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ABSTRACT

In this thesis we conduct a comparison between the non-linear SVR (Support Vector
Regressor) and the LSTM (Long-Short-Term Memory) Recurrent Neural models, for
the prediction of dental assets demand on institutions using the DTS (Dental Tracking
System) software developed by the company LM-Instruments. DTS is a Java program-
ming language application that tracks usage of dental assets based on RFID (Radio
Frequency Identification) technology. This work describes the generation of the data
in DTS, defines what data is considered relevant to be used in the demand forecast; and
presents the process of data preparation, as well as the development of the models and
the validation process. Finally, the best results are presented, analysed and compared.
This comparison reviews the performance, implementation simplicity and computa-
tional power required. After the work performed, the suggestion for LM-Instruments
is to use SVR with a polynomial kernel of degree one, using low penalty, epsilon and
coefficient values. This implementation proved to have the best performance when

using weekly-based data sets over daily data sets.
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1 INTRODUCTION

This chapter provides a review of the background, concepts and methodologies relev-
ant to this study. In a similar way, it presents the problem we intend to solve, as well
as what has been done, where we are and how we can use that previous work to solve

our problem.

1.1 Background

It is universally acknowledged that the ultimate goal of every business is to receive
revenue for a given service or product. As a part of the normal evolution, every com-
pany in every single industry intends to optimize its business process to offer the best
quality product or service with the least effort and cost.

There are many fronts at which a company fights different battles to achieve this
type of improvement or evolution. Some of these are external to the company itself,
but some others are internal and depend on the way the company and its internal pro-
cesses work and interact with each other. Furthermore, the fronts, battles, external and
internal entities, and therefore processes, all of them vary depending on the nature of
the company and the industry in which it is involved.

This work will be focused on the Healthcare industry as the proposed case study

demands.

1.1.1 Health Care Industry

Health is defined as the state of well-being in three different aspects: physical, mental
and social [5]. It is not difficult to understand how important the role of the health care
industry is in our society and our lives. Due to its importance, the performance and
development of all the companies and entities involved in this industry are critical for

the whole humankind as end customers.
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Besides the well-known criticality of the industry, another major characteristic
to highlight is its size. A sub-categorization of industries can be created based on
each company’s business role inside the health care industry. The possible categories
are "pharmaceuticals, biotechnology, equipment, distribution, facilities, and managed
health care" [6]. Among these industries, the present work will be focusing mainly
on the distribution industry, which is represented by "distributors and wholesalers of
health care products” [|6], as well as the facilities industry, which is represented by the
health care provider’s locations where the patients receive direct treatments, such as
hospitals, nursing homes, among others [6].

In general, all sub-industries have a significant and important role to play for
the correct functioning of the industry. However, the importance of these two sub-
industries is based on the role they play in the chain of the health service. Facilities,
as explained previously, are the physical locations in which patients receive treatments
and, therefore, they could be defined as the heart of the healthcare industry. In a similar
way, as facilities are dependent on the distribution to obtain the required resources to
serve the patients, i.e. medicines, equipment and instrumentation, it is possible to state
that based on the purpose and the criticality of its role, the distribution sub-industry re-
sembles the veins of the human body for the healthcare sector. According to OECD’s
(Organisation for Economic Co-operation and Development) report of the healthcare
sector performance for 2016 [[7], one of the actions to be taken in order to achieve
a healthcare service more accessible especially for ageing populations and improve
the quality of service, is to have a more resilient healthcare system that makes use
of new technologies, for which changes need to be done [7]. Furthermore, they state
that due to previous economic crisis, "health spending growth has slowed significantly
across Europe" and because of that, many companies intend to diminish the money
expenses "by reducing the lengths of stays in hospital and pharmaceutical costs, and
also by lowering administrative costs" [[7]. It is worth highlighting the importance
that the adoption of technology in health services has for the OECD when stating that
"Health care is an information-intensive endeavour, and adoption of digital technology
and eHealth can enable such improvement" [7], when talking about challenges such
as "demographic change, rising chronic disease and multi-morbidity, along with fiscal
pressures” [[7] and the sustainability of the health system all across Europe.

Furthermore, the OECD signals "improved quality of care, better planning and

resource allocation, and enhancing the evidence base for health service delivery and
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policy making" as some of the benefits that the adoption of technology in the health
services and, what they define as eHealth, brings to the industry [7]]. The final purpose
of this thesis work is to provide better planning and resource allocation by means that

will be explained later in this paper.

1.1.2  Supply Chain Management (SCM)

Supply Chain Management is defined as "the integration of key business processes
from end user through original suppliers" that produce and provide products, services
and information which represent added value for customers and stakeholders [8]].

Based on this definition, SCM can be perceived as another step in the evolution of
the business world, in which companies have started to see the benefits of cooperating
and interacting in the market as partners, leaving aside the individualism and trying to
achieve better customer experiences through collaboration.

For a better understanding of SCM and its practices, the eight supply chain pro-

cesses identified by the global supply chain forum are presented below:

1. Customer relationship management

2. Customer service management

3. Demand management

4. Order fulfilment

5. Manufacturing flow management

6. Supplier relationship management

7. Product development and commercialization

8. Returns management

Customer Relationship Management

This process defines how the relation and interaction with the customer are maintained;
besides identifying "customers and customer groups to be targeted as part of the firm’s

business mission." [9]].



Camilo Andrés Macias Vargas

For every customer, the company performs an analysis and defines a product and
service agreement trying to mold it as much as possible to the characteristics of each
customer, without completely losing the standardization of the offered product or ser-
vice. The final purpose is to achieve profitability as high as possible, for both the

company and the customer.

Customer Service Management

It is presented as the provider of "the single source of customer information, such as
product availability, shipping dates and order status" [9]. The firm intends to respond in
the best way possible to any event or action, triggered by the customer. This response
should be as effective as possible, as no disruption should take place in the customer’s

business process or in the firm’s own process.

Demand Management

This process refers to the manner in which the demand should be handled, thus finding
a balance between the requirements of the customers and the supply capabilities of the
company. Some useful tasks include "forecasting demand and synchronizing it with
production, procurement and distribution" [9]].

This specific process in the SCM is of high relevance, as the current thesis work
intends to implement a demand forecasting solution based on machine learning (ML)
which will be embedded in a software application to provide customers with tools that
improve the demand process as part of their internal SCM practices.

An additional key matter in the demand management process is the need for a con-
tingency plan, which defines how to react to unexpected events that break the balance

between customer requests and supply capabilities.

Order Fulfillment

According to [9]], an integration between the manufacturing process and logistics, to-
gether with marketing, is key for achieving an optimal order fulfillment by stating that
the "firm should develop partnerships with key members of the supply chain to meet
customer requirements” besides reducing the total cost for customers [9].

Similarly, a less formal definition of fulfillment logistics describes it as "what hap-

pens after the order is placed" [10]. It also proceeds to highlight the importance of
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order fulfillment in e-commerce today. The authors do so, through the presentation of
the Amazon success story, and explain why its success is an excellent proof of how
important the order fulfillment process is as part of the SCM. "Amazon.com envisions
a ’killer’ supply chain that can deliver virtually any product —not just books— directly
to customers better than its competitors" [[10]].

In the order fulfillment process, the firm must define how an order is handled, from

its generation from the customer side, to the delivery at the customer’s facilities.

Manufacturing Flow Management

As stated by [9], this process establishes the management of the product’s flow through
the manufacturing stages including transportation. The final objective of this process
is to establish the manufacturing flexibility for the firm to be able to serve different

market targets, considering the requirements of each of them.

Supplier Relationship Management

A very informal but precise way to describe this process, is as a mirror image of cus-
tomer relationship management [9]. This is because, whereas customer relationship
management defines how the interactions with the customers are maintained, the sup-
plier relationship management defines the interaction of a firm with its supplier. Like-
wise, as it is done in the customer relationship management, a product and service
agreement should be defined for the supplier relationship management.

The prior is important due to the fact that relationships with clients and suppliers

define how fluent and dynamic the supply chain is.

Product Development and Commercialization

As part of its strategic process, [9] suggest that the definition of product development
and commercialization should be aligned with the sourcing, manufacturing and mar-
keting strategies, as they might have an impact on the product development process
and its commercialization.

A company can benefit both internally and externally from using teams in its
product development process. On one hand, "successful teams have accelerated the

product development cycle, reduced development costs, and increased the quality of
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new products" inside a company [11]]; on the other hand "NPD (New Product De-
velopment) teams are associated with increased product success in the market, more

frequent introduction of new products, and higher customer satisfaction" [11]].

Returns Management

This process defines the way a firm should handle returned products. As some authors
suggest, the first step to ensure a working process for handling returned products is the
return avoidance, which can be defined as "manufacturing and selling the product in a
manner such that returns are minimized" [9]], in other words, ensuring product quality
and good supply process for customers requests.

Furthermore, [9] mention that the returns management process should consider
laws for treating a product for disposal in a proper way, as well as decide whether a
returned product can be recycled, repaired, or even directed to a market of second-hand
or used "goods".

Based on the review of the definition of SCM and the processes that it compre-
hends, it becomes clear what its purpose is and why it is crucial for companies to
implement SCM processes and practices to achieve optimal performance in this re-
spect.

One of the reasons for this work and its case study gaining value is the implement-
ation of a solution for the improvement of SCM in the healthcare sector; given that
according to [12], the healthcare sector, in general, has not made as much profit or
improved as much as other sectors have with the adoption of SCM practices.

In the same work, the authors conduct a research showing that one of the barriers
for healthcare provider institutions to adopt SCM practices is the existence of conflict-
ing goals between the stakeholders of the supply chain, as well as the existence of
intra-institutional conflicts, by stating that "participants commented that conflicts usu-
ally arise due to requests for reference items and unrealistically high inventories" [[12].
Based on that, it stands to reason that some of these conflicts could be avoided by hav-
ing a system which presents the correct numbers to the material manager and prevents
making decisions based on misinformation and incorrect data about the items in stock
and their specific location. Moreover, the authors also suggest that "computer software
applications should be used to calculate order quantities based on demand forecast-
ing and safety stock levels" [[12], which would allow institutions to use personnel to

more important tasks, such as patient procedures, instead of wasting human resources
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on tasks that do not relate to the main service purpose and that could additionally be

automatized.

1.1.3 Inventory Management

Inventory Management is defined as the mix of "theories, functions and management
skills involved in controlling an inventory" [[13]. However, its main purpose is not
only to control an inventory but to do it in an efficient way, minimizing the cost and
maximizing the profit out of the inventory items involved in a given business.

By virtue of the prior definition, inventory management can solve the necessity
of the European health sector according to the OECD; which is better planning and
resource allocation, since better management of the items in an inventory would not
only help to continue attending the demand for the items but also dispose of inventory
items only when and where it is required, which allows the healthcare service providers
to plan better and allocate resources in a more efficient way. For this reason, inventory
management is an essential part of the supply chain, as it plays an important role in the
process flow of assets, equipment and medicines into the facilities.

After reviewing the role of inventory management in the supply chain, a simple
yet very clear and natural definition presents inventory management as "supervision of
supply, storage and accessibility of items in order to ensure an adequate supply without
excessive oversupply" [14].

From a more generalized point of view, [15] reviews the inventory management
technique and analyzes what the objectives and constraints in it are. Below, the object-

ives of inventory management, according to [15]], are presented.

1. Cost minimization

2. Profit maximization

3. Maximization of rate of return on stock investment
4. Determination of a feasible solution

5. Keeping at an acceptable level the amount of human effort expended in the man-

agement and control of inventories

6. Ensuring flexibility to cope with an uncertain future
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7. Minimizing political conflicts (in terms of the competing interests) within the

organization

8. Maximizing the chance of survival of the individual manager’s position or of the

firm itself

Even though all the objectives explain clearly what benefits the inventory man-
agement techniques can bring to the organizations and why are they so important for
different type of businesses nowadays, there is one objective that might not be ad-
dressed by most of the enterprises when handling inventories and stock item levels, as
it is the amount of human effort. It is universally acknowledged that employees are
if not the most, one of the most important resources that any company could have for
many different reasons. However, it might not have enough relevance in some cases
the fact that human effort as a resource, could be more profitable when it is used to
perform core-related tasks instead of controlling and managing an inventory. On the
one hand, in the ideal scenario, it is possible to talk about a self-managing inventory
that requires no human effort at all, which takes care of all the steps in the replenish-
ment cycle; however, it is not a secret that such a solution is not easy to achieve, if
achievable at all, with the current technological advances. However, if such a solution
exists, it will be hardly affordable by the vast majority of enterprises worldwide, due
to its high cost. On the other hand, in a more realistic scenario, it is key to implement
practices that allow the employees to focus in more business-core related tasks than the
managing and controlling of the inventory, as the latter type of tasks can be automated;
resulting in better resource utilization.

In a similar way, the author in [[15]] defines the constraints of inventory management

as follows:

1. Supplier constraints — minimum order sizes, restrictions to certain pack sizes,

maximum order quantities, restrictions on replenishment times.

