
bracing population as well as agriculture and industry. The industrial census had 
a detailed classification of professions. The report contains the number of work­
ing men, their wages, engine horsepower, the number of looms and other utensils 
employed. The whole census was generally looked upon as a very important step 
forward and it was held as an example of a perfect census by other countries.

In Russia, the development was slightly different from the other countries 
in Europe. In 1864, provincial and district Zemstvo institutions were created in 
33 districts of Russia. They were controlled by the Ministry of the Interior and 
the respective governors. Many Zemstvos started to organize their own local 
statistics for their needs, and by the end of the 19th century, 25 out of the 33 
provincial Zemstvos had statistical bodies. Kaufman (1918) describes in detail 
the organisation and statistical activity of zemstvo offices.

Zemstvo administrators also carried out statistical surveys. Mespoulet (2002) 
argues that the quantity and diversity of statistical data needed by Zemstvo 
administrators stimulated methodological innovations in the field and influ­
enced the rise and development of sampling in Russia at the end of the 19th and 
beginning of the 20th century. Mespoulet (ibid.) also argues that Kovalevsky’s 
mathematical treatment on sampling theory and stratified sampling, published 
in 1924, is a synthesis of the Zemstvo statisticians’ sampling practices and Rus­
sian academic statisticians’ theoretical work.
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6.2.3 The International Statistical Congresses

An important step forward was the first International Statistical Congress held 
in 1853. The chief object of the congress was a practical one, namely to promote 
the organization of official statistics and to unify the reports from various sta­
tistical institutions so as to make the documents comparable, and a cheap and 
easy exchange of statistical publications was recommended. The tendency in the 
“Congress Period” was chiefly to establish central statistical bureaus.

The program of the first conference covered the whole field of official statis­
tics of that time, and the result of the meetings was a list of more or less detailed 
resolutions. As the aim was practical, there was no room for lectures on scientific 
problems, which later turned to be a fatal problem. Interestingly enough, one 
of the resolutions recommended a general register of the population in each 
commune, each family being allotted one page where future changes might be 
recorded.

As to the theory of statistics, a resolution was passed in Florence, in 1867 
at the initiative of Quetelet, that there should be created a special section at 
future congresses, to deal with statistical questions in direct connection with the 
theory of probabilities. At the following congress, a corresponding problem was 
entered, recommending that statistical investigations should not only deal with 
averages, but with the deviations from the mean.

However, the International Statistical Congresses slowly faded away. The rea­
sons that led to the end of International Statistical Congresses were realized and 
taken into account when a few years later the International Statistical Institute 
(ISI) was established. The first session of the ISI was held in Rome in 1887. Many 
of the leading statisticians of that time (e.g., Lexis, von Mayr, and Engel) took 
part in this meeting.

6.3 Discovery of social phenomena 
and their stability

People working in the statistical offices were civil servants, and statistical socie­
ties were manned by more or less ordinary citizens whose knowledge of statistics 
was limited. The large amount of numbers appeared incoherent -  even chaotic 
-  because there was nothing that tied them together (see Hacking 1990). It was 
necessary that scientists with vision develop a theory before social research and 
statistics could gain plausibility and become widely accepted. Characteristic to 
that era was disbelief that human populations could include such regularities. 
Theory building became possible when statistical offices and societies began to 
publish comparable statistics.

6.3.1 Early examples of social research
Before the avalanche of printed numbers started, there were only few examples 
of social research. William Petty’s Political Arithmetic was practiced in some
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form up to the middle of the 19th century. Political arithmetic was a discipline 
of empirical collection of population records and preparation of accurate life ta­
bles. Its idea was bookkeeping of the population facts, not research. For example, 
Halley’s life tables were mainly used for actuarial purposes. However, there are 
two famous examples of early investigations in the 18th century by Arbuthnot 
and Sussmilch.

In 1712, John Arbuthnot (1667-1735) published a paper which discussed the 
slight excess of male births over female births from a statistical point of view (Ar­
buthnot 1712). This paper is generally considered as the first application of prob­
ability to social statistics (Hacking 1975). Arbuthnot took 82 consecutive years 
of data on registered births in London and observed that on every recorded year 
more boys were born than girls. Arbuthnot argues that if there is an even chance 
for male and female births, the distribution of births should be like outcomes from 
tosses of a fair coin. He calculated that if his hypothesis were true, there would be 
an extremely small chance of getting 82 consecutive male years, i.e., ('A)82.

The first influence of enlightenment philosophy on statistical thinking is claimed 
to be seen in the works of Johann Peter Sussmilch (1707-1767). Sussmilch pub­
lished a book in which he gave an extensive presentation of demographic mate­
rial from a great number of sources, mainly from Germany, but also some from 
other countries (Sussmilch 1741). The leading motif in Siissmilch’s work was the 
regularity that could be observed in the statistical figures, which were composed 
of material from larger areas or population groups. The interpretation Sussmilch 
gave to the statistical regularity has been considered a turning point in the gradual 
liberation of science from religious influence (see also Hacking 1975).

6.3.2 Quetelet's contribution to statistics
Adolphe Quetelet’s impact on the emergence of statistics and statistical science 
was vital in two different areas: as an energetic organizer, he was a key person 
in forming the statistical institutions in Europe; and as a social scientist, he es­
tablished a new branch of research which essentially was based on statistics. He 
appears to have been more innovative, energetic, and influential than any of his 
contemporaries. In addition, Quetelt's impact on the intellectual atmosphere in 
Europe was profound.

In the beginning the 19th century, a human population was considered a cha­
otic mass of individuals. An illustrative example is the reception to Quetelet's 
attempt to apply Laplace’s estimation method. Approximately 25 years after 
Laplace had estimated the population of France, Quetelet wanted to attempt 
a similar estimation for the population of the Low Countries (Stigler 1986, 
p.163). When he had published his plans, baron de Keverberg55 objected the 
plans (De Keverberg 1827). De Keverberg was afraid that the sample could 
never reach full “representativeness” because of the fundamental heterogeneity 
of the population. He writes

55 Only little is known about baron de Keverberg (1768-1841). According to Stigler (1986), he 
apparently was serving as an official advisor on state matters in Low Countries.
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“The law regulating mortality is composed of a large number of elements: it is dif­
ferent for towns and for the flatlands, for large opulent cities and for smaller and 
less rich villages, and depending on whether the locality is dense or sparsely popu­
lated. This law depends on the terrain (raised or depressed], on the soil (dry or 
marshy], on the distance to the sea (near or far], on the comfort or distress of the 
people, on their diet, dress, and general manner of life, and on a multitude of local 
circumstances that would elude any a priori enumeration.” (see Stigler 1986]

Laplace’s estimation and inference had been based on the assumption that the 
birth and death rates were relatively homogeneous and stable. In essence, de Ke- 
verberg argues that the rates were not constant, or more generally, the stability of 
statistical ratios could not be assumed and hence the urn model could not be ap­
plied. Mathematically, it meant that binomial distribution could not be applied. 
The proportions could not be interpreted as probabilities because there were no 
homogeneous groups. In the absence of homogeneous groups, there could be no 
reliable inferences or inductive generalizations from a part to the whole. De Ke- 
verberg argued that the only solution was to take a complete enumeration and 
to describe the entire population. Quetelet accepted de Keverberg’s argument 
about the lack of homogeneity and lost interest in partial investigations.

The debate about stability of statistical ratios, either biological or social, con­
tinued throughout the 19th century. Some, for example Poisson, argued that the 
laws of probability could be applied to human population and its social condi­
tions, implying that he believed in the existence of homogeneous groups (see 
Stigler 1986]. However, many were in favour of de Keverberg’s argument that 
there were an unlimited number of ways of classifying social data after selection, 
and that homogeneous groups did not exist (Stigler ibid.]. For example, in 1843, 
Cournot argued that there are countless ways to categorize social data.

"Even a scientist of only average curiosity could classify births by birth order, by 
parent’s age, profession, wealth, or religion, by season of the year, by whether it 
was a first marriage for both parents, and so forth.” (Stigler 1986]

By that argument, striving for full coverage, a sample is simply impossible. It 
would ultimately mean that the only sample that would fulfil such a require­
ment would be the population itself. Underlying this debate was the deeper 
question: are there any stable regularities, or laws, in social science?

Quetelet and social research
Quetelet’s interest in social phenomena and statistics grew after his visit to study 
in Paris in 1824, where Joseph Fourier56 introduced him to Laplacian mathemat­
ics57. In the 1820s, Fourier had noticed that statistics on the number of births, 
deaths, marriages, suicides, and various crimes in the city of Paris had remarkably 
stable averages from year to year (see Porter 1986). This led Quetelet to think that

56 Jean Baptiste Joseph Fourier (1768 -  1830) was a French mathematician and physicist 
probably best known for initiating the investigation of Fourier series. He was a student of 
Lagrande.

57 There has been controversy on how much Quetelet met with Laplace. It has been documen­
ted that they met few times but Laplace was an old man at that time, and not very actively 
taking part in research anymore. Obviously, Laplace's direct influence was not noteworthy.
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social phenomena are governed by laws as is nature. Poisson’s Law of Large Num­
bers was the direct inspiration and indication of the social laws for Quetelet.

Quetelet was convinced that probability influenced the course of human 
affairs more than earlier generations had believed and more than his contempo­
raries did. He believed the law of error could also apply to human beings. If the 
phenomena were part of human nature, Quetelet concluded that it was possible 
to determine the average physical and intellectual features of a population. He 
believed that it was possible to identify the underlying regularities for both nor­
mal and abnormal behaviour.

Quetelet utilized the outburst of statistics, and in 1835 he published the 
book “physique soríale”, or Social Physics, with a large number of tables on vital 
data, moral and criminal statistics, and anthropometry (Quetelet 1835). He did 
not confine only to presentation of the facts; he also derived new variables58. The 
tables included many different measures, but the most important point was that 
Quetelet described the distributions of both observed and derived variables -  
which without exception was the Normal Distribution -  and showed that these 
variables were stable between countries and over time.

In Social Physics, Quetelet argued that it was necessary to go beyond the 
observation of singularities, since they were obstacles to perceiving “the laws of 
the human species”:

“Above all, we need to lose sight of man taken in isolation, and view him as merely 
a fraction of the species. By stripping him of his individuality, we will eliminate 
all that is merely accidental; and the individual particularities that have little or 
no effect on the mass will disappear by themselves, enabling us to apprehend the 
general results." (Quetelet 1835)

Quetelet noted that if things are examined at too close a range, it is possible to 
see only diversity, and observation limited to individual cases does not allow us 
to identify the “admirable laws”. It is important to find the right observational 
distance to exclude what is accidental. Quetelet argued that this distance makes 
it possible to develop a science of collective phenomena: by losing sight of in­
dividuals, one can unravel, through the social phenomena that dominate the 
masses, a set of laws. (Quetelet 1835)

Quetelet demonstrated that there existed stability within social phenom­
ena and that there existed regularity, or invariance, which could be called social 
law59. Quetelet’s ideas were partly based on his own interpretation of Laplace’s 
error law. Its importance was due to the Central Limit Theorem that Laplace 
derived mainly to analyze errors of measurements in astronomy. Quetelet was 
one of the first to apply the error law to human sciences.

58 An example of the derived variables is the so-called Quetelet index, which in modem form 
is called the Body Mass Index, indicating obesity. The Body Mass Index, or Quetelet Index, is 
weight divided by the square of the height of a person (BMI = W / H2).

59 Behind Quetelet’s idea was his aim to show that there were similar laws as the laws of nature 
that govern social life. However, many Quetelet’s contemporaries did not accept the idea 
that regularities could be interpreted as laws.
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The law of error
The error law, which was later named the Normal Distribution60, became a 
central concept in Quetelet's analysis. His initial contribution was to show that 
nearly all features -  biological, social, and moral -  of human population fol­
lowed this distribution. In the 1830s, Quetelet invented the concept of “l’homme 
moyen", the average man. Quetelet justified this idea of the typical by saying,

“If we do observe a [normal distribution] in nature, it is because nature was aim­
ing for a target and missed due to random errors.”

The target, the average man, represents the centre of the population. Quetelet 
interpreted the normal distribution as evidence that departures from the mean 
were like errors of measurements, so that the mean value was a ‘true mean’ 
which represented a real underlying value or type. The importance that Quete­
let (and his followers] gave to the normal distribution led to an exaggerated idea 
of its prevalence, which was nicknamed “Queteletismus” or “Quetelism”.

Eventually, the mean values in a “normal distribution” actually took on the 
prestige of a social law. Especially Quetelet thought that these statistical regular­
ities were evidence of determinism. Individuals might think marriage was their 
decision, but since the number of total marriages was relatively stable from year 
to year, Quetelet claimed that the individuals were determined to marry.

Throughout his work, Quetelet held to the notion that there was no such 
thing as a chance event. He thought that all phenomena were ‘caused’ and relat­
ed. If events have causes that persist through time periods, then the same events 
can be expected to reoccur. Quetelet claimed that “so long as the same causes 
exist, we must expect a repetition of the same effects” (Quetelet 1848],

General social conditions influencing the greater part of the social group re­
sult in sufficiently constant social phenomena. The study of large numbers sug­
gests that general causes dominate the numerous influences of trivial ones. “The 
greater the number of individuals, the more the individual is effaced and allows 
to predominate the series of general facts which depend on general causes accord­
ing to which society exists and is maintained” (Quetelet 1849]. This ‘doctrine of 
probabilities’ has been regarded as the essence of Quetelet’s statistical analysis.

The emergence of modern social research has been regarded beginning with 
the Quetelet’s works. His social physics is often held as the origin of modern 
empirical sociology61. Quetelet published several books touching on the same 
topic (e.g., Quetelet 1848 and 1869], which subsequently inspired many scien­
tists to develop new theories, thus generating a tradition of statistical research of 
social affairs. For example, Block devotes a considerable part of his textbook on 
statistics, Traité théoretique et pratique de Statistique, (Block 1886] in explaining 
the (statistical] regularities observed in different societies.

In addition, Quetelet had a strong influence on criminology. He showed that 
there was a relationship between crime and social factors. Among his findings

60 The term’ normal distribution” was coined by Galton at the end of the 19th century. Before 
that, the distribution was called the error law.

61 Sociology is usually held a creation of the French philosopher August Comte (1798-1857), 
but he did not accept the statistical approach. Therefore empirical sociology is usually dedi­
cated to Quetelet.

Statistics Finland 83



was the relationship between crime and age, as well as the relationship between 
crime and gender (and poverty, education, and alcohol consumption, etc.]. 
Quetelet's statistical analysis of crimes had far-reaching consequences, especially 
on social research in German states and in France.

Quetelet also contributed to probability theory, but he did not make epoch- 
making discoveries. In 1849, he published a book that was in the form of letters, 
often cited later as Quetelet’s Letters on Probability (Quetelet 1849). In this 
book, he outlined the use of probability in statistical research. The probability 
analysis of Quetelet was based on Laplace’s and Poisson’s ideas and he was one 
of the persons who strongly fostered adherence to the Laplace-Bayes paradigm. 
However, Quetelet did not touch on inverse probability, as he did not undertake 
any partial investigations.

Monograph surveys
Based on Quetelet’s idea of the average man, a new type of survey research 
was introduced at the end of the 19th century by the French mineralogist and 
engineer Frederic LePlay. The method was called the Monograph study or the 
LePlay method. In the second half of the 19th century, the Monograph stud­
ies, or surveys, became popular, especially in exploring family budgets62. In the 
monograph method, it suffices to collect information only about typical cases, 
and investigation of extreme cases was to be avoided. Compared to complete 
enumeration, in a monograph survey, the amount of collected information per 
household was enormous. Sometimes the enumerators or observers stayed in the 
household for many days. Therefore, monograph studies were sometimes called 
in-depth surveys. The method was partly motivated by Quetelet’s propagation 
of the normal distribution and his idea of the average man (see Desrosieres 1998 
and Hacking 1990).

The monograph design was widely applied at the end of the 19 th century, and 
at the beginning of the 20th century it was still an officially accepted method used 
by the International Statistical Institute. Especially in Russia, the monographic 
method was very popular. For example, more than one-third of Tchuprov’s text­
book on statistical methods dealt directly or indirectly with monograph surveys 
(see Tchuprov 1910). Also in France, it was still frequently used in the beginning 
of the 20th century.

6.3.3 Statistics in German states
Statistics was taught at many German universities since the late 18th century. 
Statistical investigations were originally undertaken by individual scholars in 
search of the laws of social events, but soon statistical-topographical bureaus 
took over and statistics assumed a more purposeful orientation to solve prob­
lems of policy and crime control (see Tonnies 1925). Operated by professional

62 Those surveys were the forerunners of the modem Household Budget Surveys, which most 
national statistical institutes conduct even today. In some countries, the current sampling 
design still has traces of the method that was applied at the end of the 19th century. For 
example, the sample is composed of households that have been purposefully selected to be 
typical households of specific socio-economic classes of that region.
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statisticians, the offices collected information regardless of the specific needs 
of the political and legal administration. Statistical material was considered to 
benefit the public administration because the topics of information were not 
determined beforehand.

6.3.3.1 Engel and the first social law
It has been claimed that the first social law was discovered by Ernst Engel63. 
While studying in Paris, he came under the influence of Frederic LePlay who is a 
pioneer in the study of family budgets. Later, Engel stayed in Belgium for some 
time and became acquainted with Quetelet, who instilled in him the faith that it 
was possible to discover quantitative social laws. Hacking (1990) gives a compre­
hensive account and analysis of Engel’s and Quetelet’s collaboration.

The basis of Engel’s investigations was family budget surveys in which data 
was collected using the monograph method. Engel’s law deals with the relationship 
of expenditures for consumption in households to the income available. It states 
that the proportion of a consumer’s budget spent on food tends to decline as 
the consumer’s income goes up (Engel 1883). Engel’s law has been confirmed 
in many surveys in all parts of the world. The significant point is that Engel 
demonstrated that general results in social statistics can be obtained from these 
individual data.

Engel had a strong interest in the development of international statistics, and 
he was an active participant in the International Statistical Congresses. After the 
International Statistical Congresses had faded away, Engel was one of the active 
founding members of the International Statistical Institute (see Hacking 1990).

Engel has been said to be one of the first who conceived statistics in the 
modern sense as a science on its own, as a structural theory of human societies 
which he called “demology” (Engel 1871). He was convinced that this science 
serves to recognize and analyze problems arising from the formation of societies. 
Sometimes Engel has been called the first statistician, and he has been claimed 
to point the way to the future of statistics as a science and as an essential tool of 
applied research (Porter 1986).

He was a prolific writer but his statistical papers are mostly published in the 
periodicals which he himself established, namely, Preußisch Statistik; Zeitschrift 
des Statistischen Bureaus, and Zeitschrift des Statistischen Bureaus des Königreichs 
Sachsen (Engel 1857, 1861, 1863, 1864, 1866).

6.3.3.2 Lexis and stability of statistical series
Probably the most famous of Quetelet’s apprentices was Wilhelm Lexis64. In 
the history of statistics, he is best known because of his pioneering work on

63 Ernst Engel (1821-1896) was bom in Dresden, Germany. He studied at the Mining academy 
of Freiberg in Saxony. He held different government positions before he was appointed chief 
of the statistical department of Saxony. In 1860, he was appointed director of the statistical 
department of Preuss. Engel was one of the founding members of the ISI.

64 Wilhelm Lexis (1837-1914) was German economist. He graduated from the University 
of Bonn in 1859. In 1861, Lexis went to Paris to study social sciences. In 1872, Lexis was 
appointed professor of economics at the University of Strasburg, and in 1874-1876 he acted 
as professor of statistics in Tartu. In 1876, he was appointed to the chair of economics at 
Freiburg. In Freiburg, Lexis made his major contributions to statistics
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dispersion. Lexis’ main topic was the development of mathematical methods 
in research on the stability of statistical series65, especially concerning the ratio 
of sexes at birth (see Lexis 1877). In addition, he elaborated the methods of 
demography (Lexis 1875 and 1903).

Using a binomial urn model to represent the annual number of male births, 
Lexis derived a dispersion coefficient Q (reportedly in homage to Quetelet), 
which is the ratio of the empirical variance of the series to the assumed theo­
retical variance. In the ideal case, Lexis refers to a “normal” dispersion when the 
fluctuations are purely due to chance, and the coefficient is equal to 1. But in 
most cases, the coefficient is different from 1, and thus differs from the binomial 
model. The fluctuations then indicate a “physical” rather than a chance compo­
nent. Lexis classified these dispersions into two categories, “hypernormal” and 
“hyponormal”, according to the value o f Q ( Q > l o r Q < l ,  respectively). He 
also showed that series of social data usually have a hypernormal dispersion.

Obviously, Lexis’ most important specific contribution to statistical social 
science was the method to assess the stability of statistical series (see e.g. Lexis 
1879). According to Porter (1986), the context of this work was social and ideo­
logical as well as mathematical. Basically, the measurement of dispersion of sta­
tistical series was intended as a critique of statistical determinism and a defence 
of the autonomy of the human will. Unlike Quetelet, Lexis stressed fluctuations, 
and in a sense he “corrected” Quetelet’s work which aimed to set every series 
within a unique “normal” model by assuming their homogeneity and stability. 
However, methodologically, Lexis followed Quetelet in applying urn models to 
statistical series, but Lexis extended the traditional thought model introducing a 
model that included several urns.

Lexis’ analysis also included certain weaknesses: he required a binomial dis­
persion for his series to be stable. It applied to the problem of year-to-year fluc­
tuations in the sex ratio among children born in a city, but it also ruled out many 
interesting series. The problem posed the question of whether an empirical in­
dex of dispersion is consistent with the assumption that sex is governed by a 
simple chance mechanism. Stigler writes:

“Many scientists attempted to adapt probability-based methods to social science 
problems, including Quetelet and Lexis, but in the end they were frustrated, 
Quetelet because his methods were too insensitive to segregate his data into cat­
egories amenable to statistical analysis, Lexis because his binomial models were 
insufficiently rich for interesting applications.” (Stigler 1986)

Lexis’ contemporaries, such as Tchuprov, Markov, and von Bortkewicz, pointed 
out the problems in Lexis’ theory and attempted to correct them. In publica­
tions up to the period between the two world wars, the Continental School of 
mathematical statistics tended to follow the dispersion theory of Lexis, though. 
In Russia, Lexis’ statistical views did not disappear from the statistical writings 
before the bolshevist revolution. Especially Tchuprov continued the work of

65 In this context, Lexis created so-called cohort analysis and the Lexis diagram for it. They are 
in use even today, though in a modified form.
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Lexis and published several articles on the stability of statistical series (seeTchu- 
prov 1919, 1922, 1926).

In England, Lexis had a strongest influence on Edgeworth, even though Edge- 
worth criticized Lexis’ theory. Lexis’ analysis of dispersion has also been claimed 
to foreshadow the statistics of Karl Pearson and even R.A. Fisher’s analysis of 
variance.

6.3.3.3 Von Mayr and criminal statistics
Hundreds of German works in criminal statistics were published in the 18th 
and 19th centuries but the writings of Georg von Mayr66 appeared particularly 
significant. In the first volume of his Statistik und Gesellschaftslehre, von Mayr 
defined the scope of moral statistics as the study “of the circumstances and ap­
pearances of ethical life... whose mass-observation is accessible in number and 
measurement” (Mayr 1895). Moral statistics included the study of suicide, di­
vorce, crime, and ethical aspects of other phenomena of life and society, the obe­
dience to political rule, and the moral qualities of people as indicated by alcohol 
consumption (Mayr 1914). Research on statistical methods was systematically 
supported by von Mayr who conceived statistics as an autonomous discipline, 
with its own methods and objectives (Hertz 2001).

6.3.3.4 Von Bortkewicz and the Law of Small Numbers
Ladisdaus von Bortkewicz67 was obviously the most influential person in math­
ematical statistics at the end of the 19th century. In 1898, he published The Law 
of Small Numbers (Bortkewicz 1898), in which he used Lexis’ divergence coef­
ficient Q. In this work, he was the first to note that events with low frequency in 
a large population followed a Poisson distribution even when the probabilities 
of the events varied. It has been argued that the Poisson distribution actually 
should have been named the von Bortkewicz distribution.

Von Bortkewicz was one of the main representatives of the “Continental 
school” in mathematical statistics and its application to statistics, but he left no 
monographs. Despite writing no monographs, von Bortkewicz wrote over 100 
papers, almost exclusively in German. German scientists were only marginally 
interested in his works, but he was appreciated in Russia.

Von Bortkewicz was critical of the approach of Karl Pearson to statistics. He 
claimed that Pearson produced formulas to match observed results but with no 
theoretical reasoning. This, according to von Bortkewicz, was worthless.

66 Georg von Mayr (1841-1925] was the director of the Royal Bavarian Regional Statistical 
Office at the same time being full Professor at the University of Munich. Von Mayr was the 
foremost representative of German administrative and bureaucratic statistics (Hertz 2001],
In 1890, von Mayr founded Allgem eines Statistisches A rchiv  which is published even today. 
Von Mayr was also one of the founding members of the ISI and he took an active part in its 
meetings.

67 Russian bom Ladisdaus von Bortkewicz (1868 -  1931] is probably the most famous of Lexis' 
students. After achieving doctorate (in Gottingen], he spent some time in St. Petersburg tea­
ching statistics. Then in 1901 he was appointed as a professor of statistics at the University of 
Berlin where he spent the rest of his life. Von Bortkewicz worked on mathematical statistics 
and applications to actuarial science and political economy.
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6.4 Birth of modern Statistical Science
The observed stability of social phenomena and especially the observation that 
so many features had a regular frequency distribution were important for the 
further development of statistical methods. Quetelet’s book Letters on Probabili­
ties, especially the law of error, inspired Francis Galton68. Later he introduced 
the name Normal Distribution to the law of error. Galton argued in his book He­
reditary Genius (Galton 1869} that the normal distribution would be expected 
to hold whenever there was a large number of similar events, each the result of 
the same conditions. Gabon’s observations on the distribution of human charac­
teristics, both physical and mental, added to the belief on the stability of social 
phenomena.

At the end of the 19th century, Galton demonstrated that also the laws of he­
redity were stable. Actually he showed that genetic combinations are governed 
by the laws of probability, implying stability of inherited characteristics.

Galton’s ideas had a strong influence on the development of the methods in 
statistical science. One of his major findings was the reversion, which was his 
formulation of regression, and its link to the bivariate normal distribution. Gal­
ton was able to place his research on heredity on a scientific basis by applying 
novel statistical concepts. This paved the way for the development of statistics 
as a science.

In 1889, Galton published Natural inheritance in which he presented a sum­
mary of the work he had done on correlation and regression (Galton 1889). He 
gave a good account of the concepts that he had introduced as well as the tech­
niques that he had discovered. Karl Pearson read the book, and it had a profound 
influence on his thinking.

Galton had a long collaboration with Karl Pearson69. Pearson is generally held 
as a major innovator in the development of statistics as a serious scientific disci­
pline in its own right. He founded the first statistical department at the Univer­
sity College London in 1911. In the statistical department, he incorporated both 
the Biometric Laboratories, which he had set up already in 1903, and Galton’s 
Eugenics Laboratories.

Pearson’s main focus in statistics was goodness-of-fit testing and later the 
development of the theory of distributions. Pearson made higher-level math­
ematics a requisite for doing statistics, and his work was more mathematically 
complex than Galton’s. Galton thought that all data had to conform to the nor­
mal distribution, whereas Pearson emphasised that empirical distributions could 
take on any number of shapes.

68 Francis Galton (1822 -  1911) was an English statistician, explorer, anthropologist, and 
eugenicist, known for his pioneering studies of human intelligence. Galton was the cousin of 
Charles Darwin and obviously they influenced each others thinking.

69 Karl Pearson (1857 -  1936) was and English statistician, mathematician, eugenicist and 
Germanist. He was educated first at University College School, after which he went to 
King’s College, Cambridge in 1876 to study mathematics. He then spent part of 1879 and 
1880 studying medieval and 16th century German literature at the universities of Berlin and 
Heidelberg.
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It has been claimed that Pearson created a new type of statistics in response 
to the conviction, held by many statisticians, that the normal distribution was 
the only feasible distribution for the analysis and interpretation of statistical 
data. At the end of the 19th century, most statisticians assumed that no other 
curve than the normal distribution could be used to describe data. This view was 
challenged by Pearson, and his derivation of the X 2 -distribution has been seen 
as a response to the “tyranny of the normal distribution”.

Pearson’s book, the Grammar of Science (Pearson 1892), became very famous 
and influential. This book represents his philosophy of science but does not re­
veal much about Pearson’s thinking and ideas of the modern theory of math­
ematical statistics. Porter (2004) gives a comprehensive review of Karl Pearson’s 
life and work.

Up to the beginning of the 20th century, only the large sample theory was 
studied within statistical science. W.S. Gosset (1876-1937) was developing 
quality control methods at the Guinness Brewing Company of Dublin. Sam­
ple sizes available for experimentation in brewing were necessarily small, and 
Gosset knew that a correct way of dealing with small samples was needed. He 
consulted Karl Pearson about the problem, and Pearson told him the current 
state of knowledge was unsatisfactory. The following year Gosset undertook a 
course of study under Pearson. An outcome of his study was the publication in 
1908 of Gosset’s paper (under the pseudonym “Student”) on “The Probable Error 
of a Mean", which introduced a form of what later became known as Student’s 
t-distribution (Student 1908a). The modern form of Student’s t-distribution 
was later derived by R.A. Fisher and it was first published in 1925.

Gosset’s derivation of t-distribution was a significant development for statis­
tical inference. Its purpose was to form a tool for quality control, and in quality 
control, the problem is basically the same as inverse inference: the causes (of 
deviations in production) are inferred from observations. Later Fisher adapted 
Student’s t-distribution as a central building block in his fiducial inference.

Gosset -  as all other statisticians in England at that time -  worked from the 
Laplace-Bayes paradigm, but he appeared somewhat hesitant about its validity 
(see Student 1908b). Zabell (2008) has thoroughly analyzed Gosset’s statistical 
philosophy.
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7  Emergence of
the Representative Method

7.1 Introduction

Methodologically, sample surveys involve two different but intimately related 
and equally important questions: (1) how the sample should be selected from 
the given population, and (2) how to draw conclusions about the population 
based on the data that are obtained from the selected sample. Laplace gave one 
answer to the second question when he introduced the method to calculate 
probabilistic estimates, but the first question did not receive much attention 
during the 19th century.

In the second half of the 19th century, national statistical institutes had grown 
into the major organisations that produced statistics about socio-economic phe­
nomena. Both in Europe and North America, the harmonised decennial censuses 
were established as the main sources and the "officially" accepted data collection 
schemes for population statistics (see Porter 1986 and Hacking 1990). In a cen­
sus, neither of the basic questions of sample surveys is relevant: all population 
units are selected and the results do not include sampling errors. Therefore, the 
basic problem of survey research did not receive much attention.

The total amount of data collected in a census is enormous due to the size of 
populations, and it requires a lot of effort to gather and to process the data. Con­
sequently, the information content of a census, i.e., the information collected 
from each household, always remains fairly modest. Even with a small amount 
of data per unit, the processing time for the census results took several years in 
the 19th century. The need for more detailed and timelier information than a 
census could provide grew rapidly at the end of the 19th century along with the 
development democratic societies and also because of the profound changes in 
society which industrialization and urbanisation had set forth.

Monograph surveys were widely conducted to reveal in-depth information 
about households. However, monograph surveys did not aim at the same goal 
as to what censuses were supposed to do. By a monograph survey, it is possible 
to explore economic and social facts of specific families and have a description 
of (e.g.) a typical working-class family budget, but it is not possible to disclose 
population distributions. For example, by a monograph survey, it is not possible 
to tell how many households (in a country) live in poverty, or what the total 
consumption of meat is, or what the average family size is, or any other general 
fact about the population. A monograph survey does not address the same ques­
tions as a census.

Obviously, neither probability theory nor Laplace’s method of inverse infer­
ence had a noticeable influence on the data collection methods in statistical 
offices or on statistical thinking in general (see Westergaard 1932). In a way, this 
was expected because of the small amount of partial investigations in the 19th 
century; and in those investigations that were carried out, inference was done on 
an intuitive basis. Statisticians working for the national statistical institutes did
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not pay much attention to the mathematical aspect of statistics, and the thought 
that probability theory could have a role in statistics had not been articulated 
strongly enough. In addition, as Porter [1986] claims, officers who worked at 
national statistical institutes actually had little or no mathematical training.

Porter (ibid.) concluded that there is only a little mystery in the attitudes of 
statisticians towards probability theory. At the end of the 19th century, statisti­
cians were almost unanimously distrustful of sampling and emphasized at every 
opportunity the importance of complete enumeration. Porter (ibid.) also claims 
that the scepticism of statisticians about inference from samples was not wholly 
unjustified, for in the absence of reliable information about the population as 
a whole, it was difficult to know if a particular sample was adequately repre­
sentative. Also Westergaard (1932) claims that the calculus of probability had 
less influence than expected because its authors chiefly confined themselves to 
abstract theories that had little or nothing to do with reality.

7.2 The Representative Method

In texts that touch on the history of survey sampling, it is commonly held'that 
the idea of the Representative Method was first developed by Anders Kiaer70 at 
the very end of the 19th century. Obviously, however, the idea of using repre­
sentative sampling is older (see Didier 2002). For example, Jensen in the report 
to the ISI (Jensen 1926) claimed:

"The method recommended by A. N. Kiaer in the nineties was, by the way, previ­
ously used in enquiries of various kinds, as for instance in an enquiry regarding 
housing conditions and rent undertaken by the Municipal Office of Statistics of 
Copenhagen in 1885.”71

In the survey to which Jensen refers, the sampling method was not exactly the 
same as what Kiaer had used in Norway, but the methods did not differ in es­
sence. It is possible that Kiaer was aware of the partial investigation carried out 
in Denmark, although he did not refer to it.

In agricultural research, methods resembling the representative method were 
frequently applied in many countries. Especially in Russia, agricultural surveys 
and surveys on peasants’ living conditions were common (see e.g. Zarkovic 
1956, 1962 or Kohn 1922). Mespoulet (2002) has found out that Russian text­
books on statistics usually state that in Russia the first survey “on parts of the 
whole” was already carried out in 1875. Mespoulet (ibid.) also claims, referring

70 Anders Kiaer (1838-1919) was one of the founders and first director of the Statistical Cen­
tral Bureau of Norway. He was also responsible for decennial censuses of the population and 
agriculture.

71 In this investigation, the sample consisted of 36 streets distributed all over the town. In 
these 36 streets, there were altogether 9,366 dwellings, which was one-seventh of all the 
dwellings in the town; and the number o f inhabitants in these was 39,350, which was one- 
seventh of the whole population of the town. The final sample consisted of all the dwellings 
on the selected streets (Jensen 1926, p. 407).
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to Kaufman (1922), that A. Kaufman already carried out a sampling survey in 
Russia between 1887 and 1890. In that survey, sampling relied on random selec­
tion. For example, the statistician was "... ordered that every tenth or twentieth 
person taken in alphabetical or other mechanical order should be questioned” 
(Kaufman 1918). According to Didier (2002) the United States Department 
of Agriculture conducted partial surveys beginning in 1863 for the purpose of 
measuring the country’s agricultural production.

Even though the method may have been used earlier, Kiaer’s first public 
appearance may be considered a turning point in the history of sample surveys 
on human populations. He was a central pacemaker and advocate of the Repre­
sentative Method for several years. With the first public presentation of his ideas 
in 1895, he started the process that ended in the development of modern survey 
sampling theory and methods. In a review on the history of the survey method, 
Kruskal and Mosteller (1980) noted that Kiaer was the first man ever to use 
analytically the term ‘la Méthode Représentative’ in the 9th meeting of the ISI in 
1895. Carroll D. Wright72 had earlier used the same expression, but according to 
Kruskal and Mosteller (ibid.), the term he used was so shallow and used in a less 
influential way so that it cannot be considered as the starting point. Also Jensen 
concluded in the report to the ISI:

“...it must doubtless be admitted that the official statistics in both the United 
States and Canada have made wide use of partial investigations as substitutes for 
complete statistics, but in the opinion of the author the methods used there are 
on the whole not of such a kind that they can be termed «representative» in the 
narrower sense which this expression, in our opinion, really ought to symbolise ... 
This applies to the numerous partial investigations which have been made by the 
United States Department of Labor and by Canada's Dominion Bureau of Statis­
tics, and it also applies, for instance, to the interesting efforts for the promotion of 
the economic use of Canada's natural resources made under the leadership of the 
so-called «Commission of Conservation».” (Jensen 1926)

Nevertheless, Wright obviously was an important person in developing the 
method. He undertook partial investigations in the U.S., and he also was in cor­
respondence with Kiaer. In the report of the Bern meeting, Kiaer gives an allu­
sive comment about the work done in America (Kiaer 1895).

7.2.7 Kiaer's Representative Method
Kiaer was one of the first who used the Representative Method for collecting 
data independently of the census. He carried out several purely sampling inves­
tigations for the Statistical Central Bureau of Norway, including both the first In­
come Distribution Survey (see Kiaer 1897a) and the first Survey on Level of Hiring 
(Living Conditions Survey) in Norway (see also Jensen 1926 and Seng 1951).

When Kiaer presented his idea on partial investigations for the first time (in 
the ISI meeting in 1895) he had already carried out two surveys. However, Kiaer

72 Carroll D. Wright (1840 -1909) served as a professor at several universities in the U.S., and 
he was the founder and director of the U.S. Department of Labor. He also served as the presi­
dent of the American Statistical Association from 1897 to 1909. He took active part in the 
meetings of the ISI.
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had only partly processed the results before his first presentation and therefore 
he was able to present the idea mainly in theory. Two years later, in 1897, when 
he gave the next speech about the Representative Method to the Norwegian 
Academy of Science and Letters, he was able to prove his arguments by empiri­
cal facts (Kiaer 1897a].

Kiaer was methodologically oriented, but obviously he was not mathemati­
cally oriented. All his presentations were verbal without any formal description 
of the methods. This was not unusual at that time, though. Most of the presenta­
tions in the ISI meetings were only verbal. Apparently, Kiaer was unsure about 
giving a presentation of the method. He had asked Professor Harald Westergaard 
from Copenhagen, “dont les connaissances théoriques dans cette matière sont uni­
versellement connues", to give a more general and international presentation on 
the method but Westergaard was not able to attend the conference in Bern (see 
Kiaer 1895). Instead of a theoretical presentation, Kiaer gave a detailed descrip­
tion on how the data collection had been carried out.

Later, Kiaer’s address to the Academy of Sciences and Letters of Norway 
(Kiaer 1897a] was more detailed than the presentation at the ISI meeting, and it 
gives much better insight in Kiaer’s thinking. He started the address by explain­
ing the ideas of the method:

“The characteristic feature of this method is that in connection with the general 
and complete information provided by the established statistics for the field of 
study as a whole, more penetrating, more detailed and more specialized surveys 
are instituted, based on certain points or limited areas, distributed over the do­
main of study in such a way and selected in such a manner that they will yield 
a sample that might be assumed to constitute a correct representation of the 
whole." (Kiaer 1897a)

Kiaer continues by taking examples from natural sciences where partial inves­
tigations had been used already for a long time. He mentions mineralogy, sur­
veys of the flora and fauna of a country, meteorological observations, etc., and 
concludes that many more examples could be quoted, but social phenomena 
are so diversified, widespread, and complex that they do not fully justify the 
comparison with the flora of a country. He noted that, in order to obtain a deep 
understanding of the social phenomena, it is necessary to “go deep in details 
and to formulate a series of special questions” to such an extent that it would 
become too expensive to carry out a full enumeration in a country or even in a 
large town. Finally, Kiaer came to the conclusion:

“We are forced therefore, in social research as in the natural sciences, to conduct 
partial investigations, and it is obvious that these will give the best results if they 
are designed so that the scattered fields of observation together form a representa­
tive picture of the whole field of study.” (Kiaer 1897a)

In his address to the Academy of Norway, Kiaer described the first survey in the 
following manner:

“I am referring to the very extensive and detailed investigation of the living con­
ditions of the various classes in the community, in particular the one concerning 
workers, that has been initiated by the Parliamentary Commission appointed by
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the Storting73 in 1894 for considering disablement and old-age pensions, in which 
comprehensive statistical material was collected that not only supplemented and 
completed the information already collected on personal income and property, 
but also provided new information in many important respects. This statistical 
material consists of individual returns on a number of economic and other per­
sonal characteristics — including also what might be described as a historic record 
of the economic life of the individuals — for a representative sample of 80 000 
adult men and women from various walks of life, of which, for the working classes 
in particular, comparable returns from between 40 000 and 50 000 persons were 
collected.” (Kiaer 1897a)

Enumerators, hired and trained only for this purpose, filled in a total of 80,000 
forms on the adult population in Norway according to the rules which Kiaer had 
laid out. Simultaneously with this data collection, another 40,000 forms were 
collected for another survey by a slightly different Representative Method in the 
areas where members of the working class lived. This survey did not get much 
attention in Kiaer’s reports, however.

For the sample of 80,000 respondents, the households in Norway were di­
vided into two main strata (Kiaer did not use the term ‘strata’) based on the 
1891 census. Approximately 20,000 respondents were selected from cities and 
the rest from rural areas in accordance with the population distribution of the 
country in the previous census. The actual sample was selected by a slightly dif­
ferent method in cities and in the rural areas.

Out of the 61 cities of Norway, 13 “representative” cities were selected: All 
the five big cities having more than 20,000 inhabitants were included, and the 
remaining eight cities represented the medium sized (6) and small towns (2). 
The proportion of respondents (of the total population) in cities varied: in the 
middle-sized and small cities, the proportion was greater than that in the big 
cities. In the capital of Norway, Kristiania74, the proportion was 1/16; in the 
medium-sized towns, the proportion varied between 1/12 and 1/9; and in the 
small towns, it was 1/4 or 1/3 of the population. This was motivated, according 
to Kiaer, by the fact that the middle-sized and small cities did not only represent 
themselves but a larger number of similar cities. He concluded that “Taken as a 
whole this is expected to supply a fairly correct miniature of the urban population 
in the whole of the country." (Italics by the author of this study.)

In Kristiania, a census was carried out every year. Therefore, it was more accu­
rately known how many people lived on each of the 400 streets of the city. The 
streets were sorted into four categories according to the number of inhabitants 
on them, and a total of 62 streets were selected. After the streets were selected, 
their distribution over the city was taken into consideration to ensure the largest 
possible dispersion and the ‘representative character’ of the enumerated areas. A 
specific selection scheme for respondents was then specified for each category: 
every house on the smallest 6 streets was included (i.e., the whole adult popula­
tion was enumerated). On the next larger streets, 20 were included in the sam­
ple, and on these, every second house was included. Amongst the second largest 
category of streets, 20 were included in the sample, which was every fourth

73 The parliament of Norway.
74 Kristiania is the former name of the capital of Norway. Currently, it is called Oslo.
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Street in this category, and in 
the selected streets, every fifth 
house was enumerated. And 
among the category of the big­
gest streets (streets on which 
lived more than 1,000 inhab­
itants), the adult population 
was enumerated on half of the 
streets, and on these, one out 
of ten houses was included in 
the sample.

The booklet where Kiaer’s 
speech to the Academy is 
published also includes a map 
of Kristiania as an annex, in 
which the selected streets and 
houses are marked with red 
spots (Kiaer 1897a). The map 
was an expedient in designing 
the enumeration. Kiaer did 
not explain how the houses on 
streets were selected. Obvious­
ly, the selection was "mechani­
cal”, or a systematic selection 
in modern terms.

In the medium-sized towns, 
the sample was selected using 
the same principles, though in 
a slightly simplified manner. In 
the smallest towns, the whole 
adult population in three or 
four houses was enumerated.

Also, in the rural area, the 
number of informants in each 
of the 18 counties in Norway 
was decided on the basis of the 
1891 census. Information about population was used to determine the number 
of forms to be collected from each county so that the proportions in the sample 
were the same as in the census. To obtain "as far as possible, a correct representa­
tion of the population within each county”, the local government districts (the 
municipalities) in each county were classified according to their main industry 
either as predominately crop-farming, or predominately livestock-farming, or 
forestry, or fisheries, or shipping and manufacturing municipalities. In addition, 
the geographical distribution was taken into account (see Figure 7.1). In relation 
to the population as a whole, the representative municipalities in each category 
and also the number of informants were decided so that each industry attained a 
correct weight. If this was not to be the case, e.g., if the selected districts showed

Figure 7.1:
Copy of a part of the map that Kiaer used in stratifi­
cation of municipalities. Different shading indicates 
different categories. (Source Kiaer 1897a)
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too high a proportion of the population to some branch of industry, Kiaer at­
tempted to correct it by adjusting the number of forms allocated to the districts. 
He gave a few detailed examples to illustrate how this was done

The total number of the representative municipalities was 109, an average 
of six in each county. The number of parishes involved was estimated by Kiaer 
to be more than 200. The total number of municipalities in Norway was 498, 
hence 21.9% of the municipalities were included.

