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Svensk sammanfattning

Matematisk optimering dr ett tvarvetenskapligt forskningsomrade med starka rotter
i matematik, ekonomi och teknik. Malet med matematisk optimering ar kort sagt att
finna den basta mojliga 10sningen till ett givet problem. Optimeringsproblemen kan
t.ex. handla om att finna det basta mdjliga produktionsplanen, hitta de effektivaste pro-
duktionsforhallandena for en process eller hitta den kortaste vigen mellan tva stdder.
Genom att optimera produktionsforhallanden och anvidnda den effektivaste produk-
tionsplanen ar det ofta mojligt att bade minska pa ravaruanvandningen och skadliga
utslapp, samtidigt som lonsamheten okar. Matematisk optimering kan ddarmed bidra
med ett viktigt verktyg for att starka konkurrenskraften hos vara industrier.

For att effektivt kunna analysera optimeringsproblem skrivs problemen i en mate-
matisk form. I den matematiska formen bestar ett optimeringsproblem av beslutsvari-
abler, en objektfunktion och bivillkor. Beslutsvariablerna kan t.ex. beskriva hur mycket
av olika produkter som ska produceras, ja/nej beslut eller olika designalternativ. Ob-
jektfunktionen beskriver sambandet mellan beslutsvariablerna och det kriterium man
antingen vill minimera eller maximera. Bivillkoren anvénds i sin tur for att beskriva
samband mellan beslutsvariablerna och kan ange granser for vissa egenskaper, t.ex.
produktkvalitet.

Optimeringsproblem klassificeras ofta enligt vilken typ av beslutsvariabler och funk-
tioner som ingdr i problemets matematiska form. Kontinuerliga variabler anvands for
att beskriva beslutsvariabler som inte ar begransade till specifika varden, medan hel-
talsvariabler eller bindra variabler anvinds for att beskriva specifika beslut. Optime-
ringsproblem som innehaller bade heltalsvariabler och kontinuerliga variabler kallas
ibland blandade heltalsoptimeringsproblem, men den engelska termen mixed-integer
programming dr mycket vanligare. Ifall alla funktioner dessutom éar linjara sa hor pro-
blemet till kategorin mixed-integer linear programming (MILP). For att noggrant beskriva
vissa storheter och fenomen kravs ocksa ickelinjara funktioner, och sadana problem hor
till kategorin mixed-integer nonlinear programming (MINLP). MINLP ar ett flexibelt ram-
verk for att beskriva optimeringsproblem och manga praktiska optimeringsproblem
kan skrivas som MINLP-problem. Daremot tenderar MINLP-problem att vara mycket
svara att 16sa. Aven med dagens datorkraft och avancerade algoritmer kan det vara en
stor utmaning att 16sa ett MINLP-problem.

Denna avhandling fokuserar pa en viss typ av MINLP-problem som kallas konvexa,
vilket innebadr att de ickelinjdra funktionerna har vissa egenskaper. Syftet har varit att
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utveckla nya effektiva metoder for att 16sa optimeringsproblem av denna typ. Dessa
optimeringsproblem har vissa egenskaper som gor det majligt att effektivt dela upp
och approximera problemen med enklare problem. Genom att dela upp problemet och
l6sa en serie av enklare problem, dr det mdjligt att finna den optimala 16sningen av
det ursprungliga problemet. Hur man effektivt ska dela upp problemen och skapa de
enklare optimeringsproblemen &r centrala fragor genom avhandlingen.

De flesta effektiva metoder for att 16sa konvexa MINLP-problem bygger pa att man
skapar linjara approximationer av det ursprungliga problemet. De linjdra approxima-
tionerna bor i slutdndan vara tillrackligt noggranna for att ge den optimala losningen
till det ursprungliga problemet. Dessutom bor de linjidra approximationerna resultera
i tillrackligt enkla problem att de effektivt kan losas. I avhandlingen visas tydligt vik-
ten av en effektiv teknik for att skapa de linjdra approximationerna, sa att det verkliga
problemet kan losas pa ett effektivt satt.

Iavhandlingen presenteras olika metoder for att skapa linjdara approximationer, men
ocksa olika strategier for att dela upp det ursprungliga problemet i ldttare problem.
Fran teorin som presenteras i avhandlingen har dven en ny effektiv 1osare for konvexa
MINLP-problem utvecklats. Med losare avses hdr en programvara for hitta den opti-
mala 16sningen. Avhandlingen bygger pa de sex artiklar som ar bifogade i slutet av
avhandlingen. Kapitel 2 ger en kort beskrivning av olika typers optimeringsproblem,
vilka ocksa har en central roll for att 16sa konvexa MINLP-problem. Kapitel 3 kan ses
som en litteraturstudie och sammanfattar det arbete som tidigare gjorts inom omra-
det. De resultat som presenterats i artiklarna sammanfattas i kapitel 4. Slutligen ges en
sammanfattning och tankar kring fortsatt forskning inom omradet i kapitel 5.



Abstract

This thesis is focused on a specific type of optimization problems commonly referred
to as convex MINLP problems. The goal has been to investigate and develop efficient
methods for solving such optimization problems. The thesis focuses on decomposition-
based algorithms in which a polyhedral outer approximation is used for approximating
the integer relaxed feasible set. An introduction and summary of different types of
optimization problems are given in Chapter 2, and a summary of work previously done
within the field is given in Chapter 3.

The thesis is written as a collection of articles, and the results presented in the pa-
pers are summarized in Chapter 4. Different approaches for constructing and utilizing
polyhedral outer approximations are presented and analyzed within the thesis. An al-
gorithm, called the extended supporting hyperplane (ESH) algorithm, which uses sup-
porting hyperplanes to the integer relaxed feasible set to construct the polyhedral ap-
proximation is presented. The ESH algorithm is utilized in a new solver, called SHOT,
which is described in the thesis and presented in detail in the enclosed papers. Different
techniques for utilizing the polyhedral approximations are presented in the thesis, and
numerical test verifies their efficiency. Reformulation techniques for utilizing separa-
bility of the nonlinear functions to construct tighter approximations are also described
and analyzed.
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Chapter 1

Introduction

Mathematical optimization has become a valuable tool for dealing with a variety of de-
sign and decision-making tasks within science, engineering, and economics. The goal
of an optimization task is simply to find the best possible, or a good enough, solution
to a given problem. Real-world optimization problems usually contain many decision
variables, and to rigorously analyze and solve such an optimization problem requires
the problem to be stated in a mathematical form. Writing an optimization problem in
a mathematical form is often a non-trivial task, and there often exist several formula-
tions of the same problem. Choosing a good problem formulation is important since
different formulations can result in practically intractable problems or problems that
can easily be solved. Optimization problems are often classified based on the attributes
included in their mathematical forms; and some problem classes can easily be solved
whereas other classes are far more demanding. Mathematical optimization has been
an active research area since the 1960s, motivated by important applications within
both industries and academia. The ability to find optimal solutions to problems can
yield significant benefits, e.g., the use of optimization within the chemical industry has
resulted in reduced use of raw materials and reduction of green gas emissions. Typi-
cal optimization problems originating from industrial applications are, e.g., production
planning [164] , heat integration [203], process design [32], model predictive control
[81], vehicle routing [187], and assignment problems [119].

Many real-world optimization problems contain some form of distinct decision mak-
ing, where one has to choose among specific options. To incorporate such distinct deci-
sions in a mathematical model requires the use of integer-valued decision variables, and
such optimization problems are usually referred to as mixed-integer problems. How the
decision variables interact and describe certain properties are modeled using linear and
nonlinear functions, forming constraints and an objective. If all the functions are linear
and the problem contains both continuous and integer variables, then the problem is
commonly referred to as a mixed-integer linear programming (MILP) problem. Many
natural phenomena cannot be modeled accurately by linear functions, but require the
use of nonlinear functions in the model. Optimization problems containing both con-
tinuous and integer variables, as well as some nonlinear functions are commonly clas-
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sified as mixed-integer nonlinear programming (MINLP) problems. MINLP is one of
the most versatile modeling paradigms and, thus, there are numerous practical prob-
lems that can be modeled as MINLP problems [31, 41, 72, 91, 133, 185]. Unfortunately,
MINLP problems tend to be very difficult to solve; as a consequence, real-world prob-
lems often have to be simplified and reduced in size to obtain computationally tractable
problems. Further work in algorithmic research and solver development is, thus, well
motivated in order to fully utilize and benefit from MINLP as a tool for design and
decision-making tasks.

This thesis focuses on a specific type of MINLP problems that are referred to as
convex MINLP problems. In convex MINLP problems, the nonlinear functions have
certain desirable properties that can be exploited when solving the problem and enable
an efficient decomposition of the problems. Decomposition-based methods for convex
MINLP obtain the optimal solution by solving a sequence of easier optimization prob-
lems, often referred to as sub-problems. Progress in both algorithms and software for
solving the sub-problems has been a motivation for further studying and developing
new decomposition-based methods for solving convex MINLP problem:s.

The work presented here is focused around deterministic decomposition techniques,
and four new methods for solving convex MINLP problems have been presented in the
enclosed papers. The thesis is limited to deterministic methods, and methods such as
evolutionary algorithms are not considered here. My research career, and time as a PhD
student, basically began with the question “Can we improve the performance of the
extended cutting plane method?”, which resulted in the extended supporting hyper-
plane (ESH) algorithm. Later the scope grew, and the goal has been to investigate how
to efficiently construct and utilize polyhedral approximations to solve convex MINLP
problems. The work has resulted in new general algorithms for convex MINLP prob-
lems, which are based on polyhedral outer approximations of the feasible set. Based on
the theoretical work, and in close collaboration with Docent Andreas Lundell, we have
developed a state-of-the-art solver called SHOT, which is now commonly available as
an open-source solver.

From a complexity point of view, even convex MINLP problems are N'P-hard. This
follows from the fact that MILP problems are N'P-hard, and convex MINLP is a gen-
eralization of MILP. However, N/P-hard should not be used as a certificate that such
problems cannot be solved, which seems to be the custom in some fields. Instead, it
should be seen as an indicator that such a problem might be difficult, but not impos-
sible to solve. MINLP may be a difficult type of optimization problem, but it should
not stop us from trying to develop new algorithms and software. As John F. Kennedy
said in one of his iconic speeches, “ We choose to go to the moon in this decade and do
the other things, not because they are easy, but because they are hard,” encouraging peo-
ple to continue working on the hard, but ambitious, goals. Today, we are actually able
to solve many N P-hard optimization problems efficiently, and significant progress has
been made. For example, extensive tests on MILP solvers in [3, 35] have shown a 100x
speedup due to algorithmic developments over a 12 year period. In combination with
the evolution of computer hardware, the progress has been truly impressive.



INTRODUCTION 3

The goal of the research has been to contribute to the development of convex MINLP
into a ready-to-use technology. There have been general-purpose solvers available for
convex MINLP since the beginning of the 1990s. However, when compared to MILP
or NLP solvers they have not yet reached the same level of maturity. Industry-relevant
convex MINLP problems are still challenging to solve and may require expert knowl-
edge to obtain good solutions. Further research is still needed for society to fully benefit
from convex MINLP as a tool for dealing with difficult decision tasks; however, progress
is continuously being made. The new methods presented here provide a new set of tools
for dealing with convex MINLP problems, and the solver comparisons have, hopefully,
resulted in a friendly competition among researchers within the field. Through the re-
lease of the SHOT solver, we have provided a new efficient open-source solver, which
openly shares the knowledge we have learned.

1.1 Structure of the thesis

The work presented within this thesis is focused on techniques to efficiently solve con-
vex MINLP problems by utilizing polyhedral approximations, and the main results have
been presented in the enclosed articles. This thesis is written as a collection of articles,
and the articles are enclosed at the end of the thesis. Chapter 2 is intended as a brief
introduction to some basic theory and optimization methods. The theory is later used
to derive and analyze the algorithms in the following chapters. Chapter 3 is intended
as a literature review of convex MINLP and gives a summary of work previously done
within the field. The methods presented in Chapter 3 also serves as a reference point to
provide a better understanding of the methods presented in Chapter 4.

Chapter 4 gives a summary of the contributions to the field of convex MINLP pre-
sented within this thesis. The extended supporting hyperplane (ESH) algorithm is de-
scribed in Section 4.1. The ESH algorithm was initially presented in Paper I, and in
Paper II it was shown that it is applicable to a more general class of problems. Sec-
tion 4.2 describes an extended reformulation technique, resulting in tighter polyhedral
approximations, which can give significant benefits to several state-of-the-art solvers
as shown in Paper III. Section 4.3 describes the center-cut algorithm for convex MINLP
problems, which is presented in Paper IV. The center-cut algorithm can either be used as
a deterministic method with guaranteed convergence, or as a so-called primal heuris-
tic intended to obtain good solutions quickly. Section 4.4 describes a technique that
enables the use of trust-regions and quadratic approximations within the outer approx-
imation (OA) algorithm, and gives a summary of the results from Paper V. Section 4.5
is dedicated to the SHOT solver, giving a summary of the solver’s main features and
the benchmark results from Paper VI. Finally, the work is concluded in Chapter 5 along
with some future research ideas within the field of convex MINLP.
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1.2 List of publications
This thesis is based on the results presented in the following papers.

Paper1 ]. Kronqvist, A. Lundell, and T. Westerlund. The extended supporting hy-
perplane algorithm for convex mixed-integer nonlinear programming. Journal of
Global Optimization, Volume 64, pp. 249-272, 2016.

Paper II V.P. Eronen, J. Krongvist, T. Westerlund, M. Mékeld and N. Karmitsa. Method
for solving generalized convex nonsmooth mixed-integer nonlinear programming
problems. Journal of Global Optimization, Volume 69, pp. 443-459, 2017.

Paper III J. Krongvist, A. Lundell, and T. Westerlund. Reformulations for utilizing sep-
arability when solving convex MINLP problems. Journal of Global Optimization,
Volume 71, pp. 571-592, 2018.

Paper IV ]. Kronqvist, D.E. Bernal, A. Lundell, and T. Westerlund. A center-cut algo-
rithm for quickly obtaining feasible solutions and solving convex MINLP prob-
lems. Accepted for publication in Computers & Chemical Engineering.

Paper V J. Kronqvist, D.E. Bernal and L.E. Grossmann. Regularization and second
order information in outer approximation for convex MINLP. Manuscript sub-
mitted, preprint available at: http://www.optimization-online.org/DB_HTML/
2018/01/6405.html.

Paper VI A. Lundell, ]J. Kronqvist, and T. Westerlund. The supporting hyperplane op-
timization toolkit: A polyhedral outer approximation based convex MINLP solver
utilizing a single branching tree approach. Manuscript submitted, preprint avail-
able at: http://www.optimization-online.org/DB_HTML/2018/06/6680.html.

Some results have also been presented in the following conference papers.

1  J. Kronqvist, A. Lundell and T. Westerlund. A center-cut algorithm for solving
convex mixed-integer nonlinear programming problems. A. Espufa, M. Graells
and L. Puigjaner editors, 27rd European Symposium on Computer Aided Process En-
gineering, Volume 32 of Computer Aided Chemical Engineering, pp. 2131-2136.
Elsevier, 2017.

2 J. Krongvist, A. Lundell and T. Westerlund. Lifted polyhedral approximations
in convex mixed integer nonlinear programming. XIII GLOBAL OPTIMIZATION
WORKSHOP GOW’16 4-8 September 2016, Volume 16, pp. 117-120, 2016.

3  A. Lundell, ]J. Kronqvist and T. Westerlund. Improvements to the supporting
hyperplane optimization toolkit solver for convex MINLP. XIII GLOBAL OPTI-
MIZATION WORKSHOP GOW’16 4-8 September 2016, Volume 16, pp. 101-104,
2016.
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4  A.Lundell, J. Kronqvist and T. Westerlund. An extended supporting hyperplane
algorithm for convex MINLP problems. XII GLOBAL OPTIMIZATION WORK-
SHOP MAGO’14, Volume 16, pp. 21-24, 2014.

However, these conference papers are not included since the most important results are
all given in Papers I-VI.
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1.3 Contributions by the author

To clarify my (Jan Krongvist’s) role in the papers, descriptions of my contributions to
the papers are given below.

Paper I The ESH algorithm in the paper is a result of a collaboration between all the au-
thors. I am mainly responsible for writing the paper and the proof of convergence.
The implementation of the SHOT solver was mainly done by A. Lundell.

Paper II The paper continues on the ESH algorithm from Paper I, and I have con-
tributed to the theory and examples in the paper. I have also contributed to the
writing process; however, V.P. Eronen is the main author. I also made a first im-
plementation of the algorithm. However, the algorithm was later implemented in
the GAECP solver by T. Westerlund, which was used in the paper.

Paper III The idea for the reformulations originated from observations that several
polyhedral outer approximation based solvers struggled with some types of prob-
lems, and we began investigating different problem formulations. I am responsi-
ble for writing the paper, analyzing the reformulation technique, and the numer-
ical experiments. The co-authors assisted in the writing process.

Paper IV I got the idea for the center-cut algorithm from investigating different ap-
proaches to obtaining the interior point to be used in the ESH algorithm. I am
responsible for writing the paper, proving convergence of the algorithm, and
making the center-cut implementation used in the numerical comparison. The
co-authors assisted in writing the paper and with the numerical comparison.

Paper V I spent some time studying bundle methods, and the nice convergence prop-
erties of the level method inspired me to investigate a similar approach for convex
MINLP problems. I am mainly responsible for writing the paper, proving conver-
gence of the algorithms, and making the implementations used in the numerical
comparison. The co-authors assisted in writing the paper and with the numerical
comparison.

Paper VI The features used in the SHOT solver are a combination of different ideas of
all the authors, and I tested some of the techniques before they were fully im-
plemented in SHOT. As a co-author, I have also participated in writing the paper.
However, A. Lundell is mainly responsible for implementing the SHOT solver and
writing the paper.



Chapter 2

Background

Optimization problems containing integer restrictions cannot usually be solved directly,
and most methods rely on some decomposition or relaxation technique. The main idea
behind such methods is to construct simpler approximations of the original problem,
that can be solved efficiently, and to obtain the optimal solution by solving a sequence of
simplified problems. The “simplified” problems are often referred to as sub-problems,
and to fully understand the main methods requires knowledge of some basic properties
of these sub-problems. The most commonly used decomposition and relaxation tech-
niques for convex MINLP problems are described later in Chapter 3. Here we begin
with a summary of convex properties and an introduction to optimization problems
frequently occurring as sub-problems in methods for convex MINLP problem:s.

2.1 Convexity

This section is dedicated to convexity, and we will start by the formal definitions of
convex sets and convex functions. Conditions for ensuring convexity of functions are
provided, and the concept of pseudo-convexity is also presented.

The concept of convex sets is important within optimization, and we start by defin-
ing a convex set.

Definition 1. A set C C R” is convex if the entire line segment between any two points
in the set lies in C, i.e., for any x,y € C and 6 € [0, 1] it must be true that

Ox+(1-0)y € C.

A set that is not convex is, in general, referred to as a non-convex set. An important
example of convex sets is sets defined by linear constraints. A set defined by finitely
many linear constraints is commonly referred to as a polyhedral set, and convexity can
easily be proven, e.g., see page 22 of [42]. There are several operations that preservers
convexity of sets, e.g., the intersection of convex sets results in a convex set [42]. For
more details on convex sets, see the classic textbook by R.T. Rockafellar [169].

It is also of interest to study convex properties of functions, and we begin by the
definition of a convex function.
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Definition 2. A function f : R" — R is defined as convex on the convex set C if
f(Ox+(1-0)y) <Of(x)+(1-O)f(y) VxyeC, 6e[0,1]. (2.1)

The inequality defining a convex function is commonly called Jensen’s inequality
[42, 46]. If the condition in eq. (2.1) holds with strict inequality, then the function
is referred to as strictly convex. If the function f is convex, then the function —f will
be concave. Thus, both convexity and concavity can be defined from Jensen’s inequality.
An important property that follows directly from Jensen’s inequality is described in the
following theorem.

Theorem 1. Any local minimum of a convex function is also a global minimum.

The theorem can be easily be proven by contradiction, e.g., see [42].

Theorem 1 has important implications in optimization, since it ensures that it is suf-
ficient to obtain a local minimum for globally minimizing a convex function. From
Jensen’s inequality, it may be difficult to determine directly if a function is convex.
For continuously differentiable functions it is possible to identify convexity based on
properties of their derivatives, which leads us to the first- and second-order convexity
condition.