2. Marketing constraints — minimum tolerable customer service levels, where ser-

vice can be measured in a number of ways.

3. Internal constraints — storage space limitations, maximum budget to be used for
purchases during a particular period, maximum workload (number of replenish-

ments per period), personnel involved (capabilities and attitudes).
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The previous are limitations that might arise and have to be considered when im-
plementing inventory management practices.

One of these practices is explained in [|16], where the author refers to Just-In-Time
(JIT), by stating that it "is an idealized concept of inventory management wherein we
are able to supply" any material at any time "just in time with 100% supply assurances
without keeping any inventory on hand". The author goes further and explains this
system with a perfect analogy when comparing JIT to "the supply of oxygen to the
human body" [[16].

As opposed to JIT, another strategy has also been widespread around companies
of many industries. This strategy is Just-In-Case (JIC) which consists of keeping large
inventory stocks to minimize the probability of not being able to serve a customer
request due to an item being out of stock.

These two strategies reflect the challenge that every company faces when deciding
on the right size of the stock: keeping too much or too low.

The authors in [17], not only explain these two problems but also explain what
consequences both could bring to the enterprise. First, according to [[17]], a too low
stock can lead not only to a customer request unfulfilled, but also to a big impact
on the business, "since lost orders may lose a customer altogether, and dissatisfied
customers often complain about the lack of availability. If this dissatisfaction spreads,
the long-term impact causes a reduction in profitability". Moreover, the human effort
might increase, considering that "firefighting, although often accompanied by a feeling
of success, uses a great deal of time and energy" [[17]. Second, a too high stock level
can lead to an unnecessarily big amount of money spent on holding and managing the
items. Furthermore, overstock "impacts on the space where inventory is held, whether
on the shop floor or in a warehouse" [17]. Moreover, overstock could bring difficulties
when reacting to changes, due to "the number of parts that need to have changes made
to them is correspondingly large" [[17]]. This is true, especially when a change in the

market demand or as a security policy needs to be done.

1.1.4 Machine Learning

Machine learning (ML), is defined as one of the branches of computational algorithms,
which is designed to emulate human intelligence by the process of "learning" from pre-
vious experience and the surrounding environment [[18]]. The term "learning" can be

explained as "the process of converting experience into expertise or knowledge" [19].
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Furthermore, a mapping between the general process of a ML algorithm and the pro-
cess of learning can be constructed by stating that "the input to a learning algorithm
is training data, representing experience, and the output is some expertise, which usu-
ally takes the form of another computer program that can perform some task" [19]. A
more technical definition of ML states that "a computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E" [20].
However, ML comprehends different types of learning. The division can vary ac-
cording to the authors [19-24]]. Nonetheless, there are two types of learning that are
the most popular ones and are recognized by every author, which are supervised and

unsupervised learning.

Types of Learning

A definition of supervised and unsupervised learning will be presented, in order to have
a better understanding of where the focus of this work relies on, and the characteristics
of the problem it is intended to solve.

According to [[19], the difference between these two types of learning can be de-
scribed as a characteristic of the nature of the interaction between the learner, i.e. ML
model, and the environment. In this specific case, the interaction related to the "exper-
ience" provided to the learner with the training data, which for supervised learning
contains the labels or the output data that the model will try to predict for the samples
in the test set. On the other hand, for unsupervised learning the "right answer" is
not provided in the training data, and the objective is for the learner to interpret the
data in its own way to detect patterns or any other characteristic that can be valuable to
understand the data.

More official definitions of supervised and unsupervised learning will be reviewed

below.

» Supervised Learning: algorithms of this type are composed of a dependent/target
variable, and a set of independent variables/predictors. The aim of this type of
learning is to "learn a mapping from the input to an output whose correct values

are provided by a supervisor" [21].

* Unsupervised Learning: algorithms of this type do not require a dependent/target

variable. The objective is to "find the regularities in the input" [21]], which the

10
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author defines as patterns that occur more often in the input data.

Other types of learning exist, which stand in the middle of supervised and unsu-
pervised learning, but those will not be reviewed in depth as they are not considered

relevant for the current work.

Types of Problems

Similarly, the problems that can be solved with ML exhibit a considerable variation,
based on the existent techniques and application fields.

However, in order to understand in a more clear way the problem that will be
addressed and concepts that will be used later in this work, only the two most well

known and most general types of problems will be presented.

* Regression Problem: can be defined as the task of predicting a numeric value
[22]. The most important characteristic of this type of problem, as mentioned
before, is the type of data of the output y. Such type of data is a continuous

value, generally quantities; such as amounts, prices or sizes.

* Classification Problem: is defined as the task of predicting classes [22] or labels.

The type of output value in this type of problems is defined as discrete.

It is important to notice that these two types of problems can belong to supervised
or unsupervised learning, though it is more common to address them as supervised

learning.

Support Vector Regressor

SVR (Support Vector Regressor) is a technique developed and presented by Vladi-
mir Vapnik together with other researchers, based on the concept of support vectors,
developed by Vapnik in previous years [25].

A more in-depth review of SVR can be found in [26], which details the develop-
ment of the technique and its role as the basis for the creation of new models.

SVM (Support Vector Machines), is widely known for outperforming other tech-
niques as it has been demonstrated in [27-30]. This is due to the benefits provided
by the way SVR achieves a better generalization when performing the learning pro-
cess [20].

11
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The good generalization of this technique together with its proven good perform-
ance over time series data predictions, support the choice of SVR as one of the tech-
niques to use in this work’s case study. Furthermore, one of the first challenges faced
during this work was the transformation of the data to make it valuable for the ML
model to interpret and be able to predict accurately. This problem can be further ad-
dressed by SVR, as "SVMs are state-of-the-art tools for nonlinear input-output know-
ledge discovery" [26], which means SVR has the ability to easily discover the relation-
ship between the features and the target output.

Similarly, [30] perform some tests on SVR with a chaotic time series dataset used
also in [31], where "different approximation techniques (polynomial, rational, local
polynomial, Radial Basis Functions with multiquadrics as basis function, and Neural
Networks)" [30] were put to test in order to find which model performed better for
chaotic time series data prediction. As a result, [|30] found that SVR outperformed most
of the techniques previously tested. Likewise, tests were also conducted to identify
how sensitive SVM is regarding the hyper parameters e and the penalty constant C, as
well as the dimensions of the predictor. According to [30]], the parameter C' has little
effect on the generalization error as well as the number of support vectors, whereas the
value of € has a big impact and can cause overfitting when the dimensionality of the

feature space is too big. This risk will be reviewed later in this paper.

Recurrent Neural Networks

A NN (Neural Network) can be defined as "a wide class of flexible nonlinear regression
and discriminant models, data reduction models, and nonlinear dynamical systems"
[32]].

However, a non-technical explanation, such as the one presented by [33]], describes
the NN as devices used for solving different problems that neurobiological systems
can solve effortlessly.

More precisely, a Recurrent Neural Network (RNN) is a type of neural network
used in ML for complex problems solving, mainly related with sequential data, i.e.
data related with other data in space or time. RNNs are defined as "connectionist
models with the ability to selectively pass information across sequence steps, while
processing sequential data one element at a time" [34].

Another definition, slightly more complex yet more complete, states that an RNN

is similar to a standard multilayer perceptron, "with the distinction that we allow con-
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nections among hidden units associated with a time delay" [3]]. These connections are
used by the model to retain past information, making the network capable of discov-
ering "temporal correlations between events that are far away from each other in the
data" [3]].

The term LSTM stands for Long-Short Term Memory, and could be considered as
an "extension" of RNN, which allows it to remember information even for a longer
period of time, i.e. more time steps than it would otherwise do.

The prior means that, by having additional recurrent connections among the hidden
neurons, RNNs are able to store information from the past in the state of the model,
which is passed from neuron to neuron. In this state, information from different points
in time can be stored together and therefore the model is able to define relationships
between them. In case the model is an LSTM RNN, the time steps between the pieces
of data stored could differ to a larger extent.

Another benefit of LSTM over regular RNN is its ability to avoid a well-recognized
and common issue during the training process, which is the fact that it is considered
"hard to train properly" [3]], even though it is also recognized as a simple and powerful
model. The problems addressed in [3], are the "vanishing gradient" which is solved by
LSTM, and the "exploding gradient" which might, however, be present in an LSTM
network as well. These issues will not be reviewed as they are not in the scope of this

work; however, the implemented solution will be presented later in this thesis.

1.1.5 Machine Learning in SCM

Throughout the years, many different techniques have come to the scene in order to
help the companies increase the profit of each resource while lowering the manage-
ment costs. One of those techniques is machine learning, which can be used in many
different ways to solve a wide variety of problems. Demand forecasting is a traversal
issue that affects many different industries and companies around the world, and ma-
chine learning has emerged as one more option for the companies to solve this problem.
If a company has the possibility to know in advance a given product or service demand,
it is possible to align the business process to serve this demand, which could result in
lowering costs, thus increasing the revenue.

A good example of how ML can solve this, is presented in [35]] in which different
machine learning techniques such as multiple linear regression, neural networks, recur-

rent neural networks and support vector machines are used "to forecast the distorted
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demand at the end of a supply chain (bullwhip effect)" [35]. The results of the already
mentioned ML techniques are then compared with the result of more traditional pro-
cesses such as "naive forecasting, trend and moving average" [35]]. For the previously
mentioned work, the authors used two different data sets, the first one provided by a
simulated supply chain, and the second one taken from Canadian Foundries orders.
Both data sets were divided into a set of training data and another set for testing which
would enable performance measurement and comparison through the MAE (Mean Ab-
solute Error) for the predictions of each forecasting model. The result of this work
showed, as described by the authors, that "there was no statistically significant differ-
ences in terms of the accuracy of forecasts among RNN, SVM, NN, and MLR" [35].
The prior means that even though RNN and SVM provided the most accurate pre-
dictions, the difference was not significant and, therefore, based on the predictions’
accuracy and the implementation complexity, MLR could be more worth to use in this
case.

Although similar, the problem intended to be solved in this thesis differs in many
points from the one tackled by [35]], due to the nature of the supply chain, as no external
entities are involved in our case study. As will be reviewed later, the target forecasted
demand does not correspond to that of a supply chain, but to a cyclic process flow
instead. Similarly, the nature of the items or assets differs as well, taking into account
that the demand will not be forecasted on individuals but on sets or groups. Addition-
ally, some of these groups of items can be defined as "single-use", i.e. every time the
previously mentioned process flow is completed, the item will not be part of future
predictions any more; whereas some others can have multiple uses, which means once
they complete a cycle of the process flow, they will start a new cycle.

Furthermore, during the process of reviewing previous studies to use as basis for
the present work, it was found that even though there are different publications related
to inventory and supply chain management in healthcare provider institutions [12],
very few implement practical solutions for real case studies [36] [37] and even fewer
or none involve machine learning among the solutions used, which comes to be of
primary importance as ML has proved to be one of the more widely spread solutions
for Supply Chain Management (SCM) implementations in other industries.

However, even though [36] do not involve any ML solution, it results in great use,
due to the fact that it provides a good insight into what problems healthcare institutions

face if no SCM policies are used, and how to start implementing them in order to de-
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crease the operational cost of managing assets such as pharmaceutical products. The
research is conducted in a healthcare institution in Malaysia, which consists of a central
distribution center or wholesaler and a chain of clinics scattered throughout the coun-
try. As mentioned, one of the main issues in the distribution process of assets from the
wholesaler to the chain of clinics is the implementation of demand forecasting, as "one
of the issues is the availability of accurate data on consumption. However, the lack
of standard nomenclature for healthcare products, plus the preferences of clinicians
creates further uncertainties" [36]]. After the analysis was performed, [36]] suggests the
implementation of a VMI (Vendor Managed Inventory) strategy in which "the supplier
assumes responsibility for the management of inventory at the customer, and takes
decisions regarding replenishment" [36].

In addition to that, [37] give additional guidance on how to improve logistics (bed
logistics, hospital cleaning, and pharmaceutical distribution) in a healthcare institu-
tion in Denmark and the United States while making a comparison between them.
After reviewing the current status of the logistics management in healthcare industry,
the author signals RFID (Radio Frequency Identification) and barcodes as technolo-
gies that "can enable the flow of information and track items in the SC" [37]]; which
highlights the importance of the role that DTS plays in the dental industry. Further-
more, [37] states that "hospitals have adopted stockless and JIT strategies to reduce
inventory levels and inventory costs", which were also mentioned in [36] as the invent-
ory management approaches that are more widely spread along the healthcare industry.
However, [36] states that these "should only be used for high volume products, with a
more traditional approach for low volume medical supplies".