The procedure for distributing the required number of forms within the dis­
tricts was also designed on the basis of the census information: the number of 
forms within each parish in the district was determined separately for built-up 
areas and heterogeneous areas. Furthermore, the enumerators were instructed, 
according to the information available, “to select respondents in a representative 
manner within the locality”. Kiaer expressed his worry that the responsibility 
had to be left with the enumerators and to be based on their judgment. Enumer­
ators were instructed to follow distinct routes and while doing so, to visit houses 
of different types in the same neighbourhood and in particular check that not 
only typical middle-class houses were visited but also the more well-to-do and 
the poor-looking houses, both for families and single persons. Kiaer concluded

“This task was obviously not always an easy one, and one would expect that the 
enumerators in a large number of cases would tend to collect forms from houses 
that would be more easily accessible and this would have had some effect on the 
correctness of the representativeness of the survey. It was attempted to overcome 
this difficulty through the instructions for the enumerators.” (Kiaer 1897a)

It is quite obvious that the element of “human choice” was unavoidable in the 
selection of respondents, but Kiaer tried to reduce it as much as he could. Obvi­
ously, a great number of enumerators were needed in the data collection (Kiaer 
does not tell how many), and therefore the "human choices” probably did not 
cause any bias in the results.

Kiaer does not tell in his reports how the estimates were calculated. Probably 
the reason was that the representative sample was constructed as a miniature of 
the population and therefore the calculation is trivial: the sample mean is the 
estimate of the population mean, and the estimate of the population total could 
be attained simply by multiplying the sample total by the inverse of the sam­
pling fraction. Being a miniature of the population was a central requirement 
in Kiaer’s idea of representativeness and the sampling design aimed at reaching 
it on the basis of the knowledge that censuses provided about the population. 
Kiaer put a lot of effort into proving that the sample distributions of some im­
portant background variables are ‘close enough’ to the population distributions.

The aim in the selection of households was to select them so that the obtained 
sample would cover all types of social classes and in the correct proportions, i.e., 
represent the population and its variation. Subjective selection was applied in 
the selection of the areas. Laplace already applied the same principle. The final 
selection of units within the areas was more or less haphazard but not strictly 
random. The major innovation in Kiaer’s method, as compared to monograph 
studies, was that the variation in population was considered an essential charac­
teristic and the sample was selected in such a manner that the variation within
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the population was covered in correct proportions. Obviously, Lexis’ analysis of 
dispersions was one source of ideas in designing the sampling method.

Kiaer’s Representative Method did not include a method for estimating the 
accuracy of estimates, but he was aware of sampling variation. Later, he even 
suggested a method to assess the stability of the obtained samples by a method 
that was based on the idea of sample re-use (Kiaer 1901, p. 68). It must be em­
phasised that Kiaer was aware of the probability laws concerning sampling. In 
the report, he says:

‘‘One must of course expect that the more detailed the classification considered, 
the larger the deviation between the sample and the census. This is a natural con­
sequence of the law of large numbers which, according to conditions, requires a 
larger or smaller number of observations in order to obtain acceptable results.”

The main reasons why Kiaer chose a method that did not employ random selec­
tion were practical, not the lack of knowledge or the lack of reliance. This can 
be concluded from the fact that earlier, Kiaer had applied an explicitly random 
selection of informants in an investigation concerning income distribution in 
Norway (see Kiaer 1897a).

In the other survey described in the reports, a survey on personal income 
and property in Norway, the representative sampling method was employed in 
direct connection with the population census of 1891. Kiaer used the opportu­
nity that had emerged during the processing of the census forms to extract the 
information from them to select a representative sample of the male population 
in Norway.

‘‘It is easy to see that the original census-material, for a survey of this kind, would be 
unmanageable if complete coverage had been attempted, so it has been subjected 
to a three-way reduction by the following method. Firstly the material was reduced 
through the sample of local government districts, next by the restriction to every 
5th year of age, and lastly by the final reduction through including only persons 
with names starting with certain letters.
Whether the representation can be considered an approximate miniature of the 
whole field of study obviously depends in part on a correct method being employed 
for the selection of the sample and partly on the sample being of sufficient size. “

Kiaer considered the selection of the sample more important than the size of the 
sample. He selected government districts that were included in a previous govern­
ment investigation because "... it was considered desirable that the results of the 
survey could be directly related”. Kiaer estimated that these districts (128 rural 
local government districts and 23 towns and cities) have a sufficient geographic 
distribution over the whole country, and therefore they could be assumed to pro­
vide, at least approximately, a correct representation of the whole country.

The second criterion to reduce the census material was to include only persons 
according to age at 5 year intervals (i.e., men who in 1890 reached the ages of 
17, 22, 27, 32, 37, and so on). Kiaer states that “it seems to be fully in accordance 
with the representative principle. I have pointed out in a paper [reference to Kiaer 
1897b] that no particular reason can be found for a sample drawn in this manner 
not to provide a true miniature of one fifth of the size of the whole.”
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The third criterion was to include only persons whose names start with cer­
tain letters. The letters were: A, B, L, M, and N for the rural districts and smaller 
towns, and the three last ones for the nine largest towns. Kiaer stated that they

"...seem to be related to the persons from amongst whom the sample should be 
selected in a haphazard and random way, so that a sample selected in this manner 
would turn out in the same way as would have been the case had the sample been 
selected through the drawing of lots in order to avoid, in the most stringent man­
ner, any procedure that could give preference to persons in certain occupations or 
belonging to particular social strata.”

This citation shows that Kiaer was aware of the merits of a random selection and 
its implications. Practicalities in a large-scale survey hindered its use.

The reason why Kiaer used only half the letters for the nine largest towns 
was an attempt to reduce the effect that the largest towns would have had in the 
results concerning incomes: If the same proportion had been selected from all 
the largest towns and only some of the smaller towns had been included in the 
sample, the weight of the larger towns in the data would have been too high. It 
was known that the average personal income was higher in the larger tows than 
in the smaller ones.

“The total number of forms that was collected for this survey was 11 427 of which 
7 162 came from the rural districts and 4 267 from the towns and cities. The 
sample amounted to 7.85 % of the male population in the selected age groups 
in the rural districts and 15.7 % in the urban districts, and 1.54 and 3.1 % of the 
total adult male population in rural and urban districts respectively. In preparing 
the tables for the whole country the figures for the rural districts were given double 
weight.”75 (Kiaer 1897 a)

Kiaer concluded, after various comparisons of the obtained sample with the 
census data, that their compatibility “proved to be very satisfactory” (see Kiaer 
1897a). The purpose of Kiaer in presenting the other form of the representative 
method was to show that representative samples could be obtained in many 
ways. Jensen (1926) described this method as “purposive selection of groups 
combined with random selection of units”. In fact, Kiaer’s method to select a 
respondent within a household is similar to the so-called Kish method, which is 
currently applied to form a haphazard sample when the frame does not provide 
enough information for more a specific selection of respondents. Kiaer’s method 
also resembles the so-called closest birthday method76 applied occasionally to 
select a respondent within a household.

A central idea in estimating the representative nature of an obtained sample 
was to compare it to the latest census data. Kiaer (1897a) pointed out that the re­
sults of a partial investigation could be controlled to a certain degree even if gener­
al statistics were not available. For example, regularity of the observed phenomena 
was one kind of a control. In addition, results could be controlled by comparing

75 The weighting of the sample that Kiaer describes was based on intuition and common sense, 
but it was already taken into account in designing the data collection.

76 In the closest birthday method, the member of the household whose birthday is closest at 
the time of interview is selected as the respondent.
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them to the results of other partial investigations obtained by different representa­
tive designs. Kiaer concluded that if one obtains approximately the same results by 
various methods, greater reliability can be placed on the results.

Approximately 40 years later, in the context of a population census in the U.S., 
additional information was collected with a partial investigation. In that roughly 
12% of respondents were asked an extra set of questions which could not be 
included in the census forms. Stephan with his colleagues reported the lines of 
thoughts that finally led to the applied method (see Stephan et. al. 1944). Interest­
ingly enough, the considerations had many parallels with those of Kiaer, and one 
of the possible methods was close to the Kiaer’s Representative Method. Also the 
method which was finally selected had similarities to Kiaer’s method.

7.2.2 Discussion on Kiaer's Representative Method
Kiaer closed his presentation in Bern by concluding that (1) the Representative 
Methods could be of great importance for the development of statistics, espe­
cially if representative investigations are arranged in such a manner that they can 
be controlled, concerning the main points, with the aid of general investigations; 
(2) depending on the circumstances, there may be different methods between 
which one is able to choose; (3) as a consequence, the advantages and the incon­
veniences of diverse methods deserve to be recommended for study and to be 
discussed by statisticians (Kiaer 1895).

With his visions, Kiaer was ahead of his time77, which can be concluded from 
the reactions his paper raised at the ISI meeting. Obviously, in that meeting he 
was not able to properly defend his ideas, but later in the speech to the Acad­
emy of Norway he could (Kiaer 1897a). According to Kiaer, Professor G. von 
Mayr remarked that partial investigations may have some limited value "but it 
is a value restricted to terrain already illuminated by full coverage.” Von Mayr 
continued by saying that for legislative and administrative purposes, restricted 
surveys might be useful but they could never replace complete statistical sur­
veys. Von Mayr added still that it would be particularly dangerous to express 
views to the contrary in an assembly of statisticians. Kiaer (1897a) interpreted 
that this was some kind of warning for the “noticeable tendency” amongst the 
mathematicians to replace observations by calculations. The last sentence of von 
Mayr’s comment almost became a catch phrase: «Il faut rester ferme et dire: pas 
de calcul là où l'observation peut être faite.» («We must remain strong and say: no 
calculation when observations can be made.») 78.

Luigi Bodio, the director-general of the Italian Statistical Bureau, supported 
von Mayr’s views. The Austrian statistician Herr Rauchberg stated that further 
discussion of the matter was unnecessary because in statistics there would never

77 Kiaer was a pioneer in other respects, as well. For instance, he used a punch-card machine, a 
Hollerith machine, in processing data of statistical surveys as early as 1894 -  only a few years 
after Hollerith had invented it.

78 G. von Mayr was one of the most prominent statisticians of that time and a founder of the 
ISI. He was also critical of the use of the monograph method (Hertz 2001}. His main interest 
was moral statistics, including the studies on suicide, divorce, and crime, which cannot be 
covered by partial investigations,
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be a question of anything but complete surveys covering the whole field of study. 
Herr G. E. Milliet from Switzerland said that the type of pars pro toto statistics 
recommended [by Kiaer] might at some times provide interesting information 
but he demanded that incomplete surveys should not be granted equal status 
with the statistical ideal and with “la statistique serieuse”.

Later in his address to the Academy Sciences of Norway, Kiaer said that those 
who opposed the representative method in the ISI meeting had implicitly also 
attacked the Monograph method, which was already accepted by the ISI. There­
fore, in Kiaer’s opinion, the French statistician Cheyson had expressed his hope 
that the result of the discussion would not be to prejudice the Monograph meth­
od. (The monograph method was widely used in France.) In Cheyson’s mind, 
the methods complement each other. After Cheyson, another French statistician 
and the Vice-President of the Institute, E. Levasseur, emphasised that there were 
actually three methods: (1) general statistics (les statistiques generales), which in 
practice means censuses; (2) monographies, which were concerned with detailed 
descriptions of an object of phenomenon; and (3) statistical explorations (les 
explorations statistiques), which were virtually the same as the Representative 
Method. Levasseur continued by proposing that “the Institute would do well to 
promote discussion of the matters relating to the third method”. This proposal 
was accepted by a very narrow margin against Herr Rauchberg’s proposal that 
the question should not be taken up by the Institute anymore79.

7.3 Developments after the meeting in Bern

The criticism at the ISI meeting was almost shattering, and the critics were 
the most eminent statisticians of the time and leading figures of the ISI. Kiaer 
was not completely insensitive to the critic (see Kiaer 1897a). Nonetheless, the 
method was accepted on the agenda of the next meeting and Kiaer continued to 
elaborate the method and to defend and promote it. He also wrote an extensive 
article in the Algemeines Statistisches Archive (1899) in which he showed that 
the Representative Method could also be used in agriculture and forestry, not 
only for social and economic enquiries. He also recommended that the questions 
in the inquiry should be as close as possible to the ones used in the census so that 
the results could be controlled.

Kiaer gave presentations on his method at following meetings of the ISI, in 
St. Petersburg (1897), in Budapest (1901) and Berlin (1903). The presentations 
on the Representative Method were usually given in the same session with the 
Monographic method. In the Budapest meeting, during the discussion on Kiaer’s 
method, von Bortkewicz80 said that he had used “formulas deduced for analo­
gous cases by Poisson, to find out if the differences between two numbers was

79 According to an unofficial protocol done by the Swiss Statistical Society the assemply deci­
ded to accept Herr Rauchberg’s proposal! (Malaguerra 2000)

80 Von Bortkewicz was the leading figure in the continental mathematical statistical school at 
that time.
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was fortuitous or not” and that he concluded that the difference between census 
data and partial data was too big. He did not explain in detail how he came up 
to this conclusion using probability theory, though. Von Bortkewicz’ comment 
did not raise any discussion and Kiaer did not react on that, either (see also 
Desroieres 1998).

At the St. Petersburg meeting in 1897, the ISI nominated -  on Kiaer’s pro­
posal -  a sub-committee to consider the limits of the application of partial in­
vestigation and to give recommendations of the best “representative typological 
methods”. The members of the committee were J. Bertillon (of France), L. Bodio 
(of Italy), J. Korosi (of Hungary), G. von Mayr (of Germany), C. Wright (of the 
United States.), and Kiaer who was nominated as the reporter81.

The sub-committee published its proposal for resolution in the meeting in 
Berlin, in 1903. The resolution said that the method could be used in certain 
specific cases provided that it is done using strict guidelines. The proposal also 
said that the question will be kept on the agenda, so that the report on the ap­
plications of the method in practice and on the results obtained by it can be 
presented. For some reason, however, the Representative Method disappeared 
from the agenda of the ISI meetings for twenty years. Probably, the reason is why 
Kiaer did not touch the topic since 1906 was the hard criticism that emerged in 
Norway (Lie 2002).

7.3.1 Final approval of the Representative Method
Kiaer’s representative survey method was approved as a valid statistical method 
only at the ISI Rome meeting in 1925, five years after Kiaer’s death. At the same 
meeting, the ISI nominated a commission to study the applications of the Rep­
resentative Method in Statistics. Mr. Adolph Jensen of Denmark was appointed 
as reporter to the commission and the other members were Arthur Bowley, 
Corrado Gini (from Italy), Lucien March (from France), Coenraad Alexander 
Verrijn Stuart (from Holland)82, and Frantz Zizek (from Germany).

The report was presented at the meeting in Rome in 1925 and published 
in 1926 (Jensen 1926). The report starts o u t"... Three decades have elapsed 
since our late lamented colleague, the Norwegian A.N. Kiaer, placed this matter 
for the first time on the agenda for the session of the institute...”. Later in the 
report, Jensen writes, “The investigations made by A.N. Kiaer in the nineties, 
which form the starting point for the discussion on the Representative Method 
at a number of meetings of the International Institute of Statistics, were repre­
sentative in the truest sense of the word.”

81 Jacques Bertillon was the head of the Paris bureau of vital statistics. Luigi Bodio was one of 
the founders of the Italian Statistics. He was the first General Secretary of the International 
Statistical Institute (ISI) and among the first presidents of the ISI. Joseph de Kôrôsy was the 
director of the Budapest communal bureau of statistics.

82 Corrado Gini was an Italian statistician who developed the Gini coefficient. He held several 
chairs in Statistics in different universities and founded Metron in 1920. Lucien March was 
the superintendent of the Bureau of the Statistique Générale de la France. C.-A. Verrijn 
Stuart was the director of the Statistical Central Bureau of Holland.
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As an annex to the report was Bowley’s memorandum on the accuracy of 
estimates obtained by the Representative Method. It included two different 
methods for sample selection: random selection and purposive selection. Ran­
dom selection meant, according to the memorandum, a method of selecting for 
investigation a number of units using some mechanical principle or other which 
is not connected to the subject or with the purpose of the inquiry and the selec­
tion arranged in such a way that every unit in the population had an equal prob­
ability of inclusion. The report lists many benefits for the random selection but 
concludes that “it is subject to great difficulties of carrying it out in practice”.

Purposive selection was defined as a method of selecting a number of groups 
of units in such a manner that the selected groups together yield as close as pos­
sible the same averages or proportions as are found in the population with re­
spect to those characteristics that are already "a matter of statistical knowledge” 
(see Chapter 8].

The Representative Method, as defined in Jensen's (Jensen 1926) report, was 
composed of these two methods: random and purposive selections. However, 
neither of them was exactly the same as Kiaer’s method anymore. On the use 
of the Representative Method in practice, Jensen (ibid.) listed three methods83: 
random selection of units, usually by systematic sampling; random selection of 
groups, which in modern terms would be cluster sampling; and purposive selec­
tion of groups. Jensen placed Kiaer’s method in the last category, a purposive 
selection of groups, because in his mind the sample consisted of all the dwellings 
in certain purposively selected streets of a town. Obviously, this was a mistake, 
though. In Kiaer's method, all dwellings were enumerated only for a few of the 
smallest streets. In other streets, the sampling fraction varied between V2 and 
1/10, and the selection was “mechanical”, i.e., systematic. Interestingly enough, 
Jensen considered the sampling method which Bowley applied in the survey in 
Reading as random (see next chapter), although in practice, Kiaer’s and Bowley’s 
methods were close to each other.

In the report to the ISI, Jensen (1926) argued that Kiaer’s influence was 
strongest in Norway84, and to some degree, it had spread to the neighbours of 
Norway, Denmark, and Sweden. Outside Scandinavia, the method had been uti­
lized, especially in Germany and England. It raised the least interest in the Latin 
countries. Jensen concluded,"... this despite the fact that France is no doubt the 
country in which the representative method, in an undeveloped form, was earli­
est applied”. Jensen gathered examples from 15 different countries altogether, 
and concluded that “isolated examples of the application of the representative 
method may be found everywhere where statistics have arrived at any particular 
stage of development in a methodical sense.” (Jensen 1926)

According to Jensen’s account, the domains of statistical research where the 
representative method had been markedly applied showed an almost equal dis­
tribution between the three great groups: 1° Demographic Statistics, 2° Agri­
cultural Statistics, and 3° Social Statistics. Outside of these three groups, Jensen

83 This was annexed to the report; it was written by Adolph Jensen alone, not by the commission.
84 Here Jensen was not very precise. Because of the hard critic Representative Method was not 

applied in Norway since the beginning of 1900s (see Lie 2002).
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had found comparatively few representative investigations, but he had found 
examples of representative investigations on “the important domains which lie 
on the boundary between economics and social policy”. (Jensen 1926)

7.4 Discussion

Kiaer was ahead of his time. He had statistical, or scientific, insight about the 
value and reliability of partial investigations, and he realized the principles by 
which a sample should be selected. Kiaer emphasized that there are two impor­
tant conditions of a successful sampling investigation: proper representation and 
rational selection of units.

In modern terms, proper presentation can be obtained by a well-designed 
stratification. Kiaer’s stratification factors were geographic, social, and economic. 
He also introduced proportional selection of units within each stratum, based 
on the population information of the latest census. At the end of the 19th cen­
tury, there was no theory for stratification, and Kiaer had to design it intuitively 
using common sense reasoning aiming at a proper representation of population 
characteristics. The actual definition of strata was rational or purposive, as it still 
is in modern sampling practice.

In modern terms, Kiaer’s 1895 design can be described as a multi-stage strati­
fied area sample with systematic sampling of households in the final stage in the 
urban areas. In rural areas, the final stage of data collection had to be organised dif­
ferently. Houses were selected from routes that Kiaer had defined and enumera­
tors had instructions that were aimed at producing a representative sample.

There were three important principles involved in the accepted approach: The 
first is the representativeness of the sample. It was vital that information about the 
population structure was used in the design of the sample. The second principle 
was that the selection of units for observation should be made objectively, and 
that enumerators’ subjective judgment should not influence the selection (Kiaer 
1897a). The third principle was that for every survey, the reliability of the results 
should be assessed: Each survey should be divided into a number of distinct parts, 
using for each a different representative method. The comparison of the results of 
these parts would provide evidence as to how much faith could be placed in the 
results of the survey (Kiaer 1901). This procedure can be seen as a rudimentary 
form of a replication method of variance estimation.

To a large extent, Kiaer’s method was dictated by the possibilities and facilities 
that were available at the time. He was aware of the merits of a random selec­
tion of units, but at the end of the 19th century, a randomly selected sample from 
a human population was not possible for two reasons: such sampling frames did 
not exist where it had been possible to draw a sample from the population of a 
country; even if it had been possible, collection of data from a random sample had 
become very difficult and expensive and probably also too time consuming.

There is no indication that random sampling had been considered in the con­
text of estimation, and there is no documentation on attempts to formulate prob­
abilistic statistical inference at the end of the 19th century. Basically, Laplace’s
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estimation of French population and Laplace’s method had provided some tools 
for estimating accuracy. Interestingly enough, a French statistician, Lucien March, 
made a remark on the use of mathematical methods in the ISI meeting in Berlin 
(Kiaer 1905, pp. 129-131). Fie noted a method which had been known for a long 
time and which involves “partly the science of mathematics and partly the tech­
niques of statistics”. Fie was referring to Laplace’s estimation. He also noted that it 
was possible to determine “l'erreur â craindre”, Laplace’s version of standard error, 
provided that observations were obtained randomly from the group that was stud­
ied. The report of the meeting continues by saying that “Nobody found this condi­
tion necessary in correct application of the method.” The topic of the discussion 
that followed was how the expression “take randomly” should be understood.

It was pioneering work what Kiaer did in developing the Representative 
Method, even though the method in some form had been already used else­
where85. The most important achievement of Kiaer was to adapt it to social 
research, and to raise it on the agenda of the ISI meetings, and to defend it per­
sistently despite the criticism.

After Kiaer had raised the issue at several ISI meetings, the method could not 
be disregarded, and the ISI had to take a stand on the Representative Method. At 
that time, the International Statistical Institute was a central organ where the of­
ficers of statistical institutions and researches from universities met regularly to 
present results and to learn about new methods. The ISI did not have an explicit 
role, but as a leading forum of scientific debate, its resolutions had a significant 
impact on national statistical institutes.

Kiaer’s efforts were rewarded first at the Berlin session of the ISI in 1903, 
when the ISI adopted a resolution which recommended the use of the Repre­
sentative Method, subject to the provision that the conditions under which the 
selection of the observations was made were completely specified. The sample 
survey had become an acceptable method of data collection. The final accept­
ance took place only in 1925 at the Rome meeting of the ISI.

Thinking back, the Representative Method could not be developed much 
earlier than it was. Its central prerequisite is that there is sufficient information 
available to design the data collection and to assess whether the obtained sam­
ple can be considered representative. In addition, stratification in general, or as 
Kiaer performed it, is not possible without sufficient knowledge of the popula­
tion structures. Only after census data had become available was it possible to 
determine the size of a sample and to design stratification for data collection and 
instruct enumerators to collect data.

Another reason why the method could not be developed earlier was the in­
adequate understanding of the structure of human society. Only after Quetelet’s 
and Engel’s research had shown that the structures and the laws governing society 
were stable and regular, a partial investigation became viable and could be generally 
accepted (see also Porter 1986). One important factor in using survey research is 
trust in the results obtained by it. If the knowledge of the population under study 
is insufficient or non-existent, it is difficult to gain reliance on such a method.

85 Lie (2002) provides evidence that another Norwegian scientist, Jakob Mohn, discovered the 
representative method.
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A new paradigm
An important reason behind the emergence of partial investigations was the 
growing need for information on various aspects of society and economy. This 
was partly caused by the enthusiasm for statistics and also because of social 
movements that pushed to gather more information about the society, especially 
on the working class and its living conditions (see Westergaard 1932 and Bell- 
house 1988]. National statistical offices only trusted (decennial] censuses, which 
were insufficient in providing timely information about social issues. A growing 
need emerged for a method that would provide information faster and with 
fewer costs than a census. It was also found important to obtain more detailed 
information, i.e., to include more and more detailed questions.

The Representative Method was not meant to replace censuses, but to pro­
vide another method to obtain more detailed and timelier information about 
society than what was possible in censuses. Kiaer's Representative Method can 
be seen as a completely new method, but it also started a new paradigm for 
statistical data collection (see also Bellhouse 1988). When the method was pre­
sented for the first time, some statisticians tried to reject the proposed method 
altogether and even to prevent further discussion on it (see also Porter 1986). 
The documented discussions at the ISI meetings to which Kiaer’s presentation 
gave rise to show that it was intellectually violent in the sense Kuhn defined it.

The development that Kiaer initiated eventually resulted in a new branch 
in statistical science. Even though randomization and probability did not have 
any role in the method86, it can be considered as one starting point in the de­
velopment of modern survey sampling. Inference in Kiaer’s method was intui­
tive without any theoretical analysis. However, Professor A. L. Bowley87 of Eng­
land became at an early stage attracted to Kiaer’s method, and began to apply 
a kindred method in social surveys in England. Even more importantly, Bowley 
started to develop a method of statistical inference for sample surveys that was 
based on probability. The result was published in the annex Bowley wrote to 
Jensen’s report for the ISI (Jensen 1926), entitled “Measurement of the Precision 
Attained in Sampling’ (Bowley 1926). In that, Bowley described a method on 
how to estimate the accuracy of estimates (see next chapter). That method was 
based on the Laplace-Bayes paradigm.

86 Kiaer was aware of the random selection of units and the virtues of the method, but because 
of practical reasons, random selection was not an option at that time.

87 Bowley was accepted as a member of the ISI in 1903.
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8 Arthur Bowley and statistical 
inference for finite populations

8.1 Introduction

In the beginning of the 20th century, statisticians in England were mainly inter­
ested in biological (biometrical] topics and eugenics, and they were mainly af­
filiated with universities and academic research. The continental school showed 
more interest in official statistics, including social statistics. It was mainly com­
posed of statisticians working at national statistical institutes, or they were aca­
demics closely related to the official statistics and statistical institutions.

Arthur Bowley88 was an exception in the English statistical school because 
his main interest was first in economics, and from around 1910, Bowley started 
to take an interest also in social statistics. Bowley undertook several studies on 
British economical statistics, on trade, and on wages and incomes. Bellhouse 
[1988] argues that Bowley should be considered as a descendent of the British 
Statistical Movement of the 19th century. In its aim, Bowley’s work can be seen 
as a continuation of surveys of social conditions, such as Charles Booth’s “Life 
and Labour of the People in London” (1889-1903] and Rowntree’s “Poverty, A 
Study of Town Life” (1901].

The New Survey of London Life and Labour (Llewellyn-Smith 1929] has 
been held the most significant of Bowley’s social surveys, even though he acted 
mainly as an advisor. Later, Bowley conducted, together with R.G.D. Allen, one 
of the first empirical studies concerning consumption behaviour (Bowley et. al. 
1935]. Noteworthy in all these surveys were the methodological innovations: 
the use (and reporting] of sampling techniques and the careful undertaking of 
data collection.

In his statistical thinking, Bowley drew from the ideas and works of Quete- 
let and Lexis, but mathematically, many of Bowley’s ideas were derived from

88 Arthur Lyon Bowley (1869-1957) was an English statistician and economist who worked 
mainly on economic statistics. After school, he received a scholarship to Trinity College, 
Cambridge, to study mathematics. After leaving Cambridge, Bowley taught mathematics for 
a short while. Meanwhile, he was publishing in economic statistics; his first article appeared 
in 1895, the same year the London School of Economics (LSE) opened. Bowley was appoin­
ted as a part-time lecturer at LSE, and he was connected with the School until he retired in 
1936. He has been considered one of the School's intellectual fathers. At LSE, he became 
Reader in 1908 and Professor in 1915. In 1919, he was appointed to the newly established 
Chair of Statistics.

In statistical theory, Bowley was no innovator, but he drew on the writings of Karl Pearson, 
Udny Yule, and most importantly, F. Y. Edgeworth. Edgeworth was Bowley’s first teacher in 
probability theory, and their collaboration, starting at the end of 19th century, lasted up to 
Edgeworth’s death.

Bowley received many honours. In 1922, he became Fellow of the British Academy, and 
in 1950, he was knighted. He served on the council of the Royal Economic Society and was 
president of the Econometric Society in 1938-9. The Royal Statistical Society awarded him 
its Guy Medal in Silver already in 1895 and the Guy Medal in Gold in 1935, and he served 
as its president in 1938-40 and was vice-president in 1907-1909 and 1912-1914.
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Edgeworth’s contributions89. Bowley himself had only a few new contributions 
directly on probability theory, but his achievements in teaching, application, 
and promotion of sample surveys are remarkable. He summarized his early sta­
tistical lectures in two books: Elements of Statistics90 in 1901 and Elementary 
manual of Statistics in 1910. Both books are non-mathematical in nature when 
compared to modern statistical textbooks. The former was the first English text­
book on statistics, and it became widely known and cited all over Europe and 
North America. Also Russian statisticians frequently referred to it (see Kaufman 
1913 and Kovalevsky 1924). However, from the perspective of modern statisti­
cal science, Bowley’s most important contribution was the detailed analysis of 
statistical inference for sample surveys (62 pages), published in 1926 by the ISI. 
It is the first analytical study on statistical inference for fixed populations since 
Laplace. This monograph was also the first treatment of sampling theory91, but 
it was written within the Laplace-Bayes paradigm that was soon replaced by a 
new paradigm for statistical inference (see Chapter 10). Obviously, this is one 
reason why it has never attracted wider attention.

8.2 Bowley's presidential address in 1906

In his early 30's, Bowley followed Edgeworth on the chair of the British Eco­
nomic Society. His presidential address in 1906 is interesting, not only from the 
perspective of survey research and statistical inference, but also as to its general 
statistical and political message. At the time when the address was given, surveys 
or partial investigations were rare. The idea of the use of the Representative 
Method had been raised (by Kiaer), and it was discussed and criticized at sev­
eral ISI meetings92. Some surveys following the example of Kiaer had already 
been conducted in Europe (see Jensen 1926). The motive of the address seems 
to have been Bowley’s concerns about the state of social statistics and social 
research in England.

The beginning of the address was devoted to contemplating the question: 
“Have we any guarantee that the public service, whether official or unofficial, 
will be supplied with a sufficient number of persons who are qualified to handle 
statistics expertly, to follow rapid mathematical developments which alone can 
get the full significant records, and to inform the public with reasoned knowl­
edge of the measurable phenomena in life?” As an answer, Bowley gives a fairly 
pessimistic account of the statistical activities in the UK at that time.

89 It has been claimed that Edgeworth did not have any students and that Bowley was his only 
follower.

90 “Elements of statistics” was very popular textbook and Bowley published several revised 
editions of it. Fifth edition was published in 1925,

91 Actually, Kovalevsky published the first analytical text already in 1924 (Kovalevsky 1924] 
but it was in Russian and it was not known outside Soviet Union.

92 Bowley was accepted as a member of the ISI in 1903 and took part in the meetings on regu­
lar basis.
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He continues by urging the need for a mathematical approach to statistics in 
addition to the “arithmetical statistics”93.

“It must be recognized that most statistics are necessarily approximate; and just 
as in other scientific measurements the quantity is given as correct to so many 
significant figures, so in statistics the possible and probable limits of error should 
be estimated, and the false show of so-called mathematical accuracy given up.” 
(Bowley 1906)

By “the false show of mathematical accuracy”, Bowley meant the habit to give es­
timates of economic and social parameters that were not based on observations.

After a thorough account of the development of mathematical statistics from 
Gauss and Laplace, to Quetelet, and to Edgeworth and Karl Pearson, Bowley 
takes up the application of probability in partial investigations, saying:

"... the region to which I am devoting particular attention is that where the theory 
of probability is invoked ... because this is of the greatest importance and least 
generally understood.”

First he touches on the accuracy of estimates leaning primarily on Edgeworth’s 
recent results about the “probable error” and provides justification for the use of 
the Normal Distribution.

"... by applying this method ... we are able to give not only a numerical average, 
but also a reasonable estimate for the real physical quantity of which the average is 
a local or temporary instance. ... It is the main weakness of statistical estimates... 
that no measures of precision is given, and consequently that no determination 
can be made as to whether observed differences (in wages, in death-rates, in diet, 
in prices) are accidents of observation or are really significant.” (Bowley 1906)

Bowley describes how he had selected a random sample from the Investor’s 
Record (including 3,878 companies) to find an average of interest rates by sam­
pling: First, he had numbered the list of companies consecutively. Next, he con­
tinued reading down a column in a table in the Nautical Almanac. He took the 
last digits in groups of four and included all numbers below 3,878. Lastly, he 
searched the corresponding entry in the Investor’s Records, and wrote down the 
interest value from the table. This way he collected a sample of 400 items.

Probably this is the first documented application of a sampling frame to se­
lect a random sample (see also Stephan 1948 and Hansen et al. 1985). It is 
noteworthy that already in 1906, Bowley emphasized the importance of random 
selection of units in sampling94. He said:

93 By "arithmetical statistics” Bowley meant the tabulation and classification of statistical infor­
mation.

94 Some years earlier when Bowley published his “results which follow those obtained in 
connection in the Newmarch Lectures, 1897” (Bowley 1897) he drew attention to the 
probable error due to omission of part of the data because part of the data is inaccessible. He 
suggested that accuracy would be expressed by using a quantity which was close to standard 
error but he did not touch the selection of the units.
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"...It was necessary to make certain in some way as this, that the chances are the 
same for all the items of the group to be sampled, and that the way they are taken 
is absolutely independent of their magnitude.” (Bowley 1906)

In the same context, he sought to give a simple empirical verification for the valid­
ity of the Central Limit Theorem in a context that today would be called simple 
random sampling: He tabulated the means of 40 samples (from the same "uni­
verse”) and observed that the distribution of the 40 sample means was approxi­
mately bell-shaped, i.e., normal. Bowley also showed that the accuracy of estimates 
does not depend on the size of the population, but only on "its nature” and on the 
size of the sample. He continues by showing that the accuracy can be increased -  
and the probable error decreased -  by increasing the size of the sample.

Bowley emphasized the importance of a frame and the problems that its absence 
might introduce to social research and to sample surveys. Therefore, at the end of 
his presidential address, he made a plea to establish a household or population reg­
istry in the UK, which could be used as a sampling frame in social research.

"To learn the actual economic condition of all the 40 000 000 persons of the 
United Kingdom, or even of those who are not obviously above any poverty line, 
seems at first sight an impossible task; and so indeed it is, but only because of 
the general apathy to the subject. We must, therefore, proceed by some method 
of samples. Before we can get sound information from samples we must have a 
method of numbering or classification by persons or by districts. If we had a defi­
nite system of registration and identification, as in Germany, it would be easy to 
choose, say 1 in 100 or 1 in 1000 at random from among all the persons whose 
records satisfied certain conditions, and then to investigate more carefully the his­
tory and circumstances of those chosen. A similar method could be applied to any 
particular district. There is no need to make a house-to-house visitation to learn 
the conditions of a district; it is sufficient to enumerate the houses, to choose a 
certain proportion at random, and investigate carefully the status of their inhabit­
ants.” (Bowley 1906)

The speech was fairly long and covered a variety of topics. Bowley concluded the 
part about sampling by emphasizing the importance of probability theory and 
the random selection of units:

"The method of sampling is not only one of many instances of the application 
of the theory of probability to statistics. I have taken it at length because the 
method is so persistently neglected, and even when it is used the test of precision 
is ignored. We are thus throwing aside a very powerful weapon of research. It is 
frequently impossible to cover whole area, as the census does, ... , but it is not 
necessary. We can obtain as good results as we please by sampling, and very often 
quite small samples are enough; the only difficulty is to ensure that every person 
or thing has the same chance of inclusion in the investigation." (Bowley 1906)

It is noteworthy how well Bowley was aware of the central questions of survey 
research already in 1906 when surveys were very rare and sampling was not 
recognised as a part of statistical theory.
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8.3 First social surveys in England
An important characteristic in Bowley’s work was his interest in a practical sta­
tistics. He carried out several social surveys in England, mostly dealing with 
living conditions, poverty, and wages, notwithstanding the fact that the feasibil­
ity of partial investigations was questioned. An example of the distrust is the 
discussion after Bowley’s lecture in 1908 before the Royal Statistical Society 
entitled "The Improvement of Official Statistics”. Among the many topics, he 
spoke again about “the scientifically chosen samples”. In the debate that fol­
lowed, Yule said that he was not convinced that “a sampling can be truly random 
and representative of the total population”.

In a survey concerning the living conditions of working-class households in 
Reading, the sample selection method resembled that of Kiaer’s. Random sam­
pling, as Bowley described it in his presidential address, was not an option in a 
large-scale social survey: Adequate sampling frames were not available in Eng­
land, and probably also the random selection itself would have presented prob­
lems. In addition, the arrangement of the fieldwork for a large sample had been 
a difficult task and expensive if simple random sampling had been used.

8.3.1 Survey in Reading
The report of the survey which Bowley carried out in Reading in 1912 is a signifi­
cant contribution for survey sampling itself and for the use of survey methods in 
social research. It is an example of Bowley’s deep interest in social problems, but 
an equally important incentive seems to have been the promotion of the research 
method. This article was not the first of this kind, though. Yule had published a 
similar article 15 years earlier on the history of pauperism in England [Yule 1896), 
which had a similar structure as Bowley’s in the sense that a great part of it was de­
voted to the presentation of the methods and their application to social research. 
However, Yule's point was not sampling but fitting distributions to data, which 
was the main method of statistical analysis at the end of the 19th century.

The beginning of the Bowley’s report reveals his motives:

“An investigation was made in Reading, in the autumn of 1912, into the general 
economic conditions of the working class, by a small unofficial committee. The 
results are of much more than local interest, since they prove that an inquiry 
adequate for many purposes can he made rapidly and inexpensively by a proper 
method of samples. In particular, by classifying earners in relation to dependants, 
we show the relative numbers of men and of women who have to support families 
of various sizes (data which hardly exist on any large scale); and further a com­
parison is afforded in essentials with Mr. Rowntree’s well-known study of York95.

95 Bowley referred to Rowntree’s study on “the extent and depth” of poverty amongst the wage- 
earning families in York (Rowntree 1901). Rowntree had become to conclusion that “all 
questions to be answered with any fullness and accuracy, nothing short of a house-to-house 
inquiry extending to the whole of the working class population would suffice.” Consequently 
he tried to obtain information regarding the housing, occupation, and earnings of every wage- 
earning family in York, together with the number and age of the children in each family. 
Rowntree’s survey actually was not the first of the kind in England. Charles Booth had 
carried out similar survey more than ten years earlier in London (Booth 1889),
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It is already arranged that a similar inquiry shall be made in another town, and it 
is hoped that, when the simplicity of the method and the importance of the re­
sults are appreciated, a sufficient number of people will be interested to carry out 
investigations in other towns and in rural districts, till we have general knowledge 
of the economic conditions of the households of Great Britain. It is not generally 
realised that the only information we have at present is that given by the Census 
as to the number of persons and number of rooms.” (Bowley 1913}

Rowntree’s “study” was a comprehensive survey into the living conditions of the 
poor in York. Enumerators visited every working class home, which amounted to 
data on 11,560 families or 46,754 individuals (Rowntree 1901). While Rown- 
tree carried out a total enumeration, Bowley decided to use a sample of house­
holds. Bowley describes the method how the sample was selected and which 
factors influenced the decisions in the following manner:

“A sample was selected from the whole of the present borough of Reading as fol­
lows: One building in ten was marked throughout the local directory in alphabeti­
cal order of streets, making about 1,950 in all. O f these about 300 were marked 
as shops, factories, &c., institutions and non-residential buildings, and about 300 
were found to be indexed among Principal Residents, and were so marked. The 
remaining 1,350 were working-class houses, and a number of volunteers set out 
to visit every one of these. It was presently found that the scale taken was beyond 
their powers, and it was decided to take only one house in 20, rejecting the incom­
plete information as to the intermediate tenths. The visitors were instructed never 
to substitute another house for that marked (unless the house was unoccupied, 
in which case the next door was to be taken), however difficult it proved to get 
information, or whatever the type of house. In the end we failed to learn anything 
as to 32 households out of 677, and substituted for these 32 of the surplus tenths, 
without, so far as can be judged, introducing any bias. Information was entered on 
cards by the visitors, and a great deal of supplementary description was written on 
the back of the cards.” (Bowley 1913)

The described method is close to the one which Kiaer had applied in Norway 
when sampling houses in the cities, except that Bowley did not use stratification 
as Kiaer did. In modern terms, Bowley’s method was based on systematic sampling 
(every tenth house in an alphabetical list of streets). Bowley regarded the obtained 
sample as random because “it did not involve any purposive elements”.

After obtaining the data, Bowley compared the sample to the latest Popula­
tion Census (of 1911), in the same way as Kiaer had done. Obviously, his aim 
was to convince the readers of the representative nature of the sample, although 
he did not say so explicitly.

Inference from the sample to the population was intuitive and straightfor­
ward because the sample was supposed to be a miniature of the population. 
Therefore Bowley could write:

"At the date of the investigation there were probably about 18,000 inhabited 
dwelling-houses, of which our first table deals with 840, that is 1 in 21. The mul­
tiplier twenty-one is then to be applied to all the sample data to give estimates for 
the whole of Reading.” (Bowley 1913)

Then he continues with giving guidelines for a more accurate interpretation of 
the results:
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“It may appear to persons who are not familiar with processes of sampling that a 
proportion of 1 in 21 is too small for any conclusion, and that in any case not more 
than a vague probability can be obtained. The theory and method of sampling 
is discussed in [reference to his presidential address in 1906]. It is there shown 
that the precision of a sample depends not on its proportion to the whole, but 
on its own magnitude, if the conditions of random sampling are secured, as it is 
believed they have been in this inquiry. It is demonstrated mathematically that 
if in our sample 622 working-class households we find respectively 5,10, 20, 40, 
50 per cent, of cases, we may expect that the percentage in the whole are within 
5±1, 10±1, 20±1 !/2, 40±2, 50±2 and may be nearly certain that they are within 
5±3,10±4, 20±5, 40±6, 50±6.” (Bowley 1913]

In the footnote, Bowley still specified that

“Here the standard deviation is used; the change is about 2 to 1 in favour of the 
true being within the limits for the first set, and 1 to 250 for the second set.” 
[Bowley 1913]

Bowley also reported probabilistic interval estimates, which are conceptually close 
to confidence intervals. Bowley calculated the limiting values by using the Central 
Limit Theorem. Bowley devoted a considerable part of the report to explaining 
the principle, although the normal approximation in large samples was already 
well established in textbooks on statistics (e.g., Bowley 1910 and Yule 1911).

8.3.2 Other surveys in England
A consequence of the survey in Reading was that it set off a boom of several 
similar surveys in the UK (as Bowley obviously had hoped for). Bowley's associ­
ates carried out surveys for three other cities in 1913 and two the next year. The 
survey in Reading was soon followed also by a systematic sampling of census 
schedules in 1915 (Bowley and Burnett-Hurst 1915). Ford conducted a survey 
in Southampton in 1927, which was similar to Bowley’s first survey, both meth­
odologically and contextually (Ford 1934). And the London School of Econom­
ics under Bowley’s direction carried out a similar survey London in 1929 (Bow­
ley 1929). In that survey, the “House Sample” involved stratification in two ways. 
First, the method of selecting households within a given administrative area was 
based on systematic sampling by streets arranged in alphabetical order. Secondly, 
for the whole London area, the stratification was done by administrative area, in 
which the sampling ratios were constant. A few years later, Caradog-Jones car­
ried out two similar surveys, one in Liverpool in 1930 and one in Merseyside in 
1931 (Caradag-Jones 1931 and 1934).

The reliance on partial investigations was not high in the first quarter of the 
20th century, except amongst only a few statisticians. Examples of the difficulties 
are shown in two papers by John Hilton, director of statistics at the Ministry of 
Labour in the UK, concerning the studies about workers in the unemployment 
insurance system (Hilton 1924 and 1928):

The problem was that the Ministry of Labour needed information about 
the more than one million “persons who were being returned week by week as 
'insured workpeople unemployed’ ”. In the first effort, the ministry had ordered 
the selection of every third claim of Unemployment Benefits to be investigated.
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Interviews of the claimants were used to enhance the previously registered data. 
Informants were selected systematically from the files of the Labour Exchanges

However, processing that amount of data (372 875 persons] in tables had re­
quired too much labour and time in order to serve the purpose of the survey. 
Therefore, the administration asked Bowley’s advice for a better design. Bowley 
suggested systematic sampling with a sampling fraction of 1 to 1000, but the office 
considered that it would not suffice to carry out as detailed analysis as required. 
After some consideration, it was decided to use 1% as the sampling fraction.

The first of Hilton’s two papers (Hilton 1924] comprehensively treated both 
the problems in selection of claimants and the difficulties of arranging the in­
terviews. Eventually, a design close to quota sampling was applied. Methodo­
logically, the most important information, however, was obtained by comparing 
the distributions of certain background variables of the ‘one percent’ sample to 
previous distributions: distributions were close to each other.

Certain deviations from a strictly systematic selection introduced biases, 
which were reduced by subsequent improvements of the method, which were 
described in the second paper (Hilton 1928]. Hilton found a sample of only one 
per cent quite satisfactory to meet the practical administrative and policy-mak­
ing purposes for which the studies were made. The reduction in expenses that 
was achieved by sampling such a small proportion of the records was impressive. 
Despite all the benefits which the method yielded, it was not imitated by other 
government bureaus, although the results Hilton showed were very favourable 
(see also Stephan 1948].

Hilton read the paper before the Royal Statistical Society. The invited discus­
sants were Bowley, Edgeworth, Yule, and Greenwood, who all found Hilton’s 
method to be close to Kiaer’s and encouraged Hilton to further develop the 
method he had applied.