Theorem 2. First-order convexity condition. A differentiable function f : R" — R is
convex on the convex set C if and only if

fy) > f@+Vfx)(y-x) YxyeC. (2.2)

A proof of the theorem is, e.g., given in [42].

An important consequence of the first-order condition is the fact that a first-order
Taylor series expansion yields a global underestimator of the convex function on the set
C. This property will later be used to construct polyhedral outer approximations for
convex MINLP problems. However, the first-order condition is, usually, not a practical
way of proving convexity and this leads us to the next convexity condition.

Theorem 3. Second-order convexity condition. A twice differentiable function f : R" —
IR is convex on the convex set C if and only if, its Hessian matrix H(x) is positive semidefinite
forallxe C,i.e.,

H(x)>0 VxeC. (2.3)

The theorem is, e.g., proven in [169].

The second-order convexity condition provides an efficient approach for analyzing
convexity of twice differentiable functions. Strict convexity can also be identified from
the Hessian, which requires the Hessian to be positive definite. For a matrix to be pos-
itive semidefinite all of the eigenvalues have to be non-negative, and to be positive
definite requires all eigenvalues to be strictly positive. Thus, it is possible to identify
convexity by analyzing the eigenvalues of the Hessian. For quadratic functions it is easy
to analyze convexity; however, for more complex functions it may be a non-trivial task
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to verify that a function is convex. Practically, convexity is often analyzed by decom-
posing the function and analyzing the parts individually, e.g., Boyd and Vandenberghe
[42] describe the circumstances under which compositions of functions are guaranteed
to result in a convex function.

Pseudoconvexity and quasiconvexity are generalizations of convexity [46], where a
quasiconvex function is the most general type of function. Paper II deals with opti-
mization problems containing pseudoconvex constraint functions, and therefore, we
will also introduce the concept of pseudoconvex functions.

Definition 3. A differentiable function f : R” — R is pseudoconvex on C if,
Vx,yeC : f(y)<f(x) = Vf(x)T(y-x)<o0. (2.4)

It follows from the definition, that the gradient of a pseudoconvex function can only
be zero at a global minimum, i.e., a stationary point will correspond to a global mini-
mum [46]. However, a first-order Taylor series expansion of a pseudoconvex function
may not be a valid underestimator. Therefore, it is not trivial to construct outer approx-
imations of a constraint given by a pseudoconvex function [198]. An essential property
of both pseudo- and quasiconvex functions is described in the following theorem.

Theorem 4. A function f, which is either pseudo- or quasiconvex on C, has convex level sets
in C,ie., Fj:={xeC| f(x) <1} isaconvex set Yl €R.

For more details and a proof of the theorem see, e.g., [46].

Since pseudo- and quasiconvex functions are generalizations of convex functions,
Theorem 4 is obviously also true for convex functions. The property of convex level
sets can be utilized by the ESH method and enables the method to achieve global con-
vergence for a more general type of problems than “purely” convex. In Paper II it was
shown that the ESH algorithm can successfully be applied to problems with pseudo-
convex constraints functions, and more details are given in Chapter 4.

This section has covered some of the most important convexity properties. However,
many details are left out; for more information see [42, 46, 169]. Next, we continue with
a brief overview of some types of optimization problems that will be utilized later on.

2.2 Linear programming

Linear programming (LP) was the first general framework for formulating optimization
problems [56], and the introduction of the simplex method around the 1950s made it
possible to actually solve some real-world planning problems [57]. An LP problem can,
without loss of generality, be formulated as

minimize ¢'x

subjectto Ax<b, (P-LP)
x € R",
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where ¢ is a vector defining the objective. The linear constraints are all defined by

the matrix A and vector b. For example, finding an optimal solution to the task of

transporting commodities from a set of facilities with fixed supply to a number of con-

sumers with specific demands can be formulated as an LP problem [101, 118]. Next,

some properties of LP are presented that will be useful in the consecutive chapters.
The linear constants in problem (P-LP) forms a polyhedral set L, given by

L={xeR"|Ax<b}. (2.5)

The set L is obviously a convex set, since it is defined by linear constraints. The follow-
ing definition introduces a concept widely used in LP, and the next theorem utilizes this
concept to describe an optimal solution of an LP problem.

Definition 4. An extreme point x of the set L is a point that cannot be obtained as a
convex combination of any two other points y,z within the set, i.e.,

Ayzel\x : x=0z+(1-0)y, 0 €[0,1].

Theorem 5. Assuming that the set L is nonempty and bounded, then the optimal solution of
problem (P-LP) will be one of the finitely many extreme points of the set L.

The theorem describes one of the fundamental properties of LP, and a proof can be
found, for example, on page 65 in [27].

From Theorem 5 we can easily derive the main idea of the simplex method, which
is one of the most commonly used methods for solving LP problems. Since an optimal
solution of problem (P-LP) is located at an extreme point of the set L, it is sufficient to
merely examine the extreme points of the set. However, there might exist a vast num-
ber of extreme points and examining all the extreme points is, thus, not a desirable
approach. The simplex method provides an efficient technique for navigating between
the extreme points and finding the optimal solution. The method starts at an extreme
point of the set, a so-called basic feasible solution, and iteratively moves to adjacent ex-
treme points such that the objective value is improved. Due to convexity of the set L, an
extreme point is guaranteed to be optimal if none of the adjacent extreme points have
a better objective value, and the optimal solution can always be found by iteratively
moving to adjacent extreme points with better objective values. The main strength of
the simplex method is the simplicity of the calculations needed for moving between the
extreme points and choosing the directions. For more details on the simplex method
see, e.g., [56, 139].

From a complexity point of view, the basic simplex method has a non-optimal worst-
case performance [114]. Polynomial time algorithms for LP, such as Karmarkar’s inte-
rior point method [108] and the ellipsoid method [111], were presented in the late '70s
and early '80s. However, in practice versions of the simplex method, such as the dual
simplex method [130], are still considered as one of the most efficient techniques for
solving LP problems [36].
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There are several solvers, both commercial and academic, available for LP problems,
such as CLP [74], CPLEX [105], Gurobi [95], glpk [144], and XPRESS [66]. Solvers
for LP problems have already reached a certain maturity, and LP problems are today
considered as “easy” problems. In recent benchmarks, solvers have even been able to
solve LP problems with more than a million variables in less than a minute [154]. Of
course, there are still LP problems, usually very large, that are not easy to solve with
the commonly available solvers, but in general, LP problems can be solved efficiently.
The ability to efficiently solve LP problems is of utter importance when dealing with
integer problems since most techniques are based on relaxations that usually requires
the solution of a vast number of LP sub-problems. Many important details of LP are
left out here; for more details, see one of the excellent textbooks [27, 56, 177].

2.3 Mixed-integer linear programming

The need to incorporate integer variables in optimization problems was quickly no-
ticed, and the first algorithms for mixed-integer linear programming (MILP) problems
were presented in the late 1950s [58, 88]. Integer variables make it possible to describe
discrete quantities and distinct decisions; e.g., a decision where either one or another
set of equations has to be satisfied can easily be modeled by using a binary variable. A
MILP problem can, without loss of generality, be stated as

minimize clTx + cgy
subjectto A;x+A,y<b, (P-MILP)
xeR"yezZ™.

Optimization problems with industrial applications that can be formulated as MILP
problems are, e.g., allocation problems [194], packing problems [85], process planning
[176], scheduling [77, 163], and the famous traveling salesman problem [136].

The primary approach for solving MILP problems is the so-called branch and bound
(BB) algorithm [125]. The BB algorithm tackles a MILP problem by dropping the integer
requirements of the problem and dividing the search space. By dropping the integer
restrictions, the resulting LP-relaxation given by

minimize clTx + cgy
subjectto A;x+A,y<b, (P-MILPr)
xeR"yeR",

can easily be solved. However, the LP relaxation may not result in a feasible integer so-
lution , i.e., one of the integer variables may have a fractional value. The LP-relaxation
will still provide a valid lower bound (LB), since it is a relaxation of the original prob-
lem. Now, suppose (x*,y*) is the minimizer of the relaxed problem (P-MILPr), and that
one of the integer variables y; takes on a fractional value, i.e., round(y;) # y;. To find an
integer solution of the problem, the search space is divided into two parts such that the
fractional solution is excluded from the search space but all feasible integer solutions
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are still included in the search. Such a division of the search space is achieved by gen-
erating two new sub-problems, and adding one of the constraints y; <|y; | and y; <[y;]
to each sub-problem. Here, |-] and [-] refer to the floor and ceiling operators. After
solving the new sub-problems, the lower bound can be updated as the lower objective
value of the sub-problems. In case one of the sub-problems returns a feasible integer so-
lution, it provides a valid upper bound (UB) to the MILP problem and it is the optimal
integer solution in that region of the search space. If the difference between the upper
and lower bounds is not within the desired tolerance, then the search continues by di-
viding the sub-problems with a non-integer solution into two new sub-problems. The
procedure of dividing the search space into sub-regions is referred to as branching, and
the variable on which the division is done is called the branching variable. Often there
are several branching options, e.g., if several of the integer variables take on fractional
values. A branching variable is then chosen based on some criteria, e.g., most infeasible
branching, pseudo branching, or strong branching [4]. The solution procedure is often
represented as a tree where the initial LP-relaxation corresponds to the root node, and
the sub-problems are represented by nodes branching out. In case the optimal solution
of one of the sub-problems (nodes) exceeds the current upper bound, then the optimal
solution cannot be within that specific part of the search space, and there is no need to
further explore the node. When the search is stopped along one node, it is referred to
as pruning the node. Some of the sub-problems may also become infeasible, and such
nodes can also be pruned from the search tree. A node that may still contain the opti-
mal solution is referred to as an open node, and several strategies for determining the
order in which to explore open nodes have been proposed [7, 50, 104].
To illustrate the BB procedure, consider the following pure integer problem

minimize -3y, -5y,

subject to 2y + 4y, < 25,
0<y <38, (ex1)
0<y, <5
V.92 €Z.

The procedure for solving the problem with the BB algorithm is illustrated in figure 2.1.
For this simple problem, the optimal solution is already found after the first branching
step; however, verifying optimality requires two additional branching steps. Two of
the nodes represents infeasible sub-problems that can be pruned off. After the third
branching step, there are no open nodes with a lower bound better than the upper
bound and, thus, the search can be terminated. Note that, even if the problem contains
only two integer variables, the BB algorithm already requires the solution of seven LP
sub-problems.

The first method proposed for solving MILP problems was not the BB algorithm,
but a cutting plane algorithm presented by Gomory in 1960 [86]. A similar cutting
plane algorithm for pure integer problems had already been presented by Gomory in
1958 [88]. The main idea is, again, to solve LP-relaxations, but instead of branching,
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Z* = -35.25(LB)
y1=38

Figure 2.1: Branch and bound tree obtained for problem (ex1). The optimal objective
value of the sub-problems are denoted by Z*, and an X in the node indicates that the
sub-problem is infeasible. The inequalities along the branches represent the restric-
tions added to consecutive sub-problems, and nodes resulting in integer solutions are
underlined.

to derive cuts that exclude the non-integer solution of the LP-relaxation. To show how
such cuts can be generated, consider a problem with the following constraints in the
integer variables y

A,y <b, (2.6)

where aj,a,,...,a, are the columns of the A, matrix. Here it is assumed that all the
integer variables y are restricted to non-negative integers. The individual constraints of
eq. (2.6) can be combined into a single constraint according to

ATA,y <ATb, (2.7)

where A is a non-negative scaling vector. Rounding down the coefficients on the left-
hand side, given by ATa;, results in a valid relaxed constraint. Once the right-hand
side contains only integer coefficients, then an integer solution can only result in an
integer value on the right-hand side. The coefficient on the left-hand side can then be
rounded down to an integer value, thus strengthening the constraint and resulting in
the following Chvatal-Gomory cut [49]

[(ATar) 1ATay] .. [ATan )]y < (A7), (2.8)
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Chvatal-Gomory cuts will not cut off any feasible integer solution of the problem. How-
ever, they can cut off non-integer regions of the polyhedron L = {(y € R" | A,y < b},
and strengthen the LP-relaxation. There is no unique way of constructing Chvatal-
Gomory cuts, and by choosing different scaling vectors A, an infinite number of cuts
can be obtained. Gomory’s cutting plane algorithm for integer problems [88] uses an
iterative procedure for generating cuts according to eq. (2.8) to iteratively improve the
LP-relaxation, and to obtain an integer solution.

As an example of Chvatal-Gomory cuts, consider again example (ex1). By scaling
the first constraint by a factor of 0.5 and rounding down all coefficients we obtain the
cut y; + 2y, < 12. Adding the cut to the LP-relaxation directly results in a feasible
integer solution, and the optimal solution can then be obtained by solving only a single
LP problem.

Cutting planes for MILP problems has received a great deal of interest over the years,
and many different types of cuts have been proposed, e.g., mixed-integer Gomory cuts
[87], disjunctive cuts [12], lift-and-project cuts [13], intersection cuts [11], split cuts [53]
and cover cuts [93, 162]. These cuts utilize different properties of MILP problems, with
the common goal of obtaining a tight LP-relaxation. However, using cutting planes
alone for solving MILP problems is usually not an efficient approach. The number
of cutting planes needed may be huge, and the cutting planes tend to become almost
parallel, causing problems with degeneracy of the LP sub-problems [204]. Today, most
MILP solvers are based on the branch and cut technique, which uses cutting planes to
strengthen the LP-relaxations in the branch and bound algorithm [153].

From a complexity point of view, MILP problems are N'P-hard [178], meaning we
cannot expect MILP problems to be easy. However, thanks to the tremendous work done
within the field of MILP, there has been significant progress in general purpose solvers
for MILP problems [34]. There are several solvers available for MILP problems, such as
CBC [75], CPLEX [105], Gurobi [95], SCIP [2], and XPRESS [66]. Benchmark tests in
[115] have shown that these solvers have even been able to solve some MILP problems
with more than 100,000 discrete variables. Solving MILP sub-problems is one the key
components in several methods for convex MINLP, and the ability to efficiently solve
MILP problems is crucial for such methods. Convex MINLP methods utilizing MILP-
relaxation will be described in detail later on.

This section is merely intended as a brief introduction to MILP, to give a better
understanding of methods for convex MINLP problems. For more details on MILP see,
e.q., [28,51,157,177].

2.4 Nonlinear programming

By incorporating nonlinear functions to describe dependencies of the variables, it is
possible to accurately describe a wide range of processes and phenomena. There are,
thus, a variety of applications of nonlinear programming (NLP) within different fields
of science and engineering [68]. Applications of NLP optimization within chemical
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engineering are, e.g., optimization of process units [30], nonlinear model predictive
control [8], and real-time optimization of operating conditions[145].
An NLP problem can be defined as

minimize f(x)

subjectto h;(x)=0, i=1,...,k
(P-NLP)

—

gj(x)s 0, j=1,...,

x € R",

’

where f, h;, and g; are functions mapping from R"” to R. The functions f, h;, and
gj are here not separated into linear and nonlinear, and some of them may be linear
and some nonlinear. In general, NLP problems can be considered as difficult problems
(N'P-hard), e.g., combinatorial problems can easily be modeled as NLP problems by the
use of nonlinear equality constraints.

However, specific types of NLP problems, such as convex NLP problems, can usually
be solved efficiently. There are different definitions of convex NLP, and here we will use
the definition by Boyd [42] which requires the following assumptions to be true:

Assumption 1. The functions f and g; are all convex.
Assumption 2. h; are all affine (linear) functions.

Furthermore, here we will assume that all the functions f, h;, and gj are continuously
differentiable. NLP problems satisfying these assumptions have certain properties that
can be exploited to solve the problems efficiently. These properties are also central in
some of the methods for convex MINLP methods, and worth describing in some detail
here. We begin with the definition of the Lagrangian function.

Definition 5. The Lagrangian L : R"***! — R associated with problem (P-NLP) is given

by
k

1
LOAE)=F)+ ) Aihi(x)+ ) pig;(x).
j=1

i=1

The Lagrangian is frequently used as a technique to account for the constraints by aug-
menting the objective function by a weighted sum of the constraints functions. The
weights A; and p; are commonly referred to as the Lagrangian multipliers of the con-
straints. Next, we will introduce the concept of the Lagrangian dual function.

Definition 6. The Lagrangian dual function is defined as the minimum value of La-
grangian given specific values of A and y, i.e.,

1=

k )
¢ (A u)=infL(x, A p) = inf| f(x)+ ) Aihix)+ ) puigi(x)|-
1 j=1

An important property of the Lagrangian dual function is the fact that it provides a
lower bound on the objective for the original problem. This property is further de-
scribed in the following theorem.
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Theorem 6. For any set of valid multipliers, A € R* and p > 0, the following relation holds

PAp <z,
where z* denotes the optimal value of problem (P-NLP).

The theorem is easily proven, e.g., see [42].

If strong duality holds, then there exist valid multipliers A* and p* such that the La-
grangian dual function is equal to the optimal value of problem (P-NLP), i.e., ¢ (A", y*) =
z". Convexity alone does not guarantee that strong duality holds for NLP problem:s;
however, there are conditions under which strong duality holds. These conditions are
often referred to as constraint qualifications or regularity conditions [15]. Slater’s con-

dition [180] is an example of such a condition.

Theorem 7. Slater’s condition. Strong duality holds for a convex NLP problem, if there
exists a feasible point X that strictly satisfies all nonlinear inequality constraints, i.e., gj(x) <0
for all nonlinear constraints.

For more details and a proof of the theorem, see [180].

An optimal solution of a convex NLP problem, satisfying Slater’s condition, can
thus be obtained by maximizing the Lagrangian dual function. Furthermore, the optimal
solution of such an NLP problem must also correspond to a stationary point of the
Lagrangian. Due to these properties, it is possible to obtain necessary and sufficient
conditions for an optimal solution of a convex NLP problem. These conditions are
commonly referred to as the Karush-Kuhn-Tucker (KKT) conditions [25].

Theorem 8. KKT conditions. An optimal solution x* to a convex NLP problem, satisfying
a constraint qualification, must satisfy the following conditions

k !
Vi) + Z/\th,-(x*) + Z#]Vg](x) 0,
i=1 j=1
hi(x')=0, i=1,...k
1(x> 0 1 (2.9)
gi(x)<0, j=1,..,1
P20, j=1,..1
pig(x) =0, j=1...1

where A" and p* are the optimal multipliers (dual variables).

The theorem describes one of the fundamental properties in convex optimization, and
proofs of the theorem can be found in [109, 124].

The KKT conditions have an important role in convex NLP by providing necessary
and sufficient conditions for an optimal solution. For some specific types of problems it
is possible to directly solve the KKT system, and thus obtain the optimal solution. For
a non-convex NLP, the KKT conditions still provide a necessary optimality condition,
but they do not guarantee global optimality.
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There are several methods available for solving convex NLP problems, and most of
them can be viewed as an iterative procedure for solving the KKT conditions. For exam-
ple, the active set technique uses a procedure of selecting active inequality constraints,
i.e., binding inequality constraints that hold with equality. By dropping the non-active
inequality constraints, the KKT conditions are reduced to a nonlinear equation system
that can be solved efficiently, e.g., by Newton’s method. The set of active constraints are
iteratively updated, since the set of active constraints at the optimum is, generally, not
known in advance. The sequential quadratic programming (SQP) method, a commonly
used technique for NLP problems, is a special case of the active set method [30]. Other
popular methods for convex NLP problems are, e.g., the augmented Lagrangian method
[26], the generalized reduced gradient method [126], and interior point methods [76].

There are several efficient solvers available for convex NLP problems, e.g.,, CONOPT
[61], filterSQP [70], IPOPT [193], KNITRO [45], LANCELOT [52], MINOS [155], and
SNOPT [84]. NLP has already reached a certain maturity [76], and convex NLP prob-
lems are today, generally, considered as "nice" problems. Non-smooth NLP problems
are overall more challenging [158], and such problems have not been considered in this
section. For details on non-smooth NLP see, e.g., [9].

This section has only covered some basic properties of NLP that are useful in the
forthcoming sections on convex MINLP. More details on NLP methods and theory can,
e.g., be found in the excellent textbooks [14, 30, 42].