Nevertheless, one of the few works that use machine learning approaches for in-
ventory management of healthcare assets is [38] in which, an artificial neural network
is used to classify assets in three different categories: very important, moderately im-
portant and least important; more commonly known as the ABC classification. This
classification allows the company to treat assets in different ways, according to their
importance, and therefore have a better management of resources, according to the im-
portance of the item in stock. The ANN (Artificial Neural Network) is trained by using
two different approaches and compared afterwards between them, as well as with the
performance of Multiple Discriminate Analysis (MDA). The result showed that ANN
performed significantly better than MDA, whereas there was no significant difference

between the two different models used to train the ANN.
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Even though the previously referred work addresses inventory management of as-
sets in a pharmaceutical company, the nature of a classification problem differs from
ours which is a regression problem.

Even so, [38] has been reviewed by other researchers to develop their work. One
of these is [39] which investigates the causes of the gap between research and real-life
application of classification and demand forecasting of spare parts in different indus-
tries. In the findings related to the demand forecasting presented in [39], out of ten
companies analyzed, only two have absent or almost absent implementation and eight
implement traditional demand forecasting techniques such as simple average, moving
average or exponential smoothing, out of which only four have a formalized forecast-
ing process.

Similarly, and as a complement to [39]], some studies and work have been done on
demand forecasting, as an SCM implementation approach in industries other than the
healthcare. One of these is [40] in which the authors review the benefits of neural net-
works (NN) and implement one in order to forecast the demand of products considered
to have a "lumpy" demand. The term lumpy is used by [40] to reference intermittent or
irregular demand, which is defined by [41] as "random demand with a large proportion
of zero values". In [40], the performance of the NN model and that of more traditional
models such as single exponential smoothing, the Croston’s method and its improved
version of the Syntetos—Boylan approximation are compared. As a result, [40]] found
that NN outperformed all the other methods of prediction in all but some special cases
in which the training data contained longer zero-demand periods than the ones present
in the test data. A more in-depth review of [40] will be done later in this paper, as it
has some similarities with the characteristics of the problem the present work tries to
solve and, therefore, it will be used as a guide on the NN model building as well as
into the data transformation process. In the same way, [31]] and [30] will be considered
in the following chapters as they also implement ML solutions for "chaotic" demand
forecasting which, as will be detailed further, is also a characteristic of the data that is

being used in our case study.

1.2 Our Case Study

In this work, the demand forecasting of a variety of dental assets will be addressed

with the help of machine learning techniques. The data will be provided by DTS
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(Dental Tracking System), a system capable of tracking a wide range of dental assets
by the use of RFID technology, thus being able to depict the flow of the assets and their
current state, among other information. This system can be perceived as a big data type
of system, as it generates information out of the behavior and actual flow processes
of institutions and makes it available for the users to be able to make organizational
decisions based on it as well as improve the assets management itself. As specified by
the company, one of the drivers of this software’s development, among many others, is
to give the customers an aggregate value of decreasing the operational costs with the
use of DTS.

DTS is developed by LM-Instruments Oy, a company founded in 1973, based in
Parainen (Sw.: Pargas) in southwest Finland, part of the Planmeca Group that produces
high technology dental instruments and other supplementary products as well. Their
goal is to provide users of DTS with the possibility of setting alerts for the existing
tracking locations in the institution, such that the clinic or university can be aware of
the stock level of every given asset for each of the aforementioned locations, as well
as be automatically informed when the stock level is less than the expected demand
for a given period of time. It is this expected demand for every type of asset that
we intend to predict with the ML implementation proposed by the end of this thesis
work. However, in the scope of this thesis work will be included the analysis of the
data and the implementation of the models in Python version 3.5.2, but not the actual
implementation inside DTS, any notification system, any Ul implementation related
nor tests on DTS real-life environments.

LM-Instruments wants to improve DTS in such a way that the institution making
use of the system can rely on the application to improve its inventory management
process, therefore having a positive impact on the SCM policies by minimizing the
cost of managing instruments and materials. Because of all that has been exposed
previously, machine learning has been considered as the way-to-go for implementing

demand forecasting in DTS.

1.3 Research Problem Statement

The purpose of this thesis work is to find the best machine learning model based on
SVM (Support Vector Machines) and LSTM-RNN (Long-Short Term Memory Re-
current Neural Networks) to forecast the demand of dental assets (materials and in-
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struments) tracked by DTS, for every customer procedure location configured in the
system.

The company seeks to provide the users of DTS with the ability to improve material
and instruments management, by reducing costs and optimizing resources.

Due to the aforementioned lack of articles published involving inventory manage-
ment of health/dental care assets and the use of machine learning models for address-
ing demand forecasting, this thesis work will take the first step towards it, based on the

results obtained by [35]], explained previously, as well as [31], [30] and [40].

1.4 Thesis structure

The thesis is divided into four parts. The first part defines the data used for the imple-
mentation and its characteristics, in chapter[2] Chapter [3|presents the models used and
the practical implementation for the case study. The third part is composed of chapter
M} in which the best results acquired are presented, and chapters [6] and [5] in which the
development process of the thesis is reviewed and learnings are presented, as well as

the challenging issues and their solution.
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2 DATA MANAGEMENT

The process of creation of the business data will be presented at first, in order to achieve

a better understanding of the data that will be handled in this work.

2.1 Data Generation

DTS is a tracking system based on RFID technology, which uses tags to store a unique
identification string. This string can be read with the help of RFID antennas through
radio frequency waves. The instruments manufactured by LM-Instruments contain
RFID tags, which are registered into the system by using a "reader" device which has
an RFID embedded antenna. These reader devices are part of the system and play a
key role in the process of data generation when tracking the instruments. Likewise,
LM provides RFID tags that can be used to track different types of materials, which
due to their nature, do not contain embedded RFID tags.

The use of the reader device can be divided into four phases: authentication, activ-

ity selection, assets reading and information transmission.

» Authentication Phase: it allows the user to create a session in the device by using
his/her credentials, allowing the device to identify the user that is performing any

action on it.

» Activity Selection Phase: each reader device has a given set of activities con-
figured through the server application. These activities are displayed immedi-
ately after the authentication phase is finished. The activities presented in the
reader are logical entities, which match the stages of the process that dental as-
sets go through in a specific institution. This process and its activities can be
configured in the application according to the needs of the institution itself, thus,
the DTS application fits the way every institution works and not the other way

around. When the configured activities are presented to the user, he/she selects
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the activity that wants to perform, which will be transferred to the server ap-
plication in the very last phase. Together with the activity, additional required

business information will be transferred.

» Assets Reading Phase: in this phase the user must place the RFID-tagged assets
involved in the activity, over the reader. While this happens, the reader collects
in memory all the read tags. Once the user presses the "send" button on the

interface of the reader, the information transmission phase is started.

* Information Transmission Phase: in this phase all the information gathered in
the previous phases is assembled in a JSON (JavaScript Object Notation) object
and sent to the server via Web Service. The required parameters for ensuring the
connection and correct communication with the server, are previously stored in

a configuration file on the reader.

Once the information is received by the application server, it is processed to verify
the validity in terms of data type and process flow, including permissions among others.

After the data is processed, it is stored in the database.

2.2 Relevance of Data

The relevance of the information in the database will be dictated by the problem inten-
ded to be solved. Considering that the purpose of this work is to predict the frequency
of use of assets registered in the system, any data provided by external systems will be
discarded. Similarly, any data stored in the database, that is not related to the data gen-
eration process can also be discarded. An example of this is the system configuration
data.

We can easily identify all the transaction and asset’s data stored as highly relevant
for our solution. However, the data defining the process flow in the institutions will
not be considered as relevant information, due to the fact that the purpose of this work
is not predicting the usage of the assets at all stages of the process flow, but only at the
end where the assets will be used in a dental procedure, which is the moment in the
process flow in which the institution requires to have full availability of the assets in
advance.

Similarly, the activities existing in the system as an entity will not be considered

in its entirety, but as a filter instead, considering that the activity for registering dental
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procedures in the system is identified by the name of "Clinical Use". Furthermore,
the unexpected readings during the maintenance or execution of activities other than
"Clinical Use", which might not follow the defined process flow, could bring noise data
and affect the performance of the models. Therefore, only the transactions related to
the "Clinical Use" activity, will be considered as relevant for the implementation.

Likewise, DTS stores entities that map real-life locations into the system. Inside
the system the locations are bound to reader devices, which at the same time are bound
to the activities. Due to the inclusion of the filter for the "Clinical Use" activity, only
locations that can perform that activity will be considered. Moreover, the intended
predictions will be performed in such a way, that the user can identify how many
assets would be required per location, thus, the predictions should include the location
in the dataset.

Based on this, altogether, the data considered relevant for this work will be com-
posed by the transactions related data, i.e. the time stamp, the activity, the location,
and the assets read, for every transaction registered in the system. This data will be ex-
tracted accordingly from the respective entities existent in the database engine. More
detailed information is skipped due to being considered confidential information for
LM-Instruments and the DTS project.

2.3 Data Set Creation

Once the data relevance for the machine learning models implementation has been
identified, the next step is to build the dataset. The process of preparing the data and
creating a meaningful dataset is more important than it seems, as "data cleaning and
preparation takes approximately 80% of the total data engineering effort" [42]]. The
data preparation process was performed many times as it suffered several improve-
ments and modifications throughout the development of the current work. The prior
in accordance to what [42] describes as KDD (Knowledge Discovery in Databases),
an iterative sequence composed by four steps; which are defining the problem, data
pre-processing (data preparation), data mining, and post data mining.

In order to discover what are the most used articles in the process of every institu-
tion and begin the process of dataset preparation, the first step to follow is to extract
the relevant data from the database. Let us remember the transaction data we labeled

as relevant:
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* Timestamps

Articles

Locations
e Activities

In addition to the mentioned items, the tables holding relations among the entities
referenced will also be considered. However, the nature of the relation will not be
described in order not to reveal the structure of the database.

The data mentioned is used to store the details of the transactions performed in the
system; defining a transaction as every time a user has gone through all of the four
phases of the use of a reader; previously detailed in the data generation section.

The extraction was performed by dumping the data into csv files with help of the
GUI of the tool Heidi SQL, which is currently being used by the DTS development
team. The first need when preparing the data and generating the dataset that will be
used to train the models is to define the target value, i.e. the value to be predicted,
in this case, the demand of every article based on the existent data. With this step,
the data transformation sub-process starts. As explained by [42], "data collecting, data
integration, data transformation, data cleaning, data reduction, and data discretization",
all make part of the data preparation process. Therefore, once the csv dump files are
generated, the historical record of the transactions performed in a given location during
a specific lapse is reviewed to count how many times a single asset was involved in
"Clinical use" transaction activity. That number will be used as the demand. As part
of the data transformation, it is also necessary to define what is the time unit, or the
length of the period of time for which the demand would be defined. The database
of the environment provided by LM-Instruments contained transactions since 2015,
which causes that working with yearly-based data produces no more than two or three
data points, which is not enough to train a machine learning model. It was decided
then, to work with months, but a new limitation found was that the use of locations
entities in the selected environment, started only after September-October 2017, which
represented a limitation for working with months; as at the early stages of the current
work, there were only six months of transactions involving locations; and due to the
fact that the predictions would be performed per location, it is vital to be able to assign

a demand to a location entity. This finding hampered the work on monthly datasets
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and made it impossible to do it on an annual basis. For this reason, and to be able to
work with datasets of considerable sizes, days was defined as the time unit to use, thus
having approximately 180 data samples per type of asset and location.

After discussing with the software team in charge of developing DTS at LM, an
improvement for the small number of data samples per type in a location; older trans-
actions which did not have a location associated, were modified to reference directly
the location belonging to the reader device that was associated with that transaction.
This means, for transactions prior to September 2017, the location to be used would
be that of the reader device involved in the transaction. With this adjustment, it was
possible to use transactions as old as of January 2015, therefore increasing the number
of data samples available for use from 180 days to over 800 days.

In the same way, after increasing the number of daily data samples per type in a
location to 800, it became possible to use a different period’s size other than one day.
The first alternative was seven-days periods.

The use of a longer period of time was considered based on the short period of
reaction that an institution would have if a predicted demand would require the insti-
tution to not only perform maintenance to some instruments or take them through the
cleaning and sterilization process but also if due to the end of life of older instruments
or articles such as materials, it is required to perform a purchase. In that case, it is
more probable that the delivery will not happen until a few days later and that would
probably cause a lack of assets for the institution, which would represent an issue for
its business process.

It is possible that the selection of one-day and seven-day period predictions will not
be suitable for all of the institutions and will not represent the final solution. Nonethe-
less, these periods are used as a first approach towards providing the customers with a
single general suitable solution.

Based on this, it was included into the generation of the data set the possibility
to have data samples per seven-day periods, which allowed to have data sets with
m = 150, with m being the number of samples in a dataset, per type in a location.

As it is commonly done when running machine learning models, these data samples
will be later divided into training and testing subsets. However, depending on the ap-
proach we take on the data with which the models are run, the number of data samples
would vary. If one-day long data samples are used; running the models on grouped

data per type of asset as mentioned before, would give us 800 samples for every single
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type of asset in the system per single location; whereas considering every asset as an
individual data sample would give us 800 samples per individual asset per location;
which means if there are around 30 thousand assets in the system, a total of approx-
imately 24 millions of data samples model per location would be used; whereas by
grouping the data we would only have 800 data samples, but the models should be run
once per type, which in this case is around 400 times.