Bowley's work had also an impact on the development of sample surveys in 
the United States (see also Jessen 1942 and Stephan 1948). Margaret Hogg, who 
had worked under Bowley's direction on some of the British surveys, moved to 
the United States to work for the Russell Sage Foundation. She made a critical 
study of employment and unemployment statistics in the United States. In an 
article published in JASA, she made a plea for rigorous methods of sampling and 
also cast some doubt on the value of surveys that had been made in the U.S., 
in which the sample was selected by judgment rather than random procedures 
(Hogg 1930). In 1931, Hogg conducted a survey of unemployment in New 
Haven, partly to test the practical difficulties of applying a random sampling 
method, and also to develop better schedules and statistical categories for unem­
ployment surveys (Hogg 1932). Hogg’s contributions had a strong influence in 
the development of survey methods in the U.S. (see Chapter 12).

In addition to carrying out sample surveys and promoting the sampling 
method, Bowley also laid the foundations for the mathematical approach to 
sampling theory. Based largely on Edgeworth’s contributions, he elaborated and 
summarized his ideas in the report he wrote to the ISI, which was published as 
an appendix to the report of the committee evaluating Kiaer’s Representative 
Method (Bowley 1926).
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Bowley often took part in the ISI meetings and thus became aware early on 
about the discussion concerning the partial investigations and Kiaer’s Represent­
ative Method. Bowley quickly saw the potential that the Representative Method 
provided in shedding light on living conditions of the working class (Bowley had 
left wing sympathies), and he started to develop the method into a statistically 
more valid form. Since Laplace, nobody before Bowley had tried to apply the 
Laws of Errors on a (randomly selected) sample from a finite population. Edge- 
worth and Yule dealt with sampling “fluctuation”, but they treated only infinite 
populations, or if they sampled the real population, the method of sampling was 
obscured (see Edgeworth 1906, 1907, 1908, 1909 and Yule 1911).

Edgeworth, Yule, Pearson, Tchuprov96, and a few others had already pub­
lished most of the related mathematical theory. Bowley summarized this and his 
own contribution in a report to the ISI, concluding"... As far as I can ascertain, 
no one has brought together these formulae so as to give ...” (Bowley 1926).

Already in the early 1920s, Bowley wrote an article entitled The precision of 
measurements estimated from a sample (Bowley 1923). It was published in Met- 
ron in 1923 already before the ISI session in which the committee was nomi­
nated “to study the applications of the Representative Method in statistics”. The 
article treated the “inverse problems in statistics”, drawing from the method 
given by Edgeworth in 1908. It was partly motivated by the article that Pearson 
had written a few years earlier on a similar problem (Pearson 1920), but Bow- 
ley’s approach was different. In the introduction to the article, he wrote

“I have not considered here the problem ‘if in a sequence m things have and n 
things have not a certain attribute then what is the chance that in the future se­
quence of r + s events r shall have this attribute' for that involves logical questions 
and further definitions of some complexity; but I have had in view simply the 
ordinary and practical problem of the precision with which the characteristics of 
a group of considerable size can be ascertained by examination of a sample chosen 
from it.” (Bowley 1923)

Bowley referred to the principle of learning from experience, which was the 
subject of Pearson's article, but he does not describe what the “logical questions” 
and “complex further definition” are, which he wanted to avoid. This citation 
indicates that Bowley aimed at addressing the practical problems of survey re­
search for which the principle of learning from experience is not suitable.

8.4 The precision of measurements 
estimated from samples

The memorandum to the ISI was based on the 1923 paper, but Bowley elabo­
rated considerably his approach from the original. In addition, the memorandum 
contained an extensive analysis on general survey methodology. The mathemati­
cal, or inferential, part was based on Laplace’s principle of the inverse probability 
method -  or it was based on the Laplace-Bayes paradigm. The origin of Bowley’s

96 Bowley refers toTchuprov’s papers published in Biometrika in 1918 and 1920.
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inference model is shown, for example, in how he describes sampling without 
replacement as "not replacing the balls in the urn”. The idea of balls in an urn 
indicates that he had the urn model in his mind, and he derives his formulas im­
plicitly using Bernoulli trials as his inference model. Since Laplace, Bowley's two 
papers seem to be the first systematic treatments on the accuracy of estimates 
obtained from a sample (see also Hald 1998). Also, Bowley himself argues that 
his contribution is the first that “brings together the old formulas in simple and 
stratified sampling, in a slightly enhanced form” (Bowley 1926). It may also be 
the last text on sampling theory within the Laplace-Bayes paradigm.

The mathematical part of the memorandum is divided into two sections: the 
first one deals with estimation under random sampling, and the second with esti­
mation under purposive selection. In estimation under random sampling, Bowley 
analyzed both estimation under "unrestricted sampling” and “restricted” sampling. 
In modem terminology, unrestricted sampling means simple random sampling, 
and restricted sampling refers to stratified sampling. In addition, Bowley treated 
separately sampling for three different parameters: the prevalence of one attribute; 
distribution of alternative attributes; and sampling for “the magnitude of an aver­
age”. Bowley’s paper is very extensive and only a brief description is given here.

8.4.1 Inference under random sampling
Bowley’s approach was comprised of two parts: first he described the direct 
problem (what kinds of distributions the random selection from a known popu­
lation can produce); the second and more important part dealt with the inverse 
problems (which are the characteristics of the population that may have yielded 
the obtained results). The most important distinction to his previous report 
(Bowley 1923) is that in the memorandum to the ISI, Bowley analysed sampling 
from finite populations (of size N).

The approach to the problem follows the lines of thought that were already 
present in Laplace’s works, and he acknowledges it: “So far as the direct prob­
lem is concerned, the expression of Ex [see formula (8.1)] in the case of purely 
random sampling from an infinite universe, including the unsymmetrical term 
that involves 1 / yfn , have been known since the time of Laplace, Gauss, Ber­
noulli and Poisson.” In deriving estimates, Bowley applied the same mathemati­
cal methods that Laplace had used, i.e., applying Stirling’s formula to elaborate 
factorials, Taylor’s expansion, and ignoring terms that became negligible in large 
samples. He also applied the Method of Moments97, which Edgeworth and Karl 
Pearson applied frequently 98.

Before touching on the main topic, Bowley makes a puzzling comment"... 
the problem before us is to make inferences from a given sample to an un­
known universe ... and we are therefore obliged to go on to the doubtful ground

97 The Method of Moments is an old method for point estimation of population parameters by 
equating sample moments with unobservable population moments and then solving those 
equations for the quantities to be estimated.

98 In practice, Bowley embraced many of the ideas and methods of Edgeworth and Karl Pearson 
who both considered that the inverse probability is the basis of (then) modem statistical 
theory (see e.g. Pearson 1920]
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of inverse probability." (Bowley 1926). However, he does not explain what he 
means by the “doubtful ground of inverse probability”. He may have referred to 
R.A. Fishers’ paper published in 1922, in which Fisher implicitly attacked the 
method of inverse probability.

8.4.1.1 Estimation under simple random sampling
Bowley started with the simplest case: estimation of the frequency of one at­
tribute by random sampling. By random sampling, Bowley meant a selection 
in which all population units have equal inclusion probabilities. He stated the 
problem in the following manner: “Given that in a sample on n persons or things, 
drawn at random from a universe containing N, pn possess a certain attribute, 
what can we infer about the prevalence of the attribute?” The novelty here was 
that in the earlier 1923 paper, Bowley treated infinite populations.

The solution to the problem was given in two parts: “in one, the chances99 that 
the sample would be drawn from hypothetical universes are compared” (the direct 
problem); “in the other, it is considered under what circumstances it is possible to 
make any inference about the relative chances that in fact the universe contain­
ing given proportions” (the inverse problem). Bowley adds that the second part 
involves the theory of inverse probability. In this, Bowley leaned on Egdeworth’s 
version of the Central Limit Theorem (Edgeworth 1908 and 1909).

8 .4 .1 .1 .1  S am p ling  f o r  p reva lence  o f  o n e  a tt r ib u te
The direct problem for one attribute case was presented as follows: In a population 
containing N  persons or things PN  have a certain attribute. From the population 
whose members have been “numbered or otherwise indexed”, n persons are se­
lected at random. In the direct problem, it is required to find the probability that 
the number of sampling units in the sample which possess1 the attribute is pn.

Below are a few examples on how Bowley solves the problem, to give an idea 
about his techniques:

There are NCn equally probable combinations of n units chosen out of N

units, with NC = Nl fN

n\(N — n)\
The proportions in the population and sample are denoted Q = 1 -  P, q = 

1 -  p, respectively. If the bias in estimate due to sampling is denoted by x, then 
the number of sampling units with and without the attribute are pn = Pn + x and 
qn = Qn -  x, respectively.

Bowley sought to find the probability Ex:

K  -  PN ^pn X QN^-qn ^  N ^ n  ~  PN ^P n+x  X Q N ^Q n-x ^  N ^ n (8 .1)

That is, Bowley analyses hypergeometric probability, which is a consequence of 
the assumption that the population is finite and the sample is drawn without

99 It should be noted that Bowley used the concept of “chance”, which in modem terminology 
is synonym to probability.
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replacement. Bowley concluded that if Pn is so large that it is possible to neglect 
1/Pn in comparison to unity, then approximately

(8 .2)

where a 2 = PQn 1 - -

N
The (direct) probability that p should not differ from P by more than z (=x/n) 

is approximately

1 2PQ \  - t -/ i —Ll 
l” n)

2nPQ
N j

dz (8.3)

The inverse problem in one attribute case is following: Given that in a random 
sample of n units from a population of N  units, pn units possess the attribute. 
What can be inferred about the prevalence of the attribute in the population?

To solve the first part, Bowley modified the preceding formulas so that they de­
pend only on the observed p (instead of the population parameter P). He showed 
that under simple random sampling, the expectation that pn + x  would be found 
from a population in which the proportion is P would be, if 1 /pn is negligible

where s2 = pqn n
N

is the sample variance.

(8.4)

If 1 /yfn is negligible, the formula (8.4) reduces to

1E, = (8.5)

Bowley gave several tables showing that this probability falls rapidly as % in­
creases. He also gave another table supposing that the a priori probability that P 
should have certain values is constant over small ranges and adds by integration 
the probabilities over these ranges.

To be able to continue with the inverse probability model, Bowley incorpo­
rated a priori probability distribution for parameter P. Unlike Laplace, Bowley 
did not agree to the assumption of uniform distribution of priors. Instead, he
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assumed that the a priori probability F(P) (that a population should contain a 
proportion P of units that have the attribute) to be continuous and derivable in 
the neighbourhood of P = p, where p is the proportion observed in the sample.

The 'double chance’ that P was the proportion in the population and that 
then p should be found in the sample is F(P) x Ex. Hence, “the inverse chance” 
that p being found in the sample and P was the proportion in population is

F (P )  X Ex
X { F ( i> ) x £ , }

(8 .6)

summation over all possible values of P. Bowley showed that under some fairly 
general assumptions on F(P), the probability that P does not differ from p on 
either side by more than x/n is independent of F (see also Hald’s (1998) com­
ments on this). This he had already shown in the earlier article (Bowley 1923).

Bowley derived the result leaning on the results that Edgeworth had pub­
lished earlier (Edgeworth 1908) 10°: If the assumptions hold, the probability that 
P is within the limits p ± z , with z = x/n, is approximately

Z

P (p  -  z < P < p  +  z) =  J (8.7)

In the memorandum, Bowley derived this result by the method of moments 
but added that the same proof could also be done using Stirling’s formula and 
Taylor’s expansions (as Laplace had done).

In 1923, Bowley observed that in sampling from an infinite population, the 
total probability that the proportion P was within limits [p -  x, p + x] is

r  *2
P ( p - x < P < p  + x ) =  T  . - e 2pq'ndx (8.8)

J~x J in p q

In modern terms, Bowley’s approach can be regarded as based on a superpopula­
tion model: The actual and observable population is not considered as fixed or 
stable, but as constantly changing. The observable population is one realization 
of all potential populations and therefore its parameters can not be constants 
but have an (unknown) random distribution. The a priori probability distribu­
tion of the population parameter gives the probability that in the population 
from which the sample was selected, the parameter has value P. He showed that 
(8.8) holds whatever is the form of a priori distribution F, however. The method 
is like the one Laplace used to derive his estimates. It was a characteristic meth­
od in the Laplace-Bayes paradigm.

100 Edgeworth based his results on the Laplace’s Inverse Probability in the form it was published 
in Théorie A n alytiqu e des Probabilités (Laplace 1812)

118 Statistics Finland



8 .4 .1 .1 .2  E s tim a tion  o f  ave rage
The direct problem in the estimation of a mean was the following: From a popula­
tion of size N, a random sample of size n is selected. The sampling fraction is k = 
n/N.The population mean of the variable is u , a 2 is the population variance, and 
the observed (sample) mean is u + x . The standard deviation of x is

(8.9)

When N  is large, the term 7(1 -  k) can be disregarded because it will be — 1

Bowley showed that the probability that u +  x will be observed is

E . =
1 2  <5a  3 o u (8.10)

where k i 1 - 2k 
7« 7(1 ~k) a 3

and |13 is the third moment about the mean. If n is so large that 
ble, the term that contains K, is also negligible.

If also k is so small, and N  large, that “ ‘/¡k  is negligible”, then ct 
o/yfrt and the probability then will be given approximately by

l/yfn is negligi- 

, can be written

sfn
o J ( 2 k )

2C2 (8 . 11)

Based on the formula (8.10), Bowley concluded that the probability that the 
sample mean does not differ from the population mean more than x is

p(u -  x < u < u + x ) =  i -
• i

dx (8 .12)

The solution to the inverse problem Bowley derived in the same way as in the 
previous problem:

In a sample of size n, drawn at random from a population containing N  units, 
the population mean is u and the second moment about it is p2'. F (u ) is the 
a priori probability that the population mean is u . Bowley did not assume that 
F {u ) is rectangular but that it is continuous and that its “derived functions” in 
the neighbourhood of u = x are fin ite./(x) is the probability that the sample 
mean will be x .

He continued the proof by denoting x = u +  x .
The probability that, given x , the population mean is u

_ F (x  - x )  Ex (8 .13)
six b

J  F (x  -  x) ■ Exdx
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where a = min(x) and b = m ax(x). The term 1 / yfn is “neglected”. Based on the

previous paper (Bowley 1923), he concluded that E  =  —  2j2 and 5 is
the observed standard deviation. s^f(2n )

According to Laplace’s principle, the probability that the population mean is 
in the range (x — x < u < x + x) will be

Cx =  P(x  - x < w < x + x ) = J  Qxdx =

x

J  F (x  -  x) • Exdx
(8.14)

Then denoting t = x/s and s 2 V-2
' l  1 ^

\ n  N  J

|  F {x  -  x) • Exdx 

where p2 is the second moment

from the sample, s is the standard deviation.
If l/sfn is disregarded, the numerator in 4.14 becomes

* T 1
J  F (x  -  x) ■ E xdx =  A (x )j e 2dx

and the denominator becomes
0 h -I JT _

| F (x  -  x) • Exdx -  A ix ) ! e 2 dx = F (x )

because “the total probability of t is unity”101. The a priori probabilities, F(x), 
cancel each other out, and finally

x

Cx = P(x  -  x < w < x  + x ) =  J  -
1t 1.2

'y / W '
dx (8.16)

Lastly, Bowley gave an example of estimation of the average size of working- 
class households in Northampton (see also Bowley 1915).The sample was com­
posed of 693 households resulting in sampling fraction k = 1/22.7.The observed 
average x was 4.342 persons and the standard deviation s was .073. Using the 
preceding formulas, Bowley calculated that with probability .0027, the average 
of the number of persons in the working-class houses was outside X ±  3 s , i.e., 
above 4.562 or below 4.122. Bowley also gave examples of other interval esti­
mates with different 'confidence’ probabilities. In addition, he compared these 
results to the census of 1911 for the whole region where the average was 4.44.

101 Strictly speaking, the total probability o f t  is unity only in case the integration is from —00 
to + ° °  . In practice, the total mass of variable t  equals unity because Bowley assumed that 
the lower limit is m in (x ) and upper limit m a x (x ) .
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8.4.1.2 Stratification
In the report to the ISI, Bowley also treated stratification in sampling, but not in 
such a detailed manner as estimation under random sampling. By stratification, 
he meant a method where an equal proportion of units are selected at random 
from each stratum. In modern terms, the method is called proportional strati­
fication. In some older textbooks, it was also called Bowley stratification, but 
that name has disappeared from modern literature. Bowley shows that in every 
case, the accuracy of estimation increases by stratification, and in some cases, the 
improvement is considerable.

Interestingly enough, Bowley did not consider stratified random sampling 
as truly random sampling. The only truly random sampling was defined to be 
a scheme in which every unit in “the universe has the same chance of being 
selected in the sample”.

8.4.2 Estimation under purposive selection
Basically, Bowley did not regard random and purposive selections as too differ­
ent methods, and he accepted both. However, his analysis concerning random 
selection is more detailed and also more advanced than that of purposive selec­
tion. In the discussion on Neyman's paper for the Royal Statistical Society in 
1934 (Neyman 1934), Bowley said that he did not give equal importance to the 
methods and continued that purposive selection is very difficult to formulate, 
difficult to carry out, and that it is difficult to get a good estimate of the precision 
of the result, except in rather unusual cases.

Bowley begins his analysis of purposive selection in the report with the fol­
lowing introduction:

"The problems presented by purposive selection differ in emphasis, rather than in 
kind, from those already discussed when the selection is random. In both methods 
we are concerned with the proportion, with the average, or with the distribution 
of some quantity or attribute. In both methods the two fundamental factors in the 
measurement of the precision of the observations are the dispersion from their 
mean of the proportions or averages through the universe under consideration, 
and the number of entries (in random selection the number of individuals, in pur­
posive selection that of districts) that are included in the sample. In each method 
the precision may be increased by stratification.’’ (Bowley 1926)

The essential difference between random and purposive selections (as Bowley 
defined it) is that in purposive selection, the sampling unit is an aggregate, such 
as a whole district, and the sample is “an aggregate of these aggregates”, while in 
a random selection, the sampling unit is a person or a thing. Consequently the 
analysis is based on weighted averages instead of unweighted averages.

“Further the fact that the selection is purposive very generally involves intentional 
dependence on correlation, the correlation between the quantity sought and one 
or more known quantities. Consequently the most important additional investiga­
tion in this section relates to the question how far the precision of the measure­
ment is increased by correlation, and how best an enquiry can be arranged to 
maximize the precision.” (Bowley 1926)
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Bowley’s definition of purposive selection is different from how it is defined 
nowadays. His approach has to be seen from the background of the availability 
of statistical data at that time. In the presidential address nearly 20 years earlier, 
he had urged the establishment of a population registry in the UK, but it had not 
taken place. Obviously, only aggregate level statistics were available to be used 
for the calculations of accuracy of estimates.

8.4.2.1 Notation102
Bowley started assuming that the population, or “universe”, under investigation 
consists o f N  districts103. The stil district in the population consists of as units, 
and the population consists of a total of A units, so that

a  =  5 > ,  l8-17)
5 =  1

The aim of the survey is to find F, the proportion of the units in A having the 
attribute of interest or X, the average of some variable that every unit has. If ps is 
the proportion and xs is the average in the sth district, the corresponding values 
in the population are

AP = f iasPl; AX = £ ia,xl (8.18)
5 =  1 5 =  1

Bowley says that the N  values of the p’s, or the %’s, can be regarded as “frequency 
groups”, whose unweighted means are p  or % and standard deviations upor a x , re­
spectively. In the following section, the analysis will be illustrated only for the 
variable X. In the memorandum, Bowley also included an analysis for the pro­
portion, P, but it is skipped here because the derivation is analogous with that 
of the variable.

8.4.2.2 Estimation of an average
Bowley assumes that there are one or more associated variables, whose values 
are known in every district. In the sth district, the values of these "controls” are 
written y /s, y2s, y3s- - ■ ya , and their corresponding population values are, Ylt Y2, 
Y3 ... Yt, so that

AY, = a y 2 =  a y 3 =  c8-19)
5 = 1  5 =  1 5 =  1

Bowley regarded the N  values ofy,-, i= l,..., t, as ‘frequency groups’ whose un­
weighted averages are y.,i =  and standard deviations CT ,/ =  1

The correlation coefficients between % and y0 i=  ],..., t, are denoted by rM, i = 1, 
... t, and correlations betweenyf and yj: i, j  = 1,... , t are pi;-,ij = l,...,t.

102 The notation in this chapter is slightly changed from that of Bowley’s, to make it easier for a 
modem reader.

103 In modem statistical language the district would be nearly the same as a cluster.
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In addition, Bowley assumed that the partial regression equation between x 
with yi,i= l,..., t, is linear, so that it can be written in the form

( x - x )  = £ ' =) (3,.(x -  y,) (8.20)

where the values of the regression coefficients (in case of one control) are 

P = r . ^ ~  ■r  i xi

CTr,
For district s, es is the error resulting from calculating xs from the regression 

equation, i.e.,

e, = <X - x ) ~  X'=, P,(y, ~  y,) (8-21)

For the purposive selection, Bowley assumed that the number of districts, n, 
is selected in such a way that the average for each control variable ‘is the same 
in the aggregate of them as it is in the universe’, that is

n n

Ŷ L as =  =  1»-» i,s=l s=I (8 .22)

This requirement was essential to Bowley’s definition of purposive selection. It 
involves the assumption that if the averages match, then the selected districts 
compose a representative sample from the population.

The value of the unknown parameter computed from the selected districts 
(if X  is the true value) is denoted by Xn, so that

X . = E a x ,
(8.23)

The problem is to find the accuracy of the estimate Xn, or to estimate its sam­
pling error.

From the previous results (8.23 and 8.21) and the selection of the districts, 
it follows

X . =
S " '

+ *  +  Z '1P ,U S - y , ) (8.24)

Applying the definition of the purposive selection given in (8.22), the formula 
(8.24) reduces to

X>.
+ x + i ; p ,o ) - t ,) (8.25)
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Therefore

X  = X . - K - 1 ?, - s e s

E -
where

K = - (x -x )  + Y M Y‘ ~yJ

(8.26)

(8.27)

Bowley assumed that the adjustment factor K would be small unless there is 
considerable correlation between the sizes of the districts and the variables. All 
the terms in 8.27 can either be calculated (exactly) from the population data or 
values from the sample if they involve x.

In order to determine the error term, , Bowley wrote

= i ;na = > a .  norfs=1 na2,

which gives

n a(X n -  K  -  X ) =  £ " =laA

Letting a e stand for the standard deviation of all error terms es, i.e., they are as­
sumed to have the same standard deviation, and error terms are also assumed 
to be uncorrelated. If a n stands for the standard deviation of the error made in 
estimating X  by (Xn -  K), then

-o e2 = r m 2{ a 2 +  0 -

Therefore, the variance of the error is

_ 2 2 1Ct„ = CT. • —
2 "\

1 + ■

Using Yule’s results on partial correlations (Yule 1911), Bowley shows that the 
variance of error is

a 2 (8.28)

where t is the number of controls and R is a matrix of correlation coefficients 
where the first row (and column), that is rxi, i =  b  ••• f  are the correlations be-
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tween the variable of interest, x, and the control variables, y{, i = l t; the other 
rows (and columns), that is p-,ij = are correlations between the control
variables; Rt is a matrix of the correlation coefficients between the t control 
variables (see Bowley 1926). The correlations rxi, i = J, ... t, are hot known and 
therefore they have to be estimated from the sample. The correlations between 
control variables, p-,tj = l,...,t, may be calculated from the population. Stand­
ard deviation a x must be estimated from the sample and its standard deviation 
(standard error) is .

Hence, the standard deviation of the error in estimating X  from X n -  K is

(8.29)

Bowley concluded that the advantage obtained of the control variables de­
pends only on the value of the last term, ^  R/ R, , and the advantage is maximised 
when the ratio is minimised.

If there are no control variables (t = 0) then —  = l .
R,

R  1
If there is only one control variable, then —  = ] — r 2 , etc.

R, x'
Bowley continues to show that the advantage of increasing the number of 

controls is in ordinary cases quite small.

"It is clear that the standard deviation of the error of the results is in ordinary cases 
dominated by the value of ax and by n the number of observations, rather than by 
the controls exercised in purposive selection.’’ (Bowley 1926, p. 50)

8.4.2.3 An Example
Bowley gave the following example on the estimation of a mean in the context 
of purposive selection: From an official report, the wage rates in 1912 of com­
positors, masons, and engineering labourers were extracted for 47 towns. The 
problem was to find the average wage rates of iron moulders in these towns us­
ing a purposive selection of 12. (Bowley ibid.)

No weights were used in the example, and therefore aj = a2 = ... ; oa = 0, n =
12.

The towns were selected so that the averages of the three occupations used 
as controls were approximately the same as in the 47 towns together. 

Parameters of the control variables were:

Compositors:

Masons:

Labourers:

Iron moulders:

Y) = 33.49, = 2.326, yx = 33.50 shillings per week.

Y2  = 9.120, a y = .529, ÿ2 = 9.20 pence per hour.

Y3 = 20.33, c y} = 1.464, ÿ3 = 20.33 shillings per week. 

x = 38.17, OT= 2.01 shillings per week.
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Correlations between control variables were p12 = .712, p13 = .176, p23 = .477 
Correlations between the study variable, %, and control variables were rxl= .54, 

r%2= -38, rx3 = .002
For all three control variables, R = .247, R3 = .354, J r /R-, -  .835 
For control variables y : and y2, R = .349, R2 -  .493, ¡̂R /R2 = -841 
For variable y ; only, R = .7048, Rj = .1, -JR/R^ = -842

Therefore ct„ = cr X X -  =
VÏ2 x/12

.488 for yl only (because a3 = a2 = ... = a12 and hence csa = 0].
This gives K =-.0316 and the “forecast” becomes x — K  ± c x= 38.21 ±.484, 

and the true value obtained from the census was 39.12. Bowley concluded:

“The difference between the forecast is 1.9 times the standard deviation for the 
error, which is greater than would be anticipated. But not much dependence can 
be placed on a sample based on only 12 districts, since the errors of the terms 
involving x are considerable.” (Bowley, ibid.)

Bowley also gave another example to estimate the number of males occupied in 
transport by road, in England and Wales, using as a control the proportion of the 
rural population to the whole population. He selected 12 Administrative Coun­
ties from a total of 61. In this case, the estimate was .0117 ± .0010 while the 
value calculated from the latest census was .0115. Bowley also drew a random 
sample of 12 counties and obtained an estimate .0097 ±.0010.

8.4.2.4 Stratification in purposive selection
The stratification in purposive selection as Bowley defined it becomes fairly 
complicated both to accomplish in practice and to analyze mathematically. 
Therefore, Bowley gives only a rough description on what it might be.

At the end of this section, Bowley concludes that “The advantage obtained 
by stratification, though it exists, may be expected to be slight. It depends on the 
non-rectilinearity of the regression between the control and the quantity sought 
in the divisions.” Divisions are the parts of the districts that are used to construct 
the strata.

8.4.2.5 Purposive selection vs. balanced sample
Bowley’s study on purposive selection in sampling is interesting in many re­
spects: It has similarities with the basic form of so-called balanced sampling; 
and there is some similarity to modern regression estimation. There is also some 
similarity with the method that Laplace applied in the estimation of the popula­
tion in France.

Royall and Herson (1973) defined a balanced sample as a sample that is a 
miniature of the original population. More specifically, they defined a balanced 
sample of order T as one for which the sample mean x of variable x 'was 
equal to its population mean x (,), for t = 1,2, Also, the authors noted that 
the notion of balanced sampling was in essence the purposive selection defined 
in the ISI report and the purposive selection used, e.g., by Gini and Galvani 
(1929). The basic idea is the same in both: a sample is made representative of

,  x . 8 3 5 = - ^ =  x 2.01 x . 835 = .484, or
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the population by purposive selection of sampling units. Balanced sample differs 
from Bowley’s purposive selection in what are regarded as sampling units. In bal­
anced sampling, they are single observations or measurements, but in Bowley’s 
purposive selection, they are aggregate values of ‘districts’ or clusters.

Bowley’s approach was probably enforced by practical matters. He knew that 
only aggregate-level information was available, and there was no sense in defin­
ing the purposive selection on an individual level. The selection of a purposive 
sample had not been possible using individual-level data, especially if there were 
several variables. The method of Royall and Herson requires a computer to carry 
out the selection of the sample. At Bowley’s time, the selection had to be done 
by hand. Even aggregate-level data produces problems. Gini and Galvani (1929) 
found it too difficult to select by hand a 15 percent purposive sample based on 
seven variables from 8,354 communes (see also Neyman 1934).

Jensen (1926) classified Kiaer’s Representative Method as an example of pur­
posive selection (in the sense Bowley defines it). Obviously that was a misunder­
standing. In a way, Kiaer can be said to use ‘control variables’, but they were not 
used in the selection of sampling units as in Bowley’s purposive selection. Kiaer’s 
‘control variables’ were used to assess the representative nature of obtained sam­
ple and in few cases for weighting the collected data. Kiaer’s sampling design 
was based on an intuitive application of the knowledge of the population that 
census data and common sense provided. That is the same method with which 
stratification is done even today.

8.5 Bowley's contribution 
to survey methodology

Although the main purpose of Bowley’s report to ISI was to create a mathemati­
cal apparatus for estimation in sample surveys, it also addresses more generally the 
problems in survey research. Already the presidential address in 1906 indicated 
that Bowley had insight into the practical issues of survey research. After that, 
Bowley carried out several surveys and thereby became aware of the more practi­
cal problems of surveys, especially the potential influence of non-sampling errors. 
The beginning of the report to the ISI shows how well he realized the problems.

"It is necessary to define exactly the population or "universe” in question. Only 
those populations can be treated in which there exists or can be made an adequate 
directory or list of members, every one of which is theoretically accessible to obser­
vation. The attribute or variable [of interest] must also be adequately defined.

It being decided, from considerations discussed below, how many persons or 
things should be observed, a number of them is selected at random in such a 
way that a priori every person or thing has equal chance of being selected. The 
universe, which is sampled, is in fact limited by this condition. If, for example, 
observations of children of school age were to made, the universe might be either 
children present on a certain day in state-supported schools, or in any schools, or 
children on the register of schools whether present or absent, or all children in the 
country between certain ages whether on school register or not. Which of these 
universes is in fact represented depends on the answers to the question: for which
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was it that we had or could make a list, and from which was it that we selected 
children at random, each with an equal chance of inclusion?”

"Minute precautions are necessary to ensure that the method of selection is com­
pletely uncorrelated with the presence of the attribute or the size of the variable.

The selection being made, every person or thing selected must be observed, if 
possible. Where observation is impossible or inaccurate the resulting unknown 
element must be retained and exposed in the final report.

Any breach of these conditions, however, slight, introduces an unknown ele­
ment of error in the result, and destroys the relevance of the formulae. It is natu­
rally to be understood that very small departures from the rule in large samples 
cannot have any great effects, but in general the magnitudes of the resulting errors 
cannot be estimated.”

"A common and very injurious departure from the rules is to ignore persons of 
things in which observation is difficult, e.g. when no one is present in selected 
house when the investigator calls. Another and even more obvious mistake is to 
define the universe loosely, and to be content with answers from people who hap­
pen to willing to give them.” (Bowley 1926)

Probably this citation was the first description of the practical problems in survey 
research, including non-sampling errors, but it could be part of a modern text on 
survey methodology. A noteworthy feature is that Bowley held acceptable only 
samples that were drawn from a sampling frame with adequate coverage of the 
population. A sample should be selected in such a manner that every unit has 
an equal chance of being selected and to collect data from all selected units, not 
only from those units that are willing or easy to observe.

8.6 Conclusions and Discussion

Bowley’s impact on the historical development of statistical science is indisput­
able, although his works are rarely mentioned in the modern statistical literature. 
His scientific achievements were twofold: the research concerning the statistical 
inference in finite populations was partly started by his contributions. It was 
Bowley who, for the first time, brought together survey sampling and statisti­
cal inference (see Smith 1976). He is the link between the tradition of social 
research and the application of probability theory.

As early as in 1906 in his presidential address to the British Economic Soci­
ety, Bowley had emphasised the importance of random selection. He believed 
(and probably had tried it experimentally) that the random selection of units 
would provide a sample that is a miniature of the ‘universe’, thus enabling a reli­
able estimation of population characteristics. In addition, he noted that random 
selection justified the application of the Central Limit Theorem and calculation 
of the standard error.

Bowley’s most significant publications deal with the problems of survey data 
collection and the inference from these data. Since Laplace, he seems to be the 
first one who explicitly and systematically treated the problems of statistical in
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inference for fixed populations. Bowley leaned extensively on Edgeworth's con­
tributions on the theory of probability, but his philosophy in statistical inference 
derives its origin from Laplace.

The theory for statistical inference Bowley created was based on the Laplace- 
Bayes paradigm, and obviously Bowley's memorandum was the last contribution 
of the kind. Bowley's adherence to the Laplace-Bayes paradigm may be the rea­
son why he has not been acknowledged in the modern statistical literature.

Nevertheless, Bowley was an outstanding statistician. First of all, he was a 
practicing statistician who carried out several economic and social sample sur­
veys in the UK on living conditions, wages and poverty, etc. thus partly starting 
the social survey tradition. This still has bearing on the work of modern national 
statistical institutes. Apart from the work on the theoretical basis of surveys, 
he was also an advocate of the survey method, both towards statisticians and 
towards social scientists.

Bowley played a decisive role in the history of survey sampling: he was one 
of those who persuaded the ISI to endorse Kiaer’s ideas in a resolution in 1903. 
Soon after Kiaer’s appearance at the ISI meetings, he started to elaborate on 
the merits of the Representative Method in the context of large-sample sur­
veys, both by conducting surveys in England and by developing a mathematical 
theory for sampling. Already in his presidential address in 1906, he expressed 
modern views on survey methods. The report to the ISI included central princi­
ples of survey undertaking in addition to formalism for statistical inference.

Bowley’s monographs were well known and often cited by Central European 
and Russian statisticians. His memorandum to the ISI was one of the reasons that a 
few years later led Jerzy Neyman to develop the modern mathematical theory for 
the Representative Method. Bowley was also a central figure in another respect: 
in the first quarter of the 20th century, he was the second in fame amongst statisti­
cians in England, after Karl Pearson. They were both faithful to the Laplace-Bayes 
paradigm. For both of them, the new ideas of Neyman and especially those of R.A. 
Fisher were difficult to accept (see Lehman 2008], Still, in 1935, in a speech to the 
Study Group of the Royal Statistical Society, Bowley sticks to the old paradigm in 
explaining the method to infer the population from the sample:

"The problem is strictly analogous to that of estimating the proportions of various 
colours of balls in a limited urn on the basis of one or more trial draws.” (Bowley 
1 9 3 6 ) .

The speech reveals that the only concession Bowley made to Fisher and Neyman 
was to use "population” instead of "universe”.
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■  9 Revolution in statistical inference
9.1 Introduction

In 1920s, a profound change took place in statistical science. The change was so 
profound that in the contemporary literature on the history of statistics, the time 
before it is briefly passed over or disregarded altogether. The change happened 
gradually in a decade when the new theories and methods emerged, became 
widely known and accepted.

At the end of 19th century, there were only vague ideas of statistical inference 
and the term did not exist within statistical science. Only few new contributions 
on inverse probability had appeared since Laplace and his ideas and methods 
were accepted throughout the statistical world. For example, well-known math­
ematicians and statisticians, such as Gauss, Quetelet, and Lexis, did not touch 
the topic. Poisson seems to be the only person who had an interest in develop­
ing Laplacian mathematics, but he mainly refined Laplace’s methods to a more 
mathematically manageable form and did not renew it.

In the beginning of the 20th century in the UK, the main focus in statistical 
science was on “Pearsonian” statistics. Karl Pearson was the dominant person 
within academic statistics and his research gave direction to the development 
of mathematical statistics. FFe founded the department of "Applied Statistics” 
at University College in 1911, which at that time was the only place where 
one could study for a degree in statistics. The “Pearsonian” statistics included 
the analysis of distributions and correlation, and statistical analysis meant fitting 
distributions to data and calculation of correlations. Also, regression analysis had 
emerged in the repertoire.

Arthur Bowley was another significant figure besides Karl Pearson, but Bow- 
ley understood statistics as comprising two interrelated dimensions: the arith­
metical and the mathematical. The former was concerned with statistical tech­
niques as they relate to the measurement, compilation, interpolation, tabulation, 
and plotting of data, as well as the construction of index numbers. The math­
ematical part was comprised of the application of probability theory to statistics, 
especially the application of probability theory to evaluate the errors associated 
with estimation. In probability theory, Bowley leaned on Edgeworth’s contribu­
tions to the law of error in the beginning of the 20th century (Edgeworth 1906, 
1907, 1908, and 1909).

Interest in the application of probability to statistics started to increase in 
the beginning of 1900s. An example of the growth is the contents of Bowley’s 
textbook “The Elements of Statistics”. In its first edition, published in 1901, the 
subject of “mathematical statistics” took up 74 pages. In the fifth edition, pub­
lished in 1925, the subject had expanded to 210 pages.

The prevailing idea of statistical inference was Laplace’s inverse probability 
principle, and its validity was not questioned. Using Kuhn’s terms, it was an era of 
normal science when the development takes place within a framework defined 
by the universally accepted postulates, values, and principles. There is no direct 
evidence of the existence of a paradigm, but it can be inferred indirectly from
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the texts of the leading mathematical statisticians of that time. For example, in 
1920, Karl Pearson described the “Fundamental problem of practical statistics”:

".. .The problem I refer to is that of 'inverse probabilities’ and in practical statis­
tics it takes the following form:

An 'event’ has occurred p times out of p + q = n trials, where we have no a priori 
knowledge of the frequency of the event in the total population of occurrences. 
What is the probability of its occurring r times in a further r + s = m trials?

In statistical language, a first sample of n shows p marked individuals, and we 
require a measure of the accordance which future samples are likely to give with 
this result. For example, a medical treatment is found to be successful in p out of 
n cases, we require some measure of the probable stability of this ratio. It is on 
this stability and its limits according to the size of the first sample that the whole 
practical doctrine of statistics, which is the theory of sampling, actually depends. 
We usually state the ’’probable errors’’ of results without visualising the strength 
or weakness of the logic behind them, and without generally realising that if the 
views of some authors be correct our superstructure is built, if not on a quick­
sand, at least in uncomfortable nearness to an abyss.” (Pearson 1920]

This problem is nearly the same, which Laplace presented in his Memoir on 
the Probability of the Causes of Events (see Chapter 4). Inference is seen as a 
method that is based on learning from experience. A key element in it was the 
assumption of the stability of statistical ratios. In this article, Pearson analyzed 
the inverse probability theory and pointed out that Laplace had made mistakes. 
Flowever, the article fostered the method and did not try to prove its founda­
tions (the paradigm) erroneous or to replace it by another theory.

In the early 1920s, Bowley was a professor of statistics at the London School 
of Economics. While Pearson was a famous biometrician, Bowley, like Edgeworth, 
was as much an econometrician as a statistician. Bowley also held great interest in 
social research and survey sampling. Another example of the customary thought 
model of that time is the following piece of text by Bowley in 1923:

“One of the inverse problems of statistics, that of estimating the value of frequen­
cies, averages, etc., in a universe from similar quantities measured in a sample, has 
again become prominent ... It must be freely admitted that no general solution 
is possible, that if we know nothing at all about the universe except what we 
learn from the sample then no «principle of indifference» can lead us to valid 
knowledge. The object of this note is to define certain conditions of preliminary 
knowledge under which inference can be made from the known to the relativity 
unknown. The method is that indicated by Professor Edgeworth in the «Journal 
of the Royal Statistical Society», 1908 circa p. 387. If we are concerned, to take 
an example, with the correlation coefficient and obtain r = .5 in a sample of 1000 
instances, we can readily calculate the chance that this value would be obtained 
if in the universe r = .4 or r =. 5 or any other assigned value; but we cannot add 
together these chances or proceed to any statement as to the chance that in the 
universe r was (e.g.) between .4 or .6, without some hypothesis about the distri­
bution of universes with respect to r, the hypothesis that every value from 0 to 
1 is equally probable is not only baseless, but also inconsistent with an equally 
plausible hypothesis that all values of arcsin r from 0 to 1 are equally probable. As 
is shown in the sequel, however, we are only in fact concerned with a small range 
of possible values of r (the smaller as n, the number of cases, increases), for values 
outside this range give negligible chances of obtaining the value of the sample. All 
we have to assume is that in a certain small range there is a continuous function 
representing the a priori chance of the occurrence of assigned values of r in the
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universe; then it is shown that the exact form of the function is indifferent and 
that it need not even be symmetrical. If F(r) is the function in question and the 
second and higher derived functions carry coefficients 1/n, the first derived func­
tion disappears on integration, and the function itself appears in numerator and in 
denominator and is cancelled.” (Bowley 1923)

This citation reveals the problem in statistical inference that statisticians were 
struggling with: to be able to estimate population parameters (which were not 
assumed constants), some information about the population, or "the universe”, 
would be needed. That was brought in by an assumed a priori distribution of 
the population parameter. Unlike Laplace, Bowley assumes that the principle of 
indifference (see Chapter 4) cannot lead to any valid knowledge.

9.2 Theory for statistical estimation

R.A. Fisher unexpectedly established a new theory of statistical estimation in 
two papers104 in 1922 and 1925, while he was working as a statistician at the 
Rothamsted Experimental Station (Fisher 1922 and 1925a). The theory of esti­
mation in the modern sense did not exist before Fisher’s contributions. The pa­
per published in 1922 included a great number of completely new ideas. Stigler 
(2005) regarded it as an astonishing piece of work because “It announces and 
sketches out a new science of statistics, with new definitions, a new conceptual 
framework and enough hard mathematical analysis to confirm the potential and 
richness of this new structure.” In hindsight after all these years, it is easy to see 
that this article was a watershed in the development of statistical science105.

104 Ronald Alymer Fisher (1890-1962) graduated in 1913 from Cambridge. After that, he 
taught mathematics and physics at several different schools but pursued research in both 
genetics and statistics and published his first major papers on these topics. He published 
his first paper already in 1912, before he had graduated. His scientific activity led first to a 
temporary statistical position in 1919 at Rothamsted Experiment Station and soon to a more 
permanent one (see Box 1978). Fisher remained a resident statistician in Rothamsted until 
1933. In 1933, after Karl Pearson’s retirement, Fisher was appointed as Galton Professor of 
Eugenics at the University College in London. Actually, Karl Pearson’s chair was divided in 
two: Egon Pearson was appointed to be professor of statistics and Fisher to be professor of 
eugenics. This was Fisher’s first academic position. Ten years later, in 1943, he was appointed 
to be Arthur Balfour Professor of Eugenics at the University of Cambridge, and he held that 
position until his retirement in 1957.

105 Fisher read the paper to the Royal Society already in the autumn of 1921, but it was pub­
lished in 1922. All of Fisher's ideas were not fully developed in 1921 when the paper was 
read to the Royal Society, but in the next paper, published in 1925, the ideas were more 
elaborated and established. Fisher was aware of the fact that all the proofs were not comple­
ted in 1921 and noted that ”... the number and variety of the new results which the method 
discloses press for publication”. Edwards (1997) points out that there was some vagueness in 
the concepts that Fisher used. The origin of the first paper is not completely known. Stigler 
(2005) claims that it is a genuine puzzle and concludes that at least one reason why Fisher 
wrote the paper was in reaction to Karl Pearson who did not publish Fisher’s comment on an 
article in Biometrika.
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In later papers, published in 1930s, Fisher presented his famous fiducial argu­
ment to replace inverse probability principle, together with a new mode of sta­
tistical inference, which he called inductive reasoning. These papers dealt with 
statistical inference for hypothetical populations but fiducial argument was also 
instrumental in the development of statistical inference for finite populations.

The purpose of Fisher’s 1922 paper was to analyze the theoretical founda­
tions of statistics because"... the basic principles of this organ of science are still 
in a state of obscurity, and it cannot be denied that, during the recent rapid de­
velopment of practical methods, fundamental problems have been ignored and 
fundamental paradoxes left unresolved.” This paper is the first serious attempt 
to formalize statistical estimation and hence to establish a theory of estimation 
in the modern sense. By doing this, Fisher sets the foundations for modern math­
ematical statistics. He did not treat statistical inference in this paper, except in 
criticizing inverse probability106. The paper is very long (59 pages] and so rich in 
content that it can only be covered here superficially.

Fisher begins the article with definitions of fifteen basic concepts of statistical 
science (such as centre of location, distribution, estimation, consistency, efficien­
cy, sufficiency, etc.) which he defines more accurately later in the paper. Many 
of the concepts are central to modern mathematical statistics but they had not 
been given a precise meaning before Fisher. Some were new statistical concepts 
for which he gave a precise meaning107. For a modern statistician, they belong to 
the arsenal as self-evident parts and they sound so commonplace that it is a bit 
surprising that they did not exist earlier. Fisher continues with the formulation 
of statistical problems:

"... the object of statistical methods is the reduction of data. A quantity of data, 
... , is to be replaced by relatively few quantities which shall adequately represent 
the whole, or which, in other words, shall contain as much as possible, ideally the 
whole, of the relevant information contained in the original data." (Fisher 1922)

Fisher recognized three types of problems that arise in the reduction of data:
1. Problems of Specification. These arise in the choice of the mathematical 

form of the population. In Fisher’s vocabulary, this means the distribution 
function.

2. Problems of Estimation. These involve the choice of methods for calculating 
from a sample statistical derivates, or statistics, which are designed to estima­
te the values of the parameters of the hypothetical population.

3. Problems of Distribution. These include discussions of the distribution of sta­
tistics derived from samples, or generally any functions of quantities whose 
distribution is known.