2.5 Mixed-integer nonlinear programming

Mixed-integer nonlinear programming (MINLP) combines the modeling capabilities of
MILP and NLP, resulting in a versatile modeling paradigm. The discrete variables en-
able the modeling of distinct decisions, and the nonlinear functions can describe com-
plex interactions. There are, thus, plenty of real-world optimization tasks that can be
modeled as MINLP problems, e.g., cancer treatment planning [47], crude oil schedul-
ing [134], design of heat exchanger networks [202], nuclear reactor core fuel reloading
[168], optimization of red blood cell production [152], production planning [156, 175],
protein folding [73], pooling problems [149], portfolio optimization [37] and process
synthesis [89].
A general MINLP problem can be written in the following form
minimize f(x,y)
subjectto h;(x,y)=0, i=1,...,k
g]-(x,y) <0, j=1,...,1,
xeRyezZ™".
Based on the properties of the functions f, h;, and g; the MINLP problem is classified as
either convex or non-convex. Convex MINLP is described in detail in the next section;
some details regarding non-convex MINLP follow.

Non-convex MINLP problems are in general more difficult than convex MINLP
problems. A convex MINLP problem can, under mild assumptions, be solved exactly
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by a finite number of convex NLP problems, which is not necessarily true for a non-
convex MINLP problem. However, progress has also been made within the field of
non-convex MINLP. A commonly used technique for non-convex MINLP is to generate
convex underestimators of the non-convex functions within a spatial branch and bound
framework [185]. With this approach, the convex underestimators become tighter as
the search space is divided into smaller subregions. The convex underestimators are
used in convex relaxations of the original problem, and the solutions of the convex re-
laxations provide iteratively improving lower bounds on the original problem. Upper
bounds on the original problem are usually obtained by locally optimizing the original
problem within the subregions [135]. Spatial branch and bound uses a similar tech-
nique to divide the search space as the BB method for MILP problems, although in
spatial branch and bound, the continuous variables may also be selected as branching
variables. By dividing the search space into smaller subregions, the convex relaxations
become tighter within their subregions, and the upper and lower bounds eventually
converge within a given tolerance.

To avoid creating unnecessarily large search trees it is important to obtain tight con-
vex underestimators, and the “tightest” convex underestimator of a function is known
as the convex envelope. For some types of non-convex functions, such as bilinear, con-
cave, and fractional functions, there are known analytical expressions of the convex en-
velope over a box-constrained region [146, 184]. For twice continuously differentiable
functions it is also possible to use the BB approach for generating convex underesti-
mators [5, 6]. In order to obtain tight convex underestimators, it is of utter importance
to obtain tight variable bounds. Bound tightening and range reduction techniques are,
therefore, important tools when dealing with non-convex MINLP problems, as shown
in [170]. Non-convex MINLP solvers based on the spatial branch and bound are, e.g.,
ANTIGONE [151], BARON [173], and SCIP [191].

By using piecewise linear functions together with convex underestimators, it is also
possible to solve non-convex MINLP problems as a sequence of convex MINLP prob-
lems [73, 142]. Certain classes of nonconvex MINLP problems, such as problems with
signomial constraints, can also be solved by reformulating them into convex MINLP
problems [140, 141, 165]. Progress in methods and solvers for convex MINLP may,
therefore, also provide new opportunities within non-convex MINLP. There are also
other approaches for solving non-convex MINLP problems, such as the decompositions
techniques presented in [160, 161]. Non-convex MINLP is just briefly mentioned here,
since this thesis focuses on convex problems. For more details on non-convex optimiza-
tion see, e.g., [73, 102, 135, 150, 181, 185, 186].

2.6 Conclusion

This chapter gives an introduction to different types of optimization problems and de-
scribes some characteristic features. Some methods for solving certain types of opti-
mization problems have briefly been presented as background information. Now, we
are ready to move on to the main theme of this thesis, namely convex MINLP.
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Convex MINLP

This chapter covers the fundamental properties of convex MINLP problems, and the
standard methods for solving convex MINLP problems are described in detail. The
methods presented in this chapter are NLP-based branch and bound, the extended
cutting plane method, outer approximation, generalized Benders decomposition, and
LP/NLP-based branch and bound. Some details regarding software for convex MINLP
problems are also given here. The methods presented in Papers I-VI are not covered
here but presented later in the forthcoming chapter.

3.1 Convex MINLP problems

Defining an optimization problem with integer variables as convex might seem odd,
since the integer restrictions will obviously result in a non-convex feasible set. However,
classifying MINLP problems based on properties of the nonlinear functions still makes
sense, because these properties basically determine how the problem can be solved.
There are slightly different definitions of convex MINLP problems, but here we use the
same definition as Lee and Leyffer in [128].

Definition 7. A MINLP problem is convex if all nonlinear functions defining the ob-
jective and inequality constraints are convex, and all equality constraints are given by
linear functions.

A convex MINLP problem can, without loss of generality, be defined as

: T T
oy D, CIX ey (P-MINLP)

where the sets N,L and Y are given by

N ={xy) R xR" | gi(x) <0 Vj=1,2,...I}
L={(x,y) e R"xR" | Ajx+ A,y <b}, (3.1)
Y={yez"}.

19
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The assumption of a linear objective function is not restrictive, since a convex objective
function f can easily be transformed into the convex constraints f(x,y) - x,,1 <0, by
introducing a new continuous variable x, ;. Here, it is also assumed that all the non-
linear functions are continuously differentiable. Paper II shows that the ESH method
has guaranteed convergence for some non-differentiable functions, and the method is
described in Chapter 4. Throughout this thesis, it is assumed that L is a compact set.
The compactness assumption is needed for all sub-problems to be well defined, and as
a consequence, the intersection LNY will contain only a finite number of different inte-
ger combinations. Practically, compactness is not an issue since arbitrary large variable
bounds can be assigned to all variables. To avoid any confusion, the assumptions used
throughout this chapter are summarized.

Assumption 1. All the nonlinear functions f and g; are convex.

Assumption 2. All the nonlinear functions f and g; are, at least once, continuously
differentiable.

Assumption 3. The intersection of the sets L and Y defines a compact set.

Binary and integer variables are not treated separately in this thesis, and they are
both simply considered as integer variables. The following sections describe commonly
used methods for solving convex MINLP problems. We begin with nonlinear branch
and bound, which is a natural extension of the BB method for MILP and continues
with polyhedral outer approximation based methods. The methods are not presented
in chronological order, but in an order in which the algorithmic complexity gradually
increases.

3.2 NLP based branch and bound

As mentioned earlier, the branch and bound algorithm for MILP problems was first
presented by Land and Doig [125]. A few years later, in 1965, Dakin [54] noted that a
similar branch and bound technique could also be used for MINLP problems. However,
Dakin’s paper mainly focused on linear problems. The branch and bound approach
was later revisited by Gupta and Ravindran in 1985 [94], where they focused on convex
MINLP problems.

Similar to the branch and bound method for MILP problems, the main idea is to
relax the problem by dropping the integer requirements and to divide the search space
by branching to obtain integer solutions. When dealing with convex MINLP problems,
the integer relaxation results in convex NLP problems. The main difference compared
to branch and bound for MILP problems is, thus, that the sub-problems in each node are
NLP problems instead of LP problems. The approach of solving NLP problems in each
node is often referred to as NLP-based branch and bound (NLP-BB). Branch and cut
techniques, utilizing cuts to strengthen the integer relaxation, have also been proposed
for convex MINLP problems [182]. Obtaining a tight integer relaxation is essential to
reducing the size of the branch and bound tree, and several cut generating procedures
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].0"

Figure 3.1: The left figure illustrates the feasible regions defined by individual con-
straints of problem (ex2). The right figure shows contours of the objective function, the
feasible region given by the constraints, and the dot represents the optimal solution of
the MINLP problem.

have been presented. Some types of cutting planes intended for MILP, such as Gomory
cuts [48, 88], can also be used for MINLP problems. Other frequently used cuts are, e.g.,
lift-and-project cuts [13, 112, 206], and perspective cuts [79]. For more details on cuts
for MINLP problems see, e.g., [19]. Early branching is another technique proposed to
improve the performance, by efficiently integrating the NLP solver and not solving all
NLP sub-problems to optimality [40, 132].

Compared to branch and bound for MILP problems, NLP-BB tends to suffer from the
computationally more expensive sub-problems. Even if the sub-problems are convex
NLP problems, they are usually more computationally demanding to solve than LP
problems. Keep in mind, for an average-sized problem it is not unusual that a BB-
based solver has to explore more than 100,000 nodes. Furthermore, due to branching,
several of the sub-problems may not satisfy the constraint qualification conditions and
some of them may also be infeasible. NLP-BB may, therefore, not be a good strategy
for solving problems with many integer variables or a weak integer relaxation. This is
clearly shown in a recent solver benchmark presented in [123], where the pure NLP-
BB solvers struggle for the problems with a large integer relaxation gap, and overall
do not perform as well as the polyhedral outer approximation based solvers. However,
NLP based branch and bound may have an advantage for strongly nonlinear problems
and problems with a tight integer relaxation. Methods combining polyhedral outer
approximations within a branch and bound framework have been proposed to avoid
solving NLP problems at each node [167, 186]. Numerical results have shown that such
methods are among the most efficient methods for solving convex MINLP problems
(1,38, 121,123].
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Z* =-15.81(LB)
x=4.74

Figure 3.2: Branch and bound tree obtained for problem (ex2). The optimal objective
values of the sub-problems are denoted by Z*, and nodes resulting in integer solutions
are underlined. The inequalities along the branches represent the branching restrictions
added to consecutive sub-problems.

To illustrate the solution procedure with NLP-BB, consider the following example

minimize —-3x-y

subject to x2+y2 -25<0,
x> +(5-9)*-36<0,
(6-x)*+p>-36<0,
0<x,v<10,

(ex2)

xeRyeZ

The basic features of problem (ex2) are illustrated in Figure 3.1, showing the constraints
and the optimal solution. The solution procedure with the NLP-BB approach is shown
in the branch and bound tree in Figure 3.1. Since the problem contains only one integer
variable, only one branching step is needed to obtain the optimal solution. Solving the
problem, thus, requires the solution of three convex NLP sub-problems.

3.3 Polyhedral outer approximations

In 1960 Kelley presented a method for solving convex NLP problems, based on iter-
atively improving polyhedral approximations of the nonlinear constraints [110]. By
approximating the nonlinear constraints by linear constraints, Kelley was able to solve
convex NLP problems as a sequence of LP sub-problems. Approximating nonlinear
constraints with linear constraints is also an appealing approach for convex MINLP
problems, since there are efficient solvers for MILP problems available.

Since polyhedral outer approximations are utilized in all the MINLP methods pre-
sented in Papers I-V, a detailed description of polyhedral outer approximations is well
motivated. The main idea is to utilize linear approximations given by first-order Taylor
series expansions. Such a linear approximation ¢ of a nonlinear function g is given by

g(x) ~ ¢(x) = g(x*) + Vg;(x") T (x - x), (3.2)
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Figure 3.3: The black curves show the nonlinear function g(x) = 0.1x% - 0.25, and the
dashed lines show first-order Taylor series expansion generated at x = 2 and x = 0.5.
The dots in the figures represent the linearization points.

where xf is the linearization point. If g is a convex function, then, as stated by The-
orem 2, the linearization will be a valid underestimator of the function, i.e., §(x) <
g(x) Vx. A nonlinear constraint, given by g(x) < 0, can then be approximated by a lin-
ear constraint by utilizing the linear approximation given by eq. (3.2), resulting in the
following linear constraint

g(x")+ Vg (x)T(x-x*) < 0. (3.3)

Due to convexity, any point x that satisfies g(x) < 0 will also satisfy the constraint given
by eq. (3.3). However, all points satisfying the linearized constraint do not necessarily
satisfy the nonlinear constraints. The linear constraint given by eq. (3.3), therefore,
overestimates the feasible region of the original nonlinear constraint. To illustrate the
overestimation property, consider the following nonlinear constraint

g(x)=0.1x>-0.25<0, x€R,. (3.4)

The function g as well two different linearizations of the function are shown in Fig-
ure 3.3. From the figure, it is clear that linearizations underestimate the actual func-
tion, and that the linearized constraints generated according to eq. (3.3) results in an
overestimation of the feasible region defined by the nonlinear constraint. The figure
also illustrates the impact of the linearization point. Generating a linearized constraint
at either x = 2 or x = 0.5, results in the limit x < 1.54 or x < 2.71, whereas the actual
nonlinear constraint results in the limit x < 1.36.

To obtain an accurate approximation of the feasible region defined by a constraint,
given by a multivariate nonlinear function, it is possible to generate multiple linearized
constraints according to eq. (3.3) by using multiple linearizations points. In cases with
several nonlinear constraints, linearizations can be generated individually for these con-
straints. Given a set of points (xl,yl), (x2,y2),...,(xk,yk) € R" x R™, an approximation
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of the feasible set N defined by the nonlinear constraints in problem (P-MINLP) can be
constructed according to

x!
i

Ny = {(x,y) eR"xR™ | gi(x',y') + Vg;(x',y') [;:y

<0 Vj=1,2,..1Vi= 1,2,...,k}.

(3.5)
Since the functions g; are assumed to be convex, N gives an outer approximation of the
set N. Furthermore, the approximations Ny have the following property

NCN,CNi; C---CNy, (3.6)

which follows directly from the first-order convexity condition. Since Ny is given by a
set of linear constraints, we refer to Ny as a polyhedral outer approximation.

An exact polyhedral outer approximation can be obtained using an infinite number
of linearization points [100], and an arbitrary accurate polyhedral outer approximation
can be obtained with a finite number of linearization points. However, practically we
cannot use a huge number of linearization points because it would result in a MILP
problem with an even larger number of constraints, and such a MILP problem could
be computationally intractable. The goal is, thus, to construct a polyhedral outer ap-
proximation Nj with only a small number of linear constraints, but accurate enough
such that an optimal solution of problem (P-MINLP) can be obtained and verified by
minimizing clTx + cgy over NyNnLNY.

The next sections describe different well-known methods for solving convex MINLP
problems, by using polyhedral outer approximations. We begin with the extended cut-
ting plane method; while it was not the first method, it is one of the most straightfor-
ward approaches for using and generating polyhedral outer approximations.

3.4 The extended cutting plane method

The extended cutting plane (ECP) method was presented by Westerlund and Petterson
in 1995 [196] and can be viewed as an extension of Kelley’s cutting plane method [110].
The ECP method was first presented as a method for solving convex MINLP problems
but has later been further extended to handle both pseudo-convex functions [198] and
non-smooth pseudo-convex functions[65]. The main idea of the ECP method is to solve
a sequence of MILP sub-problems, where the nonlinear constraints are approximated
by polyhedral outer approximations. The polyhedral outer approximation is iteratively
improved by accumulating linearizations of the nonlinear constraints, which are here
referred to as cutting planes. The cutting planes are generated at the trial solutions
obtained by solving the MILP sub-problems, and exclude an infeasible trial solution
from the search space.
The MILP sub-problem at iteration k can be defined as

find (xk,yk)e argmin clTx+cgy. (MILP-k)

(x,y)eNxNLNY
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The solution of the MILP sub-problem is used as a trial solution, but the solution also
provides a lower bound on the optimum of the MINLP problem. Note that the sub-
problem is minimizing the original objective function within a set containing the entire
feasible region of the MINLP problem ,i.e., NNLNY C ﬁk NLNY. A valid lower bound
on the optimum of problem (P-MINLP) is, thus, given by clTxk + cgyk. If the trial solu-
tion (x¥,y*) satisfies all the nonlinear constraints, then it is also an optimal solution to
problem (P-MINLP) and the search can be terminated.

If the trial solution (x¥,y¥) does not satisfy the nonlinear constraints, then the poly-
hedral outer approximation can be improved by accumulating cutting planes according
to

_ _ o R .
Ny :{(X:Y)ENk ’ gj(xlfy’)ng(xl,y’)T[y_yi]SO VJEIa}f (3.7)

where I, contains the indexes of all violated constraints, or a subset of the violated
constraints. In the first iteration the initial polyhedral outer approximation Nj can, e.g.,
be initialized as IR”. The cuts generated according to eq. (4.6) improve the polyhedral
approximation and exclude the infeasible trial solution (x¥,y*) from the search space,
ie., (xk,yk) e ﬁk+1 NLNY. The procedure is repeated by solving sub-problem (MILP-k)
with the improved polyhedral approximation N, .

For convex MINLP problems, the ECP method generates a sequence of trial solutions
with the following properties:

Tl , Tl o Te2, T2 Tok | Tok o Tty Tor
OX +CYy X +y < S X +0Y ¢ X +0Y,

R —-x (3.8)
lim (|, —.||=0,

k- ||y —Y

where (x*,y*) denotes an optimal solution of the MINLP problem. A solution within an
arbitrarily small tolerance can, thus, be obtained within a finite number of iterations.

To illustrate how the ECP method refines the polyhedral outer approximation, the
basic ECP method is applied to problem (ex2). The search is initialized by defining
ﬁo =1R?, and the first MILP sub-problem then minimizes the objective function within
the variable bounds. The first solution, x! = 10,})1 =10, violates all the nonlinear con-
straints, and we choose the approach of generating cutting planes for all violated con-
straints. Generating cuts for all violated constraints usually results in fewer iterations
at the expense of somewhat more difficult sub-problems. The iterative solution proce-
dure is illustrated in Figure 4.4 and shows the six first iterations. Obtaining a solution
that satisfies all the constraints, within a tolerance of 1079, requires nine iterations.
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Figure 3.4: The figures show the first six iterations, out of the nine iterations needed, to
solve problem (ex2) with the ECP method. The dark gray areas represent the feasible
region defined by the nonlinear constraints, the light gray areas represent the polyhe-
dral outer approximations, the lines represent contours of the objective function, and
the dots represent an optimal solution of the MILP sub-problems.

3.5 Outer approximation

Duran and Grossmann first presented the outer approximation (OA) algorithm in 1986
[63]. In its original form, OA was restricted to convex MINLP problems that are linear
in the integer variables. Later in 1994, Fletcher and Leyffer [69] showed that linearity of
the integer variables is not needed for achieving finite convergence, and they proposed
a different approach for dealing with infeasible integer combinations. For coping with
non-convex problems more efficiently, Kocis and Grossmann proposed an equality re-
laxation technique in 1987 [116, 117], and two years later Wiswanathan and Grossmann
proposed a penalty approach for relaxing the constraints [192].

The OA algorithm can be viewed as a decomposition technique, which decomposes
the problem into linear problems to deal with the integer requirements and into convex
nonlinear problems to deal with the nonlinear constraints. The iterative trial solutions
are, thus, obtained by solving an alternating sequence of MILP and convex NLP sub-
problems. Besides the assumptions made in Section 3.1, OA also requires the following
assumption of the MINLP problem to be true.

Assumption 4. By fixing the integer variables to a feasible integer combination, i.e., an
integer combination corresponding to a feasible solution of the MINLP problem, the
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resulting NLP problem satisfies a constraint qualification, e.g., Slater’s condition.

The assumption is needed to ensure that all feasible integer combinations obtained re-
sult in a point satisfying the KKT conditions. The feasible solutions obtained must
satisfy the KKT conditions to ensure that the added linearizations prevent cycling.

Like the name implies, the OA algorithm also utilizes polyhedral outer approxima-
tions N to construct a linear approximation of the MINLP problem. The polyhedral
outer approximations Ny are constructed as described previously according to eq. (4.6),
by accumulating first-order Taylor series expansions (linearizations) of the nonlinear
constraints, and the set ﬁk is used to construct a MILP relaxation of the original prob-
lem. The MILP sub-problems are often referred to as the MILP-master problems and
these are given by problem (MILP-k). However, the trial solutions (x¥,y*) are here ob-
tained by a two-step procedure where the integer and continuous variables are chosen
separately, and only integer variables are chosen by problem (MILP-k).

At iteration k, the MILP-master problem (MILP-k) is solved to obtain the integer
variables y¥. The integer variables in the original MINLP problem are then fixed as y*,
resulting in the following convex NLP sub-problem

minimize clTx + czTy
subjectto y= yk, (NLP-k)
(x,y)e LNN.