In summary, on the one hand, if we consider having one data sample per day for
every type of article in a location, it would be necessary to perform around 400 predic-
tions (combination of types of articles and locations) with 800 samples in every data
set. On the other hand, a single prediction should be performed if no separation is
performed over the main data set, but the number of data samples in the data set would
be of around 24 million.

The prior reflects how much impact the shape of the data set can have on the per-
formance of any ML model, not only in terms of accuracy but also regarding the time
and the amount of data that is required to process.

Based on the fact that our predictions are intended to be performed per location and
type, the seven-days long periods approach is preferred, besides of having a big boost
performance-wise due to the division of a big training-predicting task into many small
ones.

Another important variation was the removal of those data samples equal to zero in
the target output as part of the data cleaning step in the preparation process. There were
mainly two different reasons to include this optional alteration to the datasets. On the
one hand, during the first tests a considerable number of datasets (after being separated
as explained previously), were found to have the target value with only zero values.
This, representing that the specified type of article was never used in the specified
location, thus it has a demand equal to zero. These types of datasets were preventing
the predictions to be performed in a faster and more practical way. On the other hand,
a brief analysis over the per-type-and-location-separated datasets, it was clear that due
to the lumpiness of the data, no linear models could describe in a more accurate way
the pattern in the data. Furthermore, the intermittent data makes it more difficult, even
for non-linear models, to produce accurate predictions; which is the reason why it was
decided to introduce the possibility of removing the zero-demand samples in order to
predict more accurately.

When these samples were removed, not only an improvement on the performance
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of the models was perceived, as the prediction accuracy increased, but also that the
prediction given to the institutions would come more in handy even if the article type
is not used during the predicted period of time in a specific location, as the institution
will be ready with the necessary number of articles for the upcoming period of time.
Thus, even if the predicted value y,* # 0, where y;* is the predicted demand of an
article type for a period ¢; whereas the real value y;, = 0, where y; is the real demand
of an article type for the same period ¢; for the next prediction y; would be ignored
for being zero, yielding y;+1* ~ y;*, where y;,1* is the predicted demand of an article
type for the next period ¢ + 1; in which case the institution would have the availability

for v, since the end of y;_;.

2.3.1 Improvements to the Data Set

One of the biggest improvements included in the data set generation process was the
possibility to separate the data samples in smaller datasets. This separation is per-
formed according to the combination of different characteristics such as the type of
an article, the location, and the code. This allowed the predictions to be performed in
smaller tasks which would improve the performance not only regarding the execution
time but also regarding the accuracy of the prediction. The latter, due to the data points
used by the model having a closer relationship between each other, than the one they
have with other article type’s data. This would improve the model interpretation of the
data when performing separate prediction tasks for every article type, instead of one
prediction for all the articles at once.

However, one big issue arose in the early stages, which hindered the execution of
predictions in separate tasks. The issue consisted of the data containing values that
differ from one article to the other, even if these belong to the same type of article. It
is important to consider that the demand predictions are to be performed at the type of
article level and not at an individual level. Based on the prior, these differing data val-
ues should be combined in one, which created a challenge on how to merge different
values that articles of the same type had for the same attribute. On the other hand, the
possibility of using the data at an individual article level; that means with no grouping
of data, but using the type of article as one more feature or predictor, seemed to be
easier to implement. Nonetheless, the number of data points when running a predic-
tion and the wide range of values in attributes such as expiration dates and count of

cycles completed, among others; did not produce the desired performance. This issue
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was solved with the generation of time series data sets, which allowed the data to be
grouped without using the attributes that could not be merged.

Besides of the prior variations and improvements, during the generation of the
dataset; new predictors were created as part of the feature transformation step, defined
by [43] as "a process through which a new set of features is created". This, in an

attempt of providing the models with the most meaningful data as possible.

2.3.2 Generation of New Features

The created predictors, as well as target columns, are detailed below:

Point In Time

This feature is a sequential number used to keep the data samples in time order. This
provided a first approximation on the use of time series, which can be defined as a "set
of observations X; , each one being recorded at a specific time ¢t" [44].

The rationale behind the assignation of a number to a data point is related to its
age, thus having a value of one means that the data point was the first period of time of
collected data, i.e. the oldest. The bigger the number, the closer to the current point in

time.

Time To Expiration

This feature was created to allow the possibility of merging all the different expiration
dates that every single article belonging to the same article type has, into a single value,
in the same way the demand was grouped.

The reasoning behind the computation of the values was the following:
t=(d—e)/s

for every data sample, where d is the start date of a period (might be a one day
period or a seven days period), e is the expiration date and s is the size of the period in

days.
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Frequency Variance

This feature is used as an alternative for the output. This target column represents the

difference between the ¢ — 1 frequency and ¢.

v = fr — fic1

Where v, is the frequency variance and f is the frequency, while ¢ represents a given
time and ¢ — 1 the previous period.

This way instead of predicting the actual demand, the behavior of the demand for
t + 1 would be predicted. However, after analyzing the data, it was found that the
values of the frequency did not have that type of distribution, whereas the frequency

variance should have the desired distribution with values close to zero.

Previous Cyclecount

It represents the value of the cycle count feature for the previous time step.
pcecy = cci—

This purpose of this feature was to be used as a predictor in a time series shaped

dataset.

Previous Time to Expiration

Similarly, this predictor represents the value of the feature "Time to Expiration" previ-

ously explained, with the purpose of being used in time series dataset.

ptey = tegq

Periods To Last Demand

Because of the lumpiness of the registered demand for the articles, in the separated
dataset it was common to find many zero and non-zero demands.

This feature intends to reflect the length in periods of time since the last non-zero
demand was registered for an article type in a specific location.

If the data sample for time ¢ has a value of one in this feature, it means that the data

sample ¢ — 1 has a non-zero demand; whereas if the data sample ¢ has periods to last
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demand equal to 3, it means that the data sample ¢ — 3 has a non-zero demand, but data
samples t — 1 and ¢ — 2 have a demand of zero. A similar implementation was used

by [40] when dealing with an intermittent demand dataset.

Frequency Time Series

Frequency Time series is not a single feature but a set instead. During the creation
of the dataset, it was introduced the option of creating a customizable-size chain of
features representing the frequency of previous time steps.

As already mentioned, the size of this chain of features is selected when launching
the process of dataset generation. Therefore if six is entered as the size, the same
number of features (six) will be created, storing the frequency for the time step «, as

follows:

t— Afreq = fTGQt—a

where ¢ — « represents the number of previous time steps, considering ¢ as the
reference to a current time step; and freq being the frequency of a given time step.

This technique is used for time series prediction, considering that SVR and LSTM
have been widely recognized as being accurate with this type of dataset.

The purpose of this feature creation is being able to use univariate time series, taken

as an example from [45]] and other tutorials online.

Periods To Last Demand Time Series

Similar to the previous set of predictors, the process is repeated for generating an-
other chain of features with the same size as the "Frequency Time Series", but in this

occasion, the feature "Periods To Last Demand" is used instead.

t— Qperiods = periOdStfa

where ¢ — « represents the number of previous time steps, considering ¢ as the
reference to a current time step; and periods being the periods to last demand for a
given time step.

The difference between the terms in the previous equality is that ¢ — perioas 1 the
name of the new feature created for the data sample ¢ and periods;_,, is the already

existent feature of the data sample ¢ — « from which the value is taken.
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2.3.3 Dataset Shape

In ML, n is widely used to refer to the number of features or predictors used as inputs
for a dataset, whereas m is used to define the number of data samples in a dataset.
In this section, the optional variations included when choosing the shape of the

dataset will be related to the value of these two variables n and m.

Number of Data Samples

On the first place, altering the number of data samples was highly limited by the
amount of data available in the system. As it was already mentioned in a previous
chapter, at first it was possible to use only 120 days of data per article type in a loca-
tion.

However, the database (a copy of the original environment) was altered so that the
location tied to the reader devices was used as the location referred by those trans-
actions performed in DTS before the use of location entities was introduced in the
software. Once this modification was performed, more data became available, to the
point of being able to use as much as 800 days or 150 weeks. These numbers (800
and 150) became then the number of data samples m for every separated data set,
depending on how big was the count of days that the demand should represent.

Therefore, if it was decided that the demand should be presented on a per-day basis,
800 would be the sum of samples. Whereas if it was decided that the demand should
be presented on a per-seven-days basis i.e. a week, then only 150 samples would be
available to be used in every article-per-location data set.

Regarding the size of the periods, i.e. how many days should compose every
period; it was decided that only one and seven would be used, due to the necessity
of limiting the scope of the tests performed to make it finite, and because these were
the two periods proven to fit better the requirements of the application and the institu-
tion whose data was used for the development of this work.

However, even though the goal is to find one single solution for either of these
periods length, the period of seven days long was preferred as predicted in advance;
considering that it would allow more response time for the institution to be ready with

the required assets to supply the predicted demand.
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Predictor Features

On the second place, altering the number of features or predictors used is a basic yet
key step in the process of building a dataset to use with an ML model.

As a first approach, the basic information of every article was used; basic inform-
ation being the "type" or "code" of the articles, which work as an identifier of specific
types of asset; the cycle count which is a counter of how many cycles has the asset
completed in the process flow; the expiration time, among others. This, because the
characteristics of every asset might dictate the importance of every asset in a location
and therefore, how high or low is its demand.

However, on the very last version of the dataset, twenty-nine predictors and two
target outputs were available to be selected according to the technique chosen to be
applied and used to fit and predict a given model.

Because of that, the number of possible combinations to be tested is already con-
siderably big; without taking into account the possible combinations of the hyperpara-
meters for SVR and LSTM.

The final objective of being able to select the predictors in a dynamic way, by us-
ing parameters in the source code, was to be able to apply data reduction by removing
predictors that did not perform well and did not have a strong relation with the target
output; as explained by [46]] when stating that feature subset selection, as part of the
data reduction phase of the data preparation process, consists on identifying "inform-

ative features from the original set and delete the others".

2.3.4 Target Output

As mentioned before, in the final data set, two different target outputs were available
to be used in the predictions.

On the one hand, the frequency which represents the demand, interpreted as the
number of transactions an article was read on or used in DTS; detailing a procedure
with a customer at a specific location, in a given period of time.

The drawback of using the frequency as target output was that it does not have
a Gaussian distribution, which was closer to be achieved by the frequency variance.
One characteristic that affects the distribution of this target output, is that, for obvious
reasons the demand can be only represented either by positive numbers or zero, but

never by a negative number, so there exists a limit on ¥y = 0. In the same way, the
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distribution was the same disregarding the length of the periods selected (one or seven
days), as values closer to zero are more common than big numbers.

On the other hand, frequency variance, which was explained already before, made
it possible to have a distribution closer to Gaussian and was expected to boost the per-
formance of the models, besides of providing the opportunity of predicting the trends

of the data instead of fixed values.
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3 BUILDING OF MODELS

As the first step for building the models, the analysis of the data provides hints on
what the models should be and the features they require for performing as optimal as

possible.
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Figure 3.1: Frequency of use of an article in a location for 120 days.

Looking at figure [3.1] the graphical representation of the data suggests that no
linear model would perform well enough. This figure presents the frequency of use
of an article (which is not specified in order not to break the confidential information
policy agreed with LM-Instruments) in a given location. This frequency presents a
dynamic variation of values such that, fitting a linear model could bring close guesses

about its future demand, but it would not be as accurate as required. Thus, it was
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decided to use a non-linear model as the base model, after discovering that a single
straight line would not be able to describe the behavior of the frequency of use for the
articles, throughout the time.

Another challenge that was faced in this work was creating a model that generalize
well enough, in order to be able to predict accurately with different types of articles

and different locations, each combination providing different behavior.
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Figure 3.2: Frequency of use of an article in a location for 120 days.

A small example of this is figure [3.2] which presents the demand for a different
article in the same location as the demand presented in figure [3.1]

The reason why SVR (Support Vector Regressor) and LSTM (Long-Short-Term-
Memory Neural Network) were chosen as the models to drive the present work and to
be subject of comparison, is due to the nature of our problem, but also because they
have proved a high performance on different types of problems including those using
time-series data. Regarding SVR and apart from time series data, there is another char-
acteristic which motivates its use in this work. As it was previously mentioned and also
presented in [26], "instead of minimizing the observed training error, SVR attempts to
minimize the generalized error bound so as to achieve generalized performance” [26]].
As for LSTM, it possesses many different benefits and exploits of relationships existing

between the time steps in a way few other models can do it. A very clear review of its
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benefits is presented by [34]. However, the motivation to use it in this project is based
on its success in more complex problems, and intend to replicate its good performance

on less complex problems.