106 In the very beginning of the paper, Fisher sharply criticized Karl Pearson and Edgeworth be­
cause of their adherence to Bayes Theorem and especially because they had defended the use 
of a priori probabilities. Actually, it was slightly misleading because Pearson and Edgeworth 
worked from the Laplace-Bayes paradigm.

107 Hald (1998} noted that today we cannot discuss statistical theory without making use of 
Fisherian terminology.
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The concepts of “statistics” and “parameter” were completely new in statistical 
science108. These concepts appeared to be central components in the develop­
ment of estimation theory. Fisher contemplated reasons for why “the funda­
mental problems” were still unsolved: First of all, he argued that a distinction is 
seldom drawn between the sample and the population, and

"... in statistics a purely verbal confusion has hindered the distinct formulation of 
statistical problems; for it is customary to apply the same name, mean, standard 
deviation, correlation coefficient, etc., both to the true value which we should like 
to know, but can only estimate, and to the particular value at which we happen 
to arrive by our methods of estimation; so also in applying the term probable er­
ror, writers sometimes would appear to suggest that the former quantity, and not 
merely the latter, is subject to error.” (Fisher 1922)

Fisher suggested that this confusion had led to the survival of the “fundamental 
paradox of inverse probability, which like an impenetrable jungle arrests progress 
towards precision of statistical concepts”.

On several occasions Fisher expressed that another obstacle to the develop­
ment of statistics was the fact that statisticians dealt only with discrete distri­
butions, mostly binominal distribution, and their normal approximations. Stat­
isticians ended up with binominal distribution because of the frequent use a 
Bernoulli trial as their thought model (see Pearson 1920). Fisher clarified his 
point by saying:

“The concept of a discontinuous frequency distribution is merely an extension of 
that of a simple dichotomy, for though the number of classes into which the 
population is divided may be infinite, yet the frequency in each class bears a finite 
ratio to that of the whole population. In frequency curves, however, a second infin­
ity is introduced. No finite sample has a frequency curve: a finite sample may be 
represented by a histogram, or by a frequency polygon, which to the eye more 
and more resembles a curve, as the size of the sample is increased. To reach a true 
curve, not only would an infinite number of individuals have to be placed in each 
class, but the number of classes (arrays) into which the population is divided must 
be made infinite. Consequently, it should be clear that the concept of a frequency 
curve includes that of a hypothetical infinite population, distributed according to 
a mathematical law, represented by the curve. This law is specified by assigning 
to each element of the abscissa the corresponding element of probability. Thus, 
in the case of the normal distribution, the probability of an observation falling in 
the range dx, is

1
o >J2k

e
(x-m)2 

2 a 2

in which expression % is the value of the variate, while m, the mean, and a  the 
standard deviation, are the two parameters by which the hypothetical population 
is specified. If a sample of n be taken from such a population, the data comprise n 
independent facts. The statistical process of the reduction of these data is designed 
to extract from them all relevant information respecting the values of m and a, 
and to reject all other information as irrelevant." (Fisher 1922)

108 Stigler (2005) notes that in this paper of Fisher, the word “parameter” is the first time it was 
used in its current meaning in statistics. Stigler calculated that in this article, the words “para­
meter” or “parameters” appeared a total of 57 times.
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This citation shows Fisher’s central ideas in the field of applications of statis­
tical methods and how he perceived population and a sample from it: A popu­
lation is defined by a (continuous) distribution function, such as a normal dis­
tribution, but a finite population cannot have a frequency curve. Reduction of 
data is performed by interpreting the available observations as a sample from a 
hypothetical infinite population. This idea did not exist in the writings of other 
statisticians before Fisher.

Next, Fisher defined the well-known criteria of estimation: Consistency: A 
statistic109 satisfies the criterion of consistency if it is equal to the parameter 
when calculated from the whole population. Efficiency: the criterion is satisfied 
by those statistics that, in large samples, tend to normal distribution with the 
“least probable error”110. Sufficiency requires that the statistic summarises the 
whole of the relevant information supplied by the sample. For a sufficient statis­
tic, no other statistic that can be calculated from the same sample can provide 
any additional information as to the value of the parameter. Fisher continued 
by saying that a statistic that fulfils the criterion of sufficiency will also fulfil the 
criterion of efficiency.

9.3 Method of maximum likelihood

To solve problems of estimation, Fisher sought a method that, for each particu­
lar problem, would lead automatically to the statistic by which the criterion 
of sufficiency would be satisfied. He was anxious to publish his idea already in 
1922, although his work was not completed:

“Such a method is, I believe, provided by the Method of Maximum Likelihood, 
although I am not satisfied as to the mathematical rigour of any proof which I 
can put forward to that effect. ... For my part I should gladly have withheld the 
publication until a rigorously complete proof could have been formulated; but 
the number and variety of the new results which the method discloses press for 
publication . . . ” (Fisher 1922)

He wanted to communicate the idea to other statisticians already at that time, 
obviously in hope that it would catch their attention. If this was Fisher’s plan, it 
did not come off very well. His paper did not raise any noticeable discussion, and 
other statisticians of the time did not understand the ideas or even the terms in 
it. According to Stigler (2005), the 1922 paper remained almost unnoticed for 
many years.

Fisher (1922) defined the maximum likelihood method as follows:

"If any distribution involving unknown parameters G^G^Oj,... the chance of an 
observation falling in the range dx be presented by /(x,G|,62,63,...)dx, then the

109 Fisher coined the term “statistic” for a function of the sample, designated to estimate the value 
of a parameter. Consequently, Fisher also speaks about the sampling distribution of a statistic.

110 “Probable error” was a frequently used term in the beginning of the 20th century; it usually 
had the same meaning as “standard error” in modem terms.
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chance that in a sample of n, n} fall in the range dxt , n2 in the range dx2, and so 
on, will be

^ T }n {f(x,e„e2,e3>.. . )A j '

The method of maximum likelihood consists simply in choosing that set of values 
for the parameters which makes this quantity a maximum, and since in this expres­
sion the parameters are only involved in the function /, we have to make S(logf) a 
maximum for variations of 0,, 02, 03, ... In this form the method is applicable to 
the fitting population involving any number of variates, and equally to discontinu­
ous as to continuous distributions.” (Fisher 1922]

Hald [1999] argues that Fisher created the modem version of the method of 
maximum likelihood single-handedly between 1912 and 1922. In recent years, 
there has been a lot of research on the history of maximum likelihood and its 
origins (see, for example, the recent discussions by Edwards 1997, Aldrich 1997, 
and Edwards 1974). All the authors agree that the method of maximum like­
lihood occurs in various rudimentary forms before Fisher, but not under this 
name. Notably, to some extent this method is present also in Laplace’s ideas (see 
Chapter 4). Hald (1999) concluded that Fisher did not know these results when 
he wrote his first papers on maximum likelihood. In any case, Fisher put the 
principle on the place in statistics where it currently stands.

After defining the maximum likelihood principle, Fisher immediately ex­
plained the conceptual difference between inverse probability and likelihood, 
and concludes that the word “probability” is wrongly used in connection with 
inverse probability. Fisher defined probability as a ratio of frequencies. He said 
that it is not possible to know anything about the frequencies of values of the 
kind of events which are dealt with in the determination of inverse probability. 
He explained why he has chosen to use the word “likelihood”:

“We must return to the actual fact that one value of p, of the frequency of which 
we know nothing, would yield the observed result three times as frequently as 
would another value of p. If we need a word to characterise this relative property 
of different values of p, I suggest that we may speak without confusion of the like­
lihood of one value of p being thrice the likelihood of another, bearing always in 
mind that likelihood is not here used loosely as a synonym of probability, but sim­
ply to express the relative frequencies with which such values of the hypothetical 
quantity p would in fact yield the observed sample.” (Fisher 1922)

The solution for the calculation of estimates of parameters, put forward in the 
method of maximum likelihood, simply consists of choosing values of these pa­
rameters that have the maximum likelihood. Fisher explained that therefore it 
formally resembles the calculation of the mode of an inverse frequency distribu­
tion and noted that this resemblance is quite superficial:

“if the scale of measurement of the hypothetical quantity be altered, the mode [of 
distribution] must change its position, and can be brought to have any value, by an 
appropriate change of scale; but the optimum, as the position of maximum likeli­
hood may be called, is entirely unchanged by any such transformation.” (Fisher 
1922)

Fisher argued that scale invariance is a central criterion in the maximum likeli­
hood. In addition, a central difference between likelihood and probability is that
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likelihood is not a differential element and cannot be integrated. Fisher explained 
that there is an "absolute measure of probability” so that the elementary prob­
abilities add up to unity, but there is no such absolute measure of likelihood. The 
sum of the likelihoods of admissible values will always be infinite.

9.4 A new theory of statistical inference

The Laplace-Bayes paradigm in statistical inference was not markedly ques­
tioned before Fisher. This was not only the case in the UK, but also in continen­
tal Europe and in Russia. In 1936, Fisher described the situation in Great Britain 
a few years earlier in the following way:

" . . .  In the latter half of the nineteenth century the theory of inverse probability 
was rejected more decisively [than Boole] by Venn and by Chrystal, but so reten­
tive is the tradition of mathematical teaching that I may myself say that I learned 
it at school as an integral part of the subject, and for some years saw no reason 
to question its validity. Mathematicians were averse from abandoning a theory, 
which often led to plausible conclusions, and, above all, which they had nothing 
to replace. Its acceptance as orthodox effectively concealed from majority the fact 
that, not a mere restatement in more accurate terms, but a fundamentally new 
approach, was required. As late as 1908 we find Edgeworth, vague but definitely 
defensive: 'I submit that very generally we are justified in assuming an equal dis­
tribution of a priori probabilities over that tract of the measurable with which we 
are here concerned’ . . .  to take another example, should Karl Pearson, a few years 
later (1920) put forward what he, and I believe he alone, regarded as a proof of the 
disputed axiom. Such stubborn unwillingness to abandon a false position, to admit 
ignorance, and to start again, can only be due to mathematicians having so seldom 
experience of situation which call for an orderly retreat!” (Fisher 1936, p. 248)

Inverse probability had been part of Fisher’s training, but his critical stand on it 
had emerged fairly early in his career. In the paper of 1925, he wrote:

”... I must indeed plead guilty in my original statement of the Method of Maxi­
mum Likelihood [Fisher 1912] to having based my argument upon the principle 
of inverse probability; in the same paper, it is true, I emphasized the fact that such 
inverse probabilities were relative only.” (Fisher 1925a)

Fisher argued that Bayes made the first attempt to rationalize the process of in­
ductive reasoning. Fisher seemed to appreciate Bayes’ ideas and the attempt to 
formulate the method, although he considered it as faulty111. Fisher said:

"Bayes perceived the fundamental importance of this problem and framed an 
axiom, which, if its truth were granted, would suffice to bring this large class of 
inductive inferences within the domain of the theory of probability; so that, after 
a sample had been observed, statements about the population could be made, un-

111 In his characteristic style of expressing his views, Fisher said that he appreciated Bayes and 
considered him as one of the greatest scientists -  because he never published his paper.

"There is one point for which Bayes is seldom given enough credit. He had doubts as to the 
necessary truth of his axiom. So serious were these doubts that he withheld his entire treatise 
from publication...”
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certain inferences, indeed, but having the well-defined type of uncertainty char­
acteristic of statements of probability. Bayes’ technique in this feat is ingenious. 
... His problem was: given a particular kind of sample, to state with what prob­
ability a particular type of population might have given rise to it. He imagines, 
in effect, that the possible types of population have themselves been drawn, as 
samples, from a superpopulation, and his axiom defines this superpopulation with 
exactitude. His problem thus becomes a purely deductive one to which familiar 
methods were applicable.” (Fisher 1936)

Fisher had studied Bayes’ procedure with care, but when compared to the origi­
nal Bayes’ text (see Chapter 3), the original is not immediately recognizable in 
Fisher’s interpretation. An interesting point is that he does not refer to Bayes’ 
procedure as an example of inverse probability. On the contrary, he says, “In 
a less obtrusive form the same species of arbitrary assumption underlies the 
method known as that of inverse probability”.

Fisher gave practically no credit to Laplace for any of his contributions to 
statistical science. Already in his first papers on estimation (Fisher 1922), Fisher 
launched attacks on Laplace’s theory of inverse probability, claiming that it was 
the greatest fallacy in modern science. Only rarely did Fisher refer to Laplace, 
but when he did, it was almost always critical. The critique on the principle of 
inverse probability is in some way present in many of Fisher’s writings starting in 
1920s; and still in 1960s he touches it. The first explicit attack on inverse prob­
ability and Fisher's own method for statistical inference appeared only in 1930.

In 1930, Fisher described inverse probability as follows [cp(x,0,, 02, 03,...) is 
the distribution from which % is a random sample]:

“Suppose that we know that the population from which our observations were 
drawn had itself been drawn at random from a superpopulation of known speci­
fication: that is, suppose that we have a  priori knowledge that the probability 
that [parameters] 01; 02, 03,... shall lie in any defined infinitesimal range dQ1, dQ2, 
dQ3,... is given by

dF=  T (0„ 02, 03,...)cfe„ dQ2, dQj,...

then the probability of the successive events (a) drawing from the superpopula­
tion a population with parameters having the particular values 01; 02, 03,... and 
(b) drawing from such a population the sample values x}, x2, %3, ... will have a 
joint probability

4'(e„e2,e3,...)de1,de; ,cf93,..x rX(cP(Jrp,e1,e2,e3,.. ■ )dxp'j
p=i

If we integrate this over all possible values of 0,, 02, 03,... and divide the original 
expression by the integral we shall then have a perfectly definite value for the 
probability (in view of the observed sample and of our a priori knowledge) that 
0], 02, 03,... shall lie in any assigned limits.” (Fisher 1930)

Strictly speaking, this is not the traditional inverse probability, as Fisher also noted.
Fisher criticizes several characteristics of the inverse probability principle, 

most notably the concept of probability in it, sampling from a superpopulation, 
and a  priori probabilities.
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9.4.1 The meaning of probability

Fisher did not accept that the notion of probability in "inverse probability” would 
be conceptually equivalent to that in “direct probability”. He explained the dif­
ference by describing the difference between likelihood (Fisher’s counterpart 
for inverse probability) and probability:

"... while we might speak of one value p as having an inverse probability three 
times that of another value of p, we might on no account introduce the differen­
tial element dp, so as to be able to say that it was three times as probable that p 
would lie in one rather than the other of two equal elements. ...probability is a 
ratio of frequencies, and about frequencies of such values we can know nothing 
whatever ... one value ofp, of the frequency of which we know nothing, would 
yield the observed result three times as frequency as would another value of p. 
If we need a word to characterize this relative property of different values of p, 
I suggest that we may speak without confusion of the likelihood of one p being 
thrice the likelihood of another, bearing always in mind that likelihood is not 
here used loosely as a synonym of probability, but simply to express the relative 
frequencies with which such values of the hypothetical quantity p would in fact 
yield the observed sample.” (Fisher 1922)

A few years later in 1922, Fisher explained the conceptual discrepancy in de­
scribing the difference between probability and likelihood as follows:

"If A  and B are mutually exclusive possibilities the probability of “A  or B "  is the 
sum of the probabilities of A  and of B, but the likelihood of A  or B  means no 
more than "the stature of Jackson or Johnson”; you do not know what it is until 
you know which is meant. I stress this because in spite of the emphasis that I have 
always laid upon the difference between probability and likelihood there is still a 
tendency to treat likelihood as though it were a sort of probability.

The first result is thus that there are two different measures of rational belief ap­
propriate to different cases. Knowing the population we can express our incomplete 
knowledge of, or expectation of, the sample in terms of probability; knowing the 
sample we can express our incomplete knowledge of the population in terms of 
likelihood. We can state the relative likelihood that an unknown correlation is + 0.6, 
but not the probability that it lies in the range 0.595 -  0.605.” (Fisher 1930)

Fisher defined probability and likelihood as two different numerical measures 
of our rational beliefs, which are appropriate in different situations. On several 
occasions, he emphasized that likelihoods do not obey the rules of probability 
calculus.

9.4.2 Superpopulation and a priori probability
Fisher introduced the word “population” to replace "universe” and gave it a new 
definition. Statisticians at that time perceived “a universe” as a set of distinct 
units, which possessed attributes, or “values of magnitudes”. Fisher defined the 
population to be hypothetical and infinite, "the resultant of the conditions we 
are studying”. That means that the population was defined only through rules 
and distributions. Fisher defined the object of statistical methods to be the re­
duction of data, and to accomplish this, a statistician must construct a hypo­
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thetical infinite population of which the actual data are regarded as constituting 
a random sample. This definition of population sets a different framework or 
thought model for inference. Fisher defined the parameters of a population to 
be constants.

Before Fisher, the observable “universes” were implicitly supposed to be sam­
ples, or realizations, of a superpopulation. The superpopulation was supposed to 
be constantly changing, like the real universe. This led to the model of estima­
tion, “probability that P is the proportion in the universe and that then p should 
be found in the random sample from the universe”. The changing universe was 
described by a distribution of the parameters.

The difference between these two conceptions of population may seem 
slight, but conceptually it was a significant opening and gave a completely new 
perspective to statistical inference: there was no need to refer to the a priori 
probability of the population parameter anymore. In Fisher’s approach, a priori 
probability is not feasible at all.

Fisher argues that the different structure of population and the nature of 
distributions it induces had hindered the earlier mathematicians form observing 
the possibilities of statistical inference. Fie described the problem in the follow­
ing manner:

"This form of argument leads in certain cases to rigorous probability statements 
about the unknown parameters of the population from which the observational 
data are a random sample, without the assumption of any knowledge respecting 
their probability distributions a priori. For such a deduction we need to know the 
exact sampling distributions of statistical estimates, calculable from the observa­
tions only, of the unknown parameters, and these distributions must be continu­
ous. It was probably these restrictions which stood in the way of the recognition, 
by the early writers on probability, of a form of argument having both theoretical 
interest and practical value; for the problems of distributions of which they pos­
sessed the exact solutions were nearly all discontinuous, being, like the binomial 
expansion, and the many similar generating functions given by Laplace, distribu­
tions of frequencies, rather than of continuously variable measurement, or func­
tions calculated from these.” (Fisher 1935a)

9.4.3 Fiducial argument

Fisher called his substitute for inverse probability a fiducial probability that he 
derived from his fiducial argument. He first described it in 1930, in the follow­
ing words:

"In many cases the random sampling distribution of a statistic, T, calculable di­
rectly from the observations, is expressible solely in terms of a single parameter, 
of which T is the estimate found by the method of maximum likelihood. If T is a 
statistic of continuous variation, and P the probability that T should be less than 
any specified value, we have then a relation of the form

P = P(T,0j

If now we give to P any particular value such as .95, we have a relationship be­
tween the statistic T and the parameter 0, such that T is the 95 per cent value 
corresponding to a given 0, and this relationship implies the perfectly objective
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fact that in 5 per cent, of samples T will exceed the 95 per cent value correspond­
ing to the actual value of 0 in the population from which it is drawn. To any value 
of T there will moreover be usually a particular value of 0 to which it bears this 
relationship; we may call this the "fiducial 5 per cent, value of 0” corresponding 
to a given T. If, as usually if not always happens, T increases with 0 for all possible 
values, we may express the relationship by saying that the true value of 0 will be 
less than the fiducial 5 per cent, value corresponding to the observed value of T 
in exactly 5 trials in 100. By constructing a table of corresponding values, we may 
know as soon as T is calculated, what is the fiducial 5 per cent, value of 0, and that 
the true value of 0 will be less than this value in just 5 per cent, of trials. This then 
is a definite, probability statement about the unknown parameter 0, which is true 
irrespective of any assumption as to its a priori distribution.” (Fisher 1930)

Also implicit in the description was a new thought model for inference, i.e., re­
peated sampling from the same distribution (or population). Probably the most 
illustrative description of Fisher’s fiducial argument can be found in a paper 
he wrote in 1935 (Fisher 1935a), partly as a reaction to Neyman’s paper of 
1934112:

"In a series of papers from 1930, the author has called attention to a form of argu­
ment, which seems to have been entirely overlooked by the classical writers of 
probability, but which arises naturally from the exact tests of significance, when 
the variate is tabulated in terms of the probability. This form of argument leads 
in certain cases to rigorous probability statements about the unknown parameters 
of the population from which the observational data are a random sample, with­
out the assumption of any knowledge respecting their probability distributions a 
priori.”

"If a sample of n observations, x]t ... ,x n, has been drawn from a normal popula­
tion having a mean value p and if the sample we calculate two statistics 5c and s2. 
"Student” (1925) has shown that the quantity t, defined by equation 
is distributed in different samples in a distribution dependent only from the size 
of the sample, n. It is possible, therefore, to calculate for each value of n, what the 
value of t will be exceeded with any assigned frequency, P, such as 1 per cent, or 
5 per cent. ...

It must now be noticed that t is a continuous function of the unknown param­
eter, the mean, together with observable values 5c , s, and n, only. Consequently 
the inequality

t > tj

is equivalent to the inequality 

p < 5c -  si, / yfn

so that the last inequality must be satisfied with the same probability as the first.

Since the right-hand side of the inequality takes, by varying t}, all real values, we 
may state that probability that p is less than any assigned value, or the probability 
that it lies between any assigned value, or, in short, its probability distribution, in 
the light of the sample observed.” (Fisher 1935a)

Fisher called the derived probability fiducial “to distinguish it from any of the 
inverse probability distributions derivable from the same data”. In several occa-

112 Fisher prepared this paper because he thought that Neyman had not completely understood 
his fiducial argument and had applied it in an incorrect manner.
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sions, he explained the difference between fiducial and inverse probabilities. For 
example,

“The inverse probability distribution would specify the frequency with which ji 
would lie in any assigned range dp, by absolute statement, true of the aggregate 
of cases in which the observed sample yielded the particular statistics x  and s. 
This can be found by Bayes’ procedure, if the prior distribution of p is known. The 
distribution we have obtained [fiducial probability distribution] is independent 
of all prior knowledge of the distribution of p, and is true of the aggregates of all 
samples without selection. It involves x and s as parameters, but does not apply 
to any special selection of these quantities.” (Fisher 1935a]

The central idea in the fiducial argument was that pivotal quantities permit­
ted the derivation of probability statements concerning an unknown parameter 
independent of any assumption concerning its a priori distribution. The idea 
behind the fiducial argument was not new. Simpson had already presented it 
in 1755 and Lambert presented it in 1760 (see Stigler 1986]. Fisher coined 
the term in statistics, however. It was borrowed from astronomy where fiducial 
point meant a fixed point. If e represents the error, O the observation, and P the 
point to be observed, then the equation O = P + e can also be written P = O -  e. 
In the fiducial argument, the symmetrical difference, or the error, e = O -  P is 
treated as randomly distributed.

The meaning and interpretation of the fiducial argument and fiducial prob­
ability has give rise to wide scientific debate that is still continuing. The vast 
amount of papers seeking to find the correct interpretation indicates that its 
basic idea is not crystal clear. Some authors even consider fiducial inference as 
Fisher’s one great failure (see Zabell 1992]. Nevertheless, the fiducial argument 
was the central tool for Neyman leading to his theory of confidence intervals 
(see Chapter 10].

9.4.4 Design of experiments
Fisher’s contribution to experimental design is considered to be among his most 
important contributions to statistical science113. Mahalanobis (1939, p. 271] 
noted that “the Fisherian technique was something in the nature of a revolution, 
which altered the subsequent course of agricultural experiments throughout 
the world.” For experimental design, Fisher also introduced the principles of 
randomization and replication. Replication is the main source of the estimate of 
error, while randomization ensures that the estimate will be unbiased. Although 
these are essential in experimental research, indirectly these principles also had 
bearing on the inference for finite populations.

One of the sources for the ideas in survey sampling originates from agricul­
tural research. That was also one of Kiaer’s (1895) rationales when he intro­
duced the Representative Method. Aside from data collection, Fisher's princi­
ples of experimental design pointed out the importance of randomization for

113 Fisher's work on experimental design is summarized in his book, The D esign o f  Experim ents 
(Fisher 193 5b). This was foreshadowed in his earlier book, S tatistica l M ethods fo r  Research  
W orkers (Fisher 1925b), in which he presented hypothesis testing and analysis of variance.
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statistical inference. In addition, the replication in experiments is a kindred idea 
with drawing repeated samples from the same population.

Some of the most important developers of sampling theory worked on ag­
ricultural research at the Rothamsted Agricultural Station. Rothamsted Station 
and Fisher’s work there were taken as examples when a statistical laboratory in 
Iowa State University was established (see Chapter 12}.

9.5 Reception of Fisher's inference model

It is well known that Karl Pearson had a long dispute with Fisher, which started 
almost in the beginning of Fisher’s career. It has been claimed that some of 
Fisher’s most important contributions were corrections to Pearson’s work (see 
Stigler 2005). The dispute began already in 1917, and it was bad enough to 
have Fisher turn down the post of Chief Statistician at the Galton Laboratory in 
1919 since that would have meant working under Pearson (Box 1978). Pearson 
also claimed that Fisher had done a disservice to statistics by widely publishing 
erroneous results. The Royal Statistical Society then refused to publish Fisher’s 
papers and he resigned from the Society in protest.

There was also tension between Bowley and Fisher, although Bowley was 
a professor of statistics and Fisher was a young statistician at the Rothamstead 
Experimental Station. Obviously, there existed disagreements partly because of 
Fisher’s view of economic and social statistics, which Bowley represented. In his 
1925 book, Fisher clarified his view:

"Statistical methods are essential to social studies, and it is principally by the aid 
of such methods that these studies may be raised to the rank of sciences. This 
particular dependence of social studies upon statistical methods has led to the 
unfortunate misapprehension that statistics is to be regarded as a branch of eco­
nomics, whereas in truth methods adequate to the treatment of economic data, in 
so far as these exist, have mostly been developed in the study of biology and the 
other sciences.” (Fisher 1925b, p. 2)

The tension between the different views on statistical science in the UK sur­
faced during Fisher’s presentation to the Royal Statistical Society in 1934 when 
he read a paper entitled “The Logic of Inductive Inference” (Fisher 1935a). In that 
paper, Fisher attempted to explain his published work since his 1922 paper 
by reformulating the problem of statistical induction. The presentation was an 
outline of his contributions and contained only a few novel items. One point 
Fisher wanted to make in the 1935 paper was the inductive nature of statistical 
inference. Fisher suspected that the mathematicians were trained mainly in the 
technique of deductive reasoning and therefore were not capable of inductive 
reasoning.

"... it would not be surprising or exceptional to find mathematicians of this class 
ready to deny at first sight that rigorous inferences from particular to the general 
were even possible.” (Fisher 1935a)
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The content of this paper is not particularly interesting, but the discussion to 
which it gave rise is interesting114. The prominent members of the “old guard” 
statisticians were invited to participate in the discussion. In the beginning of 
the discussion, Bowley was assigned to move the traditional vote of thanks and 
open the discussion. After some more or less hesitant thanks for Fisher" . . .  not 
so much for the paper.. .as for his contributions to statistics in general”, he went 
on to belittle Fisher’s new approach to statistical inference based on the likeli­
hood function.

"The essence of the method of 'likelihood’, and its relation to earlier ways of 
approaching the problem of estimating properties of a universe from those of 
a sample, can be sufficiently appreciated by all those interested by studying Dr. 
Neyman’s paper and the discussion on it in the last Journal. Both methods have 
their importance; the newer one, I think, in choosing the best arrangement of ex­
perimental work. Dr. Neyman says that ’if all we need consists in the chance that, 
in the universe which we are sampling, the proportion is within given limits, we 
certainly cannot go any further than is already known’ [p. 624). He also says, ‘we 
are interested in the probability of committing an error when applying constantly 
a certain rule of behaviour’ [p. 624). But Professor Fisher claims [p. 40) that ‘a 
mathematical quantity of a different kind, which I have termed mathematical 
likelihood, appears to take its place as a measure of rational belief when we are 
reasoning from the sample to the population.’ And in an earlier place (p. 562) Dr. 
Neyman said that an approach to problems of this type, where the population is 
not known a priori, ‘removes the difficulties involved in the lack of knowledge of 
the a priori law.’ ‘It is superfluous to make any appeals to Bayes' theorem.’

We are therefore left very much where we were, and I must confess that the 
new method appears to me to tell us only one-half of what we really need, for 
that is to determine ‘the chance that in the universe, which we are sampling, the 
proportion is within given limits.’ That seems to me the fundamental problem; 
but I had hoped that this subject would not have come up for discussion again 
to-day.” [Fisher 1935a, p.55)

Bowley describes Fisher’s paper as abstruse, arbitrary, and misleading. His com­
ments were predominantly sarcastic and discourteous -  even childish -  and last­
ly, he accused Fisher of giving insufficient credit to Edgeworth [Fisher 1935a, pp. 
55-57). The last comment he made clearly illustrates the difficulty Bowley had 
in trying to understand Fisher’s ideas on the basis of the Laplace-Bayes theory:

“Finally, I should wish everyone to consider the 'claim that mathematical likeli­
hood supplies a measure of rational belief.’ If, in fact, we knew nothing about a 
universe except that the variance measured in a particular way corresponded to 
a certain point on the normal curve of error, should we have any grounds for any 
rational belief, let alone a measurement of it.’ [Fisher 1935a, p. 57)

The rest of the old guard statisticians continued giving more pertinent com­
ments and remarks: first Isserlis, then Irwin and the philosopher Wolf, who was 
brought in by Bowley obviously to undermine Fisher’s philosophical discussion

114 As for the background for the discussion, one should bear in mind that a few months earlier, 
Neyman had read his famous paper to the Royal Statistical Society, meriting Fisher’s devel­
opments for statistical inference [see Chapter 10). Another point to remember is that many 
years earlier, Fisher’s 1925 book, S tatistica l M ethods fo r  R esearch  Workers, had made him 
famous worldwide, but it obviously was overlooked by the academic circles in the UK.
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on induction. Characteristic to these was that no one had really understood 
Fisher's approach. In addition, Jeffreys complained about Fisher’s criticisms of 
the Bayesian approach (ibid., pp. 70-72].

The younger statisticians, Egon Pearson, Neyman, and to some extent Bartlett, 
came to Fisher’s support. Pearson argued that: “When these ideas [on statistical in­
duction] were fully understood . . .  it would be realized that statistical science owed 
a very great deal to the stimulus Professor Fisher had provided in many directions.” 
Neyman was equally supportive, praising Fisher’s path-breaking contributions, and 
explaining Bowley’s reaction to Fisher’s critical review of the traditional view of 
statistics as an understandable attachment to old ideas (ibid., p. 73).

Fisher, in his reply, was equally blunt and contemptuous of Bowley and the 
old guard:

"The acerbity, to use no stronger term, with which the customary vote of thanks 
has been moved and seconded, strange as it must seem to visitors not familiar 
with our Society, does not, I confess, surprise me. From the fact that thirteen years 
have elapsed between the publication, by the Royal Society, of my first rough 
outline of the developments, which are the subjects of to-day’s discussion, and 
the occurrence of that discussion itself, it is a fair inference that some at least of 
the Society’s authorities on matters theoretical viewed these developments with 
disfavour, and admitted them with reluctance. The choice of order in speaking 
which puzzles Professor Bowley, seems to me admirably suited to give a cumula­
tive impression of diminishing animosity, an impression which I should be glad to 
see extrapolated.

In his fourth paragraph Professor Bowley provides a medley of remarkably dis­
connected quotations, and of this I need only say that he is mistaken in thinking 
that Dr. Neyman’s paper was based on the use of likelihood, or discussed the 
same topics as that which he had just heard. However true it may be that Profes­
sor Bowley is left very much where he was, the quotations show at least that Dr. 
Neyman and myself have not been left in his company.

For the rest, I find that Professor Bowley is offended with me for ‘introducing 
misleading ideas.’ He does not, however, find it necessary to demonstrate that any 
such idea is, in fact, misleading. It must be inferred that my real crime, in the eyes 
of his academic eminence, must be that o f ‘introducing ideas’.” (ibid., pp. 76-82)

In a way, Fisher’s sarcastic reference to “his academic eminence” was understand­
able. Bowley had a long career in academia and was awarded with almost all 
the honours that a statistician could receive in Britain. He became a member 
of the Council of the Royal Statistical Society as early as 1898, served as its 
Vice-President in 1907-8 and in 1912-14, and President in 1938-40. He was 
awarded the Society’s highest honour, the Guy Medal in gold, in 1935; he had 
received the Guy in silver as early as 1895. In contrast, Fisher did not associate 
much with the academic statisticians in Britain and had no academic position 
until 1933. Even then, it was granted to him with the condition that he would 
not teach statistics from his position of Professor of Eugenics at University Col­
lege (see Box 1978).

The situation described above indicates that Fisher set off an intellectually 
violent revolution within statistical science. Typically, Fisher came from outside 
the academic establishment and created a totally new approach to statistical 
problems. The old guard in the UK did not understand the ideas in Fisher’s infer­
ence theory and did not accept it (see Lehman 2008).
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9.6 Discussion
There is no doubt that Fisher pioneered a recasting of statistics, moving away 
from the reliance on large sample approximations and on inverse probability, 
which was the approach of [e.g.] Karl Pearson and Bowley. Pearson used large 
samples which he measured and tried to deduce correlations. Fisher, on the oth­
er hand, focused on the use of small samples and finding causes by designing 
experiments rather than deducing correlations. For this purpose, Fisher in 1925 
(in Statistical Methods for Research Worker] introduced significance tests and an 
analysis of variance and provided tables for t- and z-distributions.

Modern mathematical statistics started from the contributions of Fisher and 
it is inherently different that the “Pearsonian” statistics which dominated statisti­
cal science. Karl Pearson was the dominant person within academic statistics and 
his research gave direction to the development of mathematical statistics. He 
founded the department of “Applied Statistics” at University College, which at 
that time was the only place where one could study for a degree in statistics115. 
The “Pearsonian” statistics included the analysis of distributions and correlation, 
and statistical analysis meant fitting distributions to data and calculation of cor­
relations. Also, regression analysis was in the repertoire. Fisher’s contributions 
thoroughly changed the fields of interest in statistical science.

Statistical inference as a branch of statistics science started from Fisher’s con­
tributions in the 1920s and 1930s and the “old guard” did not contribute to it. 
Statistical estimation and statistical inference in the modern sense did not exist 
before Fisher. Statistical inference existed only in the form of inverse probability 
or inverse inference, but it was based on the conceptually different approach of 
the Laplace-Bayes paradigm.

Fisher’s inference model was based on fiducial probabilities and sampling 
distributions. This was partly inspired by Gosset’s (Student 1908) derivation of 
Student’s f-distribution for a given sample size n. In Gosset’s method, sample 
sizes were assumed to be small so that the large sample theory could not be 
applied. Fisher made the new basis of statistical science explicit in his 1922 
paper in which he created estimation theory and sharply criticized the inverse 
probability approach. By doing this, Fisher put statistical science on a totally 
new track. In current terminology, all Fisher’s precursors, including Gosset, were 
“Bayesians”. However, a more accurate description would be “Laplacians”.

Jerzy Neyman adopted Fisher’s fiducial argument as the basic element when 
he constructed his confidence intervals in the 1930s (see Chapter 10). Thus, 
Fisher had an important role in the development of inference methods for finite 
populations, although he did not contribute directly to it.

Fisher worked nearly all of his most productive years at the Rothamsted 
Experimental Station. There he wrote the papers in which he established the 
theory of estimation and set the principles of estimation and the criteria for 
estimates. He also created the theory for experimental design, introduced sig-

115 In 1919, Fisher was offered a post in the Galton’s laboratory which was closely linked with 
the Department of Applied Statistics but Fisher refused the appointment because he recog­
nized that nothing would be taught or published without Pearson’s approval (Box 1978).
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nificance tests, and eventually set up a new paradigm of statistical inference. 
Characteristic to Fisher's work as a statistician was that he developed the theory 
to meet the needs of scientific work in the real sciences.

Fisher had a great interest in epistemic questions starting from his first con­
tributions. On several occasions, he said that the problems of statistical inference 
are more connected to the logic of scientific conclusions than to mathemat­
ics. Most of his publications support this argument, and even the disagreement 
Fisher had with Neyman was partly due to the difference between the two 
approaches to scientific induction (Fisher’s inductive reasoning vs. Neyman’s 
inductive behaviour).

The new paradigm that Fisher eventually started enabled the later develop­
ment of modern statistical inference for both hypothetical and finite popula­
tions. The change in statistical science that Fisher set forth may be compared 
to the one Albert Einstein a few years earlier had done to Newtonian physics 
(Einstein’s theory replaced Newton’s theory, and Fisher’s theory replaced La­
place’s theory), Hald (2007) regarded Fisher’s 1922 paper as revolutionary and 
it initiated the latest revolution in parametric statistical inference. In addition, 
Mahalanobis (1939), speaking of experimental design, noted that

"... Fisher’s techniques are something in the nature of a revolution and alter the
subsequent course of agricultural experiments throughout the world.”

One of Kuhn’s arguments was that the “old guard” scientists are so deeply indoc­
trinated to the prevailing paradigm that they are not capable of throwing it out. 
The discussion after Fisher’s presentation in the meeting of the Royal Statistical 
Society is an indication of this unwillingness. According to Kuhn, the training 
of new scientists aims at teaching the paradigm so that they would continue 
to foster the established tradition. From the very beginning, new scientists are 
indoctrinated to further develop the science with accepted methods and ac­
cepted aims. Only young scientists who are not yet so deeply indoctrinated into 
accepted theories, such as Newton and Einstein were in physics, can manage to 
sweep away an old paradigm (Kuhn 1962).

There are obvious similarities in the careers of Einstein and Fisher. Einstein 
was unable to find a teaching post after graduation in 1901 and therefore accept­
ed a position as technical assistant in the Swiss Patent Office. During his stay at 
the Patent Office, in his spare time he produced much of his outstanding work. 
Only in 1908 was he appointed to his first academic position in Bern. Fisher also 
worked for many years outside the academic circles. He was appointed to his 
first academic position after he had made his most significant contributions to 
statistical science.
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10 Statistical inference 
for finite population

10.1 Introduction

It is commonly held that Jerzy Neyman116 in the 1930s set the foundations of 
the current mode of the statistical inference for finite populations, while work­
ing at the University College in London. Neyman was not trained in England, 
however. He obtained his education first in Russia, in the city of Kharkov, and 
after that in Poland. While studying at Kharkov, Neyman’s teacher was S.N. 
Bernstein117, who introduced him to Karl Pearson’s Grammar of Science. Later 
Neyman has said that this influenced his development considerably, although it 
did not coincide with his main interests during his early career.

In 1925, while he stayed in Warsaw, Neyman got a government grant to study 
for a year in London with Karl Pearson in his laboratory. In London, Neyman be­
gan the long-lasting collaboration with Karl Pearson’s son, Egon Pearson. Before 
his arrival in London, Neyman had sent some of his statistical publications to 
Karl Pearson, including two papers on statistical methods in agricultural experi­
mentation. Pearson suggested that Neyman republish part of the second paper 
in Biometrika (Splawa-Neyman 1925}.

After the visit to London, Neyman returned to Poland, holding different 
teaching positions. Egon Pearson sent him material from England so that Ney­
man was all the time aware of what was going on in statistical science. In 1934, 
Neyman moved to England to join Egon Pearson at the University College, 
where he got a permanent position as a senior lecturer and later as a reader.

Fienberg andTanur [1966) concluded that until his 27th birthday, Neyman 
had lived in isolation from western influence in his social life. On the other hand, 
it is not known how much “western influence” existed in the universities of Rus-

116 Jerzy Neyman (1894-1981) was bom in Bendery, which was in southeast Poland at the time. 
(Neyman’s father was Czezlaw Splawa-Neyman, whose name Jerzy Neyman used during 
his early years.) In 1912, he entered the University of Kharkov (later named Maxim Gorki 
University) in southwest Russia at that time to study mathematics. After finishing his under­
graduate studies in 1917, Neyman remained at the University of Kharkov and was appointed 
to be lecturer at the Kharkov Institute of Technology. In 1920, he passed the examination for 
a Master’s degree and became a lecturer at the university. In 1921, he moved to Bydgoszcz in 
northern Poland and started to work as a “senior statistical assistant” at the National Agricul­
tural Institute. While working there, he wrote his first two scientific papers, which dealt with 
statistical methods in agricultural experimentation. The papers were published in 1923 in Po­
lish, but both papers were also later published in English (Splawa-Neyman 1923 [ 1990], and 
1925). In 1924, Neyman obtained his doctor’s degree from the University ofWarsaw, using 
the work done in Bydgoszcz as his thesis.

117 Sergei Bernstein (1880-1968) was a Russian mathematician and statistician. After graduating 
from high school, he went to Paris where he studied at Sorbonne and at École d’Electrotech­
nique Supérieure. After he had returned to Russia, he taught at Kharkov University for 25 
years, beginning in 1907. His main interest was in elliptic functions, but some of Bernstein’s 
most important work was in the theory of probability. He attempted an axiomatisation of 
probability theory already in 1917. He also generalised Liapounov’s conditions for the Central 
Limit Theorem, studied generalisations of the law of large numbers, and worked on Markov 
processes and stochastic processes. It was Bernstein who coined the term 'Markov chain’.
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sia where he had studied. At the beginning of the 20th century, statistics and 
sampling methods were widely studied both in continental Europe and in Rus­
sia. At that time, the continental school of statistical science, composed mainly 
of German and Russian118 statisticians, was very active and productive.

Chang (1976) argues that Russia was the first centre of the modern math­
ematical theory of sampling at the end of the 19th century. Zarkovic (1956) and 
Seneta (1985) also claim that the foundations of statistical inference for sample 
surveys were an extensively studied branch within statistical science in Russia. 
Zarkovic (ibid.) gives a thorough but brief account of the activity in sampling 
theory in Russia during the First World War and the post-war period. Zarkovic 
(ibid.) lists at least ten statisticians who contributed to sampling theory but are 
not known in western countries. A.A. Tchuprov was an exception because he 
was also a well-known statistician in Western Europe and he published several 
papers in English and German on topics relating to sampling theory. An inter­
esting detail is A.G. Kovalevsky’s article titled Basic Theory of Sampling Methods 
(1924). According to Kish (Kish 1995), it was the first article written on survey 
sampling but it was not widely known in Western Europe because it was written 
in Russian. Unfortunately, nearly all copies of it disappeared in the throes of the 
Bolshevist Revolution. Kovalevsky confined himself to probability samples only 
because “then it is possible to develop an objective and scientific theory of sam­
pling”. Kovalevsky’s inference model was based on the Laplace-Bayes method 
or paradigm, but otherwise the mathematical approach was modern. Kovalevsky 
also presented the theory of stratified sampling with optimal allocation.

10.2 Neyman's contributions on survey sampling

The starting point of modern statistical inference for finite populations was Ney- 
man’s paper on sampling, which he read for the Royal Statistical Society in 1934. 
Before this, he had already published significant papers on statistical inference, espe­
cially on hypothesis testing, together with Egon Pearson (see Neyman and Pearson 
1933). In these papers, the authors established the so-called Neyman-Pearson test 
theory and introduced a new mode of inference they called inductive behaviour.

For a long time, it has been held that Neyman’s scientific career started after 
he visited London at the end of 1920s. Statisticians have only recently rediscov­
ered Neyman’s early contributions on the design of experiments in agricultural 
research and on the analysis of sampling distributions (see Feinberg and Tanur 
1966). There are obvious reasons why these papers were not discovered before: 
Neyman never actually referred to his early works. They were originally pub­
lished in Polish journals in Polish under a different name. These publications

118 At the end of the 19th century, probability theory and statistical methods were extensively 
studied in Russia. The contributions of mathematicians such as Chebyshev, Liabounov, Kol­
mogorov, Markov, and Bernstein were significant developments, which have proved to have 
lasting value. However, their works and contributions are not widely known in Western Eu­
rope, partly because their publications were often in Russian and partly because the papers 
were not published in the well-known western journals.
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indicate that very early in his career, well before his first visit to England, Ney- 
man had received comprehensive training in statistical methods and in their 
application in agricultural research. He was trained in Russia, so his training was 
based on the Russian tradition.

Neyman’s first contribution to statistical inference for finite populations was 
his 1934 paper119 (Neyman 1934). However, the mathematical treatment in 
this paper was not fully developed. His next paper (Neyman 1937) was more 
elaborated and rigorous. The later paper was published after the publication of 
Kolmogorov's monograph on the axiomatic system of probability (Kolmogorov 
1933), and that seems to have had a strong influence on Neyman’s thinking.

During his visit to the United States in the late 1930s, Neyman was asked 
about a special sampling problem to which he could not immediately give an 
answer. When he came home to England, he solved the problem and published 
it in 1938. In that paper, Neyman presented the idea of double sampling. This 
paper had an outstanding influence on the development of survey research be­
cause it provided a method for carrying out a large-scale survey in a large coun­
try. It was an acute problem in the U.S. at that time because the predecessor 
of the Current Population Survey was in the planning stage. Neyman’s paper 
addressed acute needs.

10.2.1 Neyman's early papers
At the beginning of the 1920s, Neyman was already well aware of statistical 
methods. The two papers he wrote at that time deal with the design of ex­
periments in agricultural research and sampling distributions. The writing style, 
experimental setup, and treatment of problems resembled that of Russian stat­
isticians. In the first paper, Neyman conceptualises the assignment of treatments 
to units in an experiment as a drawing of balls from several urns without re­
placement; one urn for each treatment. He defined his model for analysing field 
experiments as follows:

“Let us take v urns, as many as the number of varieties to be compared, so that 
each variety is associated with exactly one urn.