Suppose that problem (NLP-k) is feasible with the given integer combination y*. Then,
the optimal solution of problem (NLP-k) is also a feasible solution of the original MINLP
problem and is saved as (xX,y¥). Since (x¥,y¥) is a feasible solution of the MINLP prob-
lem, clTxk + cgyk provides a valid upper bound on the optimal objective value. A lower
bound on the optimal objective value is, as before, provided by the optimal solution of
the MILP-master problem (MILP-k). If the lower and upper bound is not within the
desired tolerance, the polyhedral outer approximation can be improved by generating
linearizations at (x*,y*) according to eq. (4.6). The trial solution (x¥,y¥) is now located
on the boundary of the set N, and therefore, at least one of the linearized constraints
will form a supporting hyperplane to the set N. The set Nj can be updated by gener-
ating linearizations for all nonlinear constraints or by the constraints active at (x*,y¥).
Only generating linearizations for active constraints results in smaller sub-problems,
but might result in a weaker outer approximation.

The convex NLP problem (NLP-k) may also be infeasible with the given integer
combination. The original approach for dealing with such a situation was to derive
an integer cut to exclude that specific integer combination [63]. The integer cut is not
necessarily a strong cut since it only excludes a specific integer combination. A more
efficient approach for dealing with an infeasible integer combination was presented in
[69], which is based on solving a feasibility problem. The feasibility problem minimizes
the violation of the nonlinear constraints with the given integer combination, e.g., with
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respect to the €, norm it can be defined as

minimize r

subject to (x,y)<r V¥i=1,2,...m,
] it Z) ! (NLPf-k)

Y=y,

(x,y)eL, reR,.

The feasibility problem is obviously convex and satisfies Slater’s condition. The feasibil-
ity problem can, thus, be solved efficiently and the optimal solution is denoted (x*,y).
The polyhedral outer approximation can now be updated by generating linearizations
at (xk,yk) according to eq. (4.6). Now, the point (xk,yk) will be located outside of the
feasible region. The linearizations will therefore in general not form supporting hy-
perplanes to the feasible set, but instead form cutting planes. These cutting planes are
sufficient for excluding the infeasible integer combination y* from the search space, and
unlike the integer cut, they may also exclude other infeasible integer combinations [69].
Unlike the ECP method, OA will not obtain the same integer combination twice unless
it is proven as optimal and the search is terminated.

The OA algorithm is usually initialized by solving an integer relaxation of the orig-
inal MINLP problem. The relaxed solution provides an initial lower bound on the ob-
jective, and the initial polyhedral outer approximation Nj is constructed by generating
linearizations at the integer relaxed solution. The procedure of solving the MILP-master
problem and one of the NLP sub-problems is repeated until the gap between the up-
per and the lower bound on the optimum of the MINLP problem is within the desired
tolerance. Compared to the ECP method, the OA algorithm usually obtains tighter
polyhedral outer approximation as well as an upper bound, which is not obtained be-
fore the very last iteration with the basic ECP method. As a result, the OA algorithm
usually requires fewer iterations for convex MINLP problems than the ECP method.
However, each iteration in the OA algorithm is computationally more demanding than
an ECP iteration, and therefore, they are difficult to compare directly by the number of
iterations.

To illustrate the solution procedure with the OA algorithm, the algorithm is applied
to problem (ex2) from Section 3.2. Here we update the polyhedral outer approximation
by only generating linearizations of the active constraints. The solution procedure is
illustrated in Figure 3.5, showing the three iterations needed to solve the problem. The
initial polyhedral outer approximation is constructed as described by solving the inte-
ger relaxed problem, and Figure 3.5 shows that the polyhedral approximation is quite
tight already in the first iteration. For this simple example, we did not encounter any in-
feasible integer combinations. The optimal solution of the MINLP problem is obtained
in the second iteration, although a third iteration is needed to verify optimality.

The main drawback of using linearizations for describing the nonlinear constraints
is the fact that they only provide an accurate approximation in the neighborhood of
the linearization points. Paper IV presents a technique for using the concept of trust
regions and second order derivatives within the OA algorithm to choose the integer
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Figure 3.5: The figures show the three iterations needed to solve problem (ex2) with the
OA algorithm. The dark gray areas represent the feasible region defined by the nonlin-
ear constraints, the light gray areas represent the polyhedral outer approximations, and
the lines represent contours of the objective function. The circular dots represent the
solution to the MILP-master problems, and the squared dots represent the solution of
the NLP sub-problem.

combinations more carefully and to obtain faster convergence. These techniques are
described in more detail in Chapter 4.

3.6 Generalized Benders decomposition

Benders decomposition is a partitioning procedure for solving mixed-integer problem:s,
proposed by Benders [20] in 1962. The partitioning procedure is intended to exploit
special structures of optimization problems with complicating variables. Usually, a
subset of the variables is considered to be complicating variables if temporarily fixing
them results in a significantly more tractable optimization problem. Fixing some of
the variables can, e.g., result in a problem that can be separated into smaller individual
problems that can be solved in parallel. Benders decomposition was later generalized
by Geoffrion [83] to cover a broader class of problems, and this method is known as
generalized Benders decomposition (GBD).

When dealing with convex MINLP problems, the integer variables are usually seen
as the complicating variables, i.e., fixing these results in a convex NLP problem. Simi-
lar to OA, GBD will in each iteration solve a master problem to obtain a trial solution
for the integer variables and solve a convex NLP problem to obtain the corresponding
continuous variables. Under the assumption that the integer variables occur linearly in
the problem, it has been proven that GBD is equivalent to merging all linearizations
added in an OA iteration into a single linearization using the Lagrangian multipliers
[167]. The main difference between GBD and OA is in the master problem; the master
problem in GBD is an optimization problem only in the complicating variables of the
original problem [90]. Since the goal here is to solve convex MINLP problems, it is nat-
ural to choose the integer variables as complicating variables. Furthermore, we would
like the sub-problems to be MILP problems and convex NLP problems since we have



30 CHAPTER 3

efficient solvers for such problems.

GBD has also been considered as one approach for dealing with some types of non-
convex problems, and there are different variants of GBD [72]. However, applying GBD
to non-convex problem is not trivial, and may not result in optimal solutions, as shown
in [174]. Further generalizations of GBD have been proposed by [71, 200], and a some-
what similar approach to GBD was described in [10]. Here we will only consider the
basic version of GBD; for a more comprehensive description we refer to, e.g., [72].

Besides the assumptions needed with OA, GBD requires the following assumption
of the functions g; to be true.

Assumption 5. The nonlinear functions g; are linearly separable in the continuous and
integer variables, i.e.,

gi(xy)=g81,j(x)+ &2,i(y) Vj.

The need for linear separability will become clear later on. However, linear separability
of the continuous and integer variables is not necessarily restrictive.

Remark. By reformulating a convex MINLP problem we can always obtain a problem
where the nonlinear functions are linearly separable in the two set of variables. Suppose
we have the nonlinear constraint g]-(x, y) < 0, which is not linearly separable. Further-
more, suppose it is not separable due to the integer variable y,. Then we can introduce
a new continuous variable x,,,, and replace the integer variable y; by the new contin-
uous variable in the function g;. Replacing y; by x,,,1, makes the function g; linearly
separable in the the continuous and integer variables. To make the reformulated prob-
lem equivalent to the original problem we introduce a new linear equality constraint,
namely, x,,,; = u;. This reformulation does not reduce the complexity of the problem
by any means but shows that a convex MINLP problem can always be reformulated to
obtain the desired separability.

One of the key components of GBD is the projection of problem (P-MINLP) onto the
y-space. An equivalent problem in the y-space can be written as

yg}lrglvvw) (3.9)

where

v(y) = mxin cIx+cly

s.t. gj(x,y)SO, Vi=1,2,..1,
A1X+A2y < b,

(3.10)

y is fixed.
The set V in eq.(3.9) is defined as

V:{y|A1x+A2y§b, gi(xy)<0 Vj=1,2...1 forsome x}. (3.11)
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The set V is a convex set, and the function v is convex, due to the convex properties of
the original problem [42]. The projected problem (3.9) is, thus, a convex pure integer
problem. However, unfortunately, neither the function v nor the set V are known ex-
plicitly; they are only known through their definitions. Therefore, we cannot directly
solve the projected problem (3.9). Instead, we will use a procedure similar to OA to
construct an iteratively improving approximation of problem (3.9). To construct the
approximation, problem (3.9) is rewritten using a dual representation of V and v into
the equivalent problem

min o
yeY,aeR
s.t. a>minL(x,y,A,u), YA=0,u>0, (3.12)
X

0> minﬁ_(x,y,/i,ﬁ), YA > 0,u>0,
where

L(x,y,Ap) = cfx + cgy + Z/’\jgj(x,y) +;4T(A1x +A,y-b),
l =t (3.13)

L(x,y,A, ) :Z gi(xy)+p T(A;x+ A,y —b).
j=1

For more details on how to obtain problem (3.12) see, e.g., [72, 83].

Problem (3.12) cannot be solved directly, since it contains an infinite number of
constraints. Furthermore, each constraint contains an individual optimization problem
which is parametric in the integer variables. The goal is, therefore, to relax problem
(3.12) by only considering a finite number of explicit constraints. The constraints of the
relaxed problem should preferably be linear in the integer variables, thus, resulting in
a MILP problem. To simplify the notation we will introduce the following functions

E(y, A, p) =minL(x,y, A, p), (3.14a)

cf(y,)_\,ﬁ) = min[ﬁ(x,y,i,ﬁ). (3.14b)

An iteratively improving approximation of problem (3.12) can be constructed using
a similar approach as in OA. Assume that we have obtained a feasible integer solution
y*. By fixing the integer variables of the MINLP problem as y* and solving the resulting
problem (NLP-k), we obtain the corresponding optimal continuous variables x* as well
as the optimal multipliers AF and u*. By utilizing the linear separability of the functions
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gj, we obtain

&y, /\k,yk) = mxin [I(x,y,/\k,pk)

!
= mxin clTx + cgy + Z’/\;-‘gj(x,y) + (Ilk)T(A1x +Ayy - b)]
j:l

! 1
=y + ) Mg ly)+ (W) Ay + m,gn{cfw ) Mg+ (;4">T<A1x—b>]
j=1 j=1

l
=cjy+ Z/\;?gz,j()’) + ()T Ay + el xF + Z/\k& i)+ ()T (A x" D).
=1
: (3.15)
The optimization problem in (3.14a) is, thus, independent of the integer variables for
a fixed set of multipliers. Therefore, by solving problem (NLP-k) we obtain one of the
constraints of problem (3.12) in explicit form.

If an integer combination y* is infeasible, then the continuous feasibility problem
(NLPf-k) provides the continuous variables x* minimizing the constraint violation as
well as the multipliers 1" and k. Similar to the case with a feasible integer combination,
we get

—

D=2 4'mim+ AmZA] 210+ (@) (A1x* =) (3.16)

:] ],

With given multipliers, the functions & and & can now be written as functions of
only the integer variables. Once an integer solution is obtained, a constraint of problem
(3.12) can be obtained by solving a convex NLP problem. A relaxation of problem (3.12)
containing a finite number of explicit constraint is, thus, given by

min  «
yeY,aeR
s.t. é(y,/\k,yk)<a, Yk e Ky (3.17)

&y, A ,]4)<0, Yk € K\Ky.

Here K is an index set with the indices of all iterations in which the integer combina-
tion was feasible, and K contains the indices of all iterations. Problem (3.17) is some-
times referred to as the relaxed master problem. A new integer combination y**! can be
obtained by solving problem (3.17), and a new constraint is generated as described and
included in the next iteration. Since problem (3.17) is a relaxation of problem (3.12),
its optimal solution also gives a valid lower bound on the optimal solution to the orig-
inal MINLP problem. Similar to OA, an upper bound is provided by the feasible NLP
problems. The procedure is repeated until the upper and lower bounds are within the
desired tolerance.
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Figure 3.6: The figures show the five iterations needed to solve problem (ex2) with the
described GBD algorithm. The dashed curve shows the function v defined by eq. (3.10)
within the feasible region. The gray areas represent the feasible region of the relaxed
master problem, and the dots represent the minimizer of the relaxed master problem in
each iteration. Here, the horizontal axis corresponds to the integer variable y, and the
vertical axis shows the a variable.

For MINLP problems were the functions g ; are all linear, then the relaxed master
problem will be a MILP problem. Otherwise, each iteration will require the solution of a
convex MINLP problem. For problems with a special structure it might be beneficial to
decompose a convex MINLP problem into a sequence of convex MINLP sub-problems
but, in general, it is not a desirable approach. The relaxed master problem (3.17) should
preferably be linear, such that an efficient MILP solver can be used to solve the problem
in each iteration. Since the functions g, ; are all convex, the obvious approach is to
approximate them by first-order Taylor series expansions as mentioned in [91, 200].

To illustrate GBD, we have applied the basic algorithm to problem (ex2). The pro-
cedure is started at the feasible integer solution y = 1, and the nonlinear term in the
constraints of the relaxed master problem is approximated by first-order Taylor series
expansions in each iteration. The iterative solution procedure is illustrated in Figure
3.6, showing the five iterations needed to solve the problem. The optimal solution is
obtained in iteration four; however, verifying optimality requires an additional itera-
tion.

Compared to OA, GBD tends to give weaker lower bounds in each iteration. As
mentioned, if the integer variables occur linearly in the problem, the GBD cuts are the
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equivalent of merging the OA cuts using the Lagrangian multipliers [167]. In such
a case it can be proven that OA will never result in weaker bounds than GBD [90].
However, the relaxed master problem in GBD will, in general, contain fewer variables
and constraints than the master problem in OA and, thus, the algorithms are difficult
to compare directly.

A technique to obtain tighter polyhedral approximations, and tighter lower bounds,
within a GBD framework was proposed by Quesada and Grossmann in 1992 [167] and
is often referred to as partial surrogate cuts (PSC). With this approach, the continuous
variables are classified into linear or nonlinear based on their properties in the original
MINLP problem. By only projecting out the nonlinear continuous variables, one can
derive Lagrangian cuts similar to the GBD cuts while keeping all the linear constraints
of linear continuous variables in the relaxed master problem. It was proven in [167]
that the PSC procedure results in a tighter linear relaxation compared to GBD while
still adding only one cut per iteration.

3.7 LP/NLP-based branch and bound

When applying the OA algorithm on a convex MINLP problem, the majority of the
total solution time is, usually, spent on solving the MILP master problems. A new
approach to avoid solving multiple MILP sub-problems was presented by Quesada and
Grossmann in 1992 [167]. The method, known as LP/NLP-based branch and bound
(LP/NLP-BB), integrates OA within a branch and bound framework. Compared to OA,
only one branch and bound tree is generated by dynamically updating the MILP master
problem.

The search is initialized by solving an integer relaxation of the MINLP problem, and
the solution is used to construct an initial polyhedral outer approximation. The inte-
ger relaxation also provides a valid lower bound on the optimal objective value of the
MINLP problem. The polyhedral outer approximation is used to construct the initial
MILP master problem, which will be solved by a branch and bound procedure. An
LP relaxation is solved in each node of the branch and bound tree, and the search is
stopped once an integer solution is obtained in one of the nodes. The integer solu-
tion is treated as normal in OA, by solving an NLP problem with the integer variables
fixed. If it results in a feasible NLP problem, then it provides a valid upper bound, and
new linearizations can be generated. If the NLP problem is infeasible, it is possible to
add an integer cut to exclude the solution or solve the feasibility problem and generate
new linearizations. The new linear constraints are then added to all open nodes in the
branch and bound tree, and the LP relaxation is resolved for the node which resulted
in the integer combination. The search continues with the improved polyhedral outer
approximation, and the BB procedure continues from the existing search tree. As nor-
mally done in BB, nodes can be pruned off in case the optimum of the LP relaxation
exceeds the upper bound. However, the search cannot be stopped once an integer solu-
tion is obtained at a node; the search must continue until the LP relaxation results in a
feasible integer solution or until the node can be pruned off.
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Figure 3.7: The branch and bound tree obtained with LP/NLP-BB for problem (ex2).
The optimal objective value of the LP relaxations are denoted by Z*, and the solutions
are given next to the nodes. The upper bounds obtained by the NLP sub-problems
as well as the new linear constraints are shown in between the nodes, where an NLP
problem was solved. Nodes where the LP relaxation returns an integer solution that
also satisfies the nonlinear constraints are underlined.

To illustrate LP/NLP-BB, the algorithm is applied to problem (ex2). The solution
procedure is illustrated in Figure 3.7, showing the explored nodes. An integer solution
is obtained already at the first node, but after improving the polyhedral approximation
it results in a fractional solution. In total, six LP relaxations must be solved, three NLP
problems with fixed integer variables, and an initial integer relaxation. One of the nodes
and one NLP problem could be avoided in this case by first exploring the right side of
the search tree.

By only constructing a single branch and bound tree, LP/NLP-BB may end up ex-
ploring fewer nodes than the total number of nodes explored in the multiple branch and
bound trees in normal OA. The LP/NLP-BB can also be combined with cut generating
procedures for tightening the integer relaxation. Generally, LP/NLP-BB is considered
one of the most efficient techniques for convex MINLP [1, 38, 131, 143], which is also
supported by a recent benchmark test of convex MINLP solvers in [123]. The SHOT
solver, which is described in Chapter 4, can utilize a similar approach as LP/NLP-BB to
construct only a single branch and bound tree with the ESH algorithm.
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3.8 Other techniques for convex MINLP

Most solvers are not limited to a single method but combine several techniques to im-
prove their practical performance. Solvers utilize a variety of different techniques, and
only the most relevant ones for this thesis are mentioned here. For more details on
techniques frequently used by MINLP solvers see, e.g., [19].

Primal heuristics

Algorithms intended to quickly obtain good feasible solutions to optimizations prob-
lems are commonly referred to as primal heuristics. Primal heuristics were first devel-
oped within MILP, and have proven to be an important tool for improving the efficiency
of MILP solvers [67]. Knowing a good feasible solution can, e.g., reduce the size of the
branch and bound tree.

Different primal heuristics have also been proposed for MINLP problems, such as
the feasibility pump [39], rounding heuristics [23], and undercover [24]. A new primal
heuristic for convex MINLP, called the center-cut algorithm, is presented in Paper V and
is described in Chapter 7. In solvers based on branch and bound, the primal heuristics
can also reduce the size of the branch and bound tree for convex MINLP problems.
Primal heuristics are also important in solvers based on the ECP or ESH algorithm, since
these algorithms do not necessarily obtain a feasible solution before the last iteration.
Even if these techniques are referred to as heuristics, some of them are guaranteed to
find a feasible solution to a convex MINLP problem in a finite number of iterations.
More details on primal heuristics for MINLP problems are, e.g., given in [22] and [55].

Preprocessing

By analyzing an optimization problem, it may be possible to slightly modify the prob-
lem to obtain a problem that might be significantly easier to solve. Such procedures are
often referred to as preprocessing, or presolving, techniques. Performing preprocess-
ing on a convex MINLP problem can, for example, reduce the problem size or result in
tighter relaxations and significantly reduce the total solution time [19].

Bound tightening is a commonly-used preprocessing technique intended to reduce
the variable bounds. The most commonly used bound tightening methods are feasibility-
based bound tightening [18, 179], and optimization-based bound tightening [135].
Optimization-based bound tightening solves a sequence of relaxed problems, minimiz-
ing and maximizing each variable to obtain tighter variable bounds. In feasibility-based
bound tightening, the constraints are analyzed, either individually or in groups, to ob-
tain tighter bounds [17, 18, 147]. Several range reduction techniques to reduce the
search space were presented in [171].

Reformulation techniques are intended to modify the problem to obtain tighter re-
laxations while ensuring that the optimal solution to the original problem can be ob-
tained by solving the reformulated problem. For example, disaggregation of some types
of linear constraints can result in a tighter integer relaxation [19, 201]. By introducing
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new continuous variables, it is possible to split some types of nonlinear constraints into
several new constraints, which can result in tighter lifted polyhedral outer approxima-
tion [183]. Some reformulations for obtaining tighter lifted polyhedral approximations
are presented in Paper III, which were shown to have a great impact on several solvers.
The reformulations in Paper III are described in more detail in Chapter 5. Lifted refor-
mulations of MINLP problems are also studied in [99, 137].

Only a few preprocessing techniques have been mentioned here, and there exist sev-
eral other important techniques. A detailed survey of several preprocessing techniques
for MINLP is, e.g., given by [19].

3.9 Software

There are several modeling systems for dealing with MINLP problems, such as AIMMS
[33], AMPL [78], and GAMS [43]. Lately, there has been a growing interest in mod-
eling and solving optimization problems within the programming languages Python
[189] and Julia [29]. Pyomo is a Python based open-source modeling language which
supports a wide range of problems types, including MINLP [97]. JuMP is a similar effi-
cient modeling language embedded in Julia [62]. For more details on different modeling
systems for mathematical optimization see, e.g., [107].