3.1 Support Vector Regressor

One of the first steps to start with the process of building the SVR model is reviewing
the issues or risks that can be faced by implementing the model. As it was mentioned
previously in the paper, due to the impact of the hyperparameter € in the model per-
formance, overfitting was identified as a risk by [30], when assigning a small value to
it. Similarly, it was also mentioned that this risk becomes bigger when the dimension-
ality in the dataset used is big. However, in this case, the dimensionality of the datasets
used during the current work was very low, which made it possible to use a small €
without risk of overfitting the model.

Furthermore, the process of building the SVR model has been tightly related to
the process of improvements applied to the generation of the dataset, as it is clear that
based on the shape and type of data contained in the dataset the performance of the
model could improve or worsen.

However, a very important step in the process of using an ML model is under-
standing its insights and how it works. Following, a brief review of the technical

functionality of SVM is presented.

3.1.1 Technical Review

SVR is a technique based on SVM for solving regression problems. As most of the ML
techniques and algorithms, SVR and in general SVM have different implementations
and variations, which are created for improving the performance on specific cases.
However, below, the most basic version of SVR will be presented so it can be used to
understand how the built model works and how can the prediction be done.

First, SVR’s goal is defined by [1]] as finding a function f(z) such that errors lower
than e will be ignored, but will not accept deviations larger than that. Based on this,

the linear version of the function becomes

flz)=w-z+b withbeR
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where x is the input predictor, w is the normal vector to the hyperplane and b is the
bias.

At this point the optimization problem can be written as
o 1
minimize 7 ||wl]

i—(w-z)—b<e¢
subject to v )
(w-x)+b—y; <e

However, for this version, infeasible cases might be present, for which slack vari-

ables are included in the function, resulting in
1 A
minimize §||w|| + C;(& +&%)

yi—(w-x)—b<e+¢
subject to (w-z)+b—y <e+&*
£¢ >0
This, where C' determines the penalty term controlling the flatness of the function;
and &, £* are the slack variables.

The prior is the most complete of the simple versions of the linear problem formu-

lation.

Figure 3.3: Soft margin loss setting for a linear SVM [|1]]
In figure [3.3] a representation of SVR over sample data can be appreciated. In

figure, there is a straight line marked with a zero. This line is the hyperplane and the

surrounding area is the margin denoted by e. The data points falling inside the margin
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will be ignored, and those falling outside the margin will contribute to the cost of the
function, which is intended to be minimized.

However, a more complex and therefore powerful version of SVR can be achieved
by applying the so-called kernel trick. The kernel trick is a methodology to use SVR
with non-linear problems. The application of the kernel trick is presented in [1] after
the formulation of SVM into support vector expansion; which is a more complex ver-
sion of SVM, that includes Lagrange multipliers. However, these steps will not be
presented for being considered out of scope. More information about the step by step
transformation can be found in [1] and [26].

The formulation for the kernel trick, is as follows:

_% Zij:l(ai —aj)(a; — a;)k(xi, ;)

—€ Zj\:l(&i +ai) + Zj\:l yi(oy — af)

maximize

by
subject to Z(ai —af)=0 and ;] €[0,C]
i=1

where «;, o are the Lagrange multipliers, and the function k(x,z) denotes the
kernel function.

The denoted kernel function must comply given rules and theorems which will not
be detailed here, as they are not considered relevant for the scope of this work. How-
ever, the library used for SVR implementation provides embedded kernel functions to

be used, as hyperparameters.

3.1.2 Scikit SVM Hyperparameters

The implementation was performed in python version 3.5 by using the SVM module
of the scikit-learn library.

A total of 179 executions were performed, considering different changes in the
tunable hyperparameters of the module, together with modifications on the generation
and shaping of the data as well as the predictor features and the output target used.

As hyperparameters in the model, we can modify the kernel used, which can be

linear, polynomial, RBF (Radial Basis Function) or sigmoid.

36



Camilo Andrés Macias Vargas

Other hyperparameters tuned during the model building were the C constant, the
e margin, the r coefficient and the degree d. The -y value was modified automatically
depending on the number of predictor features used, as follows: v = 1/n where n is
the number of predictor features.

Apart from the kernel which for obvious reasons play a fundamental role in every
run, the most important parameters to set are the constant C, which "allows us to define
the trade-off" [22] between how the error of a data point can be and the size of the
margin. This means the lower the value of C, the flatter; i.e. the model will not
penalize much the outliers. However, if C has a high value, our model will try to avoid
having data points out of the ¢ margin.

Another important hyperparameter is € for the same reason stated before, as it will
tell the model how close or far away can the model be from the data points.

On the other hand, the coefficient r and degree d are necessary when using the

polynomial kernel, whereas -y is needed when using the RBF kernel.

Tuning Considerations

As explained before, € could cause the model to overfit when the dimensionality of
the dataset is significantly big. In terms of ML, a dataset is considered to be high-
dimensional when it contains a large number of features or predictors. During the
current work, as mentioned before, the final dataset contains 29 features, which will
not all be used at the same time. For this reason, the dimensionality of the dataset
can be considered to be low and thus, a low value of € will not transform in risk of
overfitting the SVR model. However, this is not the only way that the dimensionality
of the data can affect the performance of a model since a large number of features can
cause the performance time to be very long, if it is necessary for the model to process
every feature of a data sample. This is also known as the curse of dimensionality, for

which [47] provides a deeper look.

Tuning the Model

In order to select the correct parameters for the model, an initial approach was taken,
by using the "GridSearchCV" class existent inside the model selection module in the
scikit-learn library. However, because of the lack of high-power computational re-
sources, the training and predictions were performed by grouping the dataset by the

type of article, which causes that when running the GridSearchCV class for every type
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of article, a different optimal configuration was found for every model run. Due to this,
it was discussed and decided that as a definitive approach, the tuning of the paramet-
ers would be performed manually by executing the models many times with different

combinations of parameters until the best overall performance was achieved.

3.1.3 Process

On the first place, the selection of python as the programming language for this work
was based on two main factors; as it is the previous experience with that programming
language, and its recognition based on its utility, support, tools, and libraries existent
for ML algorithms implementation. In addition to this, there exist many books with
a practical approach to ML, which use python as the main programming language or
present it as a common option to start with [22,48-51]].

Secondly, the selection of scikit-learn as the tool to use for python was based on
its simplicity when implementing the SVR model. Other libraries such as tensorflow
and theano, which are widely recognized in the industry, seem to be developed to work
more often with neural networks and deep learning algorithms. A more in-depth review
is provided in [52], where a detailed review of the underlying technologies as well as
the code design and few comparisons with other libraries’ performance is presented.

The evolution of the implementation, started by using the module SVM inside the
scikit-learn library. This module contains the class SVR.

SVR was used over SVC due to the nature of the problem to be solved, which was
identified as a regression problem. Considering that the class SVR is intended to be
used for regression problems and not for classification as SVC, the former was selected
to be used in the implementation. More information about the module and the available
implementations can be found in the scikit-learn official documentation.

Due to the fact that the implementation first contained mostly the characteristics
of the assets as features, and considering that some of these were not numerical, an
encoding solution was implemented. The encoding was provided by the scikit-learn
library as well, with the use of the class "LabelEncoder", found in the "preprocessing"
module. The LabelEncoder class enabled the capacity of using any desired feature in
the dataset. One example of this type of features are the locations, which contained
the name of the location instead of its id or another numerical identifier; and the type
of the article, as it does not exist as an entity itself in the DTS system, but as a string

value.
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Once the encoding was performed, the implementation continued with the genera-
tion of the model itself, for which the default and recommended values were used as

an initial test. This initial implementation was created with the following line of code:

SVR(C=1.0, epsilon=0.1, cache_size=300)

The prior line of code is very clear, as it defines the values to use as penalty value
and €. In addition to this, the kernel, as it is not specified, takes the default value of
"rbf" which stands for Radial Basis Function. Similarly, a cache size of 300MB was
specified, in an attempt to improve the performance of the model.

At this point, the evolution of the model was focused on the configuration of the
hyperparameters. Another tool inside the scikit-learn library was used, which is an
estimator called "GridSearchCV". The prior based on the fact that "scikit-learn can
evaluate an estimator’s performance or select parameters using cross-validation" [52]],
which is possible with the use of the previously mentioned estimator.

In a similar way, such a solution was mentioned in different works. One such
example is [53]], where it was defined as the method for the authors to "find which
combination of RBF kernels returns the better result, namely, which value of u to
adopt" [S3].

Therefore, a solution using "GridSearchCV" was implemented, with the objective
of finding the values that would help the SVR model achieving the best possible result.
However, due to the fact that the dataset was being further divided in smaller datasets
based on the article type, this implementation produced different recommended con-
figurations for each one of the datasets; which was not the main goal of the project.
Therefore, a single execution with the whole dataset was performed producing two
main conclusions. First, due to the computational power limitations present, the time
of execution was higher than desired; and secondly, the result of the "optimal" con-
figuration suggested by the estimator was outperformed by previous tests which used
divided datasets.

Based on the prior, the use of an estimator was discarded, and a decision was made
to perform all the tests manually; thus, modifying the values of the hyperparameters
based on previous results in order to find configurations producing better ones. This
evolution of the model was set to be performed in parallel with the evolution of the
dataset itself, based on the variations of the length of time considered by each data

sample and the features used.
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The evolution of the model, however, was performed by introducing the custom-
ization of different hyperparameters in different stages of the present work. The prior
means that, as the previously presented line of code showed, no variations on the ker-
nels neither in coefficient were included at first. Nevertheless, these variations were
included in later stages of the model optimization, and the final line of code for creat-

ing the SVR model is the following:

SVR (C=MODEL_PENALTY, kernel=KERNEL, epsilon=MODEL_EPSILON, coef0=MODEL_COEFFICIENT,
cache_size=300, degree=DEGREE)

In this final line of code, as opposed to the initial one, the values assigned to the
hyperparameters of the model are not static values in the code, but global variables
instead. The prior, as a result of including the option of parametrization in the python
script, so the values can be defined at the execution time dynamically, avoiding the
need of modifying the script’s code prior to every test.

Similarly, in this final line of code, we can see different hyperparameters which

were not considered initially, such as the kernel, the coefficient, and the degree.

3.2 LSTM - Recurrent Neural Network

As it was mentioned prior in this thesis, LSTM networks have two issues found and
placed in the center of attention by [3]], which should be taken into consideration when
creating an LSTM model. However, luckily these issues have already been addressed
by other researchers in the field, and the library used for implementation in python
already contained a solution for both, exploding and vanishing gradients.

On the other hand, in a similar way as experienced with SVR, the process of build-
ing an LSTM model evolved hand-in-hand with the process of the generation of the
dataset. Now we will review the technical functionality of LSTM along with the model
building process, and describe all the variables adjusted during the process and give a

brief explanation on what their impact on the model performance could be.

3.2.1 Technical Review

In order to understand how LSTM RNN work, it is important to detail what its com-

position is. As any other neural network, an RNN is composed of units of code called
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neurons. According to [S1f], these units can be classified into three groups based on
their function. The units intended to receive the data in the network are called input
units. The output units are the ones in charge of presenting the result of the inform-
ation processing performed by the network. Finally, the hidden units are the neurons
in charge of performing the data processing, and represent "latent variables" [S1]]; as
well as the difference between RNN and other networks.

The first characteristic of the RNN that makes it different from the vast majority,
is the recurrence present in the hidden units. Regular NNs are called feed-forward
(FFNN). This, because "each neuron in a particular layer is connected with all neurons
in the next layer" [2]], therefore the information only flows forward in the structure of

the network, and due to this the information is never processed twice by the same node.

output layer

hidden layer

<)
u,U*D &

X

Figure 3.5: Schematic of a Recurrent Neural Network [3]].

In RNN, on the contrary, the hidden units have a recurrent connection to itself; this

being a key factor on this type of networks being successful when processing sequential
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data, as explained by [54] when stating that RNNs "contain cyclic connections that
make them a more powerful tool to model such sequence data than feed-forward neural
networks". Figure [3.4] presents a visual representation of a regular FFNN, whereas a
basic representation of an RNN can be seen on

Figure 3.6: Unrolling recurrent neural networks [J3].

Figure [3.6]is a representation of the concept of "unrolling" a RNN, used by [3] to
present the concept of recursion in a more clear way. This concept might be presented
by some authors as "unrolling" [3]] [55]], and as "unfolding" by others [56] [S7].

Moreover, LSTM is a special type of RNN, in which the hidden units contain a

more complex algorithm to process the data and fire the connections to the next units.

It

by by

Input Gate

Figure 3.7: Long Short-term Memory Cell [4].

Whereas other networks’ units contain only one function to process the data and
fire connections, the radiography of an LSTM unit is much more complex than that.
In figure a graphical representation of the skeleton of an LSTM unit is presented.
An LSTM cell consists of four components for processing information. These four

components are:

* Forget Gate
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* Input Gate
e Output Gate

e Cell State

Forget Gate

This gate controls what information is removed from the cell state. It applies a sigmoid
function to the input of the current unit and the output of the previous unit. The formula

for the forget gate f; according to [4] is

ft = U(fo - Ty + th . ht—l + ch . Ct_1 + bf)
where h;_; is the output of the previous unit, x; is the input of the current unit,
W represents the connection weight matrices from cell to the gate and by is the bias
vector. In figure the forget gate can be seen at the bottom.