In the Ith urn, let us put m balls (as many balls as plots of the field), with labels in­
dicating the unknown potential yield of the Ith variety on the respective plot, along 
with the label of the plot. Thus on each ball we have one of the expressions

(13) Ua , U i2, . . . , U ik, . . . , U im

where i denotes the number of the urn (variety) and k denotes the plot number, 
while Ufc is the yield of the ith variety on the C1’ plot. The number

ÎC *
a ,=^---

m

is the average of the numbers (13) and is the best estimate of the yield from the 
ith variety on the field.

119 Actually, his first paper in this field was published one year earlier in Poland (Neyman 1933), 
but it is not well-known because it was in Polish with a short English resume.
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Further suppose that our urns have the property that if one ball is taken from one 
of them, then balls having the same (plot) label disappear from all the other urns.

We will use this scheme many times below and will call it the scheme with v ums.
If we dealt with an experiment with one variety, we would have a scheme with 

one urn. In this case, expressions denoting yields will not have a variety index.
The goal of a field experiment which consists of the comparison of v varieties will 

be regarded as equivalent to the problem of comparing the numbers a lr a2, ... ,av 
or their estimates by way of drawing several balls from an urn.” (Splawa-Neyman 
1 9 2 3 ,  p . 4 6 7 )

The probabilistic setup is an elaborated version of the classical urn model, ex­
cept that there are several urns and the balls in urns have labels giving the values 
of the variable (yield of a variety on a specified plot). This setup is close to the 
one Lexis had developed, and it was common in Russian texts. For example, 
Tchuprov applied a similar setup in his analysis of distributions (seeTchuprov 
1918, 1923a, and 1923b). A noteworthy feature is that Neyman separated the 
variables and their observed values, which was rare at that time. The article 
aims at finding the “best estimate” for the mean. In order to attain this, Neyman 
applied “Markov’s results”120, which in modern terminology is known as the 
Gauss-Markov theorem121.

The urns in Neyman’s setup have this special property: the removal of a ball 
(representing the outcome of an experimental unit) from one urn causes it to 
disappear from the other urns as well. The point is to analyse the influence of 
changing probabilities caused by drawing balls from finite urns. If the number 
of varieties and number of plots are small, the drawings of the balls from the 
urns are not independent. This paper also brings up a significant limitation that 
this thinking model brings about: subsequent drawings of balls from the urns 
are not independent, but in a real field experiment, the single observations are 
independent.

120

121

Andrei Markov (1856-1922) was a Russian mathematician, a disciple of Chebyshev, and a 
collaborator of Tchuprov. In addition, he was a highly appreciated teacher. At the age of 30, 
Markov became a professor at St. Petersburg University and a member of the St. Petersburg 
Academy of Sciences. His works were well-known amongst the Russian statisticians. His 
textbook, “Calculus of Probabilities,” was published four times in Russian (first edition in 
1900) and was translated into German in 1912. Kovalevsky also applied “Markov’s method” 
in deriving estimators for sample surveys (see Kovalevsky 1924).
The Gauss-Markov theorem was first discovered by Gauss and later independently by 
Markov. It states that in a linear regression model in which errors have an expectation of zero 
and are uncorrelated and have equal variances, the best linear unbiased estimator (BLUE) of 
the coefficients is given by the ordinary least squares estimator, “best” meaning minimum 
variance among all linear unbiased estimators.

Assume that y, = £ p + e, and £(e,.) = 0, Var(e:.) = a 2 < °o,Cov(e,.,e .) = 0,i *  j . A linear 
estimator of P; is a linear combination (3, = cIJy i +  ... +  cnjy j . The estimator is unbiased only if 
£(P,) = p , . If .>s some linear combination of the coefficients, then the mean square

M
error of the corresponding estimation is

E 5>,(P>P,)

The best linear unbiased estimator of p is the one with the smallest error for every linear 
combination X. The fact that the errors need not be normal or independent and identically 
distributed, but merely uncorrelated, makes the theorem suitable for many situations.
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The other early paper of Neyman deals with the “Theory of small Samples 
drawn from a finite Population” (Splawa -Neyman 1925}122. He defined a small 
sample from a finite population to be one in which all individual in the sample 
are drawn in a single drawing, i.e., without replacement. The aim of the paper 
was to give formulas for the moments of sampling distribution.

Neyman started by noting that it is possible to draw N  different samples of 
size n from a population of size m [N=m\/n\(m-n)\). The values of the research 
variables in each sample, S;, were denoted by xUl xi2, ... xin, and their mean was 
denoted by Neyman analyzed four related problems in this article. The first 
problem was to calculate the four first moments about the mean for the distri­
bution of the sample means xt, i =  \ , 2 , ... N. The analysis was based on Pearson’s 
frequency curve typology and parameterization.

The second problem was to define “the second moment of the squared de­
viation of a sample, the sample being taken at random from a finite population 
with a given distribution.” He obtained a result which he claimed to be a gen­
eralization of formulas given by other statisticians and which he believed “to be 
novel and of considerable importance”. He concludes this part by saying that 
the result agrees with the value given by "Student” when the population size, m, 
is indefinitely large. Here Neyman also referred to a paper by Tchuprov on the 
same topic, published in 1918 (see the footnote on this page}.

The third problem was to analyze the “correlation between the square of the 
deviation of the mean of a sample from the mean of the sampled population 
with the square of the standard deviation, the sample being taken at random 
from a finite population with any given distribution.”

The last problem was “the correlation between the mean of a sample and 
its squared standard deviation, the sample being taken at random from a finite 
population.” He comes up with the result that the only case of independence is 
when “the original population is normal and indefinitely large”. If the popula­
tion is indefinitely large, but not normal, the standard deviation and mean are 
not independent. Neyman concludes that “this result seems to me important, 
because it shows that the normal curve is the only curve by which, knowing 
the frequency distribution y= f(x) of the mean of the sample and the frequency

122 There was an episode related to this paper. Neyman referred to results published by Tchu­
prov in Biometrika a few years earlier. In 1927, Greenwood and Isserlis published in JRSS 
a comment about this article saying “...Splawa-Neyman ... had done considerably less than 
justice to the work of the late Professor A. A. Tschuprov.. [Greenwood and Isserlis 1927). 
The authors continue by showing that Tchuprov had published the most important results of 
this paper many years earlier and in a more general form (see also Fienberg and Tanur 1966). 
Isserlis knew Tchuprov’s papers well because he had translated some of them from Russian 
into English. Greenwood and Isserlis comment as follows:"... The late professor Tschuprow 
did more than any other man of science to familiarize continental statisticians with valuable 
English work, and has spoken with generous appreciation of the English biometric school. If 
his friends and pupils find that his work is depreciated or ignored by younger men writing in 
English journals, and that such conduct passes in England without protest, they can hardly 
fail to infer that English biometricians read only their own papers or those published in a 
single English journal.”
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distribution y = v|/(ct) of the standard deviation, we reach the frequency surface 
of means and standard deviations simply by multiplying F(x,a)=/(%)x\|/(a).”123

Feinberg and Tanur (1996) claim that Neyman and Fisher had parallel ideas 
on experimental design in the 1920s. One example is that they both realized 
the importance of randomization. Flowever, there were also major differences 
in their statistical analysis of experiments. The inference model that Neyman 
employed in his first papers indicates that his theory was based on the Laplace- 
Bayes paradigm, which Fisher had discarded many years earlier. In addition, the 
ideas about statistical estimation that Fisher and Neyman employed at that time 
were far from each other.

10.2.2 The 1934 paper of the representative method
The 1934 paper was the first of Neyman’s works dealing explicitly with sta­
tistical inference for finite (human) populations, but before that he had given 
lectures on the topic at the University of Warsaw and at the University College 
in London.

The paper served two different aims: the mathematical development of esti­
mators and the analysis of the applicability of purposive selection -  and subse­
quently showing its severe problems. As a result, Neyman established the modern 
principle of the interval estimation (i.e., confidence intervals) and the so-called 
optimal stratification. The basic idea of interval estimation was not new, though. 
It was already present in Laplace’s and Bowley’s methods, and as Neyman noted, 
Bayes had already presented it (see Neyman 1934). The difference was that Ney­
man composed the confidence intervals on an inherently different probabilistic 
principle than Laplace and Bowley, by applying Fisher’s fiducial argument and 
inference model presented by Fisher. A significant difference between Fisher’s 
and Neyman’s approaches is that in Neyman’s approach, it was not assumed that 
observations had a probability distribution. Fisher’s approach could only be ap­
plied for the inference from hypothetical populations, i.e., when samples were 
drawn from a specified distribution f(x) and not a real population.

An equally important issue was that Neyman was the first who showed that 
inference for finite populations was possible without the a priori probabilities 
and without any reference to a superpopulation. Fisher had earlier shown the 
same thing in reference to hypothetical populations. The new method that Ney­
man presented also proved to be a real alternative to Laplace’s inverse inference 
for the inference in fixed populations. Compared to Bowley’s method, Neyman’s 
method could be applied with ease in many situations without problematic as­
sumptions about the nature of the population and the two-phase approach of 
first solving the direct problem and then solving the indirect problem.

Neyman’s theory was based on a new inference model of drawing samples re­
peatedly from the same finite population. Epistemologically, statistical inference 
in Neyman’s approach was based on the principle of Inductive Behaviour, which

123 When Neyman visited London for the first time, he presented his papers to Karl Pearson.
Pearson bluntly denied the result concerning independence: "That may be true in Poland, Mr. 
Neyman, but it is not true here”. Later, Neyman said that at that time, Karl Pearson did not 
understand the difference between independence and lack of correlation (see Lehman 2008).
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he had first developed [together with Egon Pearson] for hypothesis testing124. It 
was profoundly different from Fisher’s principle of Inductive Reasoning.

Neyman got his original motivation to write this paper from Bowley’s mem­
orandum for ISI. In the beginning, Neyman said this about the inducement to 
write the paper:

“Owing to the work of the International Statistical Institute [reference to Jensen’s 
report (Jensen 1926)] and perhaps still more to personal achievements of Profes­
sor A. L. Bowley, the theory and the possibility of practical applications of the rep­
resentative method has attracted the attention of many statisticians in different 
countries. ... But I think that if practical statistics has acquired something valu­
able in the representative method, this is due primarily to Professor A. L. Bowley, 
who not only was one of the first to apply this method in practice [reference to 
Bowley’s survey in Reading (Bowley 1913)], but also wrote a very fundamental 
memoir [reference to Bowley’s report to ISI (Bowley 1926)] giving a theory of 
the method.” (Neyman 1934)

The main point at which Neyman aimed his argument was that in the ISI re­
port, the “two different aspects of the representative method” random selection 
and purposive selection were treated as if the selection could be done on equal 
terms, with both methods being equally recommended. His main purpose was 
to show that purposive selection was inferior to random selection.

In the beginning of the paper, before the description of the mathematical 
theory, Neyman acknowledges the other forerunner who had given rise to his 
method:

. .However, since Bowley's book was written, an approach to the problem of this 
type has been suggested by professor R.A. Fisher which removes the difficulties 
involved in the lack of knowledge of the a priori probability law [reference to 
Fisher 1922, 1925a]. ... Avoiding the necessity of appeals to the somewhat vague 
statements based on probabilities a posteriori, Fisher’s theory becomes, I think, the 
very basis of the theory of representative method.

The possibility of solving the problems of statistical estimation independently 
from any knowledge of the a priori probability laws, discovered by R.A. Fisher, 
makes it superfluous to make any appeals to the Bayes’ theorem.

The whole procedure consists really in solving the problems which professor 
Bowley termed direct problems: given a hypothetical population, to find the dis­
tribution of certain characters in repeated samples. If this problem is solved, then 
the solution of the other problem, which takes the place of inverse probability, 
can be shown to follow.” (Neyman 1934)

Neyman referred to the fiducial inference that Fisher had introduced a few 
years earlier (see Fisher, 1930). It is noteworthy that Neyman did not imme­
diately rule out the need for a priori probabilities. Fie only said that it is not 
necessary to know a priori probabilities, and initially he formulated his theory 
following the Laplace-Bayes paradigm (see also Chang 1976).

Neyman defines the problem of the representative method to be a problem 
of estimation. This definition was new in this context and was essentially differ-

124 The principle of inductive behavior in hypothesis testing means that if a scientist always 
rejects his or her null hypotheses at a given risk level, e.g., 5 percent, he or she knows that 
during his or her whole career, only 5% of the decisions have been wrong, though he or she 
does not know which ones.
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ent from the problem that Bowley had treated. Neyman realized the importance 
of this new theory. He wrote, "... the present solution means not less than a 
revolution in the theory of statistics.”

10.2.2.1 Theory of estimation
Neyman set two requirements for the “collective characters”125 to be calculated 
from a sample. In Fisher’s terminology, they were called statistics:

1. They must follow a frequency distribution, which is already tabled or may 
be easily calculated.

2. The resulting confidence intervals should be as narrow as possible.

It is noteworthy that Neyman did not separate parameter and statistic, as Fisher 
did, and he did not explicitly state that the collective characters in the popula­
tion were constants. To obtain the required statistics Neyman first introduced 
three new concepts:

The mathematical expectation, which is the mean value of the estimates, 
e.g., 0', in repeated samples from a population in which the true value is 
6, that is, £(0')=0 126.

A linear estimate, which is linear with regard to the sample values, that is,
0 — Aq + A-jX, + A-2%2 + ■.. + Â Xp.

An estimate of 0' is a best linear estimate of 0 if it is linear in respect to 
sample values, xp and its standard error is less than that of any other linear 
estimates of 0.

Ten years earlier, Fisher had introduced the inference model that was based on 
repeatedly drawing samples from the same population, which in Fisher’s theory 
meant samples from the same distribution (see Fisher 1922). The novelty of 
Neyman’s approach was that it was aimed at finite populations. The idea of re­
peated samples did not exist in any form in Bowley’s writings. The definition of 
expected value was not completely new because he already had a similar defini­
tion in his early papers.

Neyman pointed out that the best linear estimates as he defined them have 
some important advantages:

1. If n is large, their distribution practically always closely follows the normal 
distribution.

2. In most cases, they are easily found by applying "Markov’s method”.

125 “Collective character” is a term that was coined and frequently used by Russian statisticians 
meaning a parameter calculated over all elements of the collective.

126 Neyman did not require that estimates should be unbiased, but he said that only estimates 
where £(0')=0 would be considered.

Statistics Finland 155



3. The same method provides the estimate of their standard error.

4. If the estimate 9' of 9 is a linear estimate, and if p is the estimate of its stan­
dard error, then in cases where the sampled population is normally distri-

9 '—0buted, the ratio t = ------  follows the “Student’s” distribution, which de-
F

pends only on the size of the sample. Neyman continues by stating that this 
result, which was due to R.A. Fisher, leads directly to the construction of the 
confidence intervals. If tE is Fisher’s fiducial coefficient, then the confidence 
interval with confidence coefficient e = .99 for observed values 9' and p will 
be given by inequality 9’ -  ptc< 9 < 9 ’+ pte.

5. Referring to Pearson’s experiments, Neyman remarks that the result is “very 
approximately true for various linear estimates by fairly skew distributions”, 
provided the sample size is more than 15.

Neyman referred to “Markov’s method” (Markov 1912], which in modern sta­
tistical texts is better known as the Gauss-Markov Theorem. Probably it was not 
well-known in Western Europe at that time because it was published in Russia 
and originally written in Russian, and Markov’s monograph was first translated 
into German and only later in English. Neyman referred to Markov’s method 
already in the paper that was published in 1923. In the discussion following 
Neyman’s presentation, Fisher noticed that “Markov’s method” was almost the 
same as what Gauss had invented a century earlier. Flald (1998] noted that Ney­
man obviously was not aware of the Gauss’ work. Neyman concludes that the 
properties of the linear estimates obtained with “Markov’s method” make them 
exceedingly valuable for their use in applying the representative method.

Neyman continued showing that by Markov’s method, estimates with desired 
features could be “in most cases easily found”. Desired features of estimates were 
the following: they are asymptotically normally distributed, whose standard er­
ror is easily found, and for which the "Student’s” distribution applies directly.

Mathematically, Neyman’s approach is partly an application of Fisher’s theo­
ry of estimation and fiducial argument in constructing the confidence limits, but 
there are also significant differences even in the very setup. The introduction to 
the proof starts as follows:

“Suppose we are taking samples, 2, from some population jt. We are interested in 
a certain collective character of this population, say 0. Denote by x a collective 
character of the sample 2 and suppose that we have been able to deduce its fre­
quency distribution, say p(x|0), in repeated samples and that this is independent 
on the unknown collective character, 0, of the population 7t.

The collective characters I am speaking are arbitrary. The position may be illus­
trated, for instance, by supposing that the collective character 0 is the proportion 
of a certain type of individuals in the population n, and x the proportion of the 
same type of individuals in the sample. The distribution of x is then a binomial, 
depending upon the value of 0.

Denote by <j>(9) the unknown probability distribution a priori of 0. Suppose that 
the general conditions of sampling and the properties of the collective characters

156 Statistics Finland



9 and x define certain values which these characters may possess. In the example 
mentioned above, 0, the proportion of individuals of the given type in the popula­
tion may be any number between 0 and 1. On the other hand, x, the proportion 
of these individuals in the sample, say n, could have values of the form k/n, k being 
an integer 0 < k < n." (Neyman 1934, p. 589)

Neyman initiated his proof by assuming that the parameter, 0, had an a  priori 
distribution <)>(0), which implies that he did not consider the parameter to be 
a constant. Actually, he did not take a stand on the nature of the parameter 
in this article. This is an important difference between Fisher’s and Neyman’s 
approaches: Fisher did not consider an a priori distribution of a population pa­
rameter to be feasible. Neyman shows later that the a priori probabilities are 
cancelled out, but he considers a  priori distribution as relevant anyway. He did 
not explain why a priori probability was introduced. In any case, the reference to 
a priori probability distribution of the parameter indicates that in some sense the 
idea of the Laplace- Bayes paradigm had a role in Neyman’s thinking.

“The new form of the estimation of a collective character 0 may be stated as fol­
lows: given any positive number e < 1, to associate with any possible value of x 
an interval

0,(x) < 02(x)

such that if we accept the rule stating that the unknown value of the collective 
character 0 is contained within the limits

0,(x') < 0 < 02(x')

every time the actual sampling provides us with value x = x ’, the probability of 
our being wrong is less than at most equal to 1 - e , and this whatever the prob­
ability law a priori (|)(0).

The value of e, chosen in a quite arbitrary manner, I propose to call the ‘con­
fidence coefficient’. If I choose, for instance, s = .99 and find for every possible 
x the interval [0,(x'),02(x')] having the properties defined, we could roughly de­
scribe the position by saying that we have 99 per cent, confidence in the fact that 
0 is contained between 0,(x) and 02(x) , the numbers 0,(x) and 02(x) are what R. 
A. Fisher calls fiducial limits of 0. Since the word "fiducial” has been associated 
with the concept of “fiducial probability” which has caused the misunderstand­
ing I have already referred, and which in reality cannot be distinguished from the 
ordinary concept of probability, I prefer to avoid the term and call the intervals 
[Ojfx'l.Ojfx')] the confidence intervals, corresponding to the confidence coefficient 
s.” (Neyman 1934)

Neyman showed that the a  priori probabilities in the formulas would be can­
celled out after integration (or summing). By this, he proved that in estimation, 
the a priori distribution of the parameter was obsolete. Interestingly enough, 
this is a similar derivation as in Bowley’s analysis of the accuracy of estimates in 
which he shows that the accuracy is the same, whatever form the a priori distri­
bution has (see Chapter 8.4.1).

10.2.2.2 Critic on purposive selection
Neyman said explicitly that the most important part of the paper was the analy­
sis -  and critique -  of the method of purposive selection (Neyman 1934, p. 621).
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Neyman showed, both mathematically and by example, that purposive selection 
would lead to inconsistent estimation. The other part of the analysis was based 
on an analysis of a paper by Gini and Galvani (Gini and Galvani 1929). They 
had drawn a purposive sample of 29 from the 214 districts of Italy to save about 
13.5% of the 1921 population census data of Italy. They applied the method 
that Bowley described in 1926 (see Chapter 8).

Neyman defined the term "purposive selection” as a method or procedure 
divided in two parts: the method of obtaining the sample and the method of 
estimation of, e.g., an average of a variable, x.

The method of obtaining the sample assumes that the population n  of in­
dividuals is divided into several, M, districts which form the population 71. The 
number of individuals in each district, v{, is known, and for each district the 
value of one or more numerical characters yp which Bowley called controls, are 
known. For the ith, the sum ui =  ^  x. and the mean value x, =  m, / v ,. Ney­
man argued that the basic hypothesis of purposive selection is that the numbers 
X, are correlated with the control yt and that the regression of X, on yt is linear. 
Neyman referred to this as the hypothesis H.

If the hypothesis holds, forming the sample consists in purposive selection 
of such districts for which the weighted mean Y' =  / y  y j / y  has the same 
value, or at least as nearly the same as is possible, as it has for the whole popula­
tion, say Y.

Neyman continues showing that this method of sampling is a special case 
of stratified random sampling by groups. As Neyman defines it, the method of 
purposive selection consists of (a) dividing the population of districts into a sec­
ond-order strata according to the values of y and v, and (b) selecting randomly 
from each stratum a defined number of districts. Neyman emphasized that this 
interpretation of the method of purposive selection is necessary if it is supposed 
to "be treated from the point of view of the probability theory, ... as there is no 
room for probabilities, for standard errors, etc., where there is no random varia­
tion of random sampling.”

Obviously, the method that Neyman analyzed was not exactly the same de­
sign as Bowley had meant, but Neyman's modification was necessary in order to 
analyse the method using probability theory.

Neyman showed that in the purposive selection thus defined, there were 
severe inconsistencies even in the simplest cases where the hypothesis of linear 
dependence of control variable and target variable holds, and that the method 
could lead to biased samples. Neyman asks three questions: (1) Is it likely to find 
in practice instances where the hypothesis underlying the method of purposive 
selection are satisfied, that is, the hypothesis concerning the linearity of the re­
gression and the hypothesis concerning the variation [of x j  within the second 
order strata? (2) If instances where the hypotheses are not exactly satisfied are 
found, what would be the result of ignoring this fact and applying the purposive 
selection? (3) Is it possible to get any better method that purposive selection, 
i.e., a method that would not lose its property of being consistent when the hy­
pothesis concerning the linearity of the regression is not satisfied?

As an answer to the first question, Neyman shows that such an instance 
may be found, but “it is difficult to judge how often we shall meet in practise
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considerable divergences from linearity.” Neyman concludes that it is safer to as­
sume that the hypothesis concerning the linearity does not hold. In addition, he 
suspected that the hypothesis concerning the variation within the second order 
strata is probably never satisfied.

As an answer to the second question, Neyman showed that estimates cease 
to be unbiased when an assumption on the shape of the regression cannot be 
made. The estimates could be kept consistent only by special adjustments.

The answer to the third question was as expected: "There is no essential dif­
ficulty to find the best unbiased estimates of the average X  determined from 
a sample obtained by the method of stratified sampling by groups.” Neyman 
added that stratification does not affect the method of obtaining the estimate. 
“In any case and whatever the variances of the within the strata, the best linear 
estimate of X  is always the same.”

Neyman proved that the consistency of estimates obtained by applying 
Gauss-Markov theorem does not depend on any arbitrary hypotheses concern­
ing the sampled population. “The only condition, which must be satisfied, is that 
the samples should contain districts from every stratum.” The standard errors of 
the estimates, however, depend on the variability of variables withiri the strata.

In addition to the survey carried out by Gini and Galvani, Neyman referred 
to three other enquiries carried out a few years earlier. In Neyman’s mind, 
the most important enquiry in which the representative method (or random 
sampling by groups] was used was the New Survey of London Life and Labour, 
carried out under Bowley’s guidance. The Polish Institute for Social Problems, 
under Neyman’s advisory conducted another enquiry, concerning the structure 
of Polish workers. In that enquiry, data was collected applying a random strati­
fied sampling of groups. The third survey he referred to was an enquiry into 
the farming conditions in Bulgaria by Oscar Anderson127, who applied stratified 
sampling by groups.

Neyman’s conclusion and recommendation for a sample survey was as follows:

"The final conclusion which both the theoretical considerations and the above 
examples suggest is that the only method which can be advised for general use is 
the method of stratified random sampling. If the conditions of the practical work 
allow, then the elements of the sampling should be individuals. Otherwise we may 
sample groups, which, however, should be as small as possible.”

Neyman did not throw away purposive selection, however. As the last conclu­
sion in his paper (ibid.), he said:

"There are instances when we may select individuals purposely with great success. 
Such is, for instance, the case when we are interested in regression of some variety 
y on x, in which case the selection of individuals with values of x varying within 
broad limits would give us more precision.”

127 Oscar Anderson (1887-1960) was originally a Russian statistician, one of Tchuprov's stu­
dents, who was widely known and recognized in Romania and central Europe. He belonged 
to the 'continental school’ of statistics and worked in the tradition of Lexis and von Bort- 
kewicz. Anderson was considered one of the main promoters of purposive selection. He was 
also one of the discussants of Neyman’s paper.
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10.2.2.3 Optimum allocation
For a long time, stratification based on optimum allocation has been regarded as 
one of the most significant results of Neyman’s 1934 paper. However, for Ney- 
man, it seemed to be a less important (side) result than the method of estimation 
and the critique on purposive selection. His main purpose seemed to be to show 
that with the help of the “Markov’s method”, unbiased estimates could also be 
obtained in the case of stratification and it led to the optimum allocation.

Bowley referred to strictly random sampling as unrestricted and stratified 
sampling as restricted sampling. In both cases, the principle was the same: all 
members of the population had an equal chance to be selected. That means 
that in every strata, the sampling fraction, ft, was the same, fl = n/N^ Neyman 
showed that unbiased estimates did not require equal sampling fractions. In 
most cases, more efficient estimates would be obtained with an optimum al­
location where sampling fractions varied between strata. In the simplest form, 
optimum allocation means that the sample size, n-, in stratum i is determined by 

NS-the formula n, = n „  ' '—where N; is the size of the population and S, isI N,S,
the standard deviation of the research variable in stratum i.

The implication of Neyman’s optimum allocation is that every member of 
the population did not have an equal chance to be included in the sample. How­
ever, Neyman did not discuss it, and it did not raise any attention in the discus­
sion after the presentation. It took many years before inclusion probabilities 
were explicitly included in estimators. In the next paper, he defined that a basic 
requirement is that each member of the population should have an equal prob­
ability to be selected.

The principle of optimum allocation had a longer bearing, however. In the 
paper of 1938, it was centrally involved, and it was applied in the development 
of the sampling design of the Current Population Survey. The implicit conse­
quence of varying inclusion probabilities became the basis for the construction 
of estimators.

There have been doubts about the origin of the optimum allocation princi­
ple. Russian statisticians, A.A. Tchuprov (Tchuprov 1923a and 1923b) and A. 
Kovalevsky (Kovalevsky 1924) had presented virtually the same results ten years 
before Neyman. There has been some dispute whether or not Neyman was aware 
of these results. Fienberg andTanur (1966) made a comprehensive account of it 
and came to the conclusion that Neyman must have at least known Tchuprov’s 
works. Much later, Neyman admitted in public the priority ofTchuprov’s paper 
(Neyman 1952), but he did not say that he knew those results at the beginning 
of the 1930s. Tchuprov referred to Markov several times, but he derived the 
formula for optimum allocation using different mathematics than Neyman. On 
the other hand, Kovalevsky applied “Markov’s method” the same way as Neyman. 
However, Neyman never referred to Kovalesky’s paper.

10.2.2.4 Neyman's own conclusions
Neyman admitted the difficulty of defining representative samples and instead 
proposes sampling methods that would yield a sample that can be regarded as 
representative. In closing the 1934 paper, Neyman said:
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“If there are difficulties in defining the “generally representative sample”, I think 
it is possible to define what should be termed a representative method of sampling 
and a consistent method of estimation. These may be defined accurately as follows. I 
should use these words with regard to the method of sampling and to the method 
of estimation, if they make possible an estimate of the accuracy of the results 
obtained in the sense of the new form of the problem of estimation, irrespective 
of the unknown properties of the population studied. Thus, if we are interested in a 
collective character X  of a population 71 and use methods of sampling and esti­
mations, allowing us to ascribe to every possible sample, £, a confidence interval 
X,(S),X2(S) such that the frequency of errors in the statements

X ,(I) < X  < X2(I) [10.43]

does not exceed the limit 1-e prescribed in advance, whatever the unknown prop­
erties of the population, I should call the method of sampling representative and 
the method of estimation consistent. We have seen that the method of random 
sampling allows a consistent estimate of the average X  what ever the properties 
of the population. Choosing properly the elements of sampling we may deal with 
large samples, for which the frequency distribution of the best linear estimates is 
practically normal, and there are no difficulties in calculating the confidence inter­
vals. Thus the method of random stratified sampling may be called a representa­
tive method in the sense I am using. This, of course, does not mean that we shall 
always get correct results when using this method. On the contrary, erroneous 
judgements of the form [43] must happen, but it is known how often they will 
happen in the long run: their probability is equal to e . ”  (Neyman 1934]

The definition “representative method of sampling and a consistent method of 
estimation” is close to the concept of sampling strategy in modern sampling 
theory128. It is an important definition because it “freed” the sample from the 
requirement of being representative. It suffices that the sampling method is 
“representative”, and this, in turn, means that the sampling method enables the 
calculation of estimates. This definition is inherently different from Fisher’s defi­
nitions in that it does not involve a hypothesis about the population under study. 
Estimation can be applied in any population without information about its dis­
tributions. This makes Neyman’s method readily applicable in most cases.

The last sentence of the citation indicates what Neyman’s line of scientific in­
duction was. Basically, it was similar to the long-run frequency interpretation of 
probability: in the long run, it is known how often a confidence interval includes 
a population parameter. The idea is the same as in the Neyman’s and Pearson’s 
test theory, which is called inductive behaviour129. In the next paper [Ney­
man 1937], he also gave the philosophical justification for inductive behaviour.

128 In the modem literature, a sampling strategy H  is defined as a pair H  =  (p, t), where p  is a 
specified sampling design and t is an estimator defined in it.

129 In 1933, Neyman (and Egon Pearson) defined: "Without hoping to know whether each 
separate hypothesis is true or false, we may search for the rules to govern our behaviour with 
regard to them, in following which we insure that, in the long run of experience, we shall not 
be too often wrong.” (Neyman and Pearson 1933)

Statistics Finland 161



10.2.2.5 Discussion on Neyman's paper
Neyman read the paper for the Royal Statistical Society in 1934 and it was 
followed by a discussion, as usual. The discussants were Bowley, Egon Pearson, 
Isserlis, Fisher, and Oscar Andersson. Anderson was invited because he had con­
ducted a very large survey in Romania using a method resembling purposive 
selection. Neyman read his paper one year before Fisher’s first appearance in 
the Royal Statistical Society [see previous chapter). Already in the discussion 
on Neyman’s paper, the different views of the younger statisticians and the “old 
guard” became apparent. Especially the old guard of statisticians was very scepti­
cal about the method of confidence intervals and the mode of inductive reason­
ing, but comments were more courteous than the comments on Fisher’s paper.

Discussion was opened by Bowley, the chairman of the session. In the begin­
ning, he said that he was “very glad Professor Fisher is present, as it is his work 
that Dr. Neyman has accepted and incorporated. I am not certain whether to ask 
for an explanation or to cast a doubt.” [Neyman 1934, p. 608). In the beginning, 
he also defended himself by saying that he also had had doubts about the pur­
posive selection when he wrote the memorandum for the ISI130. He continued 
by defending the sampling methods that he had applied in the surveys he had 
carried out in the UK and explained the insoluble practical difficulties that an 
unrestricted random selection, i.e., simple random sampling, would bring up. 
Only Anderson explicitly defended purposive selection, claiming that in some 
cases, it would yield more accurate estimates than random sampling.

After Bowley had explained what he had done and why, he brought up his 
scepticism about the theory Neyman had presented:

",.. I am not certain whether to ask for explanation or cast a doubt. It is suggested 
in the paper that the work is difficult to follow and I may be one of those who have 
been misled by it. I can only say I have read it at the time it appeared and since, and 
I read Dr. Neyman’s elucidation of it yesterday with great care. I am referring to Dr. 
Neyman’s confidence limits. I am not sure that the "confidence” is not a “confidence 
trick.” Put in a simple form I think the method is as follows: -  Given that in a sam­
ple of 1000 taken random, there are 1 in 10 of defined quality, and given that the 
population from which the sample was drawn contained any proportion between 
120 and 80 per thousand, then the chance of such occurrence is less than one in 
twenty (approx.). ... Does that really take us any further? Do we know more than 
was known to Todhunter? Does it take us beyond Karl Pearson or Edgeworth? Does 
it really lead us toward what we need -  the chance that in the universe which we 
are sampling the proportion is within these certain limits? I think it does not. I think 
we are in the position of knowing that either an improbable event has occurred or 
the proportion in the population is within these limits. To balance these things we 
must make an estimate and form a judgement as to the likelihood of the proportion 
in the universe -  the very thing that is supposed to be eliminated. I do not say that 
we are making crude judgements that everything is equal throughout the possible 
range, but I think we are making some assumptions or we have not got any further. 
... The statement of the theory is not convincing, and until I am convinced I am 
doubtful of its validity.” (Neyman 1934, p. 609)

130 Obviously, Bowley never applied purposive selection in those surveys that he carried out.
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This citation reveals Bowley’s unwillingness to understand the new inference 
model which Neyman had put forward. Bowley stuck to the Laplace-Bayes in­
ference model and did not concede that the proposed model would be any bet­
ter than the existing ones. Isserlis, the next discussant, also argued that statistical 
inference requires a priori probabilities.

The last discussant was Fisher. He supported Neyman’s ideas, but at the same 
time he was annoyed because Neyman had discarded the concept of fiducial 
probability and he suspected that Neyman had misunderstood the idea of fidu­
cial inference.

Neyman begins the reply to the comments by saying:

"The present discussion has shown, I think, (i) that my criticism against the meth­
od of purposive selection was sufficiently convincing, and (ii) that the section con­
cerned with the confidence interval and the problems of estimations were not.”

A noteworthy detail in the discussion was that none of the discussants mentioned 
the new stratification method that Neyman had presented or its implications 
in sampling. Neither did Neyman refer to it in his final comments. Although 
the discussants did not pay attention to it, P.V. Sukhatme, a colleague of Ney­
man from the University College, published soon after Neyman’s presentation 
a paper where he compared optimum allocation and proportional allocation 
in stratification (Sukhatme 1935). Sukhatme proved that optimum allocation 
almost always yields more accurate estimates than proportional allocation and 
the difference is considerable when the population is extremely heterogeneous. 
The only case when Neyman’s stratification may prove to be not recommended 
is when there are several different study variables that are not correlated. Inter­
estingly enough, Sukhatme (ibid.) alluded to multi-stage sampling designs for 
solving this problem.

It should be emphasized that the ideas Neyman presented were new, al­
though they were a combination of Bowley's and Fisher’s ideas. The mathemati­
cal background seems to originate from the works of Russian statisticians who 
had analysed similar problems for a long time. Neyman partly applied the same 
mathematical methods he had applied while working in Russia and Poland.

The disagreement between the old guard statisticians defending the Laplace- 
Bayes paradigm and Neyman (and Fisher) was apparent. In this session of the 
Royal Statistical Society, the critic was polite, unlike a few months later in the 
discussion after Fisher’s presentation concerning inductive inference.

10.2.3 The 1937 paper
The writing style in the 1934 paper was slightly obscure and the paper bore 
more emphasis on the critique of Purposive Selection than on the mathematical 
derivation of estimates and stratification. Three years later, Neyman published 
another paper (Neyman 1937) in which the mathematical treatment was more 
minute and stricter than in the first one. The conception of probability was es­
pecially treated in a stricter manner. Kolmogorov had published his monograph 
on the axiomatic system of probability in 1933 (Komogorov 1933), but Ney­
man obviously had access to it only after he had submitted his previous paper.
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In Neyman’s 1937 paper, the influence of Kolmogorov’s theory is prominent, 
whereas in the 1934 paper, the treatment of probability was closer to that from 
the beginning of the century. The 1937 paper was an exposition of mathemat­
ics behind the confidence intervals and the associated philosophy of statistical 
inference. The paper started with an account of Kolmogorov’s axiomatic system 
and its implications in statistics.

The sole topic of the paper was actually an application of the axiomatic 
probability theory to confidence intervals. Neyman dealt neither with Purposive 
Selection nor stratification. The paper did not only concern sampling from a 
finite population, but had more emphasis on inference from experiments. How­
ever, Neyman considered the setups and purposes of experimental design and 
sampling to be nearly the same, and he developed the theory that he thought 
would apply to both. Neyman had collaborated with researchers working on 
bacteriology where he had applied the method of confidence intervals in an 
experimental setup (see Matuszewski et. al. 1935).

Neyman also compared at length three different estimation methods: “Baye­
sian”, maximum likelihood estimation, and the “method following Markov”. The 
“Bayesian” method, which was actually Laplace’s methods, was discarded by 
Neyman because it was not in accordance with the probability theory that he 
had adopted. He favoured the method of Markov (to the maximum likelihood), 
which led to the best (minimum variance) of the unbiased estimates which are 
linear functions of the observations.

Although Neyman had presented the idea of optimum allocation in the pre­
vious paper, implying unequal inclusion probabilities, he defined random sample 
in the “classical” way: “the probability of each individual of the population being 
included in the sample is the same” and separate drawings are mutually inde­
pendent (except in drawing from a finite population without replacement).

A central argument in this paper was that Neyman explicitly discarded the 
whole concept of a priori probability. In addition, he did not consider the Bayes’ 
or the Laplace’s formula as feasible for inference for two reasons. In most cases, 
he explained, the parameters are constants and consequently they do not have a 
priori distributions. Secondly, if parameters had a stochastic nature, their distri­
butions were generally unknown.

In this paper, Neyman explained in minute detail what he meant by confi­
dence limits and how they should be interpreted:

“...Returning to the inequalities [0 (£ ')  < 0,° < Q(E') ], we notice that while the 
central part, 0,°, is a constant, the extreme parts 0 (£ ') and 0(£') are particular 
values of random variables. In fact, the_coordinates of the sample point E are the 
random variables ... and if 0 (£ ) and 0 (£ )are single-valued functions of E, they 
must be random variables themselves. _

Therefore, whenever the functions 0 (£ ) and 0(£) are defined in one way or an­
other, but the sample point E is not yet fixed by observation, we may legitimately 
discuss the probability of 0 (E) and 0(£) fulfilling any given inequality and in 
particular the inequalities analogous to (18), in which, however, we must drop the 
dashes specifying a particular fixed sample point E’. We may also try to selectG (£) 
and_0 (E) so that the probability of 0 (£ ) falling short of 0,° and at the same time 
of 0( £) exceeding 0,°, is equal to any number a  between zero and unity, fixed in 
advance. If 0,° denotes the true value of 0, then of course this probability must
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be calculated under the assumption that 0,°is the true value of 0,. Thus we can 
look for two function 0 (£)and 0 (£ ), such that

P {e  (E )  < 0,° <  0 (£ )  1 9,° } =  a ...................... (20)

and require that the equation (20) holds good whatever the value 0,° of 0, and 
whatever the values of the other parameters 02,03,...0/ involved in the probability 
law of the X ’s may be. _

The functions 0 (£ ) and 0(£) satisfying the above conditions will be called the 
lower and the upper confidence limits of 0,. The value a  of the probability (20) 
will be called the confidence coefficient, and the interval, say 5(£), from 0(£) to 
0(£), the confidence interval corresponding to the confidence coefficient a.

It is obvious that the form of the functions 6(E) and 6(E) must depend upon the 
probability law p(E | 0,,02,..-0;).

It will be seen that the solution of the mathematical problem of determining 
the confidence limits 0(£) and 6(E) provides the solution of the practical problem 
of estimation by interval. For suppose that the functions 6(E) and 6(E)are deter­
mined so that the equation (20) does hold good whatever the values of all the pa­
rameters 0,,02,. • -9;, may be, and a  is some fraction close to unity, say a  = 0.99. We can 
then tell the practical statistician that whenever he is certain that the form of the 
probability law of the X ’s is given by the function p(E | 0|;9 2,...0;) which served to 
determine 0(£) and 6(E), he may estimate 0] by making the following three steps: 
(a) he must perform the random experiment and observe the particular values x ]t 
x2, . ■ ■ x of the X ’s \_(b) he must use these values to calculate the corresponding 
values of 0 (£ ) and 0(£) ; and (c) he must state that 0 (E) < 0,° < 6(E ) , where 
0,° denotes the true value of 0j. How can this recommendation be justified?

The justification lies in the character of probabilities as used here, and in the 
law of great numbers. According to this empirical law, which has been confirmed 
by numerous experiments, whenever we frequently and independently repeat a 
random experiment with a constant probability, a, of a certain result, A, then the 
relative frequency of the occurrence of this result approaches a. Now the three 
steps (a), (b) , and (c) recommended to the practical statistician represent a ran­
dom experiment which may result in a correct statement concerning the value of 
0,. This result may be denoted by A, and if the calculations leading to the func­
tions 6(E) and 0(£)are correct, the probability of A will be constantly equal to 
a. In fact, the statement (c) concerning the value of 0, is only correct when 0(£') 
falls below 0j0 and 0(£'), above 0 j°, and the probability of this is equal to a  when­
ever 0j° is the true value of 0,. It follows that if the practical statistician applies 
permanently the rules (a), (b) and (c) for purposes of estimating the value of the 
parameter 0j in the long run he will be correct in about 99 per cent of all cases.
It is important to notice that for this conclusion to be true, it is not necessary that 
the problem of estimation should be the same in all the cases. For instance, during 
a period of time the statistician may deal with a thousand problems of estimation 
and in each the parameter 0, to be estimated and the probability law of the X ’s 
may be different. As far as in each case the functions 6(E) and 0(£) are properly 
calculated and correspond to the same value of a, his steps ( a ) , (b) , and (c) , 
though different in details of sampling and arithmetic, will have this in common -  
the probability of their resulting in a correct statement will be the same, a. Hence 
the frequency of actually correct statements will approach a.

It will be noticed that in the above description the probability statements refer 
to the problems of estimation with which the statistician will be concerned in the 
future. In fact, I have repeatedly stated that the frequency of correct results will 
tend to a .” (Neyman 1937)
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This is the most illustrative expression of inductive behaviour in statistical infer­
ence. Lastly, Neyman took an example to clarify the idea of this behaviouristic 
inference principle:

"The theoretical statistician constructing the functions 0(E) and 0 (E ) , having the 
above property (20), may be compared with the organizer of a game of chance in 
which the gambler has a certain range of possibilities to choose from while, what­
ever he actually chooses, the probability of his winning and thus the probability 
of the bank losing has permanently the same value, 1 -  a.

The choice of the gambler on what to bet, which is beyond the control of the 
bank, corresponds to the uncontrolled possibilities of 0] having this or that value. 
The case in which the bank wins the game corresponds to the correct statement 
of the actual value 0j. In both cases the frequency of "successes" in a long series of 
future “games" is approximately known. On the other hand, if the owner of the 
bank, say, in the case of roulette, knows that in a particular game ball has stopped 
at sector No. 1, this information does not help him in any way to guess how the 
gamblers have betted. Similarly, once the sample E’ is drawn and the values of 
0(£') and 0(£') determined, the calculus of probability adopted here is helpless to 
provide answer to the question of what is the true value of 0 j.”

Neyman discarded the use of a priori probabilities and also demonstrated why 
he did not accept Laplace’s approach in constructing confidence limits (which 
he erroneously called Bayes’ approach):

He considered n variables X J; X2, ... Xn which were supposed to have “an 
elementary probability law” p(x{...xn | 0[,02,.. .0;) that depends on l parameters. 
The values of parameters were assumed to be constants (that is, 0,,02,.. .0; are not 
random variables) but their numerical values were not known. For estimating one 
parameter, say 01( Neyman defined two functions 0(E) and 0 (£ ) < 0(E)- Func­
tions had a single value at any point E of the sample space. If E’ is the observed 
sample point, it is assumed to be possible to calculate values of the functions and 
state that the true value of 01( say 0,°, is within the limits 0 (£ ') < 0,° < 0 (£ ') .

Neyman required that the probability of 0 j° falling within these limits should 
be large, say a  = 0.99. According to the Laplace-Bayes method, this condition 
would be given by the formula

/>{ e ( £ ') < 0 1° < 0(£') | £ '} =  a

The probability is conditional to the observed sample point, E ', which indicates 
that the parameter, 0j°, is assumed to be a random variable. That is in contra­
diction with the assumption that the parameter would be constant. Under this 
assumption, the only values the probability can have are zero or unity, whatever 
the fixed point E’ and the values 0 (£ ') and 0(£ ') are.

Neyman concludes that this is inherently different than the idea in construct­
ing confidence limits: for confidence limits, the probability should be calculated 
under the assumption that the true value of 0j is 0j°

e { 0 (£ )< 0 ,°  < 0(E) | 0 ,°}=  a

and it is required that this equation holds whatever the value 0j° of 0j may be. 
The probability is conditional to the true value of the parameter.
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10.2.4 The 1938 paper

In 1937, W. Edwards Deming invited Neyman to the Graduate School in the 
U.S. Department of Agriculture. After Neyman’s presentation at a conference, 
Milton Friedman and Sidney Wilcox presented a problem to Neyman which 
he was not able to solve immediately. When Neyman got back to London, he 
started to work on it. The result was published in 1938 with the title, “Contribu­
tion to the Theory of Sampling Human Populations" [Neyman 1938). In this paper, 
Neyman defined a method that is now known as double sampling. The problem 
presented to Neyman was as follows:

A field survey is to be undertaken to determine the average value of some 
character of a population, n, for example the amount of money that families 
spend for food in a population of families residing in a certain district. The phe­
nomenon is so complex that the collection of data requires long interviews by 
specially trained enumerators and, hence, the cost of data collection per family 
is relatively high. The total survey costs must remain at an acceptable level, 
which would mean that only a small sample could be selected. If the character 
under study has considerable variation, the sample might be too small to yield 
sufficiently accurate estimates.