There are several solvers, both commercial and open-source, available for convex
MINLP problems. Reviews of commonly-available solvers are, e.g., given in [19, 44,
188], and a comprehensive comparison of solvers for convex MINLP is given in [123].
Only a few of the best-known solvers are mentioned here, and for more details on con-
vex MINLP solvers see, e.g., [123].

Solvers that are capable of solving convex MINLP problems within GAMS are: Al-
phaECP [127, 197], ANTIGONE [151], BARON [172, 173], BONMIN [38], Couenne
[16], DICOPT [92], Knitro [45], LINDO [106], SBB [80], and SCIP [2, 191]. Several of
these solvers are also available within AIMMS, along with the AOA solver [103]. Some
of these solvers are also available within both AMPL and Pyomo. Pajarito [137] and
Juniper [120] are examples of solvers developed within the Julia language and available
in JuMP.

A new solver for convex MINLP, called the Supporting hyperplane toolkit (SHOT),
is presented in Paper VI. SHOT was first mentioned in Paper I, and builds upon the ESH
algorithm. The solver is described in more detail in Section 4.5.

3.10 Conclusion

This chapter has given a summary of work previously done within the field of convex
MINLP. The most commonly-used methods for solving convex MINLP problems have
been presented along with an illustrative example to visualize the solution procedures.
With the information presented in this chapter, we are now ready to begin with the
main contributions of this thesis.






Chapter 4

Contributions to Convex MINLP

The previous chapter was intended as a summary of work done within the field of con-
vex MINLP, and to present the background material needed to fully understand the
methods presented here. Some of the techniques described in Chapter 3 will also be
used in the methods presented in this chapter, and it is assumed that the reader is ac-
quainted with the MINLP methods from the previous chapter. As mentioned in the
introduction, the primary research goal has been to investigate how to efficiently con-
struct and utilize polyhedral approximations to solve convex MINLP problems. This
chapter describes the methods presented in the papers and gives a summary of the re-
sults.

4.1 The extended supporting hyperplane algorithm (Papers I-1I)

The main idea for the extended supporting hyperplane (ESH) algorithm, grew from ob-
servations that the cutting planes generated by the ECP method are not, in general, as
tight as possible. Figure 4.4, in Section 3.4, clearly shows that it would be possible to
generate more efficient linearizations, resulting in tighter polyhedral outer approxima-
tions. Obtaining tighter polyhedral outer approximations could, for example, reduce
the number of iterations needed to solve the optimization problem. The goal was to
come up with an efficient technique for generating tighter polyhedral outer approxima-
tions of the integer relaxed feasible region of convex MINLP problems. A quite detailed
description of the ESH method is given here since the algorithm has a central role in
three of the papers included in this thesis.

Since the linearizations are generated by first-order Taylor series expansion of the
nonlinear functions, they are only guaranteed to give an exact approximation in the
linearization points, as illustrated in figure 3.3. Due to convexity, the linearizations
underestimate the actual function, and the underestimation error tends to grow with
the distance from the linearization point. If the linearization is generated outside of
the integer relaxed feasible region, the function value of the linearization may be sig-
nificantly smaller than the function value of the nonlinear functions within the entire
integer relaxed feasible region. The resulting linearized constraint may therefore not
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be as tight as possible if the linearization is generated outside of the integer relaxed
feasible region. In order to obtain the tightest possible polyhedral outer approximation
of the integer relaxed feasible set, we would like to use supporting hyperplanes of the
set to generate the polyhedral approximation. For the sake of completeness and clarity,
the definition of a supporting hyperplane has been included.

Definition 8. A supporting hyperplane of a convex set N, in R", is a hyperplane with
the following properties: the set N is contained entirely within one of the closed half-
spaces defined by the hyperplane, and the set N has at least one boundary point on the
hyperplane.

An illustration of a supporting hyperplane to a convex set is given in figure 4.1.

The trial solutions will be chosen in this case by the same approach as with ECP
method, and they are, thus, chosen as a minimizer of the linear objective function
within Ny N L NY. The main difference between the ESH and ECP algorithms is the
technique used for generating linearizations, and updating the polyhedral outer ap-
proximation ﬁk. As before, the set N is defined by the nonlinear constraints, L by
the linear constraints, and Y by the integer requirements. The trial solution obtained
by solving sub-problem (MILP-k) are here denoted as (xI]i,HLP,yﬁ/HLP). As in the ECP
method, the trial solutions provide an iteratively improving lower bound on the opti-
mum of the convex MINLP problem, but they will directly be used for generating the
linearizations.

Given a trial solution (xﬁ,HLP,yﬁ,HLP), located outside the set N, it is possible to gen-
erate a supporting hyperplane to the integer relaxed feasible set, N N L, by projecting
(XIIi/HLP’ylli/HLP) onto N N L. The trial solution can be projected onto N N L by solving the
convex NLP problem
X\iLp X

k

(%,¥) = argmin
Ymie 7Y

(x,y)eNNL

(4.1)

2
where (%,¥) is the projected point [42]. A supporting hyperplane to the set N NL is then
given by

_ k T _
(T_XMHP)(x_f)zo. (4.2)
Y=¥Ymur/ \¥Y7Y

For a proof that the inequality given by eq. (4.2) is a valid supporting hyperplane to
N NLsee, e.g., [9]. The linear constraint given by eq. (4.2) could be used to update the
polyhedral outer approximation Ni; However, this technique would require the exact
solution of problem (4.1) and could be quite sensitive to the numerical accuracy. Since
the point (%,y) is located on the boundary of the set N, a supporting hyperplane of N is
simply given by

8% )+ Vgj(%y)" [""_‘] <0, (43)

y-y

where g; is an active constraint, i.e., gj(X,¥) = 0. Generating supporting hyperplanes
according to eq. (4.3) should be less sensitive to the quality of the solution to problem
(4.1). However, this approach still requires the solution of a convex NLP problem for
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(XiliﬂLPaykI\ﬂLP)

Figure 4.1: The figure illustrates the main principle in the ESH algorithm. A root-search
is conducted between the interior point (X, Yint) and the MILP solution (xf,HLP,y’If/HLP)
to find a point on the boundary of the set N.

generating a supporting hyperplane, and the projection is unlikely to result in inte-
ger feasible solutions. A simpler and faster approach for generating supporting hyper-
planes is, therefore, used within the ESH algorithm.

For generating supporting hyperplanes, the ESH algorithm uses a one-dimensional
root-search to obtain an approximate solution to problem (4.1). Suppose that a point
strictly within the interior of N and within N N L is known. The interior point will be
used within the root-search and is denoted as (Xjpt, Yint)- To find a point on the boundary
of the set N, a new function F is defined as the point-wise maximum of the nonlinear
constraints according to

F(xy) = max {gix ). (4.4)

A new point (xk,yk) is now constructed as a convex combination of the trial solution
and the interior point, according to

x* = A+ (1= Ay s 4.5
- o (4.5)
Y = Aine + (1= A%)ypmirp-

The interpolation parameter A¥ is chosen such that F(x*,y*) = 0, which can be deter-
mined by a simple root-search in the interval [0,1]. A supporting hyperplane of N can
then be obtained by linearizing a constraint active at x¥,y*; the procedure for obtaining
supporting hyperplanes is illustrated in Figure 4.1. The polyhedral outer approxima-
tion Nj can then be updated by including new supporting hyperplanes, according to
_ <k
Niwp = {(x,y) e N, ] Vg, (xk,y)T [;_;k] <0 Vje Ia}, (4.6)
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where I, contains the indices of the active constraints. A new trial solution (xI’i,HLP,y’IiAILP)
is then obtained by solving problem (MILP-k) with the improved polyhedral outer ap-
proximation.

The interior point used within the root-search should preferably be located as deep
as possible within the set N, to avoid attracting the points x*,y* to a certain region. For
example, if N is given by an n-dimensional ball and (xj,, yint) is located at the center of
the ball, then the simple root-search will result in the same point as the projection by
problem (4.1). The Chebyshev center of N would, thus, have desirable properties, but
unfortunately it is nontrivial to obtain for a set defined by convex nonlinear functions
[42]. To obtain an interior point with similar properties, the ESH algorithm chooses the
interior point by minimizing I,-norm of the nonlinear constraints, which is obtained
by solving the following convex NLP problem

minimize p
subjectto gi(x,y)<p Vj=12...1 (4.7)
(xy)eLpuelR

Problem (4.7) only has to be solved once, and the interior point does not have to satisfy
the integer requirements. The procedure used within the ESH method for generating
supporting hyperplanes is, hence, significantly less complex than projecting each trial
solution onto LN N.

The procedure of solving MILP sub-problems and improving the polyhedral outer
approximation by generating supporting hyperplanes is repeated until a trial solution
satisfies all nonlinear constraints. Once a trial solution obtained by the MILP sub-
problem satisfies the nonlinear constraints it is guaranteed to be an optimal solution
to the MINLP problem, as in the ECP method. To illustrate the difference between
the ESH algorithm and the ECP method, they are both applied to problem (ex2), and
the first iterations are shown in Figure 4.2. To obtain a solution that satisfies the con-
straints, within a tolerance of 107°, the ESH algorithm requires five iterations and the
ECP method requires nine. A technique similar to the ESH method was proposed by
Veinott in 1966 [190], and the idea of utilizing supporting hyperplanes for MINLP prob-
lems was also mentioned in the PhD thesis of Pérn [166].

A preprocessing procedure for generating an initial polyhedral outer approximation
with the ESH algorithm, by solving a sequence of LP relaxations, is presented in Paper
I. In the paper it is proven that the ESH algorithm converges to the optimal solution for
convex MINLP problems. Assumption 4 is not needed for proving convergence, but it
is required that N has a nonempty interior. The paper also describes an early version
of the SHOT solver, which implemented the ESH algorithm together with some primal
heuristics. The primal heuristics are used for obtaining feasible solutions and a valid
upper bound on the optimal objective value of the MINLP problem. The upper bound
enables the solver to terminate the search based on the optimality gap, i.e., the differ-
ence between the upper and lower bound. Using the ESH algorithm to obtain iteratively
improving lower bounds, together with primal heuristics, usually allows SHOT to ter-
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Figure 4.2: The figures show the first three iterations of the ESH algorithm (on top)
and ECP method (below) applied to problem (ex2). The dark gray areas represent the
feasible region defined by the nonlinear constraints, the light gray areas represent the
polyhedral outer approximations, the lines represent contours of the objective function,
and the black dots represent an optimal solution of the MILP sub-problems. The dashed
lines illustrate the root-search procedure in the ESH algorithm

minate within significantly fewer iterations compared to forcing the trial solutions to
satisfy all nonlinear constraints.

Numerical comparisons based on 333 convex MINLP problems were encouraging,
and the SHOT solver performed best among the solvers for the test set. More features
were later included in the SHOT solver, and the latest version is presented in Paper
VI. The numerical results in Paper I showed a clear potential of the ESH strategy for
generating tight polyhedral approximations.

In Paper II, it was shown that the ESH algorithm can successfully be applied to a
more general class of problems. By using subgradients for generating the supporting
hyperplanes, the algorithm can be proven to converge to a global optimum for con-
vex MINLP problems with locally Lipschitz continuous functions. Furthermore, it was
proven that the ESH algorithm converges to a globally optimal solution for MINLP
problems with constraints given by pseudoconvex locally Lipschitz continuous func-
tions. By generating the linearizations on the boundary of the feasible region, the ESH
algorithm is able to efficiently construct valid polyhedral outer approximations of con-
straints given by pseudoconvex functions. By minor modification, it would be possible
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to use the same technique for constraints given by quasiconvex functions. However,
the task of obtaining an interior point becomes nontrivial for constraints given by qua-
siconvex functions, and therefore the quasiconvex case has not been studied in more
detail. It was later shown in [199] that the ESH technique can be successfully applied
to a class of problems referred to as generalized convex, where both the objective and
constraints are given by pseudoconvex locally Lipschitz continuous functions.

4.2 Reformulations for separability in convex MINLP (Paper III)

Obtaining an optimal solution of a convex MINLP problem and verifying optimality
of the solution with methods utilizing polyhedral outer approximation, such as ECP,
ESH, LP/NLP-BB or OA, usually requires a quite accurate approximation of the set N.
Obtaining a polyhedral approximation as tight as possible is, therefore, desirable with
such methods. Tighter approximations can, e.g., result in a significant reduction of the
iterations and computational effort needed to solve a problem.

If a nonlinear function defining a nonlinear constraint has certain convex separable
properties, then it is possible to utilize a simple reformulation that results in tighter
lifted polyhedral outer approximations. To use the reformulation technique described
in Paper III the nonlinear function needs to have a separability property referred to as
almost additively separable. An almost additively separable function is given by the
sum of simpler functions depending only on subsets of the variables. Hence, a function
gj is considered as almost additively separable if it can be written as

[\/]»

gi(xy) =) hixy) (4.8)

i=1
where each function h; is dependent only on subsets of the variables (x,y). Now, if
each function h; is convex, it is possible to use a simple reformulation to obtain tighter
polyhedral outer approximations. A nonlinear constraint given by the almost additively
separable function g; can then be reformulated into several nonlinear constraints by
introducing new continuous variables, according to

Zle z; <0,
gilxy)<0 — hi(x,y)<z Vi=1,...k (4.9)
ZZ‘EIR Vlzl,k

The original constraint and the multiple constraints obtained by the reformulation re-
sults in the same set of feasible (x,y) variables, and can be considered as equivalent
formulations. However, a polyhedral outer approximation of the multiple constraints
in the reformulated form can result in a tighter polyhedral approximation, which is re-
ferred to as a lifted polyhedral approximation since it is an approximation in a higher
dimensional space.

To illustrate the benefits of the reformulation, consider the following constraint

x*+p* <4 (4.10)
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Figure 4.3: The figures show polyhedral approximations of the nonlinear constraint
x% +y? < 4, based on the original constraint (left figure) and reformulated constraints
(right figure). The light gray areas show the polyhedral outer approximations, the dark
gray areas represent the feasible region of the nonlinear constraint, and the dots show
the linearization points.

Using the described reformulation technique results in the following constraints

Z1+ 29 <4,
x* <z, (4.11)

2
y SZZ:

where z; and z, are continuous variables. A polyhedral outer approximation of the
feasible region defined by the constraints in equations (4.10) and (4.11) is constructed
by generating linearizations at the points (-2,0), (2,0), (0,—2), and (0, 2). The polyhedral
outer approximations obtained with both formulations within the x, y-space are shown
in figure 4.3. The figure shows that the reformulation resulted in a significantly tighter
polyhedral outer approximation.

The benefits of linearizing the components of a separable convex function individ-
ually was first shown by Tawarmalani and Sahinidis [183]. Utilizing lifted polyhedral
approximations has also been studied by Hijazi et al. [99], and extended formulations
were also studied later by Lubin et al. [138].

In Paper III, properties regarding the reformulation in eq. (4.9) are analyzed, and
a numerical comparison shows the practical advantages of using the reformulation. It
can easily be shown that the reformulation will not result in weaker polyhedral approx-
imations, and sufficient conditions under which the reformulation results in tighter
approximations are given. By combining the reformulation with a power transform
and a logarithmic transform, it is shown that the reformulation technique can be ap-
plied to some non-separable functions. Numerical results show that the reformulation
technique can greatly improve the performance of several solvers based on polyhedral
outer approximation techniques. Several of the test problems cannot be solved by ei-
ther AlphaECP, BONMIN-OA, DICOPT, or SHOT within two hours using the original
problem formulations, whereas the reformulated problems can be solved within only
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a few seconds. Both problem formulations are equivalent and the differences in the
solution times are caused by the tighter polyhedral approximations obtained for the
reformulated problems. The numerical results highlight the importance of the prob-
lem formulation for MINLP problems, and strongly motivates work within automatic
reformulations.

4.3 The center-cut algorithm (Paper IV)

The main idea in the center-cut algorithm is to use the polyhedral outer approximation
differently, compared to ECP, ESH, and OA, to obtain feasible solutions within only
a few iterations. In the ECP and ESH methods, the trial solutions are chosen as the
minimizer of the objective function within the current polyhedral outer approximation,
generally resulting in trial solutions on the boundary of the outer approximation. As a
consequence, the basic versions of the ESH and ECP methods will not obtain a feasible
solution before the very last iteration.

Instead of searching along the boundary of the polyhedral approximation, the idea
is to search in the center of the polyhedral approximation. Since the true feasible set is
contained somewhere within the polyhedral outer approximation, it seems natural to
search for a feasible solution in the center of the outer approximation. A similar idea
for solving convex NLP problems was presented by Elzinga and Moore in 1975 [64].
By the center of the polyhedral outer approximation we mean to the Chebyshev center,
which is defined as the point furthest away from the boundary in all directions. The
Chebyshev center of a polyhedral set is given by the center of the largest n-dimensional
ball inscribed in the set and can be obtained by simply solving an LP problem [42, 98].

As before, a polyhedral outer approximation of the set N is constructed as

ﬁk:{(x,y)em"xm"l |gj(xi,yi)+Vg]-(xi,yi)T[;:;i]SO Vi:l,z,...k,jeli}, (4.12)

where I; contains the indexes of the nonlinear constraints for which linearizations were
added in iteration i. The Chebyshev center of set Ny can be obtained by solving the
problem

maximize r
x,y,r
subject to

- (4.13)
+7||Vgix, Y|, <0 Vi=1,..kjel,

o o Ix—x

g-(xl,y’)+Vg'(xl,yl)T[ :

] ] y_yl
xeR"yeR",reR,

where r is the radius of the inscribed ball. However, the optimal solution of problem

(4.13) is unlikely to satisfy the integer requirement and linear constraints of problem

(P-MINLP). To consider all the constraints of the MINLP problem, trial solutions will
be chosen as the center of the largest inscribed balls in the sets Ny, such that the center
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satisfies all linear constraints and integer requirements of the MINLP problem. A new
trial solution (x¥*1,y¥*1) is then given by solving the MILP problem

maximize r
Xy,

subject to
o o i o (4.14)
gi(xy') + Vg;(x',y") [;_;] +7||Veiix,y)|l, <0 Vi=1,..kVjel,

(xy)eLNnY,reR

The linear constants defining the set L only affects the center of the inscribed ball,
and not directly the radius since the ball is only inscribed in Nj. If a trial solution (x¥,y*)
does not satisfy the nonlinear constraints of the MINLP problem, then the polyhedral
outer approximation can be improved by generating new linearization at (x,y¥) , as
in the ECP method. It would be possible to use the ESH strategy for updating the
polyhedral approximation, but for simplicity the approximation is improved by the
ECP approach. If (xX,y¥) satisfies all constraints, the solution can usually be further
improved by solving the MINLP problem with the integer variables fixed as y*, i.e.,
feasible integer combinations are used as in OA. Based on a feasible solution (x¥,y¥), an
objective cut given by

cIx+cly <eIxf+clyk, (4.15)

is used to reduce the set Nj. By including the objective cut, Nj is no longer an outer
approximation of N. However, N it still guaranteed to contain all optimal solutions of
the MINLP problem. In the next iteration, where the trial solutions are chosen as the
center of Ni, the objective cut enforces an improvement in the objective. A lower bound
on the optimum of the MINLP problem is not directly obtained by the algorithm, and
to prove optimality of the best-found solution the search must continue until the radius
of the inscribed ball is reduced to zero.

To illustrate the center-cut algorithm, and to highlight the differences to the other
methods, it is applied to problem (ex2) and the result is shown in Figure 4.3. The search
is initiated by defining the initial polyhedral outer approximation as IR” xIR™, and since
the problem only contains two variables the solutions are obtained by inscribing circles
in the polyhedral approximation. A feasible solution is obtained in the second iteration,
and the optimal solution is obtained in iteration four. In the fifth iteration, optimality
is proven by obtaining a zero radius of the inscribed circle.

The center-cut algorithm for convex MINLP was first presented in a conference pa-
per by Kronqvist et al. [122], and a more detailed description is given in Paper IV.
In Paper IV it was proven that the center-cut algorithm has finite convergence convex
MINLP problems. Proving finite convergence requires assumptions similar to those
used to prove finite convergence for OA in [69].