Input Gate

This gate controls what information will be written into the cell state. It consists of
a sigmoid operation for deciding which information to update. A hyperbolic tangent

(tanh) operation is part of this gate. The corresponding formula is

it =0(Wyi-xp +Whi - hioy + W - Cioq + b;)

In figure [3.7] the gate can be seen at the top left.

Output Gate

The output gate is, as its name suggests, in charge of producing the output of the unit. It
uses a sigmoid function on the input and the previous unit output, which is combined
with the hyperbolic tangent of the cell state. The final result is then prompted and

transferred to the next unit in the network.

Oy = U(on ' Xt + Who : ht—l + Wco : Ct + bo)
hy = o * tanh(Cy)

In figure the gate can be seen at the top right part of the diagram.
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Cell State

The cell state plays the role of an internal memory shared between the nodes in the
network. This is the characteristic that allows LSTM to remember information through
time steps. In figure the cell state is located in the center of the representation,
labelled as ;. The authors in [4] defines the cell state updates as follows:

Cy = fi - Cooa + iy - tanh(Wye - Xy + Whe - hy—1 + b)

3.2.2 LSTM Structure

The structure of the built network might have bigger or smaller impacts on the predic-
tion’s performance depending on the dataset used, as well as its shape and what the
output should be.

The structure of the network can vary in two ways, which are the depth and width.

On the one hand, the term "depth" is used to refer to the number of layers stacked.
The minimum number of layers that a network could have is 2, one for each, input
and output values. This type of network is called "simple perceptron”. However, with
LSTM it is required to use a multi-layer perceptron (MLP), which consists of 3 or more
layers. The layers between the input and output layers are known as hidden layers.

So, all things considered, a minimum of 3 layers must be used; this being the lowest
limit. However, there is no such thing as an upper limit, though it is not very common
to find networks as deep as having tens of hidden layers.

However, It is worth mentioning that by introducing a second hidden layer, thus
having a total of 4 layers; the network would be classified as a deep neural network
(DNN).

On the other hand, when talking about width; it has been a topic of discussion
whether the width of a network could have as much impact on a network as its depth.
Research as the one conducted in [38]], concluded that "whenever we replace a finite
width layer by a layer of infinite width, this results in drastic improvement in per-
formance". However, the authors went ahead to state that using a single layer reduces
significantly the number of hyperparameters that need to be tuned. Thus, the time in-
vested on grid searches is reduced as well. Similarly, in another research work, the
authors argue the role of the width when defining the structure of a NN, by concluding

that "the depth may determine the abstraction level but the width may influence the
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loss of information in the forwarding pass" [59].

However, the width cannot be set to the NN as a whole, but to every layer that
makes part of it, by defining the sum of neurons each one will contain.

For this reason, the width of the output layer will be set to one, due to the fact that
only one output value is required in the prediction. In a similar way, the input layer
will have a width according to the number of input values or features that each of our
datasets has.

Likewise, due to the fact that the predictors used for every prediction will be dy-
namically selected, the width of the input layer will be also defined dynamically.

As there is no indication on what should be the width of the hidden layer(s), those
were also let to be defined dynamically, so different structures could be tested with
same parameters to establish the structure providing better performance to continue

using it.

3.2.3 LSTM Hyperparameters

There are many hyperparameters that can be tuned in an LSTM when building a model.

The implementation was done by using keras for python 3.5. Some of the paramet-
ers reviewed below are based on the parameters presented in the keras documentation
web page for LSTM layers. It is important to highlight that not all of the hyperpara-

meters were tuned, and their default values were used instead.

Number of Units

As mentioned before, the number of units in a layer defines its width; and the width

was set to be dynamically assigned for every layer.

Activation function

The activation function is the function to be performed by the neuron to the input. This
function will produce a result and thus, the output of the neuron. On account of the
prior, choosing the correct activation function is key when building a NN.

Across the performed tests, four different activation functions were used. These
are sigmoid, softplus, softmax and tanh.

The characteristics of these will not be discussed for being considered to be out of

the scope of the current work.
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Loss function

Is the function whose output value should be minimized, in order to achieve better
performance during the execution of the LSTM model. In other words, is the function
that measures the error or the distance between a calculated and a target value.

Only the loss functions embedded in the keras API were used, as the objective of
the work is to find an "off-the-shelf" solution that can be provided by already existent
libraries.

The functions used were cosine_proximity, hinge, logcosh, mae, mape, mse, msle,

poisson.

Optimizer function

An optimizer function is that which updates the variables considered by a hypothesis
function (activation function in networks) to fit certain data. Better said, it is the func-
tion doing the learning in a network.

In a similar way as with the loss function, only optimizers embedded in the keras
API were considered during the implementation.

As optimizers were used adadelta, adagrad, adam, adamax, nadam, rmsprop and
sgd.

Furthermore, each optimizer can be parameterized, which increases the number of
possibilities when building an LSTM model with no other than embedded solutions.
This talks about the complexity that building such a model for real-life problems im-
plies.

Learning Rate

The learning rate is one of the most important parameters that can be tuned on the
optimizer itself. The learning rate defines how big or small are the changes to the
variables affecting the activation function during the process of learning.

When a high value is assigned to the learning rate, the "steps" or changes will be
bigger. The same happens in the opposite situation of having a small learning rate, in
which case, the changes are smaller.

The value to assign depends on the data, and neither a very big or a very small

value can ensure a better performance. Reason for which the tuning of the learning
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rate must be done manually by executing the model many times with different values
and then choosing the best performing learning rate.

However, there exist an automatic way of finding the most suitable learning rate
that is embedded into some of the optimizers, which consists on increasing or de-
creasing the learning rate depending on the results obtained in the process of training.
However, this requires an additional parameter to control how much or how few the
learning rate would change. In order to avoid overcomplicating the presentation of
results and the model built, this solution was not used and instead, manual executions

were used to test different learning rates, during the tuning process.

Epochs

An "epoch" is the term used to refer to the pass of all the training data through the
network. In that sense, when in a model a number of epochs are defined, it is the
number of times the training data will be passed through the network to update the
weights on each feature, and therefore perform the learning process.

A high number of epochs implies a high number of training passes, which would
also imply better learning of the model on the data, but also a larger time spent during
training and more computational resources required. A high number might also be the
cause for overfitting; whereas a low number, might produce underfitting, although it
would make the learning process faster to execute.

Batch Size

The learning process is not executed by processing sample per sample, due to the
possibility of many computers to process more than one sample at a time; also with the
support of parallel programming. Therefore, it is common to pass a number of samples
at the same time for the model to process them. This number of samples passed as a
group is called the batch size.

Together, the epochs and the batch size define how fast or slow the process of
learning is performed; and together with the rest of the hyperparameters, affect directly

the performance of the model.
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3.2.4 Process

The process used to build the final LSTM model was developed in a similar way as
with the SVR model.

However, as a first approach, an initial and very simple neural network was imple-
mented without using any libraries. This implementation was used as a hint of how
could a NN be implemented. Afterward, research on Python libraries providing the
capability of implementing LSTMs was performed. Consequently, theano and tensor-
flow were found both as powerful libraries to implement the model. However, due to
previous experiences and performance reliability, tensorflow was selected. In a similar
way, the keras library was found to be able to run over both tensorflow and theano,
besides providing an "easy-to-use" interface that would simplify the implementation
of the model.

Nevertheless, keras also provides different options that can be used in the construc-
tion process of a NN. One of these options is the basic model, which can be built using
the class "Sequential" or the class "Model". After a brief review of the keras’ docu-
mentation, using the "Sequential” class was found to be simpler. Additional support

on the use of the class was found on [60].

model = Sequential ()
model.add (LSTM (1, input_shape=(X_train.shape[l], X_train.shape[2]))

model.add (Dense (1, kernel_initializer='uniform', activation='linear'))

The previous sample code was the first approach used for the LSTM model. It
consists of two layers with one node each. The definition of the first layer creates an
LSTM layer with one node, which works also as the input layer; thus, the input shape
must be specified. The second layer is a Dense layer.

Given that some of the hyperparameters are defined during the compilation of the
model and some others during the training; below, the initial approach for model com-

pilation and training is presented.

# Compile model

model.compile (loss=mae, optimizer=adam, metrics=['accuracy'])

# Fit the model
hist = model.fit (X_train, y_train, epochs=EPOCHS_NUM, batch_size=BATCH_SZE, verbose
=2, validation_data=(X_test, y_test))
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The previous code uses the built-in implementation and default configuration for
the MAE (Mean Absolute Error) function, as well as the adam optimizer. The epochs
and batch size for the training process are defined through parameters in the python
script.

With this architecture, around sixty initial tests were performed, for which the ac-
curacy percentage achieved varied between 50% and 80%. This variation was due
to the changes in the data sets, mainly in its features, the time length for each data
point, as well as the hyperparameters. However, most of these results included data
sets which contained too many zero-valued data points, which caused their predictions
to be zero, being considered not reliable and therefore discarded on later stages of the
work.

Following, a second LSTM approach was created, which made it possible to build
a model including multiple hidden layers. This, so that better results could be achieved

by increasing the processing of information by the neurons.

model = Sequential ()

model.add (LSTM (1, input_shape=(X_train.shape[l], X_train.shape[2]), return_seqg=True))
model.add (LSTM(1))

model.add (Dense (1, kernel_initializer='uniform', activation='linear'))

The prior code includes the "return_seq" parameter set to true for the input layer;
which is required when stacking multiple LSTM layers. This makes it possible to
include a second LSTM layer containing also one node. The number of nodes was
modified accordingly for later tests. The prior changes, however, did not represent a
considerable impact on the results obtained with the initial architecture, even though
different changes were also applied to the datasets used and the hyperparameters.

Nevertheless, in order to break any limitations and be able to construct dynamically

deep networks, the following snippet of code was implemented:

# create model
model = Sequential ()
if len(LSTM_UNITS) == 1:
model.add (LSTM(LSTM_UNITS[0], input_shape=(X_train.shape[l], X_train.shape[2]),
activation=LSTM_ACTIVATION, kernel_initializer=init))
else:
lastLayer = len(LSTM_UNITS) - 1
for units in LSTM_UNITS:
if lastLayer ==
model.add (LSTM (units, activation=LSTM_ACTIVATION, kernel_initializer=init))
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elif lastLayer == len(LSTM_UNITS) - 1:
model.add (LSTM (units, input_shape=(X_train.shape[l], X_train.shapel[2]),
activation=LSTM_ACTIVATION, kernel_initializer=init, recurrent_activation
='hard_sigmoid', return_sequences=True))
else:
model.add (LSTM (units, activation=LSTM_ACTIVATION, kernel_initializer=init,
recurrent_activation='hard_sigmoid', return_sequences=True))
lastLayer—-=1
if ADD_DENSE == True:

model.add (Dense (1, kernel_initializer=init))

The previous code snippet provides the opportunity of defining the number of
LSTM neurons per layer, by using the array LSTM_UNITS. Each number in the array
represents the number of neurons in a new LSTM layer, therefore being possible to
create dynamically width and deep models. However, due to the computational limit-
ations, most of the executions contained three layers, even though two tests using five
layers were performed as well.

Similarly, at the end of the snippet, a boolean validation controlling the inclusion
of a single-neuron "Dense" layer was implemented. This based on the practical imple-
mentations on [[60] [[61]].

Likewise, the model compilation process also suffered modifications, which in-
creased, even more, the sum of possible configurations to use when testing the models.
The modification consisted of stop using the default values for the optimizers as it
had been done until the moment, and implement a mechanism to assign the respective

hyperparameters by using python script parameters.

def getOptimizer():
if OPTIMIZER == 'sgd':
optimizer = optimizers.SGD (lr=LEARNING_RATE, momentum=0.9, decay=0.1, nesterov=
True)
elif OPTIMIZER == 'rmsprop':
optimizer = optimizers.RMSprop (1lr=LEARNING_RATE, clipvalue=0.5, rho=0.9, epsilon=
None, decay=0.0)
elif OPTIMIZER == 'adagrad':
optimizer = optimizers.Adagrad(lr=LEARNING_RATE, clipvalue=0.5, epsilon=None,
decay=0.0)
elif OPTIMIZER == 'adadelta':
optimizer = optimizers.Adadelta (lr=LEARNING_RATE, clipvalue=0.5, rho=0.95,
epsilon=None, decay=0.0)
elif OPTIMIZER == 'adam':
optimizer = optimizers.Adam(lr=LEARNING_RATE, beta_1=0.9, beta_2=0.999, epsilon=1
e-08, decay=0.0, amsgrad=False)
elif OPTIMIZER == 'adamax':
optimizer = optimizers.Adamax (lr=LEARNING_RATE, clipvalue=0.5, beta_1=0.9, beta_2
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=0.999, epsilon=None, decay=0.0)
elif OPTIMIZER == 'nadam':
optimizer = optimizers.Nadam(lr=LEARNING_RATE, clipvalue=0.5, beta_1=0.9, beta_2
=0.999, epsilon=None, schedule_decay=0.004)

return optimizer

# Get Optimizer's instance

optim = getOptimizer ()

# Compile model

model.compile (loss=LOSS_FUNC, optimizer=optim, metrics=['accuracy'])

The method getOptimizer is in charge of returning an optimizer based on a script
parameter. However, an important aspect that had been ignored until that moment was
the use of the learning rate as hyperparameter. The learning rate, as it was previously
mentioned, plays a very important role in the process of training the NN. Unfortu-
nately, when using keras, there is no simpler way of defining a custom value for the
learning rate, than creating a custom object for the desired optimizer, which brings
with it the possibility of defining other common and optimizer-specific hyperparamet-
ers. Nevertheless, due to the evident overwhelming number of different configurations
available when building the model, it was decided to leave all the other hyperparamet-
ers for the optimizers with their respective default values in order to limit the scope of

the current work, and only tune the learning rate through a script parameter.