The purpose is to estimate the average, x , of a character, i.e., variable x. It 
is assumed to be correlated with another variable that is easier to obtain with 
lower cost per family. An accurate estimate of the second variable, y, can be 
obtained at a relatively small expense, and for any given value of it, the vari­
ability of the original variable will be smaller than in the whole population. 
Neyman concluded that . .a  more accurate estimate of the original character 
may be obtained for the same total expenditure by arranging the sampling of 
the population in two steps.” In the first step, only data for the second variable, 
y, is obtained from a large random sample in order to obtain an estimate of its 
distribution. In the second step, the sample is stratified according to the values of 
the second variable, y, to draw a smaller random sample from each stratum. Ney­
man states that “the question is to determine for a given expenditure, the sizes 
of the initial sample and the subsequent samples which yield the most accurate 
estimate for the original character”.

Formally the problem is as follows: The first sample, e.g., is a simple random 
sample of size n'. Based on the first sample, the population is stratified into a 
number of classes according to the variable y. That means that the range of y is 
divided, e.g., in s intervals, each interval defining a stratum of the population. Let 
Wn = N h/N  be the proportion of the population falling into stratum h, and let wh 
= nh'/n' be the proportion of the first sample falling into stratum h. The second 
sample is a stratified random sample of size n (nh units from stratum K], in which 
the second variable, x, is measured.

The unit costs of data collections are Cn and Cn, and the combined total cost 
of data collection C = nCn + n’Cn„ The problem is to choose n' and nh so that 
the variance of the estimate with given costs is minimized.

The derivation of nh and n' that leads to minimum variance is fairly compli­
cated. In this, Neyman again applied the Gauss-Markov theorem. He suggested
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taking nh to be proportional to Vl^Sj,, (where Sh is the standard deviation of in 
stratum h) when n' and n are given. Hence the proposed optimal allocation is

whs

Neyman examined also the condition when double sampling would be preferred 
to simple random sampling and showed that it was not always the case. It was 
possible that double sampling would be worse than simple random sampling.

What was probably more important was that Neyman’s paper directly ad­
dressed existing needs in the United States and showed how complex survey 
design could be approached.

Double sampling is a special case of two-phase, or multi-phase, sampling 
designs which are frequent in large-scale surveys in many countries. If the infor­
mation concerning the population is scarce, then two-phase sampling provides 
a method to obtain accurate samples at lower costs. Later it has been observed 
that the theory is also useful for estimation in the presence of non-response. In 
addition, the article of Neyman showed a way to use auxiliary information to 
increase the accuracy of estimation. In this sense, the last paper on sampling 
(Neyman 1938] may be regarded as important as the first one (Neyman 1934],

10.3 Conclusions

Neyman’s contributions on statistical inference are numerous, but he wrote only 
a few papers on statistical inference for finite populations and sampling theory. 
Nevertheless, the three papers he wrote in the 1930s established the founda­
tions of modern statistical sampling theory. It is a popular perception that the 
first paper was the most important, but that may not be the case. Neyman pre­
sented his central ideas in it, but they were still fairly obscure and incoherent. 
In the next paper, published in 1937, Neyman expressed in rigorous fashion 
the mathematical foundations of the theory for confidence intervals and the 
justification for his inference model (inductive behaviour] in finite population 
inference. The second paper was also more theoretically focused solely on the 
mathematics of confidence intervals. One of the main points was the application 
of Kolmogorov’s axiomatic probability system in estimation theory.

The second paper did not provide any tools for the survey practice, how­
ever. The third paper addressed directly to a practical problem in undertaking 
a survey in large human population, and gave tools to design complex sample 
surveys. After Neyman’s third paper, and after some other European statisticians 
(e.g., Cochran and Sukhatme] settled in the U.S., a period of rapid development 
of sampling methods took place. Important contributions to the modern sam­
pling theory began to appear on the first half of 1940s. After that the develop­
ment was very rapid and by the first half of 1950s the classical sampling theory 
was established.
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Russian statisticians were active in developing statistical methods in the first 
quarter of the 20th century. Neyman must have been aware of the results that 
Russian statisticians had obtained in the early 1920s (see Fienberg and Tanur 
1966}. First of all, he was trained in Russia and the style writing in Neyman’s 
early contributions is close to that of Russian statisticians, and furthermore, his 
results are in accordance with the Russian school. Therefore, it seems implausi­
ble that he had not been aware of its results.

An obvious conclusion is that Neyman was aware of the works of Russian 
statisticians such as Markov and Chebyshev. Neyman refers to Markov in many 
instances, including the paper he read before the Royal Statistical Society in 
1934. Neyman held the Markov method (Gauss-Markov theorem] better than 
the principle of maximum likelihood. In the 1934 paper, he also refers to other 
Russian statisticians, such as Anderson, Bernstein, and Orzeki, but he does not 
refer to Tchuprov or Kovalevsky, who had contributed to sampling methods on 
finite populations already in the early 1920s. On the other hand, Neyman had 
earlier referred to Tchuprov’s other results (other than optimum allocation], 
which were published in the paper in 1923.

One of Neyman’s greatest inventions was the application of Fisher’s estima­
tion theory to samples from finite populations and subsequently the develop­
ment of an estimation method based on confidence intervals. A central outcome 
of Neyman’s contributions on statistical inference was that they “freed” the sam­
pling theory from the practical and theoretical difficulties of Laplace's principle. 
Probably without this, the sampling theory could not be developed to what it 
is now. At least it is difficult to see how the modern survey methodology could 
have been established on Bowley’s theory.

Another significant invention of Neyman was the Best Linear Unbiased Esti­
mate (BLUE], which he obtained by using the (Gauss-]Markov theorem. Later, 
the BLUE estimators (or more generally linear estimators] have been essential 
for the development of estimation methods. The use of the Gauss-Markov theo­
rem is not necessary in the derivation of estimators, but at that time, it revealed 
the linear nature of the estimators. Neyman’s estimation method also had an­
other important characteristic: it was possible to construct estimators without 
any reference to a probability distribution of variables. Thus, finite population 
parameters could be estimated with only very slight assumptions on the nature 
of the observed variables. In addition, estimators derived by Markov’s method 
had some desired features: they are asymptotically normally distributed, their 
standard error is obtained with the same method, and the “students” distribution 
can be applied to construct confidence intervals.

The “distribution free” estimation made Neyman’s method readily (and eas­
ily] applicable in most cases where surveys were needed. It opened a totally new 
terrain for the development of survey sampling. It is difficult to imagine how 
survey sampling as it is practiced today could be formulated based on maximum 
likelihood estimation in which the distribution of a variable is a starting point.
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The critique that Neyman directed at purposive selection was so persuasive 
and convincing that purposive selection disappeared from the statistical writ­
ings for a long time. Obviously, attempts to develop it further did not continue, 
and purposive selection disappeared from the arsenal of national statistical in­
stitutes1"51. Interestingly enough, purposive selection close to the form Bowley 
presented it re-emerged in the 1970s in the form of balanced sampling.

Purposive selection did not disappear completely from the survey research 
armature. A bit more widely understood, the method remained a standard sam­
pling method in marketing and opinion surveys in the form of quota sampling. 
One should also bear in mind that the idea of purposive selection has remained 
in the sampling theory in designing stratification.

Neyman’s inference model, inductive behaviour, has been essential for the de­
velopment of the survey method because it gives a quick and more objective inter­
pretation to epistemological probability [partly concealing its problems, though). 
The principle of inductive behaviour resembles long-run frequency interpretation 
of probability. This interpretation was soon unequivocally accepted by survey stat­
isticians, and discussion about the nature of inductive inference disappeared from 
the discussion on statistical inference and from sampling literature.

131 It is difficult to find examples of surveys where purposive selection was used (except that of 
Gini and Galvani). Purposive selection was very difficult to apply in practice, and that proba­
bly set limitations on its use.
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11 Fisher-Neyman paradigm 
of statistical inference for 
finite populations

The first papers which Neyman published indicate that he was trained within 
Laplace-Bayes paradigm and he was applying its principles. After moving to 
England, Neyman soon became aware of Fisher’s philosophy. Erich Lehman, a 
Neyman’s student at Berkeley (USA), colleague, and friend, wrote in 2008 that 
the year 1925-26 was difficult to Neyman and also to Egon Pearson. They began 
to realize that the work of Fisher required a rethinking of the current philosophy 
of inference. This was exceptionally difficult for Egon Pearson because his father 
"was not able or never saw the need to” make such a shift (Lehman 2008).

ft is widely held that the contributions of Jerzy Neyman in 1930s established 
a new model of statistical inference for finite populations which is the basis of 
currently prevailing inference paradigm in greatest part of survey research. This 
paradigm can be called Fisher -  Neyman paradigm of statistical inference for 
finite populations.

The justification to call the new paradigm Fisher-Neyman paradigm comes 
from the fact that Fisher’s statistical theory made the basis of theoretical develop­
ment. Fisher created alone the foundations of estimation theory and the princi­
ples statistical inference as they are currently understood. However, Fisher did not 
contribute directly to the inference for finite populations. Neyman’s efforts were 
essential in adjusting Fisher's inference theory to finite population problems.

The ideas Neyman presented were innovative, even though they were partly 
based on Bowley’s and Fisher’s ideas. In addition, Neyman applied the mathemati­
cal methods he had learned while studying and working in Russia and Poland.

In text touching sampling techniques, practically never the linkage between 
Neyman’s and Fisher’s theories has been brought up. Neyman adopted from 
Fisher the inference model of drawing repeated samples and applied it in sam­
pling from finite populations. This inference model is the corner stone of mod­
ern inference theory. When he adopted it in the mid 1920s Neyman changed 
profoundly his approach to inference.

There are also significant differences between Fisher’s and Neyman's ap­
proaches. Instead of using Fisher’s Maximum Likelihood estimators Neyman 
developed Best Linear Unbiased Estimators (BLUE) by using (Gauss-)Markov 
theory. Neyman’s BLUE estimators could be applied independent of the distribu­
tions of variables and practically in any finite populations. This feature made Ney­
man’s method very appealing for survey research. Neyman developed the idea of 
interval estimation or confidence intervals for estimators. Originally confidence 
intervals were based on Fisher’s fiducial intervals. Later it appeared that Fisher’s 
fiducial intervals and Neyman’s confidence intervals are conceptually different.

Fisher’s ideas on estimation and statistical inference quickly gained ground 
among young statisticians but the old guard obviously never accepted them (Le­
hman ibid.). The new generation started to foster and develop the new idea
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of inference both for hypothetical and finite populations. The inference model 
which Neyman created for finite populations replaced the method that Bowley 
had developed in 1920s, which was based on the Laplace-Bayes paradigm. After 
Neyman’s 1937 paper, and after some other European statisticians (e.g., Cochran 
and Sukhatme) settled in the U.S., a period of rapid development of sampling 
methods took place. Important contributions to the modern sampling theory 
began to appear on the first half of 1940s. It took still a decade before sampling 
methods were mature enough to be postulated in the well-known textbooks and 
by the first half of 1950s, the classical sampling theory was established.

The paradigm shift can be regarded as intellectually violent, as can be con­
cluded from the documented discussion after Neyman’s presentation to the 
Royal Statistical Society in 1934 and especially from the discussion after Fisher’s 
presentation few months later.

Typical features of Fisher-Neyman paradigm
The most important characteristic of the Fisher-Neyman paradigm is its infer­
ence model, which is based on the idea of repeatedly drawing samples from 
the same population, thus creating the sampling distribution. The Central Limit 
Theorem is the basis of statistical inference. Confidence intervals for estimates 
are formed using the Student’s distribution. The estimation method involves 
practically no assumptions regarding the distributions of observed variables.

Another central characteristic of the Fisher-Neyman method is the fact that 
no assumption, neither implicit nor explicit, of superpopulation is needed. In­
stead, population parameters are assumed to be constants. Consequently, they do 
not have probability distributions, and therefore, a priori distribution has no role.

In most cases, statistical inference is based on Neyman’s idea of inductive be­
haviour132: a scientist working by the same criteria will make correct decisions 
in the predefined proportion, or a predefined proportion of tolerance intervals 
will include a population parameter. It is not possible to say anything about the 
truth of a single decision or about whether a single tolerance interval includes 
the parameter.

132 Fisher never accepted inductive behaviour as a feasible mode of inductive reasoning. This was 
a central point in the long-lasting dispute between Fisher and Neyman. Fisher’s standpoint on 
this is clearly shown in the following text: it would still be true that the Natural Sciences 
can only be successfully conducted by responsible and independent thinkers applying their 
minds and their imaginations. The idea that this responsibility can be delegated to a giant 
computer programmed with Decision Functions belongs to the phantasy of circles rather 
remote from scientific research. The view has, however, really been advanced (Neyman 1938) 
that Inductive reasoning does not exist, but only 'Inductive behaviour'!” (Fisher 1959, p. 60]
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7 2 Emergence of modem 
sampling techniques

12.1 Introduction
The three papers which Neyman published in the 1930s established the founda­
tions of the theory of statistical inference for finite population. In the first paper, 
which was partly a reaction to Bowley’s memorandum to the ISI, he emphasized 
the importance of randomization for statistical inference, not only random selec­
tion of units in order to obtain a representative sample (Neyman 1934], That was 
a novel idea which was not presented earlier. The impact of the paper was not 
immediate, however. As Hansen and Madow put it, “there was still the need for 
communication, understanding, acceptance, and the adaptation and extension of 
the results he [Neyman] had presented.” (Hansen and Madow 1976]. Hansen and 
Madow (ibid.) also claim that at the end of 1930s, sampling as a new method was 
not accepted as trustworthy by the public or by the administration (in the U.S.).

The first two papers of Neyman were theoretical and did not help in solv­
ing the problems which statistical offices were struggling with. The last paper 
(of these three] was more influential than has often been recognized because it 
was motivated by a real and acute sampling problem in the U.S. administration. 
In this paper, Neyman showed a principle how sampling in a large-scale survey 
could be done rigorously and lead to reasonable data collection costs. Hansen 
and Madow confessed that this paper had two different but equally important 
messages for them: the advantages of the methods are rarely universal; and the 
rational decisions on what survey design to use are possible only if some previ­
ous knowledge of the population is available. These facts, which are obvious 
today, put the development of sampling designs in the U.S. Bureau of the Census 
on a right track (Hansen and Madow ibid.].

In the UK, statistical methods were also developed at Rothamsted Experi­
mental Station but the main focus was on experimental (agricultural] research. 
Even research concerning sampling methods aimed at sampling for agricultural 
surveys. Nevertheless, the development done at Rothamsted had significant, 
though partly indirect, influence on survey sampling. Especially, the new the­
ory for statistical inference, based on the theory (paradigm] Fisher had created, 
gained ground quickly133. In addition, several famous statisticians started their 
careers at Rothamsted, and Fisher’s influence was obvious. Some of them later 
continued their careers at Iowa State College in the U.S. (for example William 
Cochran and Oscar Kempthorne]. In addition, Rothamsted Experimental Sta­
tion served as an example for the establishment of the (statistical] Experimental 
Station at Iowa State College in 1933 (see David, 1984],

133 In addition, Neyman and Egon Pearson quickly embraced Fisher’s theory and developed their 
own theory of statistical testing. That is not touched on in this context because it aims at 
statistical inference for infinite hypothetical populations.
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One of the ground-breaking studies on the use of sampling methods was car­
ried out by F. Yates and I. Zacopanay at Rothamsted Experimental Station (Yates 
and Zacopanay 1935). They analysed the estimation of yields of cereal crops by 
sampling methods. Their approach originated from analysis of variance, which 
was frequently applied in the analysis of field experiments. However, Yates and 
Zacopanay aimed at estimating totals and means, typical to a survey, not to reveal 
effects or causes. In addition, estimation was not based on an assumption about 
the distributions of variables, i.e., the estimators were “distribution free”. Sam­
ples were selected at random, and the authors concluded that "bias cannot arise 
if proper methods of random selection are adhered to.” They described how to 
determine the optimal percentage of sampling and showed that with their appa­
ratus, approximately 9% would be optimal. They also analysed the gain obtained 
by subdivision, i.e., stratification, of plots for sampling and noted that subdivision 
was “advantageous”. They found out that sampling for the ratio of grain to total 
produce could give much more precise results than the usual procedure.

The paper of Yates and Zacopanay (ibid) was an opening in using modern 
sampling methods in agricultural research and it was often cited. There were also 
some other notable characteristics in this paper: it was not related to Neyman’s 
work or ideas; random selection was assumed as a self evident method (obviously 
due to Fisher); the main criteria in comparison was sampling error although it was 
not explicitly defined, implicitly it was based on Fisher’s repeated sampling (from 
a finite population) “variation from sample to sample”. The basic idea of statistical 
inference was that of Fisher’s, although it was not expressed explicidy.

While the foundations of modern survey sampling methodology were laid in 
the UK, the current methodology was created in the United States. The methods 
were formed in a relatively short period at the end of 1930s and in the begin­
ning of the 1940s. Very few traces can be found that any remarkable activity in 
this field existed in Europe in the 1940s. In the United States, the development 
mainly took place in two centres: at Iowa State College and the U.S. Bureau 
of the Census (see Hansen and Madow 1976, David 1984, Rao 2005). How­
ever, the idea soon spread, and after the very beginning, many other institutions 
started to develop sampling methods.

In the U.S. in the 1930s, there were several reasons that sparked the rapid 
development of sampling methods: in the background, there was the fact that 
in the U.S. there already existed a long and strong tradition of survey research 
in several areas; the socio-economic situation in the country required measures 
from the government, especially Franklin D. Roosevelt’s New Deal political pro­
grams. In addition, there was rising criticism of the sampling methods that were 
applied to various surveys. According to Hansen and Madow (1976), in late the 
1930s, the estimates of the number of unemployed persons, obtained by many 
different methods, varied from 3 to 11 million.
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12.2 Early history of survey sampling 
in the United States

Stephan (1948] gives a thorough account of the situation and the desire for 
efficient sampling methods in the U.S. before the 1940s. In the beginning of 
the 1940s, there was already nearly a century long tradition of data collection 
in many areas. Stephan (ibid) gives examples of four general lines of statistical 
activities which had a long tradition, and in which better sampling methods 
were required: In agriculture, for example crop estimates; in economic statistics 
of prices, wages, employment, etc.; in statistical social surveys and health studies, 
and in public opinion polling.

Agricultural crop and livestock estimation: Already in the first half of the 19th 
century, a variety of statistics were collected in the United States concerning 
agricultural production, such as acreage planted in each principal or special crop, 
the estimated yield, actual yields, numbers of livestock, equipment, farm labour, 
etc. Agricultural research embraced several different methods which, strictly 
speaking, do not belong to survey methods, such as periodic censuses, voluntary 
reporting by selected respondents, and records produced in connection with 
taxation, marketing, and foreign trade.

A statistical division was established in United States Department of Agricul­
ture in 1865. In 1866, regular reports on acreage, condition of crops, yield, and 
livestock were begun. The reports were based on sample data but, according to 
Stephan (ibid.), the sampling methods in these surveys were simple. The meth­
ods were a compromise between the cost and slow returns of enumeration on 
the one hand, and being without any current information on the other hand.

Economic statistics: The history of economic surveys in the U.S. is nearly as 
long as that of agricultural surveys. Some states of the U.S. established a statisti­
cal bureau in the second half of the 19th century, and the Federal Government 
set up a Labor Bureau in 1884. These bureaus developed staffs of field investiga­
tors to collect periodic data relying mainly on mailed questionnaires. The aim 
was, for example, to get wholesale prices “in representative markets” and to get 
labor data by sending agents into various districts with a list of employers from 
which they could choose what they believed to be a representative group.

Social surveys and health surveys: Sampling had been used extensively in 
studies of poverty and unemployment already at the end of 19th century. For 
example, during the depression of 1873-79, Carroll D. Wright used police in 19 
cities and wrote to assessors in 375 towns throughout Massachusetts inquiring 
about the number of unemployed. Wright was a forerunner of the representa­
tive method and later he took frequent part in the ISI meetings. Fie was also in 
correspondence with Anders Kiaer.

Numerous health surveys were carried out in the U.S. from time to time. 
Stephan (1948) mentioned many examples in which the applied sampling 
methods aimed at obtaining a sample that represents the population.

Public opinion polling: The practice of surveying public opinion emerged in 
the U.S. from the simple beginnings of the “straw vote”, conducted by newspa­
pers to sense public reactions to candidates in elections and to obtain material
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for human interest stories by interviewing the “man in the street”. According 
to George Gallup, the first “straw poll” was carried out in 1836 (Gallup 1976}. 
Already before 1900, the New York Herald had collected pre-election reports 
and estimates from all over the United States and attempted to forecast the 
outcome of elections. The habit to conduct similar polls spread to most of the 
large newspapers.

According to Gallup (1976], the first modern and successful public opinion 
poll was conducted in 1936 in the context of presidential elections. By "mod­
ern”, Gallup meant a survey in which the selection of respondents aimed explic­
itly and actively at obtaining a representative sample. Data collection was not 
based on random sampling. It was carried out using the “Gallup method”, which 
in practice was quota sampling. Hansen remarks (Hansen 1987} that the first 
Gallup Poll in 1936 had the greatest impact on public acceptance of sampling 
because of its successful performance.

Although the early polls employed unsophisticated methods in the modern 
sense, they had an important role in paving the way for more important surveys. 
Opinion polls have a special role in survey research in the sense that their results 
are confirmed (or disconfirmed} in the elections. This practically never happens 
in most other surveys. Successful opinion polls raised reliance on the survey 
method amongst the general public. On the other hand, in the U.S., there were 
some ill-fated examples of public opinion polls that received considerable atten­
tion in newspapers in the 1920s and 1930s. Probably the unsuccessful examples 
also paved the way for more rigorous and methodically sound sampling designs 
because the nearly catastrophic failures proved the importance of a correct sam­
pling method. In 1939, Stephan made a detailed analysis on why these polls had 
failed and gave a step-by-step guide how a large-scale survey should be carried 
out (Stephan 1940}. He emphasized, referring to Bowley, that it was necessary 
to have means to access the selected population. In other words, a frame with 
adequate coverage and access information was required in drawing a sample.

In addition to public opinion polls, market research studies and consumer 
surveys conducted by business concerns, publications, and advertising agencies 
were popular in the U.S. before the 1940s. According to Stephan (1948}, there 
was also in this area a growing interest in public opinion research among po­
litical scientists, sociologists, and others, which led to scientific interest in the 
improvement of the technique of opinion polling.

Stephan (ibid.} noted that while in the early instances, the sampling proce­
dures were simple and usually employed uncritically with no great attention to 
accuracy and representativeness, the problems of observing and recording data 
were almost always far more serious than the problems of sampling. In modern 
survey literature, it is customary to distinguish sampling and non-sampling er­
rors. Stephan refers to non-sampling errors and emphasized that their impact on 
results may be more serious than that of sampling errors.
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12.3 Development of random sampling 
techniques

Systematic sampling has long been in use in many different areas. For example, 
in taking samples geological research and the practice of "cruising” a forest and 
sampling trees at uniform intervals has been well established in forestry for a 
long time. In addition, systematic sampling was frequently used in agricultural 
surveys. A comparable example in social research is the series of studies of work­
ers in the unemployment insurance system which John Hilton made beginning 
in 1923 (see Chapter 8) in the UK. In those studies, the samples were selected 
systematically from the files of the Labor Exchanges. Hilton found a sample of 
only one per cent quite satisfactory to meet the practical administrative and 
policy-making purposes for which the studies were made.

In surveys on human population, also the selection of households in Kiaer’s 
Representative Method and the sampling method which Bowley applied can be 
characterized as systematic sampling. In the first half of the 20th century, some 
kind of systematic selection of respondents was nearly the only method which in 
practice was possible on human populations because of the scarce information 
at the disposal of samplers. Another reason was the fact that enumeration in a 
systematic sample was easy to organize and data collection costs were predict­
able. Systematic sampling was not regarded as strictly random, though, and it 
lacked a theoretical basis. Only in 1944 William and Lillian Madow published 
a paper (Madow and Madow 1944} where they laid the mathematical founda­
tions of systematic sampling as an exact sampling method. The most important 
message was that under a few assumptions, a systematic sample could be re­
garded as a simple random sample.

In the 1920s and 1930s in the U.S., serious attention was given to problems 
of sampling methodology but the use of random and even systematic sampling 
procedures in statistical work made slow progress (Stephan 1948). Margaret 
Hogg, who had worked together with Bowley in some of the surveys (see Chap­
ter 8], came to the U.S. and made a critical study of employment and unemploy­
ment statistics. In an article published in the Journal of the American Statisti­
cal Association (Hogg 1930], she made a strong plea for rigorous methods of 
sampling and cast doubt on some surveys in which the sample was selected by 
judgment rather than random procedures. In the spring of 1931, Hogg had made 
a survey of unemployment, partly to test the practical difficulties of applying a 
random sampling method, and also to develop better questionnaires and statisti­
cal categories for unemployment surveys (see Hogg 1932}.

The spring of 1937 became a turning point, after Neyman had delivered a se­
ries of lectures on mathematical statistics and probability at the Graduate School 
in the Department of Agriculture134. During the visit, he also gave a number of

134 This visit also led to an offer for Neyman to join the University of California at Berkeley. In 
1938, Neyman accepted a mathematics professorship and soon after that, he established the 
Statistical Laboratory at Berkeley. He spent the rest of his life as the director of the labora­
tory. In Berkeley, Neyman concentrated on other parts of statistical science and contributed 
very little on sampling theory (see Lehman 2008)
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lectures on sampling. A question asked from Neyman after one of these lectures 
led to the famous paper on double sampling (Neyman 1938). Most survey statisti­
cians already accepted random sampling as a method that would yield representa­
tive samples. However, no methods were available how random sampling could be 
carried out in a country like the United States (or actually in any country). Among 
other things, Neyman’s paper showed that statistically rigorous theory of sampling 
is attainable at the same time with manageable fieldwork and with acceptable 
costs. Although Neyman did not have direct contacts with the U.S. Bureau of the 
Census, his papers and lectures where known and according to Hansen (1987), 
they strongly stimulated the development of sampling methods. Still at the end of 
1930s the Bureau of the Census upheld the idea that it could not undertake sam­
pling surveys because that would discredit its results on other areas; only complete 
coverage was accepted, (see Hansen 1987 and Olkin 1987).

In the 1930s, the estimates of the number of unemployed persons varied 
considerably and therefore a study called Census of Unemployment was under­
taken. It was a nationwide voluntary registration of the unemployed and par­
tially unemployed persons. A questionnaire was delivered to every household in 
the U.S. with a plea for cooperation, signed by the president. The fieldwork was 
carried through the U.S. Post Office. Some statisticians, however, foresaw lack 
of validity in the voluntary registration and they persuaded the administration 
to conduct the so-called Enumerative Check Census in a sample of areas. The 
Enumerative Check involved an enumeration of a two percent sample of the 
total population composed of all households within postal delivery routes. The 
routes were selected by random sampling from all delivery routes. Mail carriers 
did the practical interviewing in households. They also identified the voluntary 
mail returns and linked them to interviews. By this arrangement, it was possible 
to apply ratio estimation which was based on the voluntary registration returns.

The Enumerative Check achieved recognition in the U.S. Bureau of the Census 
as well as elsewhere in the administration. It showed that large-scale sample surveys 
could make substantial contributions, and under appropriate design and control, 
could produce timely information that was more accurate than complete censuses 
or national registrations. According to Hansen (1987), the success of the Enumera­
tive Check together with the success of the first Gallup Poll were the major events 
that set strong precedents for the future use of sampling in official statistics.

The Enumerative Check Census has been considered as an immediate conse­
quence of the lectures Neyman gave in Washington and as the step that gave the 
Bureau of the Census the confidence to use sampling in the 1940 Census (Hansen 
1987). The Enumerative Check led to the Sample Survey of Unemployment, which 
was started in 1940 as a monthly activity of the Work Projects Administration 
(WPA) to measure unemployment (see Frankel and Stock 1941). In 1942, respon­
sibility for the Sample Survey of Unemployment was transferred to the Bureau of 
the Census, and it was renamed the Current Population Survey.

Inspired by the success of the Enumerative Check, the Bureau of Census in­
troduced sampling as an important part of the data collection method in the 1940 
Census. Its purpose was to gather additional information that could not be includ­
ed in the census schedule (see Stephan, et. al. 1940). This was another success that 
supported sampling efforts at the Census Bureau (see Hansen and Madow 1976).
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12.4 Institutes developing survey methods
According to Hansen and Madow (1978), there was intense pressure in the 
1930s to collect information about the population of the U.S. to design poli­
cies and to develop social programs. Stephan (1948) identified two important 
general developments affecting the use of sampling which took place in the 
United States in 1933. One was the organization of large-scale work projects 
for the unemployed under the national programs, and the second reason was 
the enlistment of many leading statisticians from the universities and business 
in the reorganization of government statistical work (see Stephan 1948 or Olkin 
1987). The statistical needs of the government had increased greatly as it tried to 
solve the problems of the recession and undertook various New Deal programs 
(see Hansen 1987). At the same time, the advantages of probability sampling 
in terms of greater scope, reduced cost, greater speed, and model-free features 
were gradually recognized.

There were actually only two centres in the U.S. which actively developed 
sampling methods: Iowa State College and the Bureau of the Census. The third 
important centre was the Indian Statistical Institute.

Iowa State College
Iowa State College at Ames and its Statistical Laboratory had grown in the 
1930s a centre for R.A. Fisher’s new ideas in the U.S.. Snedecor, the founder of 
the laboratory, had persuaded the college that all experimental work should be 
properly treated statistically. This gave statistics at Iowa State College a status it 
had nowhere else in the world at that time (see David 1984). The emphasis in 
applied statistics was then on sample surveys and experimental design. In 1938, 
Cochran visited the college and agreed to return as professor the next year. He 
lectured on both topics there, and these lecture notes over the next ten years 
matured into well-known textbooks.

An important contribution to the development of sampling methods at 
Iowa State College was Raymond Jessen’s Ph.D. thesis (lessen 1942). From that 
originated the idea of area sampling for estimating farm facts and also rotat­
ing sampling. It was an experimental study undertaken to investigate questions 
“pertinent to the problem of collecting data by the sample survey method”. The 
questions he sought to find answers were: (a) What is the amount and nature 
of error in data obtained by interview? (b) What is the best available sampling 
procedure? (c) What method of expanding sample data will provide the best 
estimate of state or subdivision totals?

Jessen’s study was composed of two interrelated surveys on farms in Iowa, 
one in 1938 and the other in 1939. Approximately 50% of the 1938 sample was 
re-numerated in the 1939 survey. This design was later used as an example for 
developing rotating sampling designs, e.g., for the CPS. The sampling of farms in 
Iowa was based on a grid of approximately 1/4 square mile drawn on a map of 
Iowa. The sampling unit was a "quarter-section” grid and a county was set up as 
the stratum. The same proportions of townships were selected at random from 
each county. Quarter-sections were selected at random from each of the selected
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townships. The total number of agricul­
tural quarter-sections in Iowa was at the 
time “about 219 176” and 0.4% of them 
were selected for the sample.

Enumerators were instructed to visit 
each farmstead situated on the selected 
grids to interview “either the operator 
or whomever might be familiar with the 
farm’s business”. Careful instructions 
were given to enumerators to substi­
tute the farm in case no one was found 
at home or if the operator was not co­
operating. The data collection method 
resembles that of Kiaer and even more 
closely that of Bowley. lessen refers to 
both Bowley’s works and Jensen’s works 
but not to Kiaer's works.

One purpose of Jessen’s study was to compare the estimation of state totals 
with three different methods. The methods were based on the knowledge of ei­
ther the total number of quarter-section grids, total land in farms, or total number 
of farms in the state. The count of quarter-section was obtained from maps. The 
total land in farms and the total number of farms was available from the Farm 
Census. All methods were found to be “not only relatively free from bias but also 
satisfactorily efficient”. In addition, lessen concluded that the quarter-section grid 
is an efficient unit “under widely varying circumstances”. He also analysed the 
work of assessors and enumerators and found that there was considerable variation 
and inaccuracies and concluded that it was an important source of error.

It should be noted that lessen was also an internationally acknowledged ex­
pert in sampling surveys. He conducted population and housing surveys in Peru 
and Argentina. He was assigned as the leader of a mission of American and Brit­
ish experts to Greece in 1946 to design and execute sampling methods to assess 
the completeness of the electoral lists for the post-war elections. Partly because 
of Jessen’s international activities, the awareness of the new sampling theory 
spread all over the world.

The Iowa State College statistical laboratory and the Bureau of the Census 
were the two main centres in the U.S. where sampling methodology was devel­
oped systematically and there was a close connection between them. Later, Co­
chran was the chairman of an advisory committee to the Bureau of the Census, 
which was established to assist in designing samples for large-scale surveys [see 
Watson 1982}.

U.S. Bureau of the Census
In the period starting roughly at the end of 1930s, survey statisticians at the Bureau 
of Census, especially Morris Hansen, William Hurwitz, William Madow, and Joseph 
Waksberg, made fundamental contributions to sample survey theory and practice. 
Many of the methods they developed are still used world-wide. These methods for

Figure 12.1:
An enumerator interviewing a farmer at 
the end of the 1930s.
(Source: http://www.census.gov)
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large-scale surveys were designed for data collection from human population by 
enumerators or interviewers. That was the major difference compared to Cochran’s 
approach in early the 1940s and to the activities at Iowa State College, which were 
mainly aimed at agricultural research. Hansen claims that the philosophy of Co­
chran’s approach of using analysis of variance to finite population sampling differed 
from Neyman’s original philosophy, which was based on random selection from a 
finite population (see Olkin 1987],Therefore Cochran’s approach was not applica­
ble in the surveys that were planned at the Bureau of the Census.

Indian Statistical Institute
India was the third place where sampling methods were developed significantly 
in the beginning of 1940s. Hansen claims that in the 1940s, sampling methods 
for large-scale surveys were actually developed only in two places: the Bureau 
of Census and the Indian Statistical Institute (Olkin 1987). Statistical Science 
has a long tradition in India. Already in 1927, Hubback had recognized the need 
for random sampling and its benefits in crop surveys: “The only way in which 
a satisfactory estimate can be found is by as close an approximation to random 
sampling as the circumstances permit, since that not only gets rid of the per­
sonal limitations of the experimenter but also makes it possible to say what 
is the probability with which the results of a given number of samples will be 
within a given range from the mean.” (Hubback 1927). This citation reveals two 
important observations on random sampling: It avoids personal biases in sample 
selection, and sample size can be determined to satisfy a specified margin of er­
ror (see Rao, J. 2005 and Rao, B. 2006)

Prasanta Mahalanobis135 established the Indian Statistical Institute in 1931. 
There, Mahalanobis made pioneering contributions to sampling by formulat­
ing cost and variance functions for the design of agricultural surveys. His 1944 
paper (Mahalanobis 1944) provides theoretical results on the efficient design 
of sample surveys and their practical applications, in particular to crop acreage 
and yield surveys. The optimal allocation in stratified random sampling with cost 
per unit varying across strata is obtained as a special case of his general theory. 
As early as 1937, Mahalanobis used multi-stage designs for crop yield surveys 
villages, grids within villages, plots within grids, and cuts of different sizes and 
shapes as sampling units in the four stages of sampling (Murthy 1964). He also 
used a two-phase sampling design for estimating yield.

Mahalanobis developed a great variety of statistical methods for many pur­
poses, not only for agricultural research. One of the most important has been 
the method of interpenetrating samples whose main purpose is to control and 
reduce non-sampling errors. One important consequence of the technique was

135 Prasanta C. Mahalanobis (1893-1972) was an Indian scientist and applied statistician. He is 
best remembered for the M ah alan o b is d istan ce, a scale-free distance measure. He graduated 
in physics in 1912 from the Presidency College, Calcuta, and completed Tripos at King’s 
College, Cambridge. He then returned to Calcutta. Inspired by the Biometrika he started his 
statistical work. In 1924, when he was working on the probable error of results of agricultu­
ral experiments, he met Ronald Fisher, with whom he established a life-long friendship. His 
most important contributions are related to large-scale sample surveys. He introduced the 
concept of pilot surveys and advocated the usefulness of sampling methods
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its simplicity in the estimation of sampling variance regardless of the complexity 
of the form of the estimator.

P. V. Sukhatme, who studied in the 1930s under Neyman and later worked 
at the Iowa Statistical Laboratory, also made pioneering contributions to the 
design and analysis of large-scale agricultural surveys in India, using stratified 
multistage sampling. He developed efficient designs for the conduct of nation­
wide surveys on wheat and rice crops. Sukhatme’s approach differed from that 
of Mahalanobis, who used very small plots for crop cutting employing an ad hoc 
staff of investigators [see Rao 2005).

7 2 . 5  Development of computing technology

Statistics production is very labour consuming and surveys are no exceptions. 
For example, it took seven years to complete the 1880 census in the U.S. There­
fore, there was some concern that the 1890 census would not be completed 
before the 1900 Census. The problem was not in the collection of the data but in 
the processing of the data. The U.S. Bureau of Census rented tabulator machines 
invented by Herman Hollerith136 for the 1890 Census. Their influence was dra­
matic: in a few months, an unofficial estimate of the United States population 
was obtained. The 1890 Census was completed in five years, although it was 
a far more extensive census than the previous one [see Bellhouse 2000). The 
advantages of Hollerith tabulation machines were soon noticed also outside the 
U.S. For example, Anders Kiaer used them for tabulation of his first survey.

The ISI conference in Bern in which Kiaer 
presented his Representative Method is his­
torically interesting also in another respect: 
Heinrich Rauchberg presented a paper on the 
use the electric machine in the Austrian census 
[Rauchberg 1896). After that, Herman Hol­
lerith took the floor to explain how he wanted 
to develop his machine further [Malaguerra 
2000). The audience immediately recognised 
the utility of the machine. In particular, the 
French statistician Emile Cheyson predicted 
that the Hollerith machine would bring to 
statistics the same transformation as the intro­
duction of mechanics did in industry [Mala­
guerra 2000).

The possibilities to carry out a large-scale 
survey increased essentially at the end of 
1930s and in the 1940s because of the fast de-

Figure 12.2:
Hollerith tabulating machine In 
use In 1902 at the U.S. Bureau 
of Census. (Source: http://www. 
census.gov)

136 Herman Hollerith was an employee of the Census Bureau when he built the first mechani­
cal tabulator. In 1896, he established a company, which was renamed International Business 
Machines [IBM] in the 1920s.
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velopment of computing techniques. Due to fast punched card tabulators and 
calculators -  and new algorithms -  the results of large-scale surveys could be 
obtained in such a short time that they could be utilized effectively. During 
the 1930s, the Journal of the American Statistical Association included several 
articles about different algorithms for punched card calculators and, for exam­
ple, about the frequency of punching errors. Grier137 claims that without the 
advanced computing techniques, modern statistical methodology could easily 
have languished as an interesting theory, useful for small problems but otherwise 
impracticable. Especially in the data processing of a large-scale survey, comput­
ing technology is of central importance. Even fairly simple technical devises, in 
a modern sense, can take care of a great deal of handwork required in tabulating 
survey data. However, standard errors were seldom calculated in the 1930s due 
to the amount of work, which increased rapidly with the increasing sample size, 
and when they were calculated, the correct formulas were seldom applied (see 
Bellhouse, ibid.).

Several statistical laboratories developed computational methods in the 
1930s, but Iowa State College was more productive than others were, partly 
because the Department of Agriculture financed their research (see David 1984 
and Grier). In 1940, they managed to build a device which had the typical parts 
of a computer but it was never taken into use. A few years later, its central ideas 
were included in the first computer.

The first computer in the modern sense was the ENIAC, unveiled in 1946. 
Its capacity was very limited, but it already had the components which make 
a computer. ENIAC was built for military purposes, however. The U.S. Bureau 
of the Census received the first UNIVAC computer in 1951138. At that time, 
it was an efficient computer which used magnetic tape to store input/output 
rather than the punch tape or punch cards. UNIVAC I was first used for process­
ing the 1950 census data. When the census was completed, the computer was 
used to process CPS data. The use of an efficient computer set new standards 
for the production of statistics, and its arithmetic capabilities enabled the use of 
significantly more complex estimators (and sampling designs) than before. Only 
after the computer was received, technology caught up to theory and it became 
possible to calculate standard errors for estimates, though still through approxi­
mations in the beginning (see Bellhouse 2000).

12.6 Formol development of sampling methods

Several people contributed to the development of modern sampling theory in 
some way. However, the most significant contributions came from a few men: 
Jerzy Neyman, William Cochran, Morris Hansen, William Hurwitz, and Wil-

137 David Allan Grier’s article "The Origins of Statistical Computing” is published on the Web 
site of ASA and has no other reference information than its address (see http://www.amstat. 
org/about/statisticians/index.cffn?fuseaction=papers).

138 The initiative to design and build UNIVAC originated partly from the Census Bureau.
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liam Madow (and the team at the U.S. Bureau of the Census), and in India, P. 
C. Mahalanobis and P. V. Sukhatme. One should note that the classical sampling 
theory to a great part was aimed at surveying human populations, either indi­
viduals or households.

12.6.1 Cochran's contributions to sampling theory
Cochran13̂  is the author of probably the most frequently referred textbook on 
survey sampling (Cochran 1953) but he originally specialized in agricultural field 
experiments. He worked from 1934 to 1939 at the Rothamsted Experimental 
Station, which fostered Fisherian statistical methods on design of experiments 
(see Watson 1982). Before the publication of his book on sampling, Cochran 
wrote only three papers that dealt strictly with sampling methods (see Watson 
1988). All the papers concerned sampling in agricultural research.

Cochran wrote his first paper on sampling (Cochran 1939) while he was still 
affiliated with Rothamsted Experimental Station. He read the paper at the 100th 
annual meeting of the American Statistical Association (ASA) in 1938. The pa­
per contains several results which have later proved to be important: the use of 
analysis of variance model to estimate the gain in efficiency due to stratification, 
estimation of variance components in two-stage sampling for future studies on 
similar material, choice of sampling unit, regression estimation under two-phase 
sampling, and the effect of errors in strata sizes.

In this paper, Cochran referred to Neyman’s 1934 paper only briefly men­
tioning that Neyman had shown that purposive selection would rarely give a 
representative sample. Next, Cochran stated, “A representative sample ... can 
clearly be obtained by giving every unit in the population an equal chance of 
being included in the sample”. This is the only occasion when Cochran indirectly 
referred to randomization. He did not discuss the role of randomization in sta­
tistical inference at all. It seems that Cochran considered it as an established fact 
which did not require contemplation anymore.

In this paper, Cochran introduced the superpopulation concept in sampling 
theory (he did not use the word “superpopulation”, though):

“The finite population should itself be regarded as a random sample from some in­
finite population; thus the sample which is taken for enumeration is regarded as a 
subsample for a larger sample of the same infinite population.” (Cochran 1939)

At that time, Cochran had critical views about the traditional finite population 
concept:

139 William Cochran (1909-1980} studied at St. John’s College in Cambridge. In 1934, he was 
hired as an assistant to Rothamsted, where he worked until 1939 writing papers on design 
of experiments or theoretical papers and one paper on sampling. In 1938, he visited Ames, 
Iowa (U.S.}, and agreed to return in  1939 as professor. At Iowa, Cochran produced central 
ideas for survey sampling. In 1943-1944, Cochran joined the Princeton Statistical Research 
group. From 1949 to 1957, Cochran was at the Department of Biostatistics in the School of 
Hygiene and Public Health at John Hopkins. The Department of Statistics was established 
at Harvard University in 1957, and Cochran was appointed as a professor. He remained at 
Harvard the rest of his career.
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"Where the population consists of a single group, the results obtained by 'finite 
sampling theory’ agree with those obtained by the analysis of variance. The former 
is, however, not easily extended to the case in which the population is subdivided 
into groups [Cochran’s expression for stratification] at least so far as the situation 
arising in practice are concerned. Further, it is far removed from reality to regard 
the population as a fixed batch of known numbers. In economic and sociological 
studies the population is changing from day to day. The population at any time 
is often conventional, as for example with a population of farms or carpenters, 
owing to difficulty in defining a member of population. Errors in counting are 
bound to occur in any large-scale investigation and though they are not usually 
differentiated from the sampling errors, they will contribute to inaccuracy in any 
means which are calculated.” (Cochran 1939)

Cochran’s next paper on sampling, published in 1942, was written while he was 
already associated with Iowa State College (Cochran 1942). The paper was based 
on a presentation he gave in 1941 at the 103th annual meeting of the ASA. In 
the same meeting, several other well-known papers on sampling were also pre­
sented, such as “Relative efficiency of various sampling units in population inquiries” 
by Hansen and Hurwitz (Hansen and Hurwitz 1942) and a presentation by Fran- 
kel and Stock concerning the plans for “the sample survey of unemployment” by the 
WPA (Frankel and Stock 1941). Unfortunately, there are no records on discussions 
in this conference but probably sampling and survey methods were touched on.