Numerical tests in Paper IV show that the center-cut algorithm is able to quickly
find feasible solutions to the problems, and for the more difficult problems it was more
efficient at finding feasible solutions than the feasibility pump in DICOPT [21, 39].
The results support the hypothesis that the algorithm would be able to obtain feasible
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Figure 4.4: The figures show the first four iterations of the center-cut algorithm ap-
plied to problem (ex2). The figures show the feasible region defined by the nonlinear
constraints in dark gray, the light gray areas show the polyhedral approximations, and
the lines show contours of the objective function. The circular dots represent the cen-
ter of the inscribed circles and the dashed curves represent the circle. The improved
solutions, obtained by solving NLP sub-problems for feasible integer combinations, is
indicated by the squares.

solutions within only a few iterations. Out of the 295 test problems used, the center
cut is able to find a feasible solution for 294 problems, and a solution within 1% of
the best-known solution is found for 290 problems. The algorithm seems to be well-
suited as a primal heuristic, but it can also be used as a deterministic technique with
guaranteed convergence. Details regarding how to efficiently implement the algorithm,
and techniques to speed up the algorithm, are also discussed in the paper.

The downside of the center-cut algorithm is the optimality verification. To verify
optimality, the radius has to be reduced to zero, which can require quite a number of
iterations after the optimal solution was found. Therefore, the center-cut algorithm
may be best-suited as a primal heuristic. However, the center-cut algorithm could be
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implemented as a primal heuristic together with the ECP or ESH algorithm to get a
technique for obtaining both feasible solutions (upper bounds) and lower bounds on
the optimal objective value.

4.4 Using regularization and second order derivatives with the outer
approximation method (Paper V)

In outer approximation, the integer combinations are chosen by minimizing the objec-
tive function within a polyhedral outer approximations of the integer relaxed feasible
region. The approach for choosing the integer combinations is similar to the technique
used for obtaining the iterative trial solutions with Kelley’s cutting plane method for
convex NLP [110]. Kelly’s method is in general not considered efficient at handling
nonlinearities, and it has been proven that the method has a poor complexity bound
[158]. The method is sometimes even referred to as unstable since the trial solutions
tend to make large jumps in search space [60]. Since ECP, ESH, and OA all use the
same approach for choosing the integer combinations, they could suffer from the same
instability, especially for highly nonlinear MINLP problem:s.

To reduce the instability and improve the performance of Kelley’s method it is often
suggested to use regularization or a trust region to reduce the step size [9]. Due to the
non-convex properties of all MINLP problems, it is not trivial to directly use a trust
region or regularization. For example, the two closest feasible solutions, with different
integer combinations, may be located far apart in the search space. Lately, there has
been an interest in using regularization techniques for solving convex MINLP prob-
lems; e.g., using quadratic stabilization with Benders decomposition was proposed in
[205], and a technique using regularization combined with a cutting plane method was
presented in [59].

The new methods presented in Paper V are based on OA, and use a regularization
technique and quadratic approximations of the Lagrangian for the task of obtaining
new integer combinations. The regularization technique is referred to as level-based
outer approximation (L-OA), and is inspired by the level method for NLP problems
[113, 129]. By modifying the L-OA method it is possible to use a quadratic approxima-
tion of the Lagrangian function for the task of choosing integer combinations, and this
method is referred to as quadratic outer approximation (Q-OA). The second method,
thus, combines ideas from both the level method and sequential quadratic program-
ming (SQP) [96, 159]. The main idea in both methods is to choose the integer combina-
tions more carefully, to obtain the optimal solution in fewer iterations.

The basic steps of L-OA are first described, and from there Q-OA can easily be de-
rived. A feasible solution (%,y) of the MINLP problem is needed to initiate the search
with both methods, and here it is assumed that such a solution is known. Polyhedral
outer approximations Ny are constructed and improved in each iteration, using the
same procedure as in OA. In each iteration k, a lower bound LB¥ on the optimum of
the MINLP problem is obtained by minimizing the objective within Ny NLNY, i.e., by
solving problem (MILP-k). An upper bound UBF on the optimum is given by the best-
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known feasible solution. The optimal objective value of the MINLP problem, which is
in between LB* and UB¥, is approximated in each iteration according to

% =(1-a)UB* +aLB, (4.16)

where a € (0,1] is a parameter. A new integer combinations y**! is then chosen by pro-
jecting (X,¥) onto the part of the polyhedral approximation where the MINLP objective
function is less than or equal to Z;. The projection is done by solving

_112
X—X

y-7,

subjectto  clx+cly< 2

minimize
X,y

(MIQP-Proj)

(x,y)eﬁkﬂLﬂY,

which is a convex mixed-integer quadratic programming (MIQP) problem. The integer
combination y**! is thus chosen as the point closest to the feasible solution (x,§) so-
lution, such that the objective is reduced to at most Z;. The corresponding continuous
variables x**! are obtained as in OA, by solving either one of the NLP problems (NLP-k)
or (NLPf-k). If a better feasible solution is found, then the upper bound is updated and
the solution is stored as (%,y). The polyhedral outer approximation is updated by gener-
ating new linearization at the (x*+1,y¥*1). In the next iteration the procedure is repeated
by obtaining a new improved lower bound LB**!, improved estimate of the optimum
2,1, and projecting the best found solution. These are the basic steps in the L-OA
method, and they are repeated until the upper and lower bounds are within the desired
tolerance. In Paper V it is proven that the L-OA method has finite convergence. Fur-
thermore, it is shown that the procedure is equivalent to adding a trust region around
the best found feasible solution in the MILP master problem in OA.
It is not necessary to use the Euclidean norm for the projection in problem (MIQP-Proj).

For example, a valid norm in the (x,y)-space can be defined as

1/2

T
:([;] V2,L(%5, X i) [;” ) (4.17)

where V,Z(Iyﬁ is the Hessian of the Lagrangian with respect to the (x,y)-variables. Using
the norm given by eq. (4.17) in the projection problem (MIQP-Proj), would favor direc-
tions in which the linear approximation is, at least locally, more accurate. However, the
approach of using the norm given by eq. (4.17) has so far not been tested properly.

X

y

It is also possible to use the L-OA approach with a different objective function in
problem (MIQP-Proj), and the convergence proofs in Paper V hold with an arbitrary
objective function in the sub-problem. To obtain better integer solutions, it would be
desirable to utilize information about the curvature of the problem when choosing the
new integer combinations. To include information about both the objective and con-
straints of the original problem, we can use the Lagrangian function given by eq. (5).
Furthermore, to get a tractable sub-problem, we choose to approximate the Lagrangian
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by a second order Taylor series expansion. By minimizing a quadratic approximation
of the Lagrangian function, we can incorporate information about second order deriva-
tives in the task of choosing new integer combinations. The Q-OA method includes
the same steps as L-OA for obtaining lower bounds LB¥, and estimates of the optimum
Z;.. However, the new integer combinations are then obtained by solving the following
convex MIQP

. oo 7 oT[X—X
minimize ViyL(X ¥, A, i) [y_)-,
(QOA-master)

subjectto ¢l x+cly <z,

(x,y) eﬁkﬂLﬂY,

where 1 and fi are the optimal Lagrangian multipliers corresponding to the currently
best found feasible solution (X,¥). Using similar notation as before, Vx,yll denotes the
gradient of the Lagrangian with respect to the (x,y)-variables. The same procedure as
in both OA and L-OA, is used for determining the continuous variables and updating
the polyhedral approximation.

The constraint clTx+ cgy < 2, is needed to ensure that (QOA-master) will obtain new
integer combinations. Since the second order Taylor series expansion does not underes-
timate the Lagrangian, it is possible that the expansion point (X,y) is the minimizer of
the approximation even if it is not the optimal solution to the MINLP problem. Another
technique using a quadratic approximation of the Lagrangian within OA was proposed
in [69], where they force a small e-improvement on the objective to avoid stagnating
at non-optimal solutions. In general, the Q-OA approach enforces a stricter reduction,
and should be less sensitive to the quality of the quadratic approximation. Furthermore,
the Q-OA approach ensures that the sub-problem (QOA-master) is always feasible. As
mentioned in Paper V, Q-OA basically chooses the new integer combinations by inter-
polating between the minimum of the linear approximation of the MINLP problem and
the minimum of the quadratic approximation of the Lagrangian, where & in eq. (4.16) is
the interpolation parameter. Setting a = 1 forces the integer combination to be chosen
as the minimizer of the MILP-master problem, whereas a smaller « allows the integer
combination to be closer to the minimum of the quadratic approximation. In general,
a smaller a will result in trial solutions closer to the best found solution, and a larger
value promotes larger steps in the search space.

To illustrate L-OA and Q-OA, and to show how they differ to the other methods
presented in this thesis, the methods are applied to the illustrative example (ex2). Both
methods are started at the feasible solution (3.32,0), and the a parameter is set to 0.5.
The first three iterations of both methods are shown in Figure 4.4. L-OA is well-suited
for this specific problem and obtains the optimal solution in the second iteration. In
the third iteration, the solution is verified as optimal by updating the lower bound.
From the figures, it can be seen that the approximation of the Lagrangian function does
not attend its minimum at the expansion point, and the solutions are attracted toward
the optimum of the approximation. Q-OA obtains the optimal solutions in the third
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10

Figure 4.5: The figure shows the first three iterations of L-OA (on top) and Q-OA (below)
applied to problem (ex2). The figures show the feasible region defined by the nonlinear
constraints in dark gray, and the light gray areas show the polyhedral approximations.
The circular dot represents the best found solution, the squared dots the solution of the
MIQP sub-problem, and the diamond shaped dots the solution of an NLP sub-problem.

The dashed curves are contours of the objective functions in the MIQP sub-problems,

and the red lines represent the constraints c{x + cgy < Z;. Contours of the objective

function in the MINLP problem have been left out to avoid confusion.

iteration, and optimality can be proven in the following iteration. However, problem
(ex2) is not the best example for showing the difference between L-OA and Q-OA, since
the Hessian of the Lagrangian will be a scaled identity matrix. The objective function
in both types of sub-problems will, therefore, have the same shape. A better illustration
of the differences between L-OA and Q-OA is given in Paper V.

As previously mentioned, L-OA and Q-OA are intended to deal with nonlinearities
more efficiently than OA by choosing the integer combinations more carefully. For al-
most linear MINLP problems, L-OA and Q-OA should not have a direct advantage over
OA, due to computationally more demanding iterations. Each iteration in both L-OA
and Q-OA requires the solution of both a MILP and a convex MIQP sub-problem. Each
iteration is, therefore, basically twice as computationally demanding as an iteration in
OA. However, as mentioned in Paper V, all of the sub-problems do not need to be solved
to optimality, which can significantly reduce the computational effort.

Both L-OA and Q-OA are proven to have finite convergence in Paper V, and a numer-
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ical comparison of OA, L-OA, and Q-OA is presented in the paper. The test set in the
comparison contained 109 convex MINLP problems, where at least 50% of the variables
are included in a nonlinear term. For the test problems, L-OA and Q-OA needed signifi-
cantly fewer iterations to solve the problems than OA. For 90% of the test problems, OA
needed about seven times more iterations than Q-OA to solve the problems. Compared
to L-OA, OA needed approximately twice as many iterations. Regarding speed, both
L-OA and Q-OA were faster than OA for the test set. The new methods, thus, compen-
sated for the computationally more demanding iterations by significantly reducing the
number of iterations needed. L-OA was overall faster than OA, and Q-OA was signifi-
cantly faster than the other methods. The results showed a clear advantage of utilizing
second order derivatives when choosing the integer combinations.

For the test problems, both L-OA and Q-OA encountered significantly fewer infeasi-
ble NLP sub-problems than OA. In total, OA encountered 877 infeasible NLP problems,
whereas Q-OA and L-OA only encountered 257 and 259 infeasible NLP problems. This
is due to the more careful approach of choosing the integer combinations, and the MIQP
sub-problems tends to return solutions closer to the feasible region than the solutions
returned by the MILP-master problem in OA. From an infeasible integer combination,
the methods do not, in general, generate supporting hyperplanes to the integer relaxed
feasible set. Therefore, a feasible integer combination tends to result in a tighter polyhe-
dral outer approximation in the next iteration, compared to an infeasible integer com-
bination. The reduction of the infeasible sub-problems, at least partially, explains why
L-OA and Q-OA needed fewer iterations than OA to solve the problems.

Techniques similar to those used in L-OA and Q-OA, could also be used within the
ECP and ESH algorithm to incorporate regularization and second order derivatives.
However, since the optimal Lagrangian multipliers are readily available for feasible
integer combinations within OA, it felt natural to integrate the techniques within an
OA framework.

4.5 The supporting hyperplane optimization toolkit solver
(Paper VI)

The SHOT solver was first presented in Paper I, and a more detailed description and an
updated solver are presented in Paper VI. In its current form, SHOT combines a dual
strategy based on polyhedral outer approximations with several primal heuristics. The
dual strategy is intended to obtain tight lower bounds on the optimal objective value of
the MINLP problem and to obtain new trial solutions. The dual strategy uses the ESH
algorithm for obtaining supporting hyperplanes of the integer relaxed feasible set, and
to generate a tight polyhedral outer approximation. A strategy of solving a sequence
of LP-relaxations is used as a preprocessing technique to quickly obtain an initial outer
approximation of the feasible set. The polyhedral outer approximation is used either
within a so-called, single- or multi-tree strategy. These are referred to as dual strategies
since one of their primary tasks is to obtain a lower bound on the optimal objective
value of the MINLP problem, which is sometimes referred to as a dual bound.



54 CHAPTER 4

The multi-tree strategy basically solves a MILP or MIQP sub-problem in each it-
eration, and minimizes a linear or quadratic objective function within the polyhedral
outer approximation to obtain a lower bound and a new trial solution. Currently, MIQP
sub-problems are only utilized if the original problem has a quadratic objective. The
multi-tree strategy closely resembles the ESH algorithm presented in Paper I; it is re-
ferred to as a multi-tree strategy since multiple branch and bound trees are generated.
In the early iterations, the polyhedral approximation is usually not accurate enough
to get a good representation of the MINLP problem, and to avoid spending time solv-
ing poor approximations the multi-tree strategy uses an early termination technique.
Early termination allows the subsolver to terminate the search as soon as a good integer
solution has been obtained. The requirements of a “ good” solution are dynamically
updated, and eventually forces the sub-problems to be solved to optimality.

The main idea behind the single-tree strategy is to construct only a single branch
and bound tree and to dynamically update the polyhedral outer approximation within
the branch and bound search. The single-tree strategy in SHOT is, thus, based on a
method similar to the LP/NLP-BB algorithm described in Section 3.7. The search is ini-
tiated as a “ normal” BB procedure of a MILP or MIQP problem, that utilizes the initial
polyhedral approximation to approximate the nonlinear constraints. However, the BB
procedure is paused as soon as an integer solution is obtained. The obtained integer
solution serves as a trial solution and will be used to improve the polyhedral approx-
imation. New supporting hyperplanes to the integer relaxed feasible set are included,
and the polyhedral approximation is improved within the open nodes in the branch and
bound tree. The integer solutions are also used within the primal heuristics, which may
result in a feasible solution and an improved upper bound. A lower bound is obtained,
as normally in BB-algorithm, by the lowest objective value of the open nodes. If the
upper and lower bounds are not within the desired tolerance, then the BB search con-
tinues with an improved polyhedral approximation. The new supporting hyperplanes
are added as so-called lazy constraints through callbacks in the MILP/MIQP solver.
This approach is implemented with either Gurobi or CPLEX as subsolver, and allows
SHOT to update the polyhedral outer approximation without completely rebuilding the
BB tree. By using the lazy constraint functionality, SHOT lets the subsolver construct
and maintain the BB tree. The tight integration with the subsolver allows SHOT to fully
benefit from preprocessing, advanced branching strategies, cut generating procedures,
and other features implemented in the subsolver.

Currently, there are three main primal strategies implemented in SHOT, which are
used for obtaining feasible solutions and an upper bound to the MINLP problem. The
first strategy utilizes the solution pool provided by the MILP/MIQP subsolver, and
is only available within the multi-tree strategy. When solving the MILP/MIQP sub-
problems, multiple integer solutions are normally found in the BB search, and these
alternative solutions are stored in the solution pool. Even if these are non-optimal solu-
tions to the subproblems, they may provide good solutions to the original problem. In
the single-tree approach, every integer solution obtained are utilized, and feasible inte-
ger solutions are likely to be found in the search procedure. The second strategy uses
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a technique of temporarily fixing the integer variables in the original MINLP problems
to an obtained integer solution, resulting in a convex NLP. By solving the resulting NLP
problem, it may be possible to obtain a feasible solution to the MINLP problem. The
second primal strategy is, thus, closely related to the OA algorithm. The root-searches
used to obtain points on the boundary of the integer relaxed feasible set may also return
feasible solutions to the MINLP problem, and the root-searches are considered as the
third primal strategy.

SHOT has been released as an open-source COIN-OR project, and the solver can be
integrated in the GAMS software. The solver is implemented in C++ and uses some
functionality from other COIN-OR projects, such as Optimization Services [82]. The
solver implementation is described in more detail in Paper VI, and the solver can be
downloaded from https://github.com/coin-or/shot. By using CBC and IPOPT as
subsolvers, SHOT can be used as completely open-source software. However, the per-
formance is greatly improved by using either Gurobi or CPLEX as subsolver for the
MILP/MIQP sub-problems. Through an interface to GAMS, it is also possible to utilize
all the NLP solvers available in GAMS as subsolvers with SHOT.

Numerical comparisons of different features of SHOT are presented in Paper VI,
along with a benchmark comparison against other state-of-the-art solvers. Figure 4.6,
from Paper VI, shows a comparison of SHOT against AlphaECP [195], AOA [103],
BARON [173], BONMIN [38], DICOPT [92], Minotaur [143], SBB [80], and SCIP [191].
The comparison is based on all 366 convex MINLP instances currently available in
MINLPLib [148]. Figure 4.6 shows how many of the problems that can be solved within
a relative objective gap < 0.1% and a primal gap < 0.1% with the different solvers. The
graphs do not correspond to the cumulative solution time but show how many individ-
ual problems can be solved within a specific time. An objective gap of < 0.1%, means
that the solver was able to obtain an upper and lower bound within less than 0.1%. A
primal gap of less than 0.1% indicates that the solver was able to obtain a feasible so-
lution within 0.1% of the best-known solution, but the solutions were not necessarily
verified as optimal. The virtual best and virtual worst lines in the figure show the per-
formance obtained if the best and worst solver is chosen for each individual problem
separately.

Figure 4.6 shows that SHOT is one of the most efficient solvers for the test problem:s,
and SHOT is able to solve more problems than any other solver. The efficiency of SHOT
is also illustrated in a recent review of solvers for convex MINLP problems [123]. Some
of the solvers are able to obtain an optimal solution to significantly more problems,
than they are able to verify as optimal. This highlights the importance of obtaining a
tight polyhedral outer approximation to obtain a strong lower bound. By comparing
the number of problems solved within the desired objective gap and primal gap, it is
clear that SHOT is able to obtain tight lower bounds and supports the belief in the ESH
algorithm’s ability to generate tight polyhedral approximations.
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Figure 4.6: Solution profiles showing the number of convex MINLP problems solved,
within a specific objective and primal gap, as a function of time. The solution profiles
are from Paper VI, where more information about the benchmark is provided.
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The two overall fastest solvers were AOA and SHOT, and both solvers utilize a poly-
hedral outer approximation based on a single-tree approach. The results supports the
strong belief in the single tree approach expressed in [1, 19, 131]. However, compar-
isons of the single- and multi-tree strategies of SHOT, in Paper VI, do not show an
obvious advantage of either strategy. The good performance of SHOT is, therefore, not
mainly due to the single-tree approach, but rather to an efficient integration of different
techniques.

4.6 Conclusion

The new methods presented in Papers I-V have been described in this chapter along
with a description of the SHOT solver from Paper VI. This chapter gives a summary
of the contributions to convex MINLP presented in Papers I-VI. However, some details
and results from the papers are omitted here. Both theoretical aspects, practical imple-
mentation details, and numerical results are presented in more detail in the enclosed
papers. The next chapter, concludes the thesis and discusses some future research ideas.






Chapter 5

Conclusion and Future Ideas

Finally, this section concludes the thesis, and some future research ideas in the field of
convex MINLP are also given.

5.1 Conclusion

Different techniques for constructing and utilizing polyhedral outer approximations
have been presented and analyzed in this thesis. It was assumed that the ESH algorithm
would be an efficient technique for constructing tight polyhedral outer approximations
of the integer relaxed feasible set, and this has been verified by the numerical results
presented in Paper I and Paper VI. According to the numerical results, the concept
of using the ESH algorithm for generating tight polyhedral outer approximations in
combination with primal heuristics seems to be a very competitive approach for solving
convex MINLP problems. Furthermore, it was shown in Paper II that the ESH algorithm
can be applied to a more general type of problems where the nonlinear function may be
non-smooth and pseudoconvex.