3.3 Accuracy Margin

The term accuracy has been mentioned throughout the paper as the driver of the devel-
opment of the proposed models. However, it is necessary to define what accuracy is
and how it is measured to evaluate the predictions generated.

According to the definition given by [62], "accuracy can be defined as the degree of
approximation to a certain expected value". A definition closer to ML defines accuracy
as a performance measure that needs to be defined to evaluate a performed task [22].

Based on these two definitions, it is possible to set a standard by which the predic-
tions will be judged as accurate or inaccurate.

At the early stages of the implementations, only predictions that were exactly equal
as the target value were considered accurate. However, the percentages of accuracy
achieved with this definition were not good enough. Because of that, the necessity

of becoming more flexible with the definition of what can be considered accurate or
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not rose, and was tackled by defining an initial standard margin of accuracy which
considers as accurate values as far as +2 or -2, from the target value.

This definition of accuracy margin improved the performance of the executed tests.
After reviewing some of the weekly predictions results obtained, both SVR and LSTM
models were performing very good approximations to the target values; nonetheless,
these were not good enough to be inside the +/- 2 accuracy margin previously defined.
For this reason, expanding the accuracy margin in function of the length of the period
considered for every data sample was proposed; yielding much better percentages of

accuracy.

The accuracy margin was expanded by considering the +/-2 initial margin, good
enough as a per-day margin. Therefore, increasing by two with every day added to the
period’s length. As a result of this, an accuracy margin of 14 was considered for
weekly predictions whereas daily predictions continued using a margin of 2.
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4 RESULTS

In this chapter, the achieved results will be presented. However, due to the significant
number of tests and different results, only the best results will be detailed.

The definition of the initial accuracy margin boosted the performance of the initial
predictions. However, there were mainly two reasons that did not allow the obtained

results to be completely satisfactory:

* Length of Periods of Time per Sample: some predictions were executed by hav-
ing samples containing per-day data, whereas some other datasets were built
containing per-week data samples. One-day predictions outperformed weekly
predictions, as the target values were generally smaller and, therefore, easier to
approach to by the models. However, these one-day predictions would force the
institutions to react in a very short period of time for every type of article in every
location available. For this reason, predictions based on longer periods of time
were preferred. Therefore, even though daily predictions achieved better overall
results, it had much more value to be able to achieve average/good results with

weekly predictions.

» Zero Demand Datasets: some predictions achieved a high accuracy percentage
based on the fact that the article had never been used in a certain location, which
causes the datasets for these cases to contain only zeros as demand for every
time step. Furthermore, the environment from which the data was extracted to
perform this work, contained a large number of these cases. Therefore, due to
the fact that a clear majority of articles have no-demand in some locations, all of
their predictions are zero, which were correctly predicted by the model with no-
effort, thus, producing high percentages of accuracy. However, due to the nature
of the datasets used to perform the prediction, it was not possible to infer that the
model had been able to interpret the pattern on the data in the correct way, or that

it would be able to generalize well enough for future predictions and, therefore,
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produce meaningful results. For that reason, those results were discarded.

However, not only by discarding these unsatisfactory results a better performance
could be achieved. All the datasets containing less than 60% of samples with non-
zero demand values were considered not to provide enough information to perform
a meaningful prediction on them. Thus, fewer predictions were executed, making it
more difficult to achieve an overall high accuracy percentage.

This modification, together with the definition of the accuracy margin with a +/-
2 margin per day regarding the lapse of time for every data sample, improved the
performance of the models to desired levels.

Four different results will be presented, two of which belong to every algorithm
(SVR and LSTM). Furthermore, for every model two results will be presented, based
on the length of the period predicted (one or seven days).

41 SVR

4.1.1 Daily Prediction

For daily predictions, i.e. samples containing daily data, the SVR achieved good per-

formance with the configuration detailed in table d.1]

Table 4.1: Configuration for Daily Predictions with SVR

Attribute ‘ Value
Features T-5_Frequency,T-4_Frequency,T-3_Frequency,T-2_Frequency,T-1_Frequency
Output Frequency
C 1
€ 0.0003
vy 1/5
Coeff_ 0.0003
Kernel poly
Degree 1
One Sample Prediction True
Execution Group Type
Accuracy Margin 2

In figure it is possible to visualize the target value plot of the data set, together
with the line that the fitting model creates based on the data set.
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Figure 4.1: SVR daily prediction.

As is clear, the dataset was separated into groups of sub-datasets according to the
article type. In this case, it is possible that more than one prediction will be performed
per sub-dataset, due to the same article type being used, or having demand in different
locations. Therefore, a prediction per location should be performed, producing a view
that might not be very clear due to having more than one value in the Y-axis per value
in the X-axis.

In the predictions corresponding to the sub-dataset that was presented previously,
a total of fifteen predictions were performed, which are reviewed in table 4.2

By virtue of the length of the period used in the datasets, i.e. per-day samples,
the margin of accuracy defined for the execution was +/-2. Taking a closer look on
the previous comparison between predicted and target values, it is noticeable that out
of these fifteen predictions, nine were inside the set accuracy margin, which means
this execution had a 60% accuracy, whereas the overall performance of this model
yielded a 67.57% accuracy.

4.1.2 Weekly Prediction

The model selected as the best performing weekly-based SVR was built with the con-
figuration presented in table 4.3}

For this execution, a polynomial kernel with degree one was used, which yielded
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Table 4.2: Results for Daily Predictions with SVR

Predicted Value | Target Value
8.46170806 5
7.67133433 2
6.50799877 3
17.70121258 16
16.83663561 10
3.39958202 4
3.9134206 4
34.21526691 33
7.01166385 2
7.81330795 8
8.79315287 8
7.65261056 10
6.98821792 5
5.05507247 7
19.8726975 20

Table 4.3: Configuration for Weekly Predictions with SVR

Attribute ‘ Value
Features T-5_Frequency, T-4_Frequency,T-3_Frequency, T-2_Frequency,T-1_Frequency,
Output Frequency
C 1
€ 0.0003
¥ 1/5
Coeff_ 0.0003
Kernel poly
Degree 1
One Sample Prediction True
Execution Group Type and Location
Accuracy Margin 14

three different predicted values for the three different codes of the articles that are
part of this type of article. A comparison between the three predicted values with its
respective target value is presented in table 4.4

As can be seen, the difference between the predicted and the target values is, in
every case, smaller than the accuracy margin set for weekly predictions. For this
reason, the prediction for this article type yielded 100% accuracy. However, in the

overall performance, this configuration achieved 90.89%.
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Table 4.4: Results for Weekly Predictions with SVR

Predicted Value | Target Value

91.89805443 87
41.91669914 45
174.13818893 180

42 LSTM

4.2.1 Daily Prediction

The LSTM model that showed a better performance for a daily prediction used the
configuration detailed in table @.5]

Table 4.5: Configuration for Daily Predictions with LSTM

‘ Attribute ‘ Value
Features Point in time, Location, Type, Code, Time to expiration, T-1_Frequency
Output Frequency
Learning Rate 0.01
Depth 1 LSTM Layers and 1 Dense Layer
Width 8-1
Activation softplus
Loss mae
Optimizer adam
Epochs 500
Batch Size 25
One Sample Prediction True
Execution Group Type
Accuracy Margin 2

As it is possible to infer, this configuration creates groups of sub-datasets based
on the type of the article. However, during the execution of the model, more than one
prediction can be performed due to the fact that every article type should be predicted
a demand value in every location in which it has previously had a demand. In this case,
a total of twelve predictions were performed, due to this article being used in twelve
different locations.

A brief comparison between the predicted and the target values are reviewed in
table
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Table 4.6: Results for Daily Predictions with LSTM

Predicted Value | Target Value
6.279979 9
18.479515 15
2.8509958 3
14.708367 26

27.36775 30
1.0042635 1
0.99853075 1
1.0191547 4
1.502041 2
0.99853075 1
1.0015465 2
1.4995872 1

Having a deeper look into the summary of the results, it is easy to see that seven

out of twelve predictions fell into the accuracy margin set for daily predictions; which

yields an accuracy percentage of 58.33%; whereas the overall performance of the

model was able to achieve a 58.39%.

Figure {.2] provide an insight into the dataset used for the previously examined

execution, together with the fitted line by the model.
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Figure 4.2: LSTM daily prediction.
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On the other hand, figure 4.3] presents the evolution of the accuracy value during
the process of training and validation for every epoch the model was configured to run;
whereas figure [4.4] provides us a visual insight into the behavior of the loss function’s

value throughout the training and validation of every epoch.
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Figure 4.3: LSTM daily prediction accuracy.
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Figure 4.4: LSTM daily prediction loss.
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The best prediction for LSTM using weekly samples was achieved with the configura-

tion presented in table

Table 4.7: Configuration for Weekly Predictions with LSTM

’ Attribute Value
Features T-1_Frequency
Output Frequency
Learning Rate 0.007
Depth 2 LSTM Layers, 1 Dense Layer
Width 2-1-1
Activation tanh
Loss mae
Optimizer adam
Epochs 200
Batch Size 20
One Sample Prediction True
Execution Group Type and Location
Accuracy Margin 14

In figure 4.5/ we can visualize the frequency of use for an article in a given location

(neither of those pieces of information will be clarified in comply of the confidential

information policy agreed with LM-Instruments). Similarly, we can appreciate the

predicted as well as the target values. As presented in table [4.8] three predictions

were performed, due to this article type having three different codes and every code

presenting a different demand in the same location. The predicted values were the

same for the three codes, iy’ = 41.468395, whereas the target values were 1y, = 87,

yo = 45 and y3 = 180. This yield an accuracy of 33% for this prediction; whereas the

overall model configuration yielded an overall accuracy percentage of 73.44%.

Table 4.8: Results for Weekly Predictions with LSTM

Predicted Value | Target Value
41.468395 87
41.468395 45
41.468395 180
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Figure 4.5: LSTM weekly prediction.

Figure [4.6] present the variation of the internal accuracy of the model during the
training and the test process for each one of the epochs. It is important to note that this
accuracy only considers the exact value as an accurate prediction. However, the closer
the predicted value is to the target value, the bigger the accuracy. In the same way, it is
also important to note that this accuracy can take values only between zero and one.

Apart from this, figure present the variations in the value of the loss function,
which in this case was MAE (Mean Absolute Error); throughout the process of training

and validation for each one of the epochs run.
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Figure 4.6: LSTM weekly prediction accuracy.
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Figure 4.7: LSTM weekly prediction loss.

4.3 Analysis

In order to be able to analyze the four prior selected results, it is useful to do a summary

of them. This summary is presented in table 4.9]

Table 4.9: Comparison of SVR & LSTM Results

Model ‘ Overall Result
SVR daily-based 67.92%
SVR weekly-based 90.89%
LSTM daily-based 58.39%
LSTM weekly-based 73.44%

It is worth to mention also that the article selected for the examples, is one of
the most commonly used articles in the institution. However, according to what was
experienced during the execution of these tests, it was clear that no direct relation exists
between the result of the predictions presented for this specific article and the overall
result.

A first thing to notice is that in general, weekly predictions have outperformed daily
predictions, as it is visible in table[4.9] Nonetheless, this is due to the final definition of

the accuracy margin based on the number of days the samples of the dataset contain.
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Moreover, the results for week-based predictions were in general outperformed by
the daily-based predictions when both of these considered the same initial accuracy
margin.

However, one of the most striking conclusions that can be drawn, is that SVR
seemed to perform better than LSTM. When having a look at the executions using
Frequency as the output feature for both of the techniques, SVR always seems to ap-
proach closer to the target values than LSTM. However, it is extremely important to
highlight that this does not mean that SVR is better than LSTM. As it was mentioned
in the scope of the current work, the objective is to select a model configuration able to
successfully predict the demand by using libraries containing off-the-shelf implement-
ations. However, as we already had a glimpse when reviewing how to construct the
model, LSTM is highly customizable and therefore, very complex to tune. Nonethe-
less, a more in-depth tuning of the network using other optimizing techniques could
cause LSTM to outperform the results obtained during this work.