The main question in Cochran’s paper was: Should differences between the 
sizes of the sampling units be ignored or taken into account in selecting the 
sample and in making estimates from results of the sample? Cochran was think­
ing populations where sampling units differ in size, such as farms “which in the 
same county may vary in land acreage from few acres to over 1, 000 acres”. In 
mathematical terms, he stated the problem of estimation in the following man­
ner: Sampling units are drawn at random without regard to their sizes. How to 
estimate the population total of a quantity y, which can be measured on each 
sampling unit. Associated with each sampling unit is also a quantity x, which is 
called its area (Cochran used “area” to avoid confusion between “size of sample” 
and “size of sampling unit”). He assumed that some knowledge was available 
about the values of x in the sample, and possibly also in the population. In addi­
tion, Cochran assumed that the number of sampling units in the population may 
be considered infinite. In the footnote, Cochran noted, referring to Hansen’s and 
Hurwiz’ paper, that his model does not apply in sampling from a human popula­
tion where the sampling unit is a household and a sub-unit is a person.

As a solution, Cochran developed a regression estimator which later gave the 
stimulus to develop general regression estimators (Sarndal 2007). He showed 
that when the mean value of y is linearly related to the area of the sampling 
unit, with constant variance, i.e., linear regression y = a  + (3x + e, where e has 
mean zero and constant variance, the linear regression estimate for population 
total, V), of y is

^ /= + K*/> _30 j  0 2-i)

where N  is the number of sampling units in the population, b is the sample 
regression coefficient, and the suffixes p and s refer to population and sample, re­
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spectively. This estimator requires knowledge of the total number N  of sampling 
units and the mean value of x in the population. In human population, these 
parameters were rarely known, which is a serious limitation.

Cochran derived the average bias under model deviations for simple ran­
dom sampling as the sample size n increased, and also extended the results to 
weighted regression and derived the now well-known optimality result for the 
ratio estimator; namely, it is a "best unbiased linear estimate if the mean value 
and variance both change proportional to x ”.

In this paper, Cochran introduced ratio estimation for sample surveys as a 
new method, although an early use of the ratio estimator dated back to Laplace 
(1774) and Graunt (1662). It is interesting that Cochran obviously was not aware 
of what Laplace had done earlier. Almost forty years later, Cochran published a 
paper where he appeared surprised at the existence of Laplace’s survey and ana­
lysed Laplace’s estimator from the current perspective (Cochran 1978).

The 1942 paper of Cochran is interesting from the perspective of sample se­
lection, as well. The starting point was that sampling units were drawn at random 
without regard to their sizes, i.e., all sampling units have equal probabilities of 
inclusion. At the end of the paper, Cochran noted that the regression estimator re­
mains unbiased under non-random sampling, provided the assumed linear regres­
sion model is correct. He concluded that “Thus the large sampling-units might be 
allotted a greater chance of inclusion in the sample, this procedure giving a more 
accurate estimate whenever the variance ofy increases as x increases. On the other 
hand, if the method of selection discriminates in favour of certain sampling-units 
amongst those of the same area, bias may arise.” Cochran did not further elaborate 
on the idea of drawing a sample with varying inclusion probabilities.

In the next paper on sampling, Cochran (1946) compared analytically the rel­
ative efficiency of alternative probability sampling strategies: systematic sample 
of every k^ element, a stratified random sample with one element per stratum, 
and a random sample. Cochran referred to the first investigation of the properties 
of systematic samples by W. and L. Madow (Madow and Madow 1944). Also, this 
study was carried out, in modern terms, under a superpopulation model. The ob­
ject of the paper was to make comparisons for population in which the variance 
among the elements in any group of contiguous elements increases steadily as the 
size of the group increases. Cochran claims that this type of population has been 
regarded as applicable in field experimental work, where the variance among 
plots within blocks increase with the size of the block. This class of populations, 
according to Cochran, could be represented by a model in which the elements 
are serially correlated. He defined the population in the following manner:

Elements of the population, xv i= l, ... , nk, (e.g., n strata and k elements
in each) are assumed to be drawn from a population in which

E{xt) = p,
£ (x ,- p )2 = o 2, (12.2)
E(x, -  p)(x,+„ -  p) = p„a2,p„ > o v > 0

whenever u < v and pu is a serial correlation between xi and xi+u.
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Cochran continued, specifying that “It is more reasonable to regard the finite 
population as being itself a sample from an infinite population in which the p’s 
are monotone. ... Thus, comparison between the systematic and stratified ran­
dom samples will be made not for a single finite population but for the average 
of finite populations drawn from an infinite population with monotone decreas­
ing p.” (Cochran 1946]. As a result, he showed that the stratified random sample 
is always at least as accurate on the average as the (simple] random sample, and 
its relative efficiency is an increasing function of the size of the sample. How­
ever, he found no general results which were valid for the relative efficiency of 
the systematic sample. Rao (2001] argues that this paper has stimulated much 
subsequent research on the use of superpopulation models in the choice of 
probability sampling strategies.

12.6.2 Hansen's and Hurwitz' sampling design for the CPS
Before the development of sampling design for the Current Population Survey 
(CPS], Hansen and Hurwiz analysed the problems of stratification in sampling 
in the context of census (Hansen and Hurwitz 1942]. The main problem was: 
which sampling units make the most efficient stratification in terms of cost and 
administrative limitations? The sampling units were different types of clusters, 
such as an individual person or household, or a small geographical area such as 
a city block, a segment of a block, a group of blocks, and a small rural area. The 
criterion was the relative efficiency in terms of relative magnitudes of sampling 
variances computed on the same unit basis. The analysis indicated that for most 
population and housing items, a large size sampling unit is considerably less ef­
ficient than a small one.

Another significant observation made by Hansen and Hurwitz (ibid.] was 
that there may exist a correlation between the elements within clusters, and this 
intra-cluster correlation influences the sampling error. They noted that usually 
in practice the intra-cluster correlation is positive and therefore the sampling of 
clusters is less efficient than the sampling of individuals, but many important ex­
ceptions could be found in which intra-cluster correlation was negative. Hansen 
and Hurwitz (ibid.] compared their results to the models proposed by Cochran, 
and Yates and Zacopanay and noted that these models do not permit a negative 
correlation and hence clusters can never be more efficient than a single indi­
vidual. Hansen and Hurwitz (ibid.] showed that this limitation is not realistic in 
sampling from human populations where negative intra-cluster correlations are 
frequently observed.

After the Sample Survey of Unemployment was moved to Bureau of the 
Census Statistician, Hansen and Hurwitz started to develop a new sampling de­
sign for it, based completely on probability sampling (Olkin 1987],The result of 
this work is best documented in the paper entitled “On the Theory of Sampling 
from Finite Populations” by Hansen and Hurwitz (1943].

A significant condition for the development of the sampling design was pre­
sented by the costs of data collection. Also, the small amount of population-level 
information set limits to potential methods. Hansen and Hurwitz concluded 
that “these formulas have not practical utility unless there are also some consid­
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erations on differential costs.” As one of the starting points, the authors explain 
what their motivation to develop the method was and what difficulties it was 
supposed to solve:

“If, no matter how a sample be drawn, the costs were dependent entirely on the 
number of elements included in the sample, here would be no need for theory 
beyond the classical theories of Bernoulli and Poisson covering the independent 
random sampling of elements within strata, supplemented by the extension of the 
theory to finite populations, and the extension to optimum allocation of sampling 
units. Very often, however, in statistical investigations it is extremely costly, if not 
impossible, to carry out a plan of independent random sampling of elements in a 
population. Such sampling, in practice, requires that a listing identifying all the 
elements of the population be available, and frequently this listing does not exist 
or is too expensive to get. Even if such listing is available, the enumeration costs 
may be excessive if the sample is too widespread. Frequently also, there are other 
restrictions on the sample design, such as the requirement that enumerators work 
under close supervision of a limited number of supervisors, and as a consequence 
the field operations must be confined to a limiting number of administrative cent­
ers...” (Hansen and Hurwitz 1943)

Hansen and Hurwitz aspired to develop a method that would make the most ef­
fective use of available resources by organizing adequate field operations. In the 
background, there was also the problem that sampling was still a novel method 
and not generally accepted as trustworthy (see Hansen and Madow 1976).

The structure of the population which Hansen and Hurwitz (1943) wanted 
to study was the following: It is made up of L strata, with the i-th stratum con­
taining M(. primary sampling units (PSU) of N{ elements each. Xijk is the value of 
some characteristic of the element k of PSU j  in the stratum i. The population 
average to be estimated is

*  = (12.3)
' j * /

This can mean, for exannple, that the parameter to be estimated is the average 
income of households, X , in a given city; Xr-k is the income of fe-th household 
in the ;-th city block in the i-th ward. If the sample consists of m- PSUs from i-th 
stratum and n; elements from each PSU, the “best linear unbiased estimate”, in 
the sense Neyman defined it, is

= X JÎM ,N , (12.4)

This estimate would be the most efficient if the number of sampling elements 
in each sampling unit within a stratum were the same. A problem was that 
the numbers of elements, Mi and N-, are not always known. Hansen and Hur­
witz (op. cit) concluded that if the numbers of elements differ between sam­
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pling units, a biased but consistent estimate can be found which has a smaller 
mean square error140 than the best linear estimate. As an example, they showed

_ "• t '»
that a ratio estimatorX'= ^ X,■ ^ Nt has a smaller mean square error than

^ m \  I  i i N  i

T  Xt N where N = . The ratio estimator is biased (with neg-X' = M/
\  1 J i  i

ligible bias] and nonlinear, but consistent. On the other hand, by using the 
ratio estimator, the authors could avoid the problem that unbiased estimates 
required the knowledge of N, which was rarely known.

After a thorough analysis of the circumstances and various comparisons be­
tween different approaches, Hansen and Hurwitz (1943) developed the basic 
theory of stratified two-stage sampling with one primary sampling unit (PSU) 
within each stratum drawn with a probability proportional to the size measure 
(PPS sampling] and then sub-sampled at a rate that ensures self-weighting with­
in strata. PPS sampling design led to significant variance reduction by controlling 
the variability arising from unequal PSU sizes, without stratifying by size and 
thus allowing stratification on other variables to reduce the variance.

The design they ended up with was based on a selection of primary units 
with probabilities proportionate to the measure of their size. The actual scheme 
was to sample one primary unit per stratum without replacement. The current 
sampling design of the CPS described in Chapter 1 still follows the basic ideas of 
this original contribution, although it has been developed considerably.

Unequal inclusion probabilities were implicitly present already in Neyman’s 
optimal allocation designs, although he did not pay attention to that. The pre­
vailing paradigm at the end of the 1930s was that each element of the popula­
tion should have equal inclusion probabilities. In Hansen’s and Hurwitz’ (ibid.] 
method, the possibility to have varying probabilities in selecting sampling units 
was explicitly articulated for the first time.

The complex sampling designs were planned to solve the practical problems 
of data collection in such a manner that estimators with acceptable (not neces­
sarily maximal] accuracy could be produced. Aside from the theoretical break­
through, one great difficulty could be avoided by the approach presented by 
Hansen and Hurwitz: it provided approximately equal interviewer workloads, 
which is important in designing the field work. It was central that a manage­
able field organisation could be established for data collection and a reasonable 
amount of field work was required to provide estimates.

12.7 Theory of statistical inference in the 1940s

It is obvious that the classical sampling theory was outlined in the 1940s in 
the United States at Iowa State University and even more at the Bureau of the 
Census. The one single factor behind the development was the need for an ac-

140 This is probably the first time when mean square error is taken as an equal criterion with 
sampling variance in developing a sampling design.
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curate and cost-efficient sampling design for the Current Population Survey. The 
characteristic feature of the development was that it aimed at the sampling of 
human populations. The main part of the classical sampling theory deals with 
sampling from finite human populations with a design-based approach.

The main aim in Hansen’s and Hurwitz’ works in early the 1940s was to de­
velop a data collection apparatus that provided statistical data for the administra­
tion with acceptable costs and acceptable accuracy. The theory they developed 
allowed for the designing of complex multistage sample surveys, which have be­
come the basis of large-scale social and economic surveys all over the world.

In the 1940s, Cochran published three frequently cited papers on sampling. 
All of them were related to agricultural research, not sampling in human popula­
tions. The approach in these articles was based on the idea of a superpopulation 
from which the observable finite population is a sample. Cochran's original ap­
proach can be seen as an offspring of Fisher’s ideas applied to finite populations. 
Fisher defined a population to be hypothetical and infinite, “the resultant of the 
conditions we are studying”, and he regarded a sample as drawn from a distri­
bution f(x). However, Cochran’s approach in sampling was distribution-free. In 
addition, the methods were elaborated from Fisher’s methods for experimental 
research, such as analysis of variance and regression analysis. In modern termi­
nology, Cochran’s approach in his papers in the 1940s was model-based. Only 
later did Cochran develop methods for finite and fixed populations, and in his 
famous textbook (Cochran 1953), he deals with sampling from finite (human) 
populations and his approach is design-based.

Another noteworthy feature in Cochran’s early papers was that they were 
not related to Neyman’s ideas on sampling. In the three papers referred to here, 
he mentions Neyman only once. The adoption of randomization is due to the 
work at Rothamsted and more of Fisher’s influence.

An important breakthrough in the classical theory of survey sampling theory 
was when Horvitz and Thompson published a paper in 1952 (while affiliat­
ed with Iowa State Statistical Laboratory) on a general theory for construct­
ing unbiased estimates (Horvitz and Thompson 1952)141. Hansen and Hurwitz 
(1943) obtained results on sampling with probability proportional to size and 
with replacement. Horvitz and Thompson extended this idea to sampling with­
out replacement.

Horvitz and Thompson obtained the impetus for their work from the meth­
od Hansen and Hurwitz presented in the 1943 paper. One of their examples was 
“ ...entirely analogous to that specified by Hansen and Hurwitz ... when a sin­
gle primary unit is drawn with probability proportionate to its estimated size”. 
One problem they aim to solve was the limitation in the Hansen and Hurwitz 
design that an unbiased estimate of sampling variance of their estimator could 
not be obtained from the sample. Horvitz and Thompson (ibid.) provided a 
general method for sampling without replacement from a finite population with 
variable selection probabilities. They also gave an unbiased linear estimator for a 
population total and the sampling variance of the estimator.

141 N ä rä in  derived  th e  sam e  fo rm u las (N ärä in  1 9 5 1 )  n early  a t  th e  sa m e  tim e  as H orv itz  an d  
T h o m p so n , b u t  N a ra in ’s co n trib u tio n  b e c a m e  know n m an y  years later.
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Horvitz and Thompson (ibid.] treated a population, U, consisting of N  ele­
ments uh u2, ... uN. A sample of size n is drawn from the population without 
replacement, using arbitrary probabilities of selection. A probability of selection, 
P[uJ, is predefined for each element u{ in the population, and it plays a central 
role in the further development in HT estimation. This was first time selection 
probabilities were explicitly included in estimation. A fundamental element in 
their method was also the probability distribution that the sampling design in­
duces over all potential samples, st-, of size n. This setup became a central ele­
ment in the development of statistical inference for finite populations.

The scope of the current thesis is the early history of survey sampling up to 
the 1950s. In a way, it can be stated that Horvitz and Thompson completed the 
classical theory of survey sampling. The random sampling approach was almost 
unanimously accepted and HT estimators opened new ground for development 
of survey sampling theory for different applications. In Kuhn’s terminology, the 
theory of statistical inference developed by Fisher and Neyman had reached 
the state of normal science. It was a paradigm that was accepted by most survey 
statisticians; it was an inherent part of basic training in statistics.

There has been a lot of development in the classical theory after the paper of 
Horvitz and Thompson. After the mid-1950s, discussion started on the basics of 
statistical inference and challenges to the random sampling approach appeared, 
but that discussion will be excluded from this thesis.

The classical books about statistical sampling theory were also published 
roughly at the same time (Cochran 1953, Hansen, Hurwitz and Madow 1953). 
The book by Hansen, Huwitz and Maddow was an offspring of the work the au­
thors did at the Bureau of the Census (see Olkin 1987). Hansen’s and Hurwitz’ 
contribution, especially the paper published in 1943, has to be regarded as a 
watershed in sampling theory. After that, the classical theory for finite popula­
tions started to attain its current form. The approach of Cochran in his famous 
textbook (Cochran 1953) is related to the ideas Hansen and Hurwitz presented, 
and it is essentially different from his articles in the 1940s.

In the 1940s, the principles for randomization inference which Neyman pre­
sented in the three papers in the 1930s were already accepted unanimously. It 
is remarkable that statistical inference was explicitly dealt with in none of the 
papers published in the U.S. in the 1940s. Cochran, Hansen and Hurwitz, and 
Madow mention only occasionally the inference principle of drawing repeated 
samples from the same population and very seldom mention confidence limits. 
It seems that the problems of statistical inference were regarded as solved and 
there was no need to return to that question anymore. Neither is there any 
discussion on the principles of induction, which had caused a bitter dispute 
between Fisher and Neyman.
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13 Summary and discussion

Today, sampling techniques are essential tools for national statistical offices. 
Probably the administrations in all democratic societies use information that 
has been obtained by surveys. In addition, social scientists all over the world are 
deeply dependent on survey data, as well as researchers in many other areas, 
such as social medicine, political science and marketing. In the modern world, 
sample surveys have an irreplaceable influence on the increase in knowledge for 
science, management and marketing. The prevailing sampling techniques for hu­
man populations were created in a relatively short period during the 1940s and 
1950s. In a way, the classical theory reached its culmination in Horvitz-Thomp­
son estimators (Horvitz and Thompson 1952). This theory was documented in 
two well-known books (Cochran 1953, Hansen, Hurwitz and Madow 1953). 
However, this period was preceded by a much longer, diversified and even fum­
bling period of a search for methods that could be generally accepted.

Sampling techniques involve two different but strongly connected and 
equally important tasks: drawing a sample from a population and calculating 
estimates for population parameters from the sample. Drawing the sample in­
cludes two phases: (1) the selection of sampling units from the population or 
from a sampling frame representing the population, and (2) the enumeration or 
collection of data from the selected units. Estimation methods are mathematical, 
based on probability theory, but sampling (especially enumeration) deals with 
practical problems. Even though sampling and estimation methods are strongly 
interrelated in the current theory, which has not always been the case. The early 
development of estimation and sampling methods followed different paths with 
different paces (see also Smith 1976).

Due to the practical problems of data collection, the development of sam­
pling techniques has been interplayed between what is realizable in practice 
and what is mathematically tractable (see also Rao 2005 and O ’Muircheartaigh 
2005). Especially the practicalities of data collection (including its costs) and 
the possibilities for data processing have set limits to what has been regarded as 
viable for estimation methods.

When the history of modern survey research started at the end of 19th centu­
ry, the infrastructures of society were less developed than now. The only realistic 
mode to collect data from households was by sending enumerators to visit them. 
Statistical sampling theory did not exist; consequently, the sample sizes were de­
cided intuitively - and they became very large. For example, Kiaer’s first sample 
consisted of 120,000 respondents (Kiaer 1895). Another consequence was that 
the calculation of estimates was based on intuitive ideas without a theoretical 
(mathematical) basis. In order to obtain reliable estimates from a sample, it was 
necessary that the sample was a miniature of the population.
Random selection was known to be an advantageous sampling method because 
it would provide representative samples, but the only known method to apply 
random selection required that all population units have equal inclusion prob­
abilities, i.e., simple random sampling. A face-to-face enumeration of a large 
random sample leads to a costly and hard-to-handle data collection. Therefore,
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the first sampling designs were carried out with some sort of cluster or area sam­
pling; their design was based on the latest census data. Clusters were purposely 
selected to ensure the “representative nature of the sample”. After the data col­
lection, the representative nature was verified against the data from the census. 
The selection of households within clusters was haphazard. Systematic selection 
in some form was the most common method.

The idea of representative sampling was presented at the end of the 19th 
century, but the mathematical sampling theory for it was formulated only at the 
beginning of the 1940s. For the first time, the mathematical theory was adapted 
to an operational data collection scheme in the U.S. Bureau of the Census. In the 
1930s in the U.S., survey sampling was a popular topic among statisticians, but 
a lot of the development aimed at agricultural research. Hansen and Hurwitz 
took the critical step when they developed the sampling design for the Current 
Population Survey. In that design, they merged Jerzy Neyman's sampling theory 
and a data collection plan in which they applied the ideas of the Representative 
Method (Hansen and Hurwitz 1942, 1943).

The mathematical theory got its greatest impact from Neyman’s three pa­
pers in the second half of the 1930s. The ideas presented in the third paper 
(Neyman 1938) led to a theory that made survey data collection from a human 
population possible in a large and diversified country like the United States. 
The method was explicitly based on varying inclusion probabilities. Implicitly 
unequal inclusion probabilities were already present in Neyman’s first paper on 
sampling (Neyman 1934), but it was not recognized. Up until the 1940s, the 
general conception was that in random sampling, all population units should 
have equal inclusion probabilities.

The collection of data has not been the only practical problem in survey re­
search. The facilities available for data processing142 have also significantly influ­
enced the development, more than has been recognised. In the early days, data 
processing used to be the most laborious phase of a survey, and even still in the 
1940s, it set limitations on the development of sampling theory (see Cochran 
1942 and Bellhouse 2000). Only in the 1950s did computers become available 
for surveyors, enabling statistical methods to be developed without concern for 
computational constraints. For example, the calculation of Horvitz-Thompson 
estimators (in which all or most sampling units have different inclusion prob­
abilities) is not possible without an electronic computer. Even with a relatively 
small sample, computations by other means would become too labour-consum­
ing and would take too much time to complete.

In the 19th century, the calculation of the results of a census could take sev­
eral years. For example, in the United States, it took seven years before the 1880 
census results were published, the greatest problem being its data processing. 
Because of complex estimators and estimator variances, the data processing in 
survey research is more demanding than in a census, despite the fact that sur-

142 Data processing involves all those tasks by which data from sampling units are handled to 
produce statistical tables, such as the logistics in handling of questionnaires, data entry, edit­
ing, and calculation of estimates and calculations of standard errors. All these phases have not 
been necessary or possible throughout the history of survey research.
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veys include fewer observations. Survey research in its current form and extent 
would not be possible without efficient computers.

13.1 The emergence of representative sampling

Modern sampling techniques were first introduced in social research for the needs 
of statistical institutes. However, partial investigations in agricultural research have 
a different and longer history, and they partly served as examples of applications 
for human populations. The characteristics of human populations are inherently 
different from those in agricultural research. Therefore, it was not immediately 
clear how to transfer the methodology. It required new ideas and new thinking 
before partial investigations in human populations could be considered. It was 
especially necessary that the law-like regularity and stability in these populations 
were discovered so that inductive generalisations were justified.

13.1.1 Birth of statistical thinking
Statistics and statistical thinking appeared in the course of the 19th century, at 
the end of the era of industrialization and urbanisation. The first national statisti­
cal institutes were established at the very end of the 18th century and during the 
next century. Practically all European countries had established one. In the first 
half of the IQ111 century, informal activity in statistics also became frequent. For 
example, a number of statistical societies were established and many statistical 
journals were started. Westergaard (1932) called the middle of the 19th century 
an era of enthusiasm and concluded that “everybody seemed to have statistics 
in the brain”.

In the 19th century, the decennial censuses became the central activity in 
national statistical institutes. Eventually, the efforts of the institutes and societies 
produced an avalanche of printed numbers, as Hacking (1990) called it. For the 
first time in history, there was a large amount of information on the population 
structures, so changes in these structures and in social phenomena could be fol­
lowed. In the International Statistical Conferences, organised between 1853 and 
1876, the representatives of national institutes agreed on the harmonisation of 
statistics, which eventually resulted in comparable statistics among the Euro­
pean countries.

Adolphe Quetelet utilized the outburst of statistics, and in 1835, he pub­
lished his first book, “Social Physics" (“Physique sociale"), which included a large 
number of tables on vital data, moral and criminal statistics, and anthropometry 
(Quetelet 1835). In the tables, Quetelet described the distributions of variables, 
which without exception were similarly bell-shaped. Moreover, he showed that 
these distributions were similar in different countries and stable over time. In
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this way, he showed that there was stability within social phenomena and that 
there was a regularity, or invariance, which could be called social law143.

Quetelet thought that the statistical regularities were evidence of determin­
ism. He argued that basically human beings were aimed to be similar and the 
distribution of characteristics was essentially an error distribution. Quetelet’s 
error distribution was the error law that Laplace had derived and which Galton 
later called the Normal Distribution. Quetelet was the first social scientist to ap­
ply Laplace’s error law to social phenomena, but he had several followers who 
fostered the idea. Using this reasoning, Quetelet developed the famous concept 
of the average man, “I’homme moyen".

By his analyses, Quetelet showed that the seemingly chaotic mass of observa­
tions actually followed a manageable distribution. Quetelet argued that if observa­
tions are investigated from a distance, it is possible to develop a science of collec­
tive phenomena: by losing sight of individuals, one can discover, through the social 
phenomena that dominate the masses, a set of laws (Quetelet 1835, 1848].

Empirical social research has been said to begin with Quetelet’s works. He 
called the science ‘social physics’, which is often considered the origin of mod­
ern empirical sociology144. Quetelet published several books touching on the 
same topic (e.g., Quetelet 1848 and 1869), which subsequently inspired many 
scientists to develop new theories, thus generating a tradition of statistical re­
search in social phenomena.

Quetelet's works inspired many of his contemporaries to further analyze so­
cial phenomena. For example, Ernst Engel observed that the proportion of a 
consumer’s budget spent on food tends to decline as the consumer’s income 
goes up. This so-called ‘Engel’s law’ is said to be the first established social invari­
ance. Another follower of Quetelet, Wilhelm Lexis, has been important for the 
emergence of statistical science because of his pioneering work on dispersion. 
Lexis’ main topic was the development of mathematical methods in research on 
the stability of statistical series. Lexis had a significant influence on Edgeworth’s 
thinking, and his analysis of dispersion has also been claimed to foreshadow 
Fisher’s analysis of variance.

Partial investigations have a different story, however. In 1802, Laplace car­
ried out a survey to estimate the population of France. It took nearly a century 
before the next partial investigation on a human population was undertaken. 
The reason was the commonplace disbelief in the homogeneity and regularity of 
human populations. In the 1830s, Quetelet planned to carry out a similar esti­
mation of the population in the Low Countries, as Laplace had done in France. 
Baron De Keverberg criticized his plans saying that the sample could not reach 
representativeness because of the fundamental heterogeneity of the population, 
and the attempt to overcome the problem would divide the country into nearly

143 Behind Quetelet’s idea was his aim to show that laws similar to the laws of nature also 
govern social life. However, many of Quetelet’s contemporaries did not accept the idea that 
regularities could be interpreted as laws.

144 Sociology is usually regarded as a creation of the French philosopher August Comte
(1798-1857), but he did not accept the statistical approach. Therefore, empirical sociology is 
usually dedicated to Quetelet.
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as many sampling units as there were people (see Stigler 1986). Quetelet did 
not undertake any partial investigations in his lifetime.

The central point in De Keverberg’s critique was that birth and death rates 
were not constant and hence the stability of statistical ratios could not be as­
sumed and the urn model could not be used as an inference model as Laplace 
had done. In the absence of homogeneous groups, there could be no reliable 
inferences or inductive generalizations from a part to the whole. Opposite views 
also existed, but views like De Keverberg’s were predominant, hindering partial 
investigations of human populations (see Stigler 1986). In 1911, Yule was still 
hesitant about the feasibility of random selection from human populations be­
cause of their heterogeneity (Yule 1911).

Partial investigations became feasible only after reliable and comprehensive 
statistics about the population were available -  and after the regularity and sta­
bility of social phenomena had been generally accepted. Hacking (1990) consid­
ered that the avalanche of printed numbers was the essential condition for the 
unveiling of statistical regularities. At the end of 1800s, the subsequent censuses 
had yielded results, which showed consistently stable population characteristics 
from census to census; or if changes took place, they were regular and predict­
able. Censuses also helped the survey research in another way: information on 
the population structure has to be available in order to be able to draw a repre­
sentative sample from it. That happened only after censuses had become com­
monplace and their results available.

13.1.2 Kiaer's Representative Method
It is generally held that the Representative Method, which Anders Kiaer set 
before the International Statistical Institute (ISI) in 1895, is the starting point of 
the modern data collection methodology for the survey research. Kiaer brought 
the issue in the agenda of the ISI, and in his talk, he described how he had used 
the method in a social survey in Norway. Lie has analysed minutely the history of 
why the method abruptly appeared in Norway (Lie 2002). In this, the matter at 
issue is research on human populations. Partial investigations and representative 
methods have a much longer history in agricultural surveys (see Didier 2002).

However, Kiaer obviously was not the first to use the method, not even in 
Norway (see Lie 2002). A similar method on a smaller scale had been applied 
earlier in Denmark (Jensen 1926). In addition, Kruskal and Mosteller (1980) 
noted that Carroll D. Wright had used a similar method in the United States, 
and Mespoulet (2002) claims (referring to Kaufmann (1922)) that A. Kaufmann 
already carried out a sampling survey in Russia between 1887 and 1890. In that 
survey, sampling was based on random selection. Chang (1976) argues that Rus­
sia was the first centre of the modem mathematical theory of sampling at the 
end of the 19th century. Both Zarkovic (1956, 1962) and Seneta (1985) claim 
that sample surveys were an extensively studied branch within statistical science 
in Russia in the end of the 19th century.

Nevertheless, Kiaer was one of the first to use the Representative Method 
independently from a census and in an important -  and extensive -  investiga­
tion. Most importantly, Kiaer’s initiative eventually led to the acceptance of the
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Representative Method by the ISI as a valid data collection method for official 
statistics. This, in turn, stimulated further development and new applications 
in social research, and finally ending up as a new branch of statistical science. 
Kiaer’s first public appearance and the discussion that followed it was a critical 
turning point in the history of sample surveys on human populations. In addi­
tion, as Kruskal and Mosteller (1980) noted, Kiaer was the first man ever to use 
analytically the term 'la Méthode Représentative’. Carroll D. Wright had used the 
same expression earlier, but according to Kruskal and Mosteller (ibid.), the term 
they used was so shallow (and used in a less influential way) that it cannot be 
considered as the starting point.

The idea in Kiaer’s Representative Method was to form a sample that is 
a miniature of the population. This was in contradiction with the Monograph 
method, which was frequently applied at that time. In a Monograph survey, only 
typical cases were studied, and all extreme cases were discarded. In the Repre­
sentative Method, it was essential that the distributions in the sample were close 
to the distributions found in the population. In a Monograph survey, distribu­
tions were not important.

In Kiaer’s method, representativeness was ensured by the selection of the 
sample so that it covered -  geographically, demographically, and economically -  
all characteristics of the country. In modern terms, Kiaer’s 1895 sampling design 
can be described as a multi-stage stratified area sample with systematic sampling 
of households at the final stage in the urban areas. In rural areas, the final stage 
data collection had to be organised differently. Enumerators were instructed to 
follow distinct routes and while doing so, to visit houses of different types in the 
same neighbourhood, and in particular check that not only typical middle-class 
houses were visited but also the more well-to-do and the poor-looking houses, 
both for families and single persons.

The definition of strata was purposive, or rational, as it still is in modern 
sampling practice. Kiaer formed the strata based on the location and the type of 
municipalities (urban or rural, type of industry). After data collection, he veri­
fied that the sample truly could be regarded as a miniature by comparing the 
demographic data of the sample with the census data.

The reasons why Kiaer used this sampling design were practical: an enu­
meration of a genuine random sample had been nearly impossible to carry out 
because of the huge sample size (80,000 + 40,000 households). Only modern 
sampling theory has shown that dramatically smaller samples can be sufficiently 
accurate, but only simple random sampling was known in Kiaer’s time.

When Kiaer presented the idea of the Representative Method for the first 
time in 1895 in the ISI general assembly, it was harshly criticised by the foremost 
statisticians in Europe. Its further handling in the forthcoming ISI meetings was 
accepted only by a narrow margin in a vote. Ironically, the reason behind its ac­
ceptance was the fear that if the Representative Method had been discarded, it 
had also set suspicions on the Monograph Method (Kiaer 1897a).

Partly the critic derived its origin from the distrust of partial investigations 
because of the same reasons de Keverberg had distrusted Quetelet’s idea of par­
tial investigation. Decennial censuses and monograph surveys were sufficient for 
their interests. Some statisticians had doubts about the validity of the method
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and said that at some times, surveys might provide interesting information but 
incomplete surveys should not be granted equal status with the statistical ideal 
and with "la statistique serieuse”.

The criticism did not die off, but Kiaer continued to develop the method 
and he gave presentations about it at the next ISI meetings. The ISI officially 
accepted the Representative method as a valid method at the Rome meeting 
in 1924, according to the recommendation of a subcommittee. Two years later, 
Bowley [1926] published a memorandum where for the first time he presented 
a sampling theory for survey research.

Kiaer's Representative Method did not include any mathematical method to 
assess the accuracy of estimates. Estimation and inference were intuitive because 
the sample was a miniature of the population, but Kiaer was aware of sampling 
variation. Later, he even suggested that the stability of samples could be assessed 
by a method based on the idea of sample re-use (Kiaer 1901, p. 68], He did not 
try it, though.

In addition, Kiaer pointed out that the results of a partial investigation could 
be controlled to a certain degree, even if general statistics were not available. For 
example, he suggested that the observed regularity of the phenomena was one 
kind of a control (Kiaer 1897a): In addition, control could be done by comparing 
the results of one partial investigation with results obtained by different repre­
sentative designs. Kiaer concluded that if one obtains approximately the same 
results by various methods, greater reliability could be placed on the results.

Kiaer’s Representative Method aimed at providing an instrument to collect 
timelier and more in-depth data about social conditions. Decennial censuses 
provided data that were too little, too general, and too obsolete. In the 19th cen­
tury, the collection of data in a census required many efforts. In addition, data 
processing and editing constituted a major effort. Kiaer used Hollerith machines 
in his first survey for the first time in Norway. The Representative Method com­
bined with data processing by Hollerith machines could provide results essen­
tially faster than a census could. This opened completely new possibilities for 
social research.

13.1.3 Social surveys in England
In many respects, Arthur Bowley of the London School of Economics should be 
regarded as one of the key persons in the history of survey research. In 1901, he 
was accepted as a member of the ISI, and he took part in the discussions on the 
Representative Method. Obviously, he realised the potential of the method and 
started to apply it in practice and to elaborate its statistical foundations. Bowley 
did not refer to Kiaer in any of his early papers, but it seems obvious that Ki­
aer’s work had an influence on him. In the 1903 ISI meeting, Bowley played a 
decisive role in persuading the ISI to endorse Kiaer’s ideas in a resolution. And 
in 1924, Bowley was nominated to a commission to study the applications of 
the Representative Method. He wrote an appendix to the memorandum that 
was the first English treatment of statistical estimation theory in sample surveys 
(Bowley 1926).
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Social surveys, especially those concerning poverty, had a long tradition in 
Britain. As early as 1837, the Manchester Statistical Society had carried out a 
survey composed of interviews of 4,102 “families of working men in Manches­
ter”. One of the first published reports of a social survey is Heywood’s Report of 
an Enquiry, conducted House to House, into the state of 176 Families in Miles Plat­
ting, within the borough of Manchester, in 1837 (Heywood 1838].

The British Statistical Movement was an unofficial formation of ordinary 
people in the Victorian Britain. It was very active and it established statistical 
societies in many cities. Its members carried out many surveys mainly with the 
aim of revealing the living conditions in working-class households. Probably the 
most notable accomplishments of the movement are Booth’s [1889-1903] and 
Rowntree’s [1901] books. Bellhouse [1988] argues that Bowley should be con­
sidered a descendent of this movement.

Bowley observed that the Representative Method was relatively easy to ap­
ply in social research to reveal poverty. This can already be seen in his presiden­
tial address to the British Economic Society in 1906. The address proves that 
Bowley was aware of the central questions of survey research although there was 
no theory for sampling and hardly any experiences were available.

In this address, Bowley also sought to give an empirical proof of the validity 
of the Central Limit Theorem in a context which today would be called simple 
random sampling. In addition, Bowley showed that the accuracy of estimates 
does not depend on the size of the population, but only on “its nature” and on 
the size of the sample, and that accuracy can be increased, and the probable er­
ror decreased, by increasing the size of the sample.

At the beginning of the 20th century, the idea of sampling was vague, but 
Bowley aspired to make it more distinct and manageable. Therefore, he intro­
duced the concept of a frame and emphasized its importance and the problems 
that its absence might introduce in social research and in sample surveys. At the 
end of the address to the Royal Society, he expressed a plea to establish a house­
hold registry in the UK, to be used as a sampling frame in social research.

Two decades later, in the memorandum to the ISI, Bowley wrote about prac­
tical matters in survey data collection and about the errors that may arise if data 
collection is not done properly (Bowley 1926]. The text could be part of any 
modern text on survey research. By that time, he already had experience in the 
practicalities of survey work because he had carried out several of them.

A significant milestone in the history of survey research is the survey that 
Bowley carried out in Reading in 1912. Its sampling method was close to the 
one that Kiaer had applied in sampling houses in cities, except that Bowley did 
not use stratification. In modern terms, Bowley's method was systematic sam­
pling (every tenth house in an alphabetical list of streets]. Bowley regarded the 
obtained sample as random because “it did not involve any purposive elements”. 
Simple random sampling had not been possible because of practical reasons of 
enumeration.

A consequence of the survey in Reading was that it set out the designing 
of several similar surveys in the UK. In 1913, Bowley’s associates carried out 
surveys in three other cities and in the next year in two new cities. The survey 
in Reading was followed by a systematic sampling of census schedules in 1915
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[Bowley and Burnett-Hurst 1915}. Later, in 1927, Ford conducted a similar sur­
vey in Southampton [Ford 1934}, and in 1929, the London School of Econom­
ics, under Bowley's direction, carried out a survey in London [Bowley 1929}. In 
that survey, the “house sample” involved a two-way stratification. A few years 
later, Caradog-Jones carried out two analogous surveys, one in Liverpool in 1930 
and the other in Merseyside in 1931 [Caradog-Jones 1931 and 1934}.

Bowley’s activity also had an indirect impact on the development of sample 
surveys in the United States [see Jessen 1942, and Stephan 1948}. Margaret 
Hogg was an apprentice of Bowley and worked under his direction in some of 
the British surveys. In 1924, Bowley and Hogg together carried out follow-up 
surveys for those five surveys, which were conducted in 1913-1914 [see Bowley 
and Hogg 1925}. At the end of the 1920s, Hogg moved to the United States to 
work for the Russell Sage Foundation. While in the U.S., she made an appeal 
for rigorous methods of sampling and cast some doubt on the value of surveys 
that had been made in the U.S., in which the sample was selected by judgment 
rather than random procedures [Hogg 1930}. In 1931, Hogg conducted a survey 
of unemployment, partly to test the practical difficulties of applying a random 
sampling method, and partly to develop better questionnaires [Hogg 1932}. 
Hogg’s contributions had a noticeable impact on the development of survey 
sampling methods in the U.S. [Stephan 1948}.

13.1.4 Kiaer vs. Bowley
It is a common notion that Kiaer was the key figure behind the emergence of 
the Representative method, but Bowley’s contributions have largely been over­
looked. Nevertheless, both of them have strongly influenced the birth and pro­
liferation of survey techniques. They elaborated on similar methods, but there 
were significant differences between their approaches. Kiaer did not have an 
academic background and he acted mostly within the circles of national statisti­
cal institutes, whereas Bowley had a long career as a teacher at universities and 
later as a professor of statistics, and he was an active social researcher.

The surveys in which Bowley was involved in the UK probably had a sub­
stantial influence on the increase in social surveys outside the national statistical 
institutes. Kiaer’s efforts may have left the Representative Method in the arsenal 
of statistical offices only as a substitute for censuses. In addition, Bowley’s ef­
forts started the development that led survey sampling to become a branch in 
statistical science.

Since 1905, Kiaer did not contribute to the Representative Method anymore. 
Obviously, the reason was the heavy criticism the method received in Norway 
[see Lie 2002}. The Representative Method also disappeared from the agenda of 
the ISI meetings for twenty years. This emphasises Bowley’s importance in the 
development of survey methods. He continued to elaborate and promote the 
methodology and showed its value to social research by carrying out, or assisting 
in, several surveys. Bowley’s influence is also shown in the minute reporting of 
these surveys. Some of these reports became classical examples of social surveys.
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13.1.5 Development in the United States

The sampling techniques that are currently applied in surveys are based on the 
theory that was created in the U.S. in a relatively short period in late 1940s, even 
though the foundations of the techniques were laid in Europe in the 1920s and 
1930s. Stephan [1948] thoroughly analysed the rationale that led to this devel­
opment. At the beginning of the 1950s, the classical theory was manifested in 
three textbooks on sampling theory that were published within a few years. The 
foundations of randomization inference are postulated in these books, and most 
of the surveys undertaken today apply the theoretical setup offered in them. 
The more recent textbooks, such as Sarndal et al. (1989) or Lehtonen and Pahk- 
inen [2004], are based on the same basic philosophy, even though the sampling 
techniques are elaborated and extended from their origins. Since the beginning, 
the theories and methods of sampling have also been integrated in the corpus of 
statistical science.

The single most important impetus for the development of modern sampling 
techniques came from the designing of the Current Population Survey [CPS] 
at the U.S. Bureau of the Census. According to Hansen and Madow [1978], 
there was intense pressure in the 1930s to collect reliable information about 
the population in the country, especially on unemployment and social condi­
tions, to design policies, and to develop social programs. Without a solid theory, 
the sampling methods became vague, and estimation was intuitive [see Stephan 
1948]. Many different partial enumerations were carried out in the 1930s, but 
their reliability was suspected in general, and with a reason: the estimates on the 
number of unemployed people varied between 7 and 20 million.

At the end of 1930s, the Census Bureau still upheld the idea that it could 
not undertake sampling surveys because that would discredit its results on other 
areas. Only a complete enumeration was accepted [see Hansen 1987 and Olkin 
1987], In 1937, Neyman delivered a series of lectures in the U.S., and after one 
of these lectures, Neyman was asked a question. That led to the famous paper on 
double sampling [Neyman 1938], in which Neyman showed that a statistically 
rigorous theory of sampling would be attainable, at the same time satisfying the 
requirements for manageable fieldwork and with acceptable costs. According to 
Hansen, this paper and Neyman's lectures stimulated the development of sam­
pling methods for the CPS [Hansen 1987].

Hansen and Hurwitz started to develop a completely new probability sam­
pling design. A significant condition for the development was presented by the 
costs of data collection. Hansen and Hurwitz concluded "... formulas have not 
practical utility unless there are also some considerations on differential costs.” 
They aimed at developing a method that would make the most effective use of 
available resources by organizing adequate field operations.

At the end, they managed to develop the basic theory of stratified two-stage 
sampling with one primary sampling unit [PSU] within each stratum drawn with 
probability proportional to size measure [PPS sampling] and then sub-sampled 
at a rate that ensures self-weighting within strata. The result of their work is best 
documented in the paper entitled “On the Theory of Sampling from Finite Popu­
lations” by Hansen and Hurwitz [ibid.]. The development of the design-based
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theory for sampling techniques seems to have started from this article. This work 
also led to the publication of one of the famous books on sampling theory, “Sur­
vey Sampling Methods and Theory, I and IF  (Hansen, Hurwitz and Madow 1953). 
Interestingly enough, unequal inclusion probabilities were already implicitly 
present in Neyman's optimal allocation designs (Neyman 1934), but no one 
paid attention to that. In Hansen’s and Hurwitz’ method, the possibility to have 
varying inclusion probabilities was explicitly articulated for the first time.

The complex sampling design for the CPS provided approximately equal 
interviewer workloads, which is essential in organising the fieldwork. It was im­
portant that a manageable field organisation could be established for data col­
lection and a reasonable amount of fieldwork was required to provide estimates. 
Otherwise, the CPS probably had not been started with this design -  and the 
history of sampling techniques would be different.

The Current Population Survey was carried out for the first time in 1943 
more or less with the design presented in Chapter 1. The same design was soon 
taken into use in national statistical institutes in many countries, for example, 
in Canada in 1945, in Japan in 1950, in France in 1955, and so on. In three 
decades, most national statistical institutes adopted a similar design for their 
Labour Force Surveys. Social researchers quickly comprehended the value of 
the method. The emergence of electronic computers in the 1950s and statisti­
cal software packages in the 1960s essentially increased the attraction to apply 
sampling techniques.

A noticeable feature is that while the current sampling techniques were de­
veloped in the U.S., the fundamental questions of statistical inference were not 
discussed at all. Obviously, the randomization inference principle that Fisher 
and Neyman presented in the 1920s and the 1930s were already accepted unan­
imously. Cochran, Hansen and Hurwitz, and also Madow only occasionally men­
tion the inference principle of drawing repeated samples from the same popula­
tion and they seldom mention confidence intervals. It seems that the problems 
of statistical inference were regarded as solved. Neither was there any discussion 
on the principles of induction, which had caused the bitter dispute between 
Fisher and Neyman.

13.2 History of randomization

Randomization in sampling techniques has two different roles: (1) random se­
lection of population units is believed to yield a representative sample; and (2) 
randomization makes statistical inference viable. This difference has been over­
looked in the writings on the history of survey sampling. The two roles of ran­
dom selection have different histories. Although the origin of random selection 
is difficult to trace, its merits were already acknowledged at the end of the 19th 
century. Randomization inference, on the other hand, was created in the first 
quarter of the 20th century.

A frequent argument in the writings has been that at the beginning of the 
20th century, statisticians were free to select between purposive and random
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selection without any fear of criticism. That is an ambiguous argument which is 
difficult to substantiate. If random selection means only probability sampling and 
all other selection methods are classified as purposive, then the argument could 
be understandable. Probability sampling was taken into use only in the 1940s, 
but haphazard sampling has been used for decades before that. The meaning 
of purposive selection is vague in the writings. It is not indicated whether it is 
some general sampling method other than probability sampling or if it means 
the method that Bowley presented in 1926.