The different techniques for utilizing the polyhedral outer approximation, presented
in this thesis, resulted in trial solutions with different properties. For example, by using
the center-cut technique, from Paper 1V, it is usually possible to obtain a feasible solu-
tion within only a fraction of the iterations needed to obtain a feasible solution with the
basic ECP or ESH algorithm. The results obtained with the L-OA and Q-OA methods, in
Paper V, also illustrated the differences between techniques for utilizing the polyhedral
outer approximation. OA, L-OA, and Q-OA all use the same technique for generating
and updating the polyhedral outer approximations. Still, for many of the test problems
Q-OA needed only about 1/7 of the iterations required by OA to solve the problems. As
a consequence Q-OA used only about 1/7 of the total number of linearizations added by
OA. It is interesting that the quadratic approximation technique was able to construct a
polyhedral approximation accurate enough for obtaining the optimal solution and veri-
fying optimality with only a fraction of the linearizations needed by OA. The numerical
results in Paper V highlight the importance of efficiently generating linearizations to
construct the polyhedral outer approximation, and show that efficient linearizations
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can significantly reduce the number of iterations needed to solve a problem. By uti-
lizing a quadratic approximation of the Lagrangian function for choosing the integer
combination, Q-OA was able to obtain the optimal solution in less time and iterations
than the other methods. For convex MINLP problems with a high degree of nonlinear-
ity, the Q-OA approach seems to be a very efficient technique.

It was shown in Paper III that the problem formulation can have a great impact on
the quality of the obtained polyhedral outer approximations. By applying the reformu-
lation techniques, it was possible to transform some practically intractable problems
into problems that could be solved within a few seconds. The simple reformulations
techniques should not be left to the end user but should be taken care of by the solver
to improve the ease of use. Further work within the field of automatic reformulations in
convex MINLP is, thus, still well motivated. Some solvers, such as BARON, already per-
forms some automatic reformulations. The reformulations, from Paper III, are currently
not implemented in SHOT, but the goal is to incorporate automatic reformulations into
the solver.

The SHOT solver has been an ongoing project during my entire time as a PhD stu-
dent. The project has gone through several phases of excitement and frustration. For
example, at the end of 2014, we were stressed about how to obtain good feasible solu-
tions (upper bounds), since these are not readily obtained during the iterations of the
ESH algorithm. In its current form, SHOT is an efficient integration of several tech-
niques and is able to efficiently solve problems by constructing tight polyhedral outer
approximations and obtaining feasible solutions through primal strategies. A detailed
description of the solver, as well as numerical comparisons, was presented in Paper VI.
According to the numerical results presented in Paper VI, and the solver comparison
in [123], SHOT currently seems to be the most efficient solver for convex MINLP prob-
lems. The solver is now available as an open-source project, and we hope to spread
the knowledge we have obtained. However, SHOT is still quite a simple solver, and
there is room for improvement. For example, at the moment SHOT does not use any
preprocessing based on the nonlinear functions to perform bound tightening and range
reduction.

Comparing algorithms for convex MINLP problems is not entirely straightforward.
Due to the combinatorial nature, it is not easy to directly analyze the convergence rate of
the algorithms. The convergence rate of decomposition-based algorithms is, of course,
limited by the complexity of the sub-problems. However, if we only analyze the main
algorithm, would it be possible to obtain a useful limit on the number of main iterations
needed to solve a problem with specific properties? The author, at least, is not aware of
such results. However, the number of main iterations is not necessarily a good metric
for comparing algorithms. Even if two algorithms solve similar sub-problems, the sub-
problems may become significantly more expensive in one of the algorithms. The most
commonly used metric for comparing MINLP algorithms and solvers is, therefore, the
total time needed to solve a problem. The time is obviously computer specific, but
it accounts for the complexity of the different sub-problems, and the time difference
between solvers should also be comparable on different platforms.
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The algorithms and solvers considered here are mainly compared by testing them on
problems from the MINLPLib and comparing the time needed to solve the problems.
Using this set of test problems is, of course, somewhat limiting and does not necessar-
ily tell how well-suited an algorithm or solver is for a specific problem. However, the
problem library contains a large variety of problems originating from different practical
applications and theoretical test problems. Currently, MINLPLib contains 366 convex
MINLP problems, and the problem library is continuously growing. The test set pro-
vided by MINLPLib should, therefore, be a decent test for evaluating the performance
of solvers and algorithms.

5.2 Future ideas

In this final section, I want to share some thoughts and ideas on future plans and re-
search topics within convex MINLP.

Some additional primal strategies are planned to be implemented in the SHOT
solver, to improve its capability for solving challenging problems. The center-cut algo-
rithm could quite easily be incorporated as a primal heuristic in the solver, and would
only require minor changes of the sub-problems. A round-and-project technique, uti-
lizing points on the boundary of the integer relaxed feasible set, could also work well
within the solver. Solutions on the boundary of the integer relaxed feasible set are fre-
quently obtained by the root-search procedure. However, these solutions are unlikely to
have integer values. An integer solution can be obtained by simply rounding the solu-
tion, although the rounded solution is unlikely to satisfy all the linear constraints of the
MINLP problem. To hopefully obtain a feasible integer solution, the rounded solution
can be projected onto the polyhedral outer approximation by solving an LP problem.
The round-and-project technique would not require any expensive computations and
could be well suited as a primal heuristic in SHOT.

At the moment, SHOT does not have any functionality for dealing with non-convex
MINLP problems. In the future, we are also interested in including some global op-
timization functionality into the solver. It could also be beneficial to incorporate the
techniques used by the Q-OA method in the SHOT solver.

We were surprised by the small difference between the multi- and single-tree strate-
gies in SHOT. The LP/NLP-BB approach is commonly considered more efficient than
the standard OA approach, and we expected the same difference with SHOT. The early
termination of the MILP/MIQP subsolver and utilization of the solution pool improve
the performance of the multi-tree strategy quite significantly, as shown in Paper VI
Similar techniques could also be used within an OA framework, and there is no obvi-
ous reason why similar advantages would not be obtained within an OA-based solver.
According to the authors best knowledge, there is no OA-based solver directly utilizing
these features, and it could definitely be worth testing.

Currently, the author is not aware of any efficient technique for warm-starting a
convex MINLP solver. By warm-starting the author refers to techniques to utilize infor-
mation about a known solution, or information learned from solving a closely related
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problem, to significantly reduce the computational effort needed to solve the problem.
Tests have shown that starting some solvers at the optimal solution may even result in
more iterations and slower progress, compared to a normal start. For many practical
applications, a feasible solution may be known in advance and it would be desirable to
utilize the knowledge somehow. Warm-starting in convex MINLP would have several
benefits, but at the moment this remains an open research topic.



Bibliography

(1]

2]

(3]

4]

[6]

[7]

[10]

[11]

K. Abhishek, S. Leyffer, and J. Linderoth. FIIMINT: An outer approximation-based solver
for convex mixed-integer nonlinear programs. INFORMS Journal on Computing, 22(4):555-
567, 2010. (21, 35, 57)

T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming Com-
putation, 1(1):1-41, 2009. (14, 37)

T. Achterberg and R. Wunderling. Mixed integer programming: Analyzing 12 years of
progress. In Facets of Combinatorial Optimization, pp. 449-481. Springer, 2013. (2)

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33(1):42-54, 2005. (12)

C.S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization method,
aBB, for general twice-differentiable constrained NLPs — I. Theoretical advances. Com-
puters & Chemical Engineering, 22(9):1137-1158, 1998. (18)

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. Global optimization of mixed-integer
nonlinear problems. AIChE Journal, 46(9):1769-1797, 2000. (18)

N. Agin. Optimum seeking with branch and bound. Management Science, 13(4):B-176,
1966. (12)

E. Allgower and A. Zheng. Nonlinear model predictive control, Volume 26. Birkhduser, 2012.
(15)

A. Bagirov, N. Karmitsa, and M. M. Mékela. Introduction to Nonsmooth Optimization: The-
ory, Practice and Software. Springer, 2014. (17, 40, 49)

E. Balas. A duality theorem and an algorithm for (mixed-)integer nonlinear programming.
Linear Algebra and its Applications, 4(4):341-352, 1971. (30)

E. Balas. Intersection cuts — a new type of cutting planes for integer programming. Oper-
ations Research, 19(1):19-39, 1971. (14)

E. Balas. Disjunctive programming. In Annals of Discrete Mathematics, Volume 5, pp. 3-51.
Elsevier, 1979. (14)

E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for mixed
0-1 programs. Mathematical Programming, 58(1-3):295-324, 1993. (14, 21)

63



64

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

CHAPTER 5

M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory and Algo-
rithms. John Wiley & Sons, 2013. (17)

M. Bazaraa, J. Goode, and C. Shetty. Constraint qualifications revisited. Management Sci-
ence, 18(9):567-573,1972. (16)

P. Belotti. Couenne: a user’s manual, 2010. URL https://www.coin-or.org/Couenne/
couenne-user-manual.pdf. (37)

P. Belotti. Bound reduction using pairs of linear inequalities. Journal of Global Optimization,
56(3):787-819, 2013. (36)

P. Belotti, S. Cafieri, J. Lee, and L. Liberti. Feasibility-based bounds tightening via fixed
points. In W. Wu and O. Daescu, editors, International Conference on Combinatorial Opti-
mization and Applications, pp. 65-76. Springer, 2010. (36)

P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan. Mixed-integer
nonlinear optimization. Acta Numerica, 22:1-131, 2013. (21, 36, 37, 57)

J. E. Benders. Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4(1):238-252, 1962. (29)

D. E. Bernal, S. Vigerske, F. Trespalacios, and I. E. Grossmann. Improving the perfor-
mance of DICOPT in convex MINLP problems using a feasibility pump. Preprint, Opti-
mization Online, 2017. URL http://www.optimization-online.org/DB_HTML/2017/08/
6171.html. (47)

T. Berthold. Heuristic algorithms in global MINLP solvers. PhD thesis, Technische Universitat
Berlin, 2014. (36)

T. Berthold. RENS — the optimal rounding. Mathematical Programming Computation, 6(1):
33-54, 2014. (36)

T. Berthold and A. M. Gleixner. Undercover: a primal MINLP heuristic exploring a largest
sub-MIP. Mathematical Programming, 144(1-2):315-346, 2014. (36)

D. P. Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 1999. (16)

D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press,
2014. (17)

D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization, Volume 6. Athena
Scientific Belmont, 1997. (10, 11)

D. Bertsimas and R. Weismantel. Optimization over Integers, Volume 13. Dynamic Ideas
Belmont, 2005. (14)

J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic language for
technical computing. arXiv preprint:1209.5145, 2012. (37)

L. T. Biegler. Nonlinear programming: concepts, algorithms, and applications to chemical pro-
cesses. SIAM, 2010. (15,17)



CONCLUSION AND FUTURE IDEAS 65

[31]

[36]

[37]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

L. T. Biegler and I. E. Grossmann. Retrospective on optimization. Computers & Chemical
Engineering, 28(8):1169-1192, 2004. (2)

L. T. Biegler, I. E. Grossmann, and A. W. Westerberg. Systematic methods for chemical
process design. 1997. (1)

J. Bisschop. AIMMS Optimization Modeling. Lulu.com, 2006. (37)

E. R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling. MIP: Theory and practice
— closing the gap. In IFIP Conference on System Modeling and Optimization, pp. 19-49.
Springer, 1999. (14)

R. Bixby and E. Rothberg. Progress in computational mixed integer programming- A look
back from the other side of the tipping point. Annals of Operations Research, 149(1):37-41,
2007. (2)

R. E. Bixby. Solving real-world linear programs: A decade and more of progress. Operations
Research, 50(1):3-15, 2002. (10)

P. Bonami and M. A. Lejeune. An exact solution approach for portfolio optimization prob-
lems under stochastic and integer constraints. Operations Research, 57(3):650-670, 2009.
(17)

P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, and A. Wachter. An algorithmic framework for convex
mixed integer nonlinear programs. Discrete Optimization, 5(2):186-204, 2008. (21, 35, 37,
55)

P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot. A feasibility pump for mixed integer
nonlinear programs. Mathematical Programming, 119(2):331-352, 2009. (36, 47)

B. Borchers and J. E. Mitchell. An improved branch and bound algorithm for mixed integer
nonlinear programs. Computers & Operations Research, 21(4):359-367, 1994. (21)

E. Boukouvala, R. Misener, and C. A. Floudas. Global optimization advances in mixed-
integer nonlinear programming, MINLP, and constrained derivative-free optimization,
CDFO. European Journal of Operational Research, 252(3):701-727, 2016. (2)

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. (7,
8,9,15,16,17, 31, 40, 42, 46)

A. Brook, D. Kendrick, and A. Meeraus. GAMS, a user’s guide. ACM Signum Newsletter, 23
(3-4):10-11, 1988. (37)

M. R. Bussieck and S. Vigerske. MINLP solver software. In Wiley Encyclopedia of Operations
Research and Management Science. Wiley Online Library, 2010. (37)

R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: An integrated package for nonlinear
optimization. In Large-scale Nonlinear Optimization, pp. 35-59. Springer, 2006. (17, 37)

A. Cambini and L. Martein. Generalized Convexity and Optimization. Springer, 2009. (8, 9)



66

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

(57]

(58]

(59]

[60]

[61]

[62]

[63]

[64]

CHAPTER 5

W. Cao and G. J. Lim. Optimization models for cancer treatment planning. In Wiley Ency-
clopedia of Operations Research and Management Science. Wiley Online Library, 2011. (17)

M. T. Cezik and G. Iyengar. Cuts for mixed 0-1 conic programming. Mathematical Program-
ming, 104(1):179-202, 2005. (21)

V. Chvatal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete math-
ematics, 4(4):305-337, 1973. (13)

J. Clausen. Branch and bound algorithms-principles and examples. Department of Com-
puter Science, University of Copenhagen, pp. 1-30, 1999. (12)

M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming, Volume 271 of Graduate
Texts in Mathematics. Springer Berlin, 2014. (14)

A.R. Conn, G. Gould, and P. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear
optimization (Release A), Volume 17. Springer Science & Business Media, 2013. (17)

W. Cook, R. Kannan, and A. Schrijver. Chvatal closures for mixed integer programming
problems. Mathematical Programming, 47(1-3):155-174, 1990. (14)

R.J. Dakin. A tree-search algorithm for mixed integer programming problems. The Com-
puter Journal, 8(3):250-255, 1965. (20)

C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. A storm of feasibility pumps for
nonconvex MINLP. Mathematical programming, 136(2):375-402, 2012. (36)

G. Dantzig. Linear Programming and Extensions. Princeton University Press, 2016. (9, 10,
11)

G. B. Dantzig. Maximization of a Linear Function of Variables Subject to Linear Inequalities,
in Activity Analysis of Production and Allocation. Wiley. (9)

G. B. Dantzig. On integer and partial integer linear programming problems. Rand Corpo-
ration, 1958. (11)

W. de Oliveira. Regularized optimization methods for convex MINLP problems. TOP, 24
(3):665-692, 2016. (49)

D. den Hertog, J. Kaliski, C. Roos, and T. Terlaky. A logarithmic barrier cutting plane
method for convex programming. Annals of Operations Research, 58(2):67-98, 1995. (49)

A.S. Drud. CONOPT — a large-scale GRG code. ORSA Journal on Computing, 6(2):207-
216, 1994. (17)

I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical
optimization. SIAM Review, 59(2):295-320, 2017. (37)

M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Mathematical Programming, 36(3):307-339, 1986. (26, 27)

J. Elzinga and T. G. Moore. A central cutting plane algorithm for the convex programming
problem. Mathematical Programming, 8(1):134-145, 1975. (46)



CONCLUSION AND FUTURE IDEAS 67

[65]

[66]

[67]

V.-P. Eronen, M. M. Mikela, and T. Westerlund. Extended cutting plane method for a class
of nonsmooth nonconvex MINLP problems. Optimization, 64(3):641-661, 2015. (24)

FICO. Xpress-optimizer reference manual, 2017. URL https://www.artelys.com/uploads/
pdfs/Xpress/Xpress_Optimizer_2447PS.pdf. (11, 14)

M. Fischetti and A. Lodi. Heuristics in mixed integer programming. In Wiley Encyclopedia
of Operations Research and Management Science. Wiley Online Library, 2011. (36)

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 2013. (14)

R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer approxima-
tion. Mathematical Programming, 66(1):327-349, 1994. (26, 27, 28, 47, 51)

R. Fletcher and S. Leyffer. User manual for filterSQP. Numerical Analysis Report NA/181,
Department of Mathematics, University of Dundee, 1998. (17)

O. E. Flippo and A. H. R. Kan. Decomposition in general mathematical programming.
Mathematical Programming, 60(1-3):361-382, 1993. (30)

C. A. Floudas. Nonlinear and Mixed-integer Optimization: Fundamentals and Applications.
Oxford University Press, 1995. (2, 30, 31)

C. A. Floudas. Deterministic Global Optimization, vol. 37 of Nonconvex Optimization and its
Applications. Kluwer Academic, 2000. (17, 18)

J. Forrest. Clp user’s guide, 2004. URL https://projects.coin-or.org/Clp. (11)
J. Forrest. Cbc user’s guide, 2005. URL https://projects.coin-or.org/Cbc. (14)

A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear optimization.
SIAM review, 44(4):525-597, 2002. (17)

B. A. Foster and D. M. Ryan. An integer programming approach to the vehicle scheduling
problem. Journal of the Operational Research Society, 27(2):367-384, 1976. (11)

R. Fourer, D. Gay, and B. Kernighan. AMPL. Boyd & Fraser Danvers, MA, 1993. (37)

A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0-1 mixed integer pro-
grams. Mathematical Programming, 106(2):225-236, 2006. (21)

SBB GAMS manual. GAMS, 2018. URL https://www.gams.com/latest/docs/S_SBB.
html. (37, 55)

C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and practice —
a survey. Automatica, 25(3):335-348, 1989. (1)

H. Gassmann, J. Ma, K. Martin, and W. Sheng. Optimization Services 2.10 User’s Manual,
2015. URL http://projects.coin-or.org/svn/0S/trunk/0S/doc/osUsersManual.pdf.
(55)

A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and
Applications, 10(4):237-260, 1972. (29, 31)



68

(84]

(85]

(86]

(87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

[99]

[100]

CHAPTER 5

P. E. Gill, W. Murray, and M. A. Saunders. SNOPT: An SQP algorithm for large-scale con-
strained optimization. SIAM Review, 47(1):99-131, 2005. (17)

P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9(6):849-859, 1961. (11)

R. Gomory. An algorithm for the mixed integer problem. Technical report, RAND Corp.
Santa Monica, CA, 1960. (12)

R. E. Gomory. An algorithm for integer solutions to linear programs. Recent Advances in
Mathematical Programming, 64:260-302, 1963. (14)

R. E. Gomory et al. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64(5):275-278, 1958. (11,12, 14, 21)

I. E. Grossmann. MINLP optimization strategies and algorithms for process synthesis.
Technical report, Carnegie Mellon University, 1989. (17)

I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming tech-
niques. Optimization and Engineering, 3(3):227-252, 2002. (29, 34)

I. E. Grossmann and Z. Kravanja. Mixed-integer nonlinear programming: A survey of
algorithms and applications. In L. T. Biegler, T. F. Coleman, A. R. Conn, and F. N. Santosa,
editors, Large-scale Optimization with Applications, pp. 73-100. Springer, 1997. (2, 33)

I. E. Grossmann, J. Viswanathan, A. Vecchietti, R. Raman, E. Kalvelagen, et al.
Gams/dicopt: A discrete continuous optimization package. GAMS Corporation Inc, 2002.
(37, 55)

Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh. Lifted flow cover inequalities for mixed
0-1 integer programs. Mathematical Programming, 85(3):439-467, 1999. (14)

O. K. Gupta and A. Ravindran. Branch and bound experiments in convex nonlinear integer
programming. Management science, 31(12):1533-1546, 1985. (20)

Gurobi. Gurobi optimizer reference manual. Gurobi Optimization, LLC, 2018. URL http:
/ /www.gurobi.com/documentation/8.0/refman.pdf. (11, 14)