A factor that could influence the better performance of SVR over LSTM is the
complexity of using each model. Even though SVR is recognized as a complex model
to tune and therefore utilize, due to the number of "basic" hyperparameters available
and the ones that might appear due to the selection of specific values of the first ones;
LSTM and in general all of the Deep Learning (DL) models have a higher level of
complexity. This, because of the power of these models as well as their capacity to
implement or be used together with different optimization techniques, or even use
slightly different versions of a standardized model. The aforementioned complexity
plays a toll on the user intending to implement the models, increasing the probabilities
of misconfiguration or the use of incorrect values for the hyperparameters available in
a model; therefore, decreasing the probabilities of finding the optimal configuration of
a model.

Besides the prior, an additional reason that can explain the difference in the per-
formance of the two models is the amount of training data. As it was mentioned
by [40], NNs generally require a large amount of training data to converge. On the
other hand, SVR during the training process does not make use of all the data points
due to its cost function discarding the data points that fall inside the defined ¢ margin,
as explained by [26].

A solution attempted to tackle this issue, was the use of a larger number of epochs

during the training process. However, it was perceived that the impact of this in the
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overall result was negative, as not only the runtime increase significantly but also, the
percentage of accuracy did not improve and in most of the cases it even decreased. The
prior might be due to overfitting the training data, which causes the model to fit too
well the training data but perform poorly with new or unknown data.

Similarly, when comparing the selected kernel in SVR and the activation functions
in LSTM, as well as their learning process; it is possible to infer that the way the
weights are updated in SVR is much more direct and simpler than in LSTM, as the
latter makes use of the algorithm known as Back Propagation Through Time (BPTT)
and must basically traverse the network backward to do this update; whereas SVR by
using the adam optimizer, applies the update in a much more direct way. Moreover,
the calculation of the objective function is also simpler in SVR, in this case by using a
polynomial function of degree one, than it is in LSTM, by traversing the network using
the activation functions to find the final result. The prior might benefit the performance
of SVR when handling basic data types as the current implementation does. However,
when handling more complex structures of data such as images, audio or even video
recordings, the power of LSTM will safely place it as a good solution to use.

Moreover, when selecting the models which performed the best, only those in
which the dataset used the Frequency as output feature, were considered due to the
fact that, when using the frequency variance, the obtained results seemed to be mostly
driven by the fact that most of the target values were zero. Furthermore, it was ob-
served that most of the predicted values were very close to zero; hence, they were also
inside the accuracy margin set for daily-based predictions. However, when the target
values were far enough from zero, i.e. more than 2; the predicted values did not seem
to be able to approach them, and continued predicting very small values.

In the light of that behavior, datasets using frequency over the variance were pre-
ferred.

Incidentally, accordingly to what was expected, time series shaped datasets seemed
to have boosted the performance of both models. It catches the attention the fact that for
weekly predictions, the best results were achieved by using only time-series data fea-
tures; whereas for daily predictions, even though it was also benefited from time series
data, its impact was less tangible, therefore being necessary to support it with non-

time-series features. This is visible when reviewing the daily predictions for LSTM.
Unfortunately, as mentioned in the definition of the scope, the results presented

are exclusive for the implementation and optimization of the models. None of these

results belong to real-life DTS environments, as LM-Instruments wants to include the
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forecast demand feature into the software at a slow pace in a dedicated environment,
that allows them to analyze the period-to-period performance.
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5 CHALLENGES

In order to ensure that the present paper produces as much knowledge as possible, and
with the purpose that future researchers can find the present thesis to be a good support
to clearly identify the good and not-so-good practices, the biggest challenges that were
faced during the development of the current work will be reviewed in this chapter.
Based on the fact that the whole process is composed by various different stages or
phases, the challenges will be described in the section corresponding to the stage they

emerged in.

5.1 Data Generation and DataSet Creation

The main challenge faced during the execution of this work was the treatment and pre-
paration of the data. It must not be a secret for people with knowledge and experience
of the field of ML that, the data is key when implementing any sort of ML model. This,
considering that the models perform an analysis on the training data in order to be able
to process new, so-called, unknown data. Therefore, a bad definition or preparation of
the data could translate into algorithms not performing as well as expected or achieving
confusing results that are difficult to analyze. A good insight into the importance of
the data preparation is the fact that, as stated by [42]], the data cleaning and preparation
process represents 80% of the effort in a data science project.

The big question during the data set generation process was, what data would
provide the models with more optimal information, and which structure it should have;
which presented two different more fine-grained problems.

On the one hand, the question of whether to consider or discard a data point when
an article had a frequency equal to zero in a given location. This, because in some data-
sets, the zero demand periods translated the dataset into an intermittent one, i.e. with
some periods of demand different than zero, and some others equal to zero; however,

for some other datasets there were only zero-demand periods, which mean that an art-
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icle had never been used in that location, having no other "prediction" to do than zero.
For this reason, some predictions achieved an accuracy as high as 97%, only because
the number of articles not being used in specific locations was considerably higher than
the number of articles that were used. As a result, the predictions performed well, even
though most of them lacked in usefulness; hence, they were discarded.

The solution adopted for this was to be able to dynamically remove or not, zero-
demand data points during the generation of the datasets. However, it is also possible
to dynamically select whether to remove zero-valued data points or not, right before
the execution of the prediction, including an extra validation of the number of non-zero
data points, so at least 60% of the total number of data points happen to be non-zero.

The decision of enabling the use of a parameter to dynamically select whether or
not to discard zero-demand data points, was affected by the availability of two different
output features such as the frequency and the frequency variance. When the former is
used, zero-demand data points tell the algorithm that the article was not used whatso-
ever, and the impact of ignoring or discarding those data points might be beneficial.
However, when the latter is used, zeros might have a more important role as they reflect
no-variance on the demand between two periods of time.

On the other hand, the selection on what pieces of data could have a positive impact
on the performance of the models and therefore be used as predictors was also difficult,
for the reason that some of the attributes of an article have no historical data. This
means that some potential features do not store old values, but only the current ones.
This was opposite to what was desired, as the frequency is supposed to vary in terms
of the time, based on some characteristics or features of the type of article; hence, old
values are required to be used as training samples, whereas the current values would
be used as the predictors for the upcoming frequency. However, for potential features
such as the cycle count or the expiration dates, there was no way to find their values at
previous periods of time, as the data base stores only the value for the current period.

Even though this was the case, a workaround was implemented in order to be able
to use values reflecting the state of each data point. This workaround varies from
feature to feature, but for the sake of simplicity and having an example, the solution
implemented for the cycle count and time to expiration will be presented below.

The cycle count attribute is a simple counter of how many times an article has tra-
versed through the process flow of articles in the institution. In other words, how many

cycles has an article completed in the process. In order to be able to have different
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values per data sample, and considering that the articles would be grouped by type, the
cycle count of each article that had non-zero demand in a given location was added to
the "final" cycle count of the data sample. In a more detailed way, this means that, if
for a single day d, two different articles = and y of the same type ¢ were both used in
a location [; given that Zcyciecount = 3 and Yeyeiecount = 6, then the sample s will have
a cycle count Scyciecount = Teyclecount + Yeyelecount /n, where n is the number of articles
that were added; in this case two.

Thus, every sample would not only reflect how high or low the demand was for the
type of article, but also how much or little use the articles involved had in the demand.

The time to expiration, in the same way as the cycle count, contains a value that
can be different among all the articles that belong to the same article type. The fact
that its data type is date, and not integer or any numerical value, made it slightly more
complicated to find a way to turn these values into meaningful data for the algorithms.
The time to expiration is, then, calculated for a sample by first finding the difference in
days between the beginning of the period of the sample and the date in which the article
expires. For this reason, big numbers would mean that the article was used long before
its expiration date, whereas a small number would mean that the article was close to
expiring when it was used. However, this number is not left as it is, and afterwards it is
divided by the length of the period, therefore being divided by one (daily predictions)
or by seven (weekly predictions). The previous operation is performed for every unique
article that had non-zero demand during a given period of time in a specific location.
Following, these values are grouped based on the type of article, thus, finding the mean

for the results of the unique articles belonging to the same type.

5.2 Building and Tuning the Models

In this phase of the implementation, one of the biggest challenges was the fact that the
data available might not be enough, especially for LSTM-RNN. According to some re-
searchers, for NN "in many cases the amount of training data required for convergence
is large" [40]. This issue arises, as explained by the author, due to the models trying to
find the mathematical function that relates the predictors to the target value, achieving
a certain level of accuracy; all of this with a limited amount of training data. As was
already mentioned in a previous chapter, at the early stages we faced a limitation in

the amount of data available, even to the point that the database had to be modified
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in order to be able to use a reasonable number of transactions, to be able to train our
models. However, due to the fact that some of the data points are discarded for having
a demand equal to zero, most of the datasets (when the main dataset is grouped by the
type of article), become up to 40% shorter in data points.

This is a challenge that cannot be solved at this point, being the only solution to
wait for the environment to generate more data. This might have been one of the

reasons for SVR producing better results than LSTM-RNN.

Similarly, an additional challenge encountered in this process is the complexity of
configuring and tuning the LSTM-RNN, mainly caused by the overwhelming number
of hyperparameters that can be set when working with LSTM in Keras. Even though
Keras simplifies and provides an easy-to-use interface when building Deep Learning
(DL) models, it also considers all (or most of) the existing hyperparameters and, thus,
it makes them available for a user to set. This, together with the data set generation
process, entails an almost infinite number of different configurations, increasing the
possibility of not testing the optimal models for our case study.
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6 CONCLUSION

With the present work, it was possible to find the relationship between an industry’s
business goals and state-of-the-art technology as it is machine learning, and how it can
support a company in the journey to improve its profitability.

Different ML models were reviewed in order to support the Dental Tracking Sys-
tem (DTS), developed by LM-Instruments; in the implementation of a demand fore-
casting tool that will place even more distance between this software and its competit-
ors, by being able to provide its customers and users with tools to optimize their man-
agement of instruments and dental assets, lowering the operational costs and keeping
good quality standard levels of service.

Through this thesis, the reader is presented a glimpse of what artificial intelligence
is and how it is implemented in a real-life project. Furthermore, with the work per-
formed during the implementation of this project, the software team and other busi-
ness planners of LM-Instruments were introduced to machine learning and the benefits
it can bring at a larger scale for the company. In a similar way, a contribution is made
to the use of machine learning tools for the implementation of SCM practices in the
health care sector.

In regards to the implementation, the suggested tools to use are Python 3.5 as the
programming language, together with the scikit-learning library.

From the two proposed models, Support Vector Regressor (SVR) and Long-Short-
Term Memory Neural Networks (LSTM); the first one proved to suit more this specific
scenario, for many reasons.

As a first and probably most influential reason; the type and amount of data provided
might not have been enough to train the LSTNM model in a proper way, as [40] high-
lighted. On the other hand, SVR does not need a large amount of data, as according
to the set parameters, it discards some or most of the data to create the support vectors
based on which the model performs.

Additionally, the periodicity of the data set proved to have a big impact on the
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performance of the models, as it affects the patterns present in the data and the way the
models interpret them. Two different periodicities were used for the implementation
and tuning of the models, which are daily (per-day predictions) and weekly (per-seven-
days predictions). These two periodicities were selected as the first solution approach.
The performance comparison for these two periodicities has a tight dependence on
the accuracy margin considered. For this reason, when both periodicities used the
same accuracy margin, the daily predictions outperformed the weekly predictions. The
prior, due to the daily demand being considerably smaller (closer to zero) than the
one obtained on a weekly basis for an article. This caused the models to produce
predicted demands that approximate better to the target demands. However, for weekly
predictions even though the results were very close, the higher the target demand was,
the smaller the error percentage should be in order to consider a prediction as accurate.
Once a more fair accuracy margin was established, weekly predictions outperformed
by a significant percentage the daily predictions.

Furthermore, SVR proved to be simpler to implement than LSTM, even though
because of the number of hyperparameters available, SVR is considered to be com-
plex to tune and optimize. However, considering the lack of prior experience of LM-
Instruments on ML tools and their implementations; SVR will result in an easier tech-
nique to understand than LSTM; thus, the built model will be easier to tune further.
Moreover, regarding the performance, SVR not only showed better results than LSTM
but also required less time of execution than its counterpart. This is a high import-
ance matter for LM-Instruments, as the plans for DTS are to not only be available for
customers as software in the cloud; but also to be delivered as a local installation in
customers’ facilities. In response to this requirement, LM-Instruments plans to enable
a ready-to-use portable installation of the software, which enforces the application to
be as light as possible, consuming the least amount of computing resources. For this
reason, SVR becomes not only a good fit for LM-Instruments plans but also an optimal
solution.

Based on the prior findings, the suggested solution for LM to implement in the DTS
software is the Support Vector Regressor model for weekly predictions, previously

presented and detailed.
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