In the next paragraph, random sampling means a method in which a sample 
is selected from a labelled population by some random mechanism. Haphazard 
sampling means a method in which the sampling units in a population are not 
labelled, but the selection is made by objective, semi-random methods, for ex­
ample, systematically (e.g., every tenth house on a street). Purposive selection 
means a method in which sampling units are selected so that their (mean) values 
coincide with the population (mean) values.

13.2.1 Random selection of sample
It is difficult to find out when random selection in the context of partial investi­
gations was applied for the first time. It is possible that its implications were first 
noted at the end of the 19th century in agricultural research. In Russian texts at 
that time, there are several references to the use of mechanical sampling, which 
in modern terms would mean systematic (area) sampling (Kaufmann 1913,Tch- 
uprov 1910a and 1910b). However, random selection in human populations is 
not as straightforward as in agricultural research.

In Kiaer’s Representative Method, the selection of households in cities was 
close to modern systematic sampling. It was relatively easy to put into practice 
because of the structure of cities, but in rural areas, enumerators had to select 
houses according to Kiaer’s instructions. In another sampling investigation from 
1891, census records Kiaer had applied random selection. He selected the units 
by the initial letters of the first name of a person. Basically, this is close to a rand­
omization method, called the closest birthday method, which is still in use when 
selecting one respondent in a household.

At the beginning of the 20th century, statisticians were broadly aware of ran­
dom sampling and its merits, but they also had to consider the practicalities of 
enumeration. Already in 1906, Bowley had introduced the concept o f ‘sampling 
frame’ to mean a collection of population units from which a random sample 
could be drawn in such a manner that equal inclusion probabilities appeared 
plausible. Inclusion probabilities were assumed to be equal and therefore not 
needed in estimation, and consequently, there was no need to attach the prob­
abilities to population units. In 1934, Neyman wrote, “Random sampling means 
a method of including in the sample single elements of the population with 
equal chances for each element.” (Neyman 1934)

In the 1930s, random sampling still only meant simple random sampling 
because no other sampling methods were known. The problem was that simple 
random sampling could not be applied because of practical reasons. Drawing 
of such samples was not possible or it was too difficult, and the enumeration
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of such a sample had been very laborious and expensive to carry out because 
sample sizes were usually very large. At the end of the 19th century, Kiaer’s 
determination of sample size was intuitive, and a sample was selected that was 
large enough to ensure accuracy. Only the modern sampling theory has shown 
that dramatically smaller samples can be sufficiently accurate.

The use of systematic or cluster sampling schemes was frequent. The data 
collection including fieldwork was relatively easy to organise, and systematic 
selection appeared unbiased because the selection was haphazard and objective, 
and hence credible. In addition, it was generally accepted that such a sample 
would be unbiased if “... the chance of inclusion in the sample is independent of 
the value X  ...” (see Yule 1911).

In the first quarter of the 20th century, Bowley carried out several surveys in 
the cities of the UK, and he was also an advisor in several surveys. In all those 
investigations, the sample was selected by some kind of random or haphazard 
method. Bowley presented the method of purposive selection in his report to 
the ISI (Bowley 1926), but there is no evidence that he would have ever used it 
in practice. In fact, there are only a few instances where purposive selection was 
used (see Jensen 1926). In 1934, Neyman concluded that“. . . As the theory of 
purposive selection seems to have been extensively presented only in the two 
papers mentioned [i.e., Bowley 1926, Gini and Galvani 1929] while that of 
random sampling has been discussed probably by more than a hundred authors 
. . . ” (Neyman 1934).

13.2.2 Randomization in statistical inference
In the current probability sampling theory given in the textbooks, the randomi­
zation inference is defined in the following way: It is possible to define a set of 
distinct samples, S = {s;, s2, s3, ... sM], which can be obtained with the sampling 
procedure if applied to a specific population. A known probability of selection 
p(s) is associated with each possible sample s{. The assumed procedure gives 
every element in the population a probability of selection or the inclusion prob­
ability of the element. One sample is selected randomly so that each possible 
sample s{ receives exactly the probability p(s). This method is called probability 
sampling. The function p(.) defines a probability distribution on S. It is called a 
sampling design. A finite population is the target of inferences and the stochastic 
structure is induced by the sampling design. This inference model induced by 
probability sampling is called design-based, or randomisation inference. It is as­
sumed that for any sampling procedure that satisfies these properties, it would 
be possible to calculate a frequency distribution of the estimates generated by 
repeated drawing samples from the same population. This distribution has been 
shown to tend to normality as the sample size increases.

The importance of randomization for statistical inference has been acknowl­
edged for a long time. Already in 1906, Bowley emphasized the importance 
of random selection for validating estimation. Moreover, Kovalevsky wrote in 
1924 that valid estimation in partial investigations requires a random selection 
of units. However, the exact formulation of randomization inference emerged 
only in the textbooks written in early 1950s. For example, Hansen and Hurwitz
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(1943) do not explicitly touch on inferential aspects at all. In statistical texts up 
to the 1940s, the role of randomization in the context of statistical inference was 
very vague, although its significance was acknowledged.

The idea that the sampling distribution was produced by drawing repeatedly 
random samples “in identical conditions” was already present in Edgeworth’s 
and Yule’s texts, but its implications for estimation were not paid attention to. 
It was Fisher who included the notion of randomisation as a central method in 
the design of experiments. In this context, he also introduced the principle of 
replication as the fundamental principle of experimental design. Replication is 
the main source of the estimate of error, while randomization ensures that the 
estimate will be unbiased. From that origin, the new meaning of randomization 
also spread to other areas of statistics.

The importance of randomization in statistical inference was in a concealed 
form in the design of Hansen and Hurwitz (1943). The importance of rand­
omization became emphasized only after Horvitz and Thompson introduced 
unequal inclusion probabilities in the explicit form. If all inclusion probabilities 
are equal, they may be disregarded from the formulas and hence randomization 
will not be explicitly involved in estimation. Consequently, the calculation of 
estimates is possible even if the selection of sample is not explicitly random. It 
suffices that it is haphazard.

13.3 Milestones in the history of
statistical inference up to the 1950s

It is unquestionable that the current methodology of statistical inference for fi­
nite populations stems from the contributions of Jerzy Neyman in the 1930s. 
However, the history of the methodology is considerably more diverse. Neyman’s 
theory draws from both Fisher’s theory of statistical inference and Bowley’s sam­
pling theory. Although Fisher dealt only with statistical inference when the popu­
lation is infinite or hypothetical, the impact of his innovations was crucial for the 
inference for finite populations. In addition, in Neyman’s thinking, it is possible to 
identify strains from the statistical ideas of the Russian school. Neyman studied 
statistics and started his career as a statistician in Russia and later in Poland with­
out western influence until he was 27 years old (Fienberg et. al. 1966).

In the textbooks on statistics, it is customary to give the impression that the 
general theory of statistical inference started from Fisher’s contributions in the 
1920s. Yet there already existed a method for statistical inference before Fisher, 
but it was based on a different probabilistic setup than the current (Fisher’s) 
theory, and it is commonly overlooked.

13.3.1 Inverse probability
In 1802, P.S. Laplace conducted the first scientifically ambitious partial inves­
tigation in which he applied an estimation method that was based on his Prin­
ciple of Inverse Probability. Laplace’s survey aimed to estimate the size of the

Statistics Finland 205



population in France with a design that involved methods typical for a modern 
sample survey. In fact, he had already published the theoretical part for the sur­
vey twenty years before the survey was undertaken. In 1784, Laplace published 
a mémoire in which he derived the method to estimate the size of a population 
by a ratio estimator. In addition, he derived formulas to calculate the accuracy of 
the estimate, and therefore he was able to calculate a probabilistic interval esti­
mate. This was because he showed that the error in the estimate due to sampling 
followed an error distribution that was later called the Normal Distribution.

Laplace calculated that the “erreur à craindre”, which was conceptually close 
to the standard error, given the data, was 107,550 persons, and he concluded 
that it makes “the odds about 300,000 to 1 against an error of more than half 
a million”. Eventually, the estimation of population took place on 22 Septem­
ber 1802. Laplace reported that the population of France on the specific day 
was 28,352,845 inhabitants and that the probability that the error in the esti­
mate was more than 500,000 was 1:300,000, meaning that the probability that 
the true number of inhabitants would be less than 27,852,845 or more than 
28,352,845 is 0.0000033.

Laplace’s interval estimate was very close to the modern interval estimate, 
or confidence interval of the modern sampling theory. In addition, a notewor­
thy feature was that before the survey, Laplace had calculated the sample size 
needed to attain the required accuracy.

Laplace’s estimation of the population of France was not the first time in his­
tory when the ratio estimator was used, however. A century earlier, an English 
merchant, John Graunt, estimated the size of the population of London by a 
similar method. The difference was that Graunt’s method was completely in­
tuitive and he did not calculate the accuracy of the ratio estimate. Interestingly 
enough, Laplace’s estimation method is used even today in estimating the size 
of wildlife populations using the so-called mark-recapture techniques (see Pol­
lock 1981],

Characteristic of Laplace’s method was that the inference model145 was 
based on Bernoulli trials, which induced the Binominal distributions. The facto­
rials in binominal coefficients were expanded with Stirling’s formula and Euler’s 
series, and then terms that in large samples would become negligible were dis­
carded. This is the way Laplace derived the Law of Error.

In modern texts on statistical science, Laplace’s contributions to statistical theo­
ry have been largely disregarded, although Gauss' and Bayes’ contributions are well 
brought up. A possible explanation is that Laplace's theory is erroneously regarded 
as “Bayesian” inference and it contradicts the predominant Fisherian inference. If 
this is the case, it is partly based on confusion. Laplace’s method is his own elabora­
tion, and Bayes’ probably had only a minor influence on its later development (see 
Hald 1998 and Stigler 1986). Laplacian inference does not contradict Fisherian in­
ference, but they are based on a different approach and a different inference model 
and hence possibly on a different paradigm. Partly, the two different approaches

145 The inference model is an intermediate model -  a thought experiment -  which links an 
abstract probability model to real-world phenomena. A thought experiment is typically 
composed of a setup that could be tested experimentally if necessary.
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stem from two different worldviews. Laplace's worldview has been depicted as 
Newtonian. In the same sense, Fisher’s worldview can be depicted as Einsteinian, 
even though the analogy is not strict. Consequendy, rather than Fisher’s, Laplace’s 
method should be regarded as the first instance of statistical inference, even though 
it was based on a different approach to solve the problem.

Thomas Bayes and Thomas Simpson were the first to deal with topics related 
to the inverse method. Bayes’ method, published in his Essay, has been regarded 
as the first expression aimed at introducing a method for inverse probability. In 
the Essay, Bayes derived his principle by the geometrical method of Newton, 
and the famous Bayes’ formula was extracted much later. According to Stigler 
[1986], Bayes’ Essay remained nearly unknown for many years and its influence 
in the development of probability in the 19th century was minimal.

In the 19th century, Bayes is only briefly mentioned in a few statistical texts, 
whereas references to Laplace’s works are frequent. As a typical example, Tod- 
hunter (1865], in the first comprehensive account on the history of probabil­
ity, only briefly and superficially mentions Bayes (5 pages], whereas the part 
that deals with Laplace’s contributions takes up nearly one-quarter of the book 
(about 150 pages]. Todhunter (ibid.] concludes “...on the whole the Theory of 
probability is more indebted to him than to any other mathematician.” Laplace’s 
influence on the 19th century scientific world was momentous, while Bayes’ Es­
say was almost unknown. Bayes appeared in the statistical literature only in the 
latter half of the 20th century (see Fienberg 2006]. Laplace also articulated, more 
clearly than Bayes, his argument for the choice of a uniform prior distribution, 
arguing that the posterior distribution of the parameter should be proportional 
to what in modern terms would be called the likelihood of the data.

Apart from the method of inverse inference, Laplace developed many of the 
central ideas in probability theory and statistical science. One of his most impor­
tant discoveries was the Central Limit Theorem. In addition, Laplace presented 
the idea of statistical testing and introduced the idea of maximum likelihood 
in a rudimentary form146, and according to Stigler (1986], he was also close to 
discovering the idea of sufficiency, which Fisher derived in the 1920s.

It is obvious that Laplace’s works had a strong influence on scientific activ­
ity in the 19th century and their impact was wide-ranging (see Todhunter 1865, 
Stigler 1986, or Flald 1998, 2007], Therefore, Laplace’s contributions and ideas 
should be considered as the first formal presentation of statistical inference.

13.3.2 Bowley's sampling theory
Bowley already calculated simple confidence intervals for the survey in Reading 
in 1912. He attached calculations to the results to assess the accuracy of esti­
mates: If in a “sample of 622 working-class households we find respectively 5, 
10, 20, 40, 50 per cent of cases, we may expect that the percentage in the whole 
are within 5±1, 10±1, 20±1 Vi, 40±2, 50±2 and may be nearly certain that they 
are within 5±3,10±4, 20±5, 40±6, 50±6.” Bowley concluded that the probabil-

] 46 The first appearance of the idea of maximum likelihood has been dated back to the writings 
of Daniel Bernoulli and Heinrich Lambert (see Hald 1998).
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ity “is about 2 to 1 in favour of the true being within the limits for the first set, 
and 1 to 250 for the second set.” (Bowley 1913) Calculations were based on the 
Normal Distribution and standard deviations.

In the 1920s, Bowley began to elaborate a mathematical approach to sampling 
theory based mainly on Edgeworth’s contributions who, in turn, had elaborated 
Laplace’s methods. Since Laplace, Bowley seems to have been the first who ap­
plied probability and the Laws of Errors on a (randomly selected) sample from a 
finite population. Bowley’s method is summarized in a memorandum to the ISI, 
published in 1926 (see also Hald 1998). Three years before the memorandum, 
Bowley had written an article entitled The precision of measurements estimated 
from a sample (Bowley 1923). The article treated the “inverse problems in statis­
tics”, applying the method that Edgeworth had already presented in 1908. Two 
years before Bowley’s memorandum to the ISI, Kovalevsky had written a math­
ematical treatment on the same topic (Kovalevsky 1924). Obviously, it was not 
known in other parts of Europe because it was in Russian and most of its copies 
disappeared in the throes of the revolution in Russia.

Bowley separately analysed random sampling and purposive selection; and in 
random sampling, he analysed simple random sampling and stratified sampling. 
Under random sampling, Bowley derived formulas for the estimation of the ac­
curacy of “prevalence of one attribute”, for “distribution of attributes”, and for 
estimates of the average. The approach to the problem under random sampling 
follows the lines of thought that were already present in Laplace’s works, but 
Bowley applied them to a wider range of problems. In deriving estimates, Bow­
ley applied the same mathematical methods that Laplace had used, i.e. applying 
Stirling’s formula to solve factorials, Taylor’s expansion, and ignoring terms that 
became negligible in large samples. He also applied the Method of Moments 
that Edgeworth and Karl Pearson had applied frequently.

The inverse probability principle of Laplace involves the a  priori probability 
distribution of a population parameter P. Bowley also included a  priori prob­
ability distribution because he believed that some information about the popu­
lation, or “the universe”, would be needed to be able to estimate population 
parameters. The distribution of the parameter was unknown, and therefore an 
assumed a priori distribution was introduced. Unlike Laplace, Bowley did not 
agree with the assumption of a uniform distribution of priors. Instead, he as­
sumed that the a priori probability distribution, F(P), is continuous and deriv­
able in the neighbourhood of P = p, where p is the proportion observed in the 
sample. However, Bowley showed that the a priori distribution vanishes and 
therefore it does not exist in the final formulas anymore.

Bowley observed that the probability that the population proportion, P, is 
within the limits p ± z where z = x/n {p being the observed proportion and n the 
sample size), is approximately

P ( p - z < P < p  + z ) =  j- [  n  N dz

\2npq
N
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The corresponding formula for an estimate of average, X , is approximately

P{x -  x < u < x + x ) = j dx,

if ü  is the population mean and s the sample standard deviation, and terms of 
order 1 /yfn are disregarded.

Bowley also derived both of the formulas for stratified sampling. By stratifi­
cation, he meant a method where an equal proportion of units are selected at 
random from each stratum, i.e. proportional stratification. Bowley observed that 
in every case, the accuracy of estimation increases by stratification, and in some 
cases, the improvement was considerable.

A chapter in Bowley’s memorandum dealt with purposive selection. In Bow- 
ley’s purposive selection method, the population under investigation was as­
sumed to consist of N  districts, or clusters in modern language. The aim of a 
survey is to estimate P, the proportion of the units in the aggregate of clusters 
having the attribute of interest (or the average of a variable).

Bowley assumed that there are one or more associated variables, “controls”, 
whose values are known in every district and the partial regression equation 
between the study variable, x, with control variables, y{, t, is linear.This
was used to calculate an adjustment factor K. All the terms in K can either be 
calculated exactly from the population data or from the sample. The standard 
deviation of the error term is calculated from the standard deviation of the study 
variable and partial correlations between the study variable and controls.

In Bowley’s method, the districts were selected (purposively) in such a way 
that the average for each control variable 'is the same in the aggregate of them as 
it is in the universe’. This requirement was essential. It involves the assumption 
that if the averages match, then the selected districts compose a representative 
sample from the “universe”, i.e., the population. The method was laborious, and 
obviously only Gini and Galvani (1929) carried out a survey using it.

Purposive sampling in this sense fell into oblivion until Royall and Herson 
(1973) defined a balanced sample as a sample. They defined a balanced sample 
of order T as one for which the sample mean xt(,) of variable x w a s  equal to 
its population mean x(,), for t = 1,2, ..., T. The basic idea in Bowley’s purpo­
sive selection and the modern balanced sampling is the same: a sample is made 
representative of the population by purposive selection of sampling units by 
matching control variables. A balanced sample differs from Bowley’s purposive 
selection in what are regarded as sampling units. In balanced sampling, they are 
single observations or measurements, but in Bowley’s purposive selection, they 
are aggregate values o f ‘districts’ or clusters.

Lately, balance sampling has again emerged in the statistical literature, prob­
ably because modern computers have facilitated the sampling process (see Dev- 
ille and Tillé 2004). Chauvet (2009) has also introduced stratified balanced sam­
pling designs.
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13.3.3 Neyman's inference model for finite populations

Neyman’s paper in 3934 created a new approach to deal with the problems of 
inference within a finite population framework. He was inspired by Bowley’s re­
port to the ISI, but Neyman drew his key ideas from the concepts and ideas that 
Fisher had put forward in the 1920s. Statistical inference was a familiar topic 
to Neyman. In 1933, he had published, together with Egon Pearson, a paper in 
which they established the so-called Neyman-Pearson theory for testing statisti­
cal hypotheses (Neyman and Pearson 1933).

Fisher established a new theory of statistical estimation in two papers that 
were published in 1922 and in 1925 (Fisher 1922 and 1925a) while working as a 
statistician at the Rothamsted Experimental Station. The theory of estimation in 
the modern sense did not exist before these contributions. Fisher’s paper in 1922 
included a great number of completely new ideas and it revolutionized statisti­
cal theory. Stigler (2005) regarded it as an astonishing piece of work because “it 
announces and sketches out a new science of statistics, with new definitions, a 
new conceptual framework and enough hard mathematical analysis to confirm 
the potential and richness of this new structure.” After all these years, it is easy 
to see that this article was a watershed in the development of statistical science, 
and Fisher can be called the founder of modern statistics (Rao, R. 1992).

In 1925, Fisher published his first book, Statistical Methods for Research Work­
ers, in which he presented the analysis of variance and statistical significance 
testing. In this context, he introduced his idea of statistical inference, which he 
called inductive reasoning. In 1930, Fisher presented his Fiducial Argument to 
replace the inverse probability principle.

Although Fisher did not contribute to the inference for finite populations, 
his statistical theory made the basis for it. Three single issues that also have a 
significant bearing on the finite population inference were the new concept of 
population, fiducial inference, and the new inference model. In the theory build­
ing before Fisher, a population was not assumed to be stable but was viewed as 
continually changing. Therefore, its parameters were regarded as being stochas­
tic, and this was indicated by a priori probability. The observable population was 
a realisation of a superpopulation. In Fisher's theory, population was assumed to 
be invariable, and consequently, population parameters were constants. Hence, a 
priori probabilities became irrelevant. In addition, Fisher had strong philosophi­
cal reasons to discard a priori probabilities.

The central idea in the fiducial argument was revising the “Student’s” (1908) 
formula. From a normal population with a mean value p, a sample of size n has 
been drawn. From the sample, two statistics, the mean x and the variance s2, are 
calculated. The quantity t, defined by equation

t _  ( x - \ l ) y f n

s

is distributed in different samples in a distribution dependent only from the 
sample size, n. With the help of the Student’s t-distribution, it is possible to 
calculate, for each value of n, what value of t will be exceeded with any assigned
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frequency. Statistics t is a continuous function of the unknown parameter, the 
mean, and with observable values x , s, and n. Consequently, Fisher argued, the 
inequality t > tj is equivalent to the inequality p <  x — slt / \fn . This inequality 
became the basis of Neyman’s confidence intervals (Neyman 1934). In 1937, he 
introduced a solid mathematical theory for estimation using confidence intervals 
(Neyman 1937).

Fisher introduced the idea of repeatedly drawing samples from the same 
population to replace Bernoulli trials as the inference model. This procedure 
yields a continuous sampling distribution for the estimate, which became the 
basis of inference. Neyman adopted Fisher’s inference model, and repeatedly 
drawing samples from the same finite population became the basis of Neyman’s 
inference model.

Instead of using Fisher’s Maximum Likelihood estimators, Neyman devel­
oped Best Linear Unbiased Estimators (BLUE) by using a method that Mark­
ov147 had presented in 1900 (“best” meaning minimum variance). Markov’s 
method is based on the ordinary least squares estimation. Unlike Maximum 
Likelihood estimators, BLUE estimators could be applied independently of the 
distributions of variables and practically in any finite populations. This feature 
made Neyman’s method very appealing for survey research.

Using Markov’s method, Neyman also derived his formula for optimal allo­
cation in stratification (Neyman 1934). Later, this appeared to be an important 
result because it yielded estimators for double sampling (Neyman 1938). This in 
turn directly addressed the needs existing in the U. S. by showing how a complex 
survey design should be approached. The three papers that Neyman published in 
the 1930s set up the foundations for statistical inference for finite populations.

The first papers, which Neyman published in the early 1920s, indicate that he 
was trained within the Laplace-Bayes paradigm, and he was applying its princi­
ples. To a certain degree, his ideas stem from the Russian school of statistics, and 
the inference model for finite populations partly reflects his early ideas. Tchuprov 
and Kovalevsky had already discovered optimal stratification in the early 1920s. 
Kovalevsky’s derivation is similar to Neyman’s basing on the method of Markov. 
For a long time, there has been controversy over whether Neyman was aware of 
Tchuprov’s or Kovalevsky’s results in 1934, but a final conclusion has not been 
reached.

Later, there appeared a significant disagreement with Fisher and Neyman. 
Neyman did not concur with Fisher in the nature of statistical inference. Ney­
man said that statistical inference provides rules of behaviour, not rules of rea­
soning, as Fisher thought. Neyman explained that a scientist applying inductive 
behaviour might be wrong in 5% of his decisions, but he is not able to say which 
decisions are right and which ones are wrong.

147 In modem statistical literature, Markov’s method is known as the the Gauss-Markov theo­
rem. It was first discovered by Gauss and later independently by Markov.
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13.4 Paradigms
In 1962, Thomas Kuhn introduced the concept of paradigms to explain how 
scientific ideas develop (Kuhn 1962], Kuhn argued that scientific research and 
thoughts are defined by paradigms, or conceptual worldviews. The thesis of 
Kuhn was that scientific disciplines, once they have emerged from the pre-para- 
digmatic stage, undergo periods of so-called ‘normal science’, which allow them 
to obtain rapidly a high degree of precision and progress. During the period 
of normal science, research develops as a steady and cumulative acquisition of 
knowledge where new findings and results of experiments are added to previous 
knowledge to form more accurate or extensive theories.

For Kuhn, normal science meant research based on past achievements that a 
scientific community acknowledges for a time as supplying the foundation for 
its further practice. Such achievements are described both in elementary and 
advanced textbooks. These textbooks explain the body of accepted theory, illus­
trate many of its applications, and compare these applications with exemplary 
observations and experiments.

Normal science is dependent on the adoption of a universally accepted para­
digm that defines research problems for the scientist, tells him or her what to 
expect, and provides the methods that he or she will use in solving them. Kuhn 
used the term ‘paradigm’ in two different senses. On the one hand, it stands 
for an entire collection of beliefs, values, techniques, and so on, shared by the 
members of a scientific community. On the other, it denotes one sort of ele­
ment in that constellation, the concrete solutions which, employed as models or 
examples, can replace explicit rules as a basis for the solution of the remaining 
problems of normal science. The first sense Kuhn called sociological: a paradigm 
is what the members of a scientific community share, and, conversely, a scientific 
community consists of men and women who share the paradigm.

From the very beginning, new scientists are indoctrinated into the prevail­
ing paradigm. Consequently, only young scientists who are not yet so deeply 
indoctrinated into accepted theories (such as Newton, Lavoisier, or Einstein) can 
manage to sweep away an old paradigm.

Kuhn called the replacement of the old paradigm with the new one a ‘sci­
entific revolution’, or ‘paradigm shift’ . At first, the scientific community resists 
the replacement, but with time, the success of the new paradigm gains enough 
support to win out. According to Kuhn, paradigm shifts have often been intel­
lectually violent.

The scientists within the new discipline see the world in a different way than 
it “was” under the old paradigm. Kuhn argued that a scientific revolution is a 
non-cumulative developmental episode in which an older paradigm is replaced 
in whole or in part by an incompatible new one. The new paradigm cannot build 
on the preceding one -  it can only supplant it.

The history of statistical inference has not been analysed much in respect to 
paradigms and paradigm shifts. One reason may be the fact that paradigms in 
a methodological science cannot be similar as in natural sciences which Kuhn 
(ibid.) analysed. In statistical inference, rather than a collection of beliefs and
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values, paradigms are composed of points of view from which to approach prob­
lems, and models to look for solutions.

Probably another reason has been the widespread conception that the the­
ory for statistical inference was created by R. A. Fisher in the 1920s. The texts 
dealing with the history of probability cover either the development up to the 
beginning of the 20th century or the development since Fisher. Recently how­
ever, Anders Hald published a book (Plaid 2007) on the history on parametric 
statistical inference from the 18th century to the beginning of modern times. 
He recognized three revolutions in the history of statistical inference. Although 
a revolution is not a paradigm, paradigms, according to Kuhn (ibid.), are often 
started from scientific revolutions.

Paradigms have been a controversial topic ever since Thomas Kuhn brought 
them up in 1962. An important question is whether paradigms would be of any 
importance in the context of this thesis. The author’s opinion is that they are. 
If paradigms can be identified, Kuhn’s theory explains one part of the historical 
development of statistical science. Especially, the history of statistical inference 
can be seen from a different perspective: as a flow of ideas starting from the 18th 
century up to modern times.

13.4.1 Paradigms in the Representative Method
Bellhouse (1988) argues that the initial paradigm in survey sampling is that 
of the desire to collect a representative sample as presented by Anders Kiaer 
in the 1890s. Bellhouse also says that there are earlier examples of partial in­
vestigations but that they illustrate the randomness in research as is typical for 
the pre-paradigmatic times. Bellhouse (ibid.) thinks that Kiaer’s initiative of the 
Representative Method led to a new paradigm of statistical data collection.

The reports about the ISI meetings around the turn of the century indicate 
that the new paradigm was not immediately accepted. Some comments about 
the Representative Method appear hostile, and some famous statisticians urged 
that the method should not be discussed anymore in the ISI meetings, but after 
a voting, it was decided to keep it on the agenda of the next meetings148. Inter­
estingly enough, at the beginning of the 1940s, sample surveys were still not ac­
cepted at the U.S. Bureau of the Census (see Hansen and Madow 1976). To some 
degree, the acceptance of the Representative Method as a new paradigm seemed 
to be an intellectually violent revolution in the sense Kuhn (1962) defined it.

The Representative Method did not supplant full enumerations. Instead, 
sample surveys and full enumerations have been carried out side-by-side for 
more than a century. It was also Kiaer’s intention that the new method would 
become a supplementary method for statistical institutes to be used along with 
full enumerations. Therefore, it was not a paradigm shift but rather the begin­
ning of a new paradigm as also Bellhouse (1988) has argued.

148 Obviously, the discussion in the ISI meeting was even more heated than the official ISI
report reveals. According to an unofficial version of the protocol done by the Swiss Statistical 
Society, the assembly decided that the question would not be studied further (Malaguerra 
2000}. The official protocol of the ISI tells otherwise.
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13.4.2 Paradigms in Statistical inference

Brewer (1999) divided the history of survey sampling into three parts. He argues 
that in the first part, from the end of the 19th century up to around 1945, survey 
designers could select between randomization sampling and purposive sampling 
“...on an arbitrary basis, apparently without serious fear of criticism”. During 
the next 25 years, Brewer claims, the random selection of samples went virtu­
ally unchallenged. Then during the 1970s, the choice re-emerged in the form of 
balanced sampling. Brewer (ibid.) calls the first period ‘pre-paradigmatic’ in the 
sense Kuhn defined it, and the second period was dominated by the randomiza­
tion paradigm.

Bellhouse (1988) identifies a paradigm that started from Neyman’s paper in 
1934. In Bellhouse’s mind, the reasons are twofold: the first is that by that paper, 
randomization was pointed to as the recommended solution in sample selection 
and the problems of purposive selection were shown indisputably; the second 
reason was that it provides a theory of point and interval estimation under ran­
domization.

Neither Brewer (1999) nor Bellhouse (1988) explicitly analyze statistical 
inference although its existence in the background is obvious. Neither of them 
recognizes the history in the 19th century.

73 .4 .2 .1  The Inverse P ro b a b ility  o f  Lap lace
In 1774, Laplace presented his Principle of Inverse Probability in a memoir to 
the Royal Academy of Paris entitled Mémoire sur la probabilités des causes par les 
évènemens (Laplace 1774).The Principle was aimed at providing the probability 
of causes of events. Basically, the problem is the same as in statistical inference: 
to infer from a part the nature of the whole, or to infer from a sample the value 
of a parameter of the population.

In 1783, Laplace published another memoir in which he presented the idea 
for estimating the population of France. In the memoir, Laplace analyzed how 
“the size of sample should be determined to obtain a large probability that the 
error in the predicted population size is small”. At the end, he was able deter­
mine the sample size needed to reach the predefined accuracy of estimation. He 
also defined the “error to fear”, which is a measure similar to the modern stan­
dard error. Laplace observed that the (sampling) error was distributed according 
to a distribution which later was named the Normal Distribution. Hald (1998) 
concludes that the inference theory that Laplace presented is essentially correct 
(in the light of modern theory) for simple random sampling, although his model 
did not actually correspond to this mode of sampling.

Hald (1998) deems Laplace’s 1774 memoir as one of the revolutionary pa­
pers in the history of statistical inference. Stigler (1986) points out that even 
after more than two centuries, it seems almost like a contemporary work. Stigler 
(ibid.) also claims that the influence of this piece of work was immense. It was 
from this memoir that the ideas, which are now called “Bayesian”, first spread 
through the mathematical world. It is actually misleading to call these ideas 
“Bayesian”. For many reasons, these ideas should rather be called “Laplacian”.
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Thomas Bayes’ Essay was published in 1764, a decade before Laplace pub­
lished his Principle. Laplace’s Principle and Bayes’ method are similar. However, 
according to Stigler (1978], Bayes’ Essay was ignored until after 1780 and played 
no important role in the scientific debate until the 20th century. An apparent 
conclusion is that Laplace was not aware of Bayes’ Essay. Both Stigler [1978] 
and Hald (1998] argue that Bayes’ and Laplace’s theories are conceptually and 
mathematically so different that they cannot be related.

Weatherford (1982] claims that the classical theory of probability reached its 
zenith in the work of Laplace. In addition, Laplace’s mathematical treatment of 
the statistical problems provided new mathematical tools for the later develop­
ment of the probability theory. His contributions were so influential that they 
dominated statistical thinking for nearly a century. He had several influential 
followers, such as Poisson, Quetelet, and Lexis, who fostered Laplacian science 
and imprinted it on the scientific thinking. Laplace’s textbooks were still being 
reprinted at the end of the 19th century.

Typical features of Laplace’s method for statistical inference are described 
in Chapter 5. It should be noted that the concept of a priori probability should 
not be confused with concepts like “credibility” or "degree of confirmation,” or 
"strength of expectation,” etc., as is often done in modern Bayesian theory. In 
Laplace’s and Bayes’ theory, a priori probability is an objective probability, but 
its value is not known and its value cannot be found experimentally.

Hald (1998] called Laplace’s inference method the Bayes-Laplace model; 
Stigler (1978] called it the Bayes-Laplace method; and Jeffreys (1983) called it 
the Bayes-Laplace theory. Markedly, it also fulfils the characteristics of a para­
digm in the sense Kuhn described it. In the 19th century, Laplace’s theories were 
dominant in universities, and there did not seem to be any rival theories. In 
the writings on probability theory, Laplace’s patterns of thought are prevalent 
throughout the 19th century. For example, Quetelet’s and Lexis’ theories are 
based on these ideas as well as on the theory building in Russia. Also, all English 
statisticians before Fisher worked from this paradigm.

Rietz (1924) found out that for a period of more than fifty years following 
the publication of Laplace’s work in 1812, little of importance was contributed 
to the subject. He described the period starting after Laplace’s and Gauss’ most 
productive times as one of clarification and consolidation of the works of Laplace 
and Gauss. During that period, probability theory was extended to applications 
from the natural sciences to the social and biological sciences (see Hald 1998).

Anders Hald begins his book about the history of parametric statistical in­
ference (Hald 2007) by saying: “The three revolutions in parametric statistical 
inference are due to Laplace, Laplace and Gauss (1809-1811), and Fisher.” Hald 
argued that the first revolution in statistical inference, due to Laplace, took place 
between 1774 and 1786 when Laplace turned his attention from direct prob­
ability and derived his Principle of Inverse Probability. The second revolution 
that Hald (ibid.) identified took place in 1809-1828 when Gauss and Laplace, 
with the help of the Principle of Inverse Probability, discovered the Central 
Limit Theorem and the method of least squares. Hald (ibid.) argues that the sec­
ond revolution was concluded by the contributions of Edgeworth (Edgeworth 
1908 and 1909) in which he completed the large-sample theory of statistical
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inference by inverse probability initiated by Laplace and generalises Laplace’s 
central limit theorem.

The inference method is a creation of Laplace, and obviously Bayes’ influence 
was marginal -  or none. In the 19th century, neither Bayes’ inference model nor 
Bayes’ thought patterns were referred to in writings on probability. It appears 
that Bayes’ ideas were not the basis in the development of statistical methods. 
Therefore, Bayes name could even be dropped off and the model could only be 
called the Laplace paradigm. On the other hand, the term ‘Bayesian’ is strongly 
attached to modern statistical language while ‘Laplacian’ is not. Mentioning 
both gives a more illustrative expression to the nature of the paradigm. There­
fore, calling the model the Laplace-Bayes paradigm seems warranted.

In 1926, Arthur Bowley published a well-thought theory for statistical infer­
ence for finite populations (see Chapter 13.3.1). Bowley leaned on Edgeworth’s 
contribution at the beginning of the 20th century, and the theoretical framework 
was Laplacian. Possibly, it is the last important contribution that was an offspring 
of the Laplace-Bayes paradigm. The adherence to this paradigm may also be the 
reason why Bowley’s paper fell into oblivion.

13 .4 .2 .2  F isher's in fe rence  th e o ry
The third revolution in statistical inference that Hald (2007) recognises was ini­
tiated by R. A. Fisher in the 1920s. Nearly from the very beginning of his career, 
R.A. Fisher had attacked the principle of inverse probability and said that it was 
the greatest flaw in modern science. In 1922, he published a general theory of 
estimation in a paper titled, On the Mathematical Foundations of Theoretical Sta­
tistics (Fisher 1922). Hald (2007) claims that for the first time in the history of 
statistical science, a framework for frequency-based general theory of parametric 
statistical inference was clearly formulated. In this paper, Fisher defines the three 
criteria of estimation: consistency, efficiency and sufficiency (Fished 1922, pp. 
309-310). From then on, these criteria became the standard properties in the 
discussion of estimates. In the Laplacian theory, estimation was treated intui­
tively, without a theoretical framework.

In this paper (Fisher 1922), Fisher created a new technical vocabulary for 
mathematical statistics to which he still added new concepts in later papers. To­
day it is not possible to discuss statistical theory without making use of Fisherian 
terminology. Behind the new words, there was a deeper meaning. For example, 
he made a clear distinction between sample and population values, conceptually, 
verbally and notationally. He introduced the term ‘parameter’, and he coined 
the term ‘statistic’ for a function of the sample, designated to estimate the value 
of a parameter. In this context, Fisher introduced the sampling distribution of 
a statistic. Other well-known terms that Fisher coined are, for example, null 
hypothesis, test of significance and level of significance. In the context of experi­
mental design, he introduced randomization. Fisherian terminology gained rec­
ognition fairly quickly when the new generation of statisticians adopted it in the 
late 1920s. In statistical science, it has been dominant since the 1930s. Jeffreys 
fostered and upheld the Bayes-Laplace theory -  as he called it -  still in the late 
1930s and even later (see Jeffreys 1983), but obviously, he did not gain wider
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acceptance anymore. In the 1960s, the neo-Bayesian inference theory started to 
develop to challenge the Fisherian theory (see Fienberg 2006).

Hald (1999) argues that Fisher “single-handedly” created the modern version 
of the method of maximum likelihood and introduced the likelihood function. 
Flald (2007) regarded the likelihood function as Fisher’s greatest achievement in 
statistical inference. Another great achievement was the derivation of sampling 
distributions. Related to this, Fisher started to call the ‘universe’ ‘population’, 
and gave a precise meaning to population. More importantly, he defined popu­
lation parameters to be constants and therefore, a  priori distribution became 
obsolete and unnecessary in estimation. In this context, Fisher introduced a new 
inference model: repeated sampling from the same distribution. All this made a 
completely new approach and thinking model for inferential problems.

Moreover, due to Fisher’s influence, the research problems of statistical science 
changed essentially. Before Fisher, the typical problems of statistical science dealt 
with distributions, fitting distributions, correlation and regression. Yule’s textbook 
(Yule 1911) is an illustrative example of the typical problems of this era. Bowley’s 
report to the 1SI was one of the few papers on statistical inference. Fisher defined 
completely new areas for research, such as design of experiments, analysis of vari­
ance, statistical significance testing, estimation theory and inference theory.

At first, Fisher’s ideas were largely ignored by the elite of statistical science 
in Britain (see Stigler 1978). Eventually, however, Fisher’s contributions revo­
lutionized almost every part of statistical science, especially the theory of esti­
mation and statistical inference. At first sight, Fisher’s revolution put statistical 
inference into a totally new form. Idowever, Hald (2007) argues: “. . . many of 
Fisher’s asymptotic results are identical to those of Laplace from a mathemati­
cal point of view, only a new interpretation is required.” Fisher’s contributions 
created an opening also for the development of modern survey sampling, even 
though Fisher did not directly contribute to it.

In the 1930s, Fisher presented his famous fiducial argument to replace the 
inverse probability principle, together with a new mode of statistical inference, 
which he called inductive reasoning. These contributions dealt with statistical 
inference for hypothetical populations, but fiducial argument proved to be in­
strumental also in the development of statistical inference for finite populations.

13.4.2.3 Neyman's method of statistical inference for finite populations 
Jerzy Neyman obtained his education first in Russia, in the city of Kharkov, and 
after that in Poland. In 1924, Neyman obtained his doctor’s degree from the 
University of Warsaw, using the work done at the National Agricultural Insti­
tute in Bydgoszcz as his thesis. From his first contributions, it can be concluded 
that he was trained within the Laplace-Bayes paradigm (see Chapter 10.2.1 or 
Splawa-Neyman 1923 and 1925). In the early papers, his thinking model was 
based on Bernoulli trials. Only in the late 1920s, while he visited the UK, he 
began to realize that the work of Fisher required a rethinking of the current 
philosophy of inference (Lehman 2008). As a result, Neyman adopted a new 
approach to statistical inference.

Neyman gave up the superpopulation approach that was the essence of the 
Laplace-Bayes paradigm and defined population parameters as constants. Thus, a
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priori probabilities were not needed in estimation anymore. In addition, Neyman 
adopted Fisher’s inference model of drawing repeated samples and applied it in 
sampling from finite populations. Currently, Fisher’s and Neyman’s inference 
model of drawing samples repeatedly from the same population is the corner­
stone of modern inference theory for both hypothetical and finite populations.

Instead of using Fisher’s Maximum Likelihood estimators (ML), Neyman 
developed Best Linear Unbiased Estimators (BLUE) by using (Gauss-)Markov 
theory. The BLUE estimators do not entail any assumptions on the distributions 
of variables as ML estimators did. Therefore, BLUE estimators could be applied 
practically in any finite populations. Another central contribution of Neyman was 
the idea of interval estimation or confidence intervals for estimators. Originally, 
confidence intervals were based on Fisher’s fiducial intervals (see Chapter 13.3.3). 
Later, it appeared that Fisher’s fiducial intervals and Neyman’s confidence inter­
vals are conceptually different. That was one reason why there appeared a long- 
lasting controversy between Fisher and Neyman. Another reason for the contro­
versy was Fisher’s and Neyman’s different views of inductive inference: Fisher’s 
mode was inductive reasoning, and Neyman’s was inductive behaviour.

At the beginning of the 1930s, Neyman, together with Egon Pearson, devel­
oped the method for hypothesis testing (Neyman and Pearson 1933). Although 
it differs from Fisher’s significance testing, the foundations of Neyman-Pearson 
test theory lie on Fisher’s fundamental ideas about statistical inference.

Fisher’s contributions in the 1920s initiated a totally new approach to the 
development of statistical theory, including inference. In roughly a single dec­
ade, it became the dominant approach, and since the 1930s, most of the books 
on mathematical statistics were based on it. It seems to be warranted to call it a 
new paradigm for statistical inference. Neyman developed the inference method 
further to be applied in finite population inference or survey sampling.

The three papers that Neyman pub fished in the 1930s established the foun­
dations of the theory of statistical inference for finite populations (Neyman 1934, 
1937, and 1938). Bellhouse (1988) argues that a new paradigm started from 
Neyman’s paper in 1934. The impact of Neyman’s papers was not immediate, 
however. As Hansen and Madow put it, “there was still the need for communica­
tion, understanding, acceptance, and the adaptation and extension of the results 
he [Neyman] had presented.” (Hansen and Madow 1976). The prevailing sam­
pling techniques were created in a relatively short period during the 1940s and 
1950s. Brewer (1999) argued that the period that started around 1945 was domi­
nated by the randomization paradigm. This coincides with the discovery that 
inclusion probabilities in sampling need not be equal. At the beginning of the 
1950s, this theory was documented in two well-known books (Cochran 1953, 
Hansen, Hurwitz and Madow 1953), which soon became the standard textbooks 
in the universities around the world. These books were used in training a new 
generation of survey statisticians.

Since the beginning of the 1950s, several textbooks have been written with 
the same approach and even the modern books of sampling techniques (e.g., 
Sârndal et al. 1989 or Lehtonen and Pahkinen 2004) are based on the same basic 
philosophy, regardless of the fact that the sampling techniques have been elabo­
rated and extended from their origins.
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The new inference model replaced the approach that was based on Laplace’s 
inverse probability principle, or the Laplace-Bayes paradigm. In this case, the 
paradigm shift may be regarded as Kuhnian: in all areas of statistical science, 
the Fisher-Neyman paradigm replaced the methods that were based on the 
Laplace-Bayes paradigm. Obviously, after the 1920s, most of the textbooks and 
most of the training in universities were based on the Fisher-Neyman paradigm. 
The rapid development of new statistical methods started and the entire field 
of statistical research changed. The characteristic features Fisher-Neyman para­
digm are described in Chapter 11.

The shift of the paradigms also appeared intellectually violent, as can be con­
cluded from the documented discussion after Neyman’s presentation to the Royal 
Statistical Society in 1934 and especially from the discussion after Fisher’s pres­
entation one year later. Erich Lehmann, a friend and colleague of Neyman’s at the 
University of California at Berkeley (U.S.A.), wrote in 2008 that the years 1925- 
1926 were difficult for Neyman and Egon Pearson. They began to realize that 
Fisher’s work required rethinking the current philosophy of inference. According 
to Lehmann, this was exceptionally difficult for Egon Pearson because his father 
“was not able or never saw the need to” make such a shift (Lehmann 2008).

Calling the method the Fisher-Neyman paradigm is justified because it, was 
formed by merging two methods: Fisher’s ideas for estimation and statistical 
inference with those of Neyman. Both contributions are vital, but Fisher’s revo­
lutionary new idea of statistical inference is focal -  or fiducial.
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This study describes the historical development of sta­

tistical inference for finite populations starting from the 

second half of the 18th century up to the beginning of 

the 1950s when the theory was documented in famous 

textbooks on survey sampling. The development was 

interplay between two different tasks: how to draw 

representative samples from populations, and how to 

estimate population parameters from the samples. The 

emergence of statistical thinking in the 19th century was 

a significant propellant. However, only when digital 

computers became available for statisticians, sampling 

techniques obtained their current significance.
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