S.-P. Han. Superlinearly convergent variable metric algorithms for general nonlinear pro-
gramming problems. Mathematical Programming, 11(1):263-282, 1976. (49)

W. E. Hart, C. D. Laird, J.-P. Watson, D. L. Woodruff, G. A. Hackebeil, B. L. Nicholson, and
J. D. Siirola. Pyomo-optimization Modeling in Python, Volume 67. Springer, 2012. (37)

E. M. Hendrix, C. J. Mecking, and T. H. Hendriks. Finding robust solutions for product
design problems. European Journal of Operational Research, 92(1):28-36, 1996. (46)

H. Hijazi, P. Bonami, and A. Ouorou. An outer-inner approximation for separable mixed-
integer nonlinear programs. INFORMS Journal on Computing, 26(1):31-44, 2013. (37, 45)

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms I: Fun-
damentals, Volume 305. Springer Science & Business Media, 2013. (24)



CONCLUSION AND FUTURE IDEAS 69

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

F. L. Hitchcock. The distribution of a product from several sources to numerous localities.
Studies in Applied Mathematics, 20(1-4):224-230, 1941. (10)

R. Horst, P. M. Pardalos, and N. Van Thoai. Introduction to Global Optimization. Springer
Science & Business Media, 2000. (18)

M. Hunting. The AIMMS outer approximation algorithm for MINLP. Technical report,
AIMMS B.V., 2011. (37, 55)

T. Ibaraki. Theoretical comparisons of search strategies in branch-and-bound algorithms.
International Journal of Computer & Information Sciences, 5(4):315-344, 1976. (12)

IBM ILOG CPLEX Optimization Studio. CPLEX user’s manual, version 12.7,2017. (11, 14)

L. S. Inc. LINDO User’s Manual, 2017. URL https://www.lindo.com/downloads/PDF/
LindoUsersManual .pdf. (37)

J. Kallrath. Modeling Languages in Mathematical Optimization, Volume 88. Springer Science
& Business Media, 2013. (37)

N. Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the Sixteenth Annual ACM Symposium on Theory of Computing, pp. 302-311. ACM, 1984.
(10)

W. Karush. Minima of functions of several variables with inequalities as side conditions.
Master thesis, University of Chicago, 1939. (16)

J. E. Kelley, Jr. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial & Applied Mathematics, 8(4):703-712, 1960. (22, 24, 49)

L. G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53-72, 1980. (10)

M. R. Kiling, J. Linderoth, and J. Luedtke. Lift-and-project cuts for convex mixed integer
nonlinear programs. Mathematical Programming Computation, 9(4):499-526, 2017. (21)

K. C. Kiwiel. Proximal level bundle methods for convex nondifferentiable optimization,
saddle-point problems and variational inequalities. Mathematical Programming, 69(1-3):
89-109, 1995. (49)

V. Klee, G. Minty, and O. Shisha. How good is the simplex method? technical report.
Inequalities III, Academic Press, New York, 1972. (10)

T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G. Gam-
rath, A. M. Gleixner, S. Heinz, et al. MIPLIB 2010. Mathematical Programming Computation,
3(2):103, 2011. (14)

G. R. Kocis and I. E. Grossmann. Relaxation strategy for the structural optimization of
process flow sheets. Industrial & Engineering Chemistry Research, 26(9):1869-1880, 1987.
(26)

G. R. Kocis and I. E. Grossmann. Global optimization of nonconvex mixed-integer nonlin-
ear programming (MINLP) problems in process synthesis. Industrial & Engineering Chem-
istry Research, 27(8):1407-1421, 1988. (26)



70

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

(130]

[131]

[132]

(133]

CHAPTER 5

T. C. Koopmans. Optimum utilization of the transportation system. Econometrica: Journal
of the Econometric Society, pp. 136-146, 1949. (10)

T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic
activities. Econometrica: Journal of the Econometric Society, pp. 53-76, 1957. (1)

O. Kroger, C. Coffrin, H. Hijazi, and H. Nagarajan. Juniper: an open-source nonlinear
branch-and-bound solver in Julia. arXiv preprint: 1804.07332, 2018. (37)

J. Krongvist, A. Lundell, and T. Westerlund. The extended supporting hyperplane algo-
rithm for convex mixed-integer nonlinear programming. Journal of Global Optimization, 64
(2):249-272, 2016. (21)

J. Krongvist, A. Lundell, and T. Westerlund. A center-cut algorithm for solving convex
mixed-integer nonlinear programming problems. In Computer Aided Chemical Engineering,
Volume 40, pp. 2131-2136. Elsevier, 2017. (47)

J. Krongvist, D. E. Bernal, A. Lundell, and I. E. Grossmann. A Review and Comparison
of Solvers for Convex MINLP. Preprint, Optimization Online, 2018. URL http://www.
optimization-online.org/DB_HTML/2018/06/6650.html. (21, 35, 37, 55, 60)

H. Kuhn and T. A.W. Nonlinear programming. In Proc. 2nd Berkeley Symposium on Mathe-
matical Statistics and Probability, pp. 481-492, 1951. (16)

A.H. Land and A. G. Doig. An automatic method of solving discrete programming prob-
lems. Econometrica: Journal of the Econometric Society, pp. 497-520, 1960. (11, 20)

L. S. Lasdon, A. D. Waren, A. Jain, and M. Ratner. Design and testing of a generalized re-
duced gradient code for nonlinear programming. ACM Transactions on Mathematical Soft-
ware (TOMS), 4(1):34-50, 1978. (17)

T. Lastusilta. GAMS MINLP solver comparisons and some improvements to the AlphaECP
algorithm. PhD thesis, Abo Akademi University, 2011. (37)

J. Lee and S. Leyffer, editors. Mixed Integer Nonlinear Programming, Volume 154. Springer
Science & Business Media, 2011. (19)

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods. Mathe-
matical Programming, 69(1-3):111-147, 1995. (49)

C. E. Lemke. The dual method of solving the linear programming problem. Naval Research
Logistics (NRL), 1(1):36-47, 1954. (10)

S. Leyffer. Deterministic methods for mixed integer nonlinear programming. PhD thesis, 1993.
(35, 57)

S. Leyffer. Integrating SQP and branch-and-bound for mixed integer nonlinear program-
ming. Computational optimization and applications, 18(3):295-309, 2001. (21)

S. Leyffer, J. Linderoth, J. Luedtke, A. Miller, and T. Munson. Applications and algorithms
for mixed integer nonlinear programming. In Journal of Physics: Conference Series, Volume
180. IOP Publishing, 2009. (2)



CONCLUSION AND FUTURE IDEAS 71

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

J. Li, R. Misener, and C. A. Floudas. Scheduling of crude oil operations under demand
uncertainty: A robust optimization framework coupled with global optimization. AIChE
Journal, 58(8):2373-2396, 2012. (17)

L. Liberti and N. Maculan. Global Optimization: From Theory to Implementation, Volume 84.
Springer Science & Business Media, 2006. (18, 36)

J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the traveling
salesman problem. Operations Research, 11(6):972-989, 1963. (11)

M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. Extended formulations in mixed-integer
convex programming. In Q. Louveaux and M. Skutella, editors, Integer Programming
and Combinatorial Optimization: 18th International Conference, IPCO 2016, pp. 102-113.
Springer International Publishing, 2016. (37)

M. Lubin, E. Yamangil, R. Bent, and J. P. Vielma. Polyhedral approximation in mixed-
integer convex optimization. Mathematical Programming, pp. 1-30, 2017. (45)

D. G. Luenberger, Y. Ye, et al. Linear and Nonlinear Programming, Volume 2. Springer, 1984.
(10)

A.Lundell and T. Westerlund. Solving global optimization problems using reformulations
and signomial transformations. Computers & Chemical Engineering, 2017. (available on-
line). (18)

A. Lundell, J. Westerlund, and T. Westerlund. Some transformation techniques with ap-
plications in global optimization. Journal of Global Optimization, 43(2-3):391-405, 2009.
(18)

A. Lundell, A. Skjél, and T. Westerlund. A reformulation framework for global optimiza-
tion. Journal of Global Optimization, 57(1):115-141, 2013. (18)

A.Mahajan, S. Leyffer, J. Linderoth, J. Luedtke, and T. Munson. Minotaur: A Mixed-Integer
Nonlinear Optimization Toolkit. Preprint, Optimization Online, 2017. URL http://www.
optimization-online.org/DB_FILE/2017/10/6275.pdf. (35, 55)

A. Makhorin. GLPK (GNU linear programming kit), 2008. URL http://www.gnu.org/
software/glpk/. (11)

T. E. Marlin, A. N. Hrymak, et al. Real-time operations optimization of continuous pro-
cesses. In AIChE Symposium Series, Volume 93, pp. 156-164. New York, NY: American
Institute of Chemical Engineers, 1971-c2002., 1997. (15)

G. P. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I — convex underestimating problems. Mathematical Programming, 10(1):147-175,
1976. (18)

F. Messine. Deterministic global optimization using interval constraint propagation tech-
niques. RAIRO-Operations Research, 38(4):277-293, 2004. (36)

MINLPLib. Mixed-integer nonlinear programming library, 2018. URL http://www.
minlplib.org/. [Accessed 27-May-2018]. (55)



72

[149]

(150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

CHAPTER 5

R. Misener and C. A. Floudas. Global optimization of large-scale generalized pooling
problems: quadratically constrained MINLP models. Industrial & Engineering Chemistry
Research, 49(11):5424-5438, 2010. (17)

R. Misener and C. A. Floudas. GlIoMIQO: Global mixed-integer quadratic optimizer. Jour-
nal of Global Optimization, 57(1):3-50, 2013. (18)

R. Misener and C. A. Floudas. ANTIGONE: Algorithms for continuous/integer global op-
timization of nonlinear equations. Journal of Global Optimization, 59(2-3):503-526, 2014.
(18, 37)

R. Misener, M. C. Allenby, M. Fuentes-Gari, K. Gupta, T. Wiggins, N. Panoskaltsis, E. N.
Pistikopoulos, and A. Mantalaris. Stem cell biomanufacturing under uncertainty: A case
study in optimizing red blood cell production. AIChE Journal, 2017. (17)

J. E. Mitchell. Branch and cut. In Wiley Encyclopedia of Operations Research and Management
Science. Wiley Online Library, 2011. (14)

H. Mittelmann. Benchmarks for optimization software, 2018. URL http://plato.la.
asu.edu/bench.html. [Accessed 20-April-2018]. (11)

B. A. Murtagh and M. A. Saunders. Minos 5.5 user’s guide. Technical report, Stanford
University, 1998. (17)

S. M. Neiro and ]J. M. Pinto. Multiperiod optimization for production planning of
petroleum refineries. Chemical Engineering Communications, 192(1):62-88, 2005. (17)

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, 1988. (14)

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, Volume 87.
Springer, 2004. (17, 49)

J. Nocedal and S. J. Wright. Sequential Quadratic Programming. Springer, 2006. (49)

I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming,
Volume 152. Springer Science & Business Media, 2006. (18)

I. Nowak, N. Breitfeld, E. M. Hendrix, and G. Njacheun-Njanzoua. Decomposition-based
inner-and outer-refinement algorithms for global optimization. Journal of Global Optimiza-
tion, pp. 1-17, 2018. (18)

M. W. Padberg, T. ]J. Van Roy, and L. A. Wolsey. Valid linear inequalities for fixed charge
problems. Operations Research, 33(4):842-861, 1985. (14)

J. M. Pinto and I. E. Grossmann. A continuous time mixed integer linear programming
model for short term scheduling of multistage batch plants. Industrial & Engineering Chem-
istry Research, 34(9):3037-3051, 1995. (11)

Y. Pochet and L. A. Wolsey. Production Planning by Mixed Integer Programming. Springer
Science & Business Media, 2006. (1)



CONCLUSION AND FUTURE IDEAS 73

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

R. Porn, I. Harjunkoski, and T. Westerlund. Convexification of different classes of non-
convex MINLP problems. Computers & Chemical Engineering, 23(3):439-448, 1999. (18)

R. Porn. Mixed integer non-linear programming: convexification techniques and algorithm
development. PhD thesis, Abo Akademi University, 2000. (42)

I. Quesada and I. E. Grossmann. An LP/NLP based branch and bound algorithm for convex
MINLP optimization problems. Computers & Chemical Engineering, 16(10-11):937-947,
1992. (21, 29, 34)

A. Quist, R. Van Geemert, J. Hoogenboom, T. flles, C. Roos, and T. Terlaky. Application
of nonlinear optimization to reactor core fuel reloading. Annals of Nuclear Energy, 26(5):
423-448,1999. (17)

R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics. Princeton Univer-
sity Press, 1997. (7, 8, 9)

H. S. Ryoo and N. V. Sahinidis. Global optimization of nonconvex NLPs and MINLPs with
applications in process design. Computers & Chemical Engineering, 19(5):551-566, 1995.
(18)

H. S. Ryoo and N. V. Sahinidis. A branch-and-reduce approach to global optimization.
Journal of Global Optimization, 8(2):107-138, 1996. (36)

N. V. Sahinidis. BARON user’s manual, 2018. URL https://minlp.com/downloads/docs/
baron\%20manual.pdf. (37)

N. V. Sahinidis. BARON: A general purpose global optimization software package. Journal
of Global Optimization, 8(2):201-205, 1996. (18, 37, 55)

N. Sahinidis and I. E. Grossmann. Convergence properties of generalized Benders decom-
position. Computers & Chemical Engineering, 15(7):481-491, 1991. (30)

N. Sahinidis and I. E. Grossmann. MINLP model for cyclic multiproduct scheduling on
continuous parallel lines. Computers & Chemical Engineering, 15(2):85-103, 1991. (17)

N. Sahinidis, I. Grossmann, R. Fornari, and M. Chathrathi. Optimization model for long
range planning in the chemical industry. Computers & Chemical Engineering, 13(9):1049-
1063, 1989. (11)

A. Schrijver. Theory of Linear and Integer programming. John Wiley & Sons, 1998. (11, 14)

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, Volume 24. Springer
Science & Business Media, 2003. (14)

J. P. Shectman and N. V. Sahinidis. A finite algorithm for global minimization of separable
concave programs. Journal of Global Optimization, 12(1):1-36, 1998. (36)

M. Slater et al. Lagrange multipliers revisited. Technical report, Cowles Foundation for
Research in Economics, Yale University, 1959. (16)

E. M. Smith and C. C. Pantelides. A symbolic reformulation/spatial branch-and-bound
algorithm for the global optimisation of nonconvex minlps. Computers & Chemical Engi-
neering, 23(4-5):457-478, 1999. (18)



74

[182]

[183]

[184]

[185]

(186]

[187]

[188]

(189]

[190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

CHAPTER 5

R. A. Stubbs and S. Mehrotra. A branch-and-cut method for 0-1 mixed convex program-
ming. Mathematical Programming, 86(3):515-532, 1999. (20)

M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global
optimization. Mathematical Programming, 103:225-249, 2005. (37, 45)

M. Tawarmalani and N. V. Sahinidis. Semidefinite relaxations of fractional programs via
novel convexification techniques. Journal of Global Optimization, 20(2):133-154, 2001. (18)

M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in Continuous
and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications,
Volume 65. Springer Science & Business Media, 2002. (2, 18)

M. Tawarmalani and N. V. Sahinidis. Global optimization of mixed-integer nonlinear pro-
grams: A theoretical and computational study. Mathematical Programming, 99(3):563-591,
2004. (18, 21)

P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002. (1)

F. Trespalacios and I. E. Grossmann. Review of mixed-integer nonlinear and generalized
disjunctive programming methods. Chemie Ingenieur Technik, 86(7):991-1012, 2014. (37)

G. Van Rossum. Python programming language. In USENIX Annual Technical Conference,
Volume 41, page 36, 2007. (37)

A. F. Veinott Jr. The supporting hyperplane method for unimodal programming. Operations
Research, 15(1):147-152, 1967. (42)

S. Vigerske and A. Gleixner. SCIP: Global optimization of mixed-integer nonlinear pro-
grams in a branch-and-cut framework. Optimization Methods and Software, 33(3):563-593,
2018. (18, 37, 55)

J. Viswanathan and I. E. Grossmann. A combined penalty function and outer-
approximation method for MINLPoptimization. Computers & Chemical Engineering, 14(7):
769-782,1990. (26)

A. Wichter and L. T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25-
57, 2006. (17)

J. Westerlund, L. G. Papageorgiou, and T. Westerlund. A MILP model for n-dimensional
allocation. Computers & Chemical Engineering, 31(12):1702-1714, 2007. (11)

T. Westerlund and T. Lastusilta. AlphaECP GAMS user’s manual, 2008. URL http://www.
gams.com/latest/docs/S_ALPHAECP.html. (55)

T. Westerlund and F. Petterson. An extended cutting plane method for solving convex
MINLP problems. Computers & Chemical Engineering, 19:131-136, 1995. (24)

T. Westerlund and K. Lundqvist. Alpha-ECP, version 5.01: An interactive MINLP-solver based
on the extended cutting plane method. Technical report, Abo Akademi, 2001. (37)



CONCLUSION AND FUTURE IDEAS 75

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

T. Westerlund and R. Porn. Solving pseudo-convex mixed integer optimization problems
by cutting plane techniques. Optimization and Engineering, 3(3):253-280, 2002. (9, 24)

T. Westerlund, V.-P. Eronen, and M. M. Mikeld. On solving generalized convex MINLP

problems using supporting hyperplane techniques. Journal of Global Optimization, available
online, 2018. (44)

L. A. Wolsey. A resource decomposition algorithm for general mathematical programs. In
Mathematical Programming at Oberwolfach, pp. 244-257. Springer, 1981. (30, 33)

L. A. Wolsey. Integer Programming. Series in Discrete Mathematics and Optimization. Wiley-
Interscience New Jersey, 1998. (36)

T. F. Yee and I. E. Grossmann. Simultaneous optimization models for heat integration —II.
Heat exchanger network synthesis. Computers & Chemical Engineering, 14(10):1165-1184,
1990. (17)

T. F. Yee, I. E. Grossmann, and Z. Kravanja. Simultaneous optimization models for heat in-
tegration — I. Area and energy targeting and modeling of multi-stream exchangers. Com-
puters & Chemical Engineering, 14(10):1151-1164, 1990. (1)

A. Zanette, M. Fischetti, and E. Balas. Lexicography and degeneracy: can a pure cutting
plane algorithm work? Mathematical Programming, 130(1):153-176, 2011. (14)

S. Zaourar and J. Malick. Quadratic stabilization of Benders decomposition. preprint,
2014. URL https://hal.archives-ouvertes.fr/hal-01181273. (49)

Y. Zhu and T. Kuno. A disjunctive cutting-plane-based branch-and-cut algorithm for 0-1
mixed-integer convex nonlinear programs. Industrial & Engineering Chemistry Research, 45
(1):187-196, 2006. (21)



Dissertations published by Process Design and Systems Engineering
ISSN 2489-7272
978-952-12-3734-8
978-952-12-3735-5 (pdf)

Painosalama Oy
Abo 2018



	Preface
	Svensk sammanfattning
	Abstract
	Contents
	Chapter 1 Introduction
	1.1 Structure of the thesis
	1.2 List of publications
	1.3 Contributions by the author

	Chapter 2 Background
	2.1 Convexity
	2.2 Linear programming
	2.3 Mixed-integer linear programming
	2.4 Nonlinear programming
	2.5 Mixed-integer nonlinear programming
	2.6 Conclusion

	Chapter 3 Convex MINLP
	3.1 Convex MINLP problems
	3.2 NLP based branch and bound
	3.3 Polyhedral outer approximations
	3.4 The extended cutting plane method
	3.5 Outer approximation
	3.6 Generalized Benders decomposition
	3.7 LP/NLP-based branch and bound
	3.8 Other techniques for convex MINLP
	3.9 Software
	3.10 Conclusion

	Chapter 4 Contributions to Convex MINLP
	4.1 The extended supporting hyperplane algorithm (Papers I–II)
	4.2 Reformulations for separability in convex MINLP (Paper III)
	4.3 The center-cut algorithm (Paper IV)
	4.4 Using regularization and second order derivatives with the outer approximation method (Paper V)
	4.5 The supporting hyperplane optimization toolkit solver (Paper VI)
	4.6 Conclusion

	Chapter 5 Conclusion and Future Ideas
	5.1 Conclusion
	5.2 Future ideas

	Bibliography

