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2018



Supervisors

Professor Jan Westerholm
Department of Information Technologies
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Survontie 9 C
Finland

Reviewers

Professor Erik Lindahl
Department of Biochemistry and Biophysics
Stockholm University
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Abstract

With computer simulations real world phenomena can be analyzed in great
detail. Computational fluid dynamics, for example, allows simulation of fluid
flow phenomena that might not otherwise be observable or researchers might
not have the resources to observe. Researchers want to analyze larger and
more complex systems in a shorter time to allow them to get more work
done with their resources. To achieve this the simulation codes need to be
able to efficiently use large computer systems.

This thesis focuses on the lattice Boltzmann method (LBM) and the
usage of computational accelerators to run LB simulations, but also covers
some optimization and performance results for regular CPU based systems.
The higher memory bandwidth of the computational accelerators has a sig-
nificant impact on the performance of the LB code, allowing the accelerators
to easily outperform contemporary CPU systems.

The hardware architectures of HPC systems used for these kinds of si-
mulations are briefly presented, as well as what programming methods can
be used for these systems. This thesis examines how the usage of the Ope-
nACC programming standard makes it easier to create GPU programs. The
benefit of OpenACC compared to CUDA is that it allows the user to add
directives into the code. These directives control what part of the execution
will be offloaded to the accelerator. In this thesis, there is a description of
how OpenACC directives can be applied to an LB solver. We also include
a comparison of the performance of that OpenACC solver with a native
CUDA solver, both implemented using the same optimization techniques.

For large-scale GPU accelerated systems it is important that any pro-
gram running on them is able to efficiently utilize the resources. In this the-
sis, we examine the performance achievable on large-scale GPU accelerated
systems running lattice Boltzmann simulations. Specific attention is given to
the scalability of our GPU accelerated LB solver on the Titan supercompu-
ter, running on 16384 GPUs in parallel. The highlight of these simulations
shows that porous media fluid flow simulations on this system can achieve
over 1 petaflops of sustainable computational performance. Basic implemen-
tation details such as data layouts and algorithms used are also covered, and
the impact they have on the performance is discussed. The results from the
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large scales simulations show that, even with rather homogeneous porous
media samples the workload can become unevenly distributed among the
computing units. In this thesis we demonstrate that even a simple recursive
bisection scheme, a particular domain decomposition scheme, can effectively
improve the load balance for the porous media case used.

The solver used on Titan is implemented using asynchronous communi-
cation. This is done to allow the GPUs to continue working uninterrupted
while the communication takes place. This thesis discusses how asynchro-
nous communication is handled on GPU systems and the steps needed to
allow asynchronous communication while still maintaining memory access
patterns that are well suited to the GPU.

Finally, newer processors are deriving more and more of their compu-
tational power from SIMD vectorization. The thesis examines the effects
vectorization has on an LB solver running on a regular Intel Xeon processor
and the manycore Xeon Phi processors. This includes an in-depth analysis of
the key optimization methods applied to the code for the Xeon Phi proces-
sor. Most of the key optimizations center around how the fast, on-package
memory is used. Design choices, such as the data layout and the addition of
manual prefetching instructions into the program increases how efficiently
the memory bandwidth can be utilized.
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Sammanfattning

Denna avhandling fokuserar p̊a lattice Boltzmann metoden (LBM) och hur
beräkningsacceleratorer används för att uppn̊a en hög prestanda för denna
typ av simuleringar. Optimeringstekniker för LB simuleringar som körs p̊a
normala CPU-baserade system diskuteras ocks̊a. Den högre minnesband-
bredden tillgänglig p̊a beräkningsacceleratorer leder till att kod som kör
p̊a dessa lätt klarar av att leverera en högre prestanda än samtida CPU-
baserade system.

I avhandlingen presenteras kort h̊ardvaruarkitekturen som används p̊a
dessa typer av högpresterande datorsystem och vilka programmeringstekni-
ker som kan användas för dessa system. En programmeringsteknik som dis-
kuteras mera ing̊aende är OpenACC standarden. OpenACC gör det lättare
för programmeraren att skapa kod för beräkningsacceleratorer genom att
lägga in direktiv i programkoden. Direktiven beskriver för kompilatorn vilka
delar av koden som skall avlastas till beräkningsacceleratorn och hur den-
na avlastning sker. Denna avhandling demonstrerar hur OpenACC direktiv
läggs till ett LB program och jämför prestandan denna version kan uppn̊a
med prestandan av ett CUDA program implementerat med samma metoder.

Stora accelererade datorsystem som använder grafikprocessorer börjar
bli allt vanligare. Eftersom skalbarhet är viktigt för stora system, undersöker
vi hur v̊art accelererade LB simuleringsprogram kan köras p̊a Titan superda-
torn p̊a 16384 grafikprocessorer. Resultaten fr̊an dessa simuleringar visar att
LB simuleringar för poröst material klarar av att prestera över 1 biljard flyt-
talsoperationer per sekund. Hur grundläggande implementationsdetaljer s̊a
som hur data ordnas i minnet och olika typer av algoritmer p̊averkar prestan-
dan diskuteras ocks̊a. Dessa storskaliga simuleringar visar att även om dessa
porösa material ofta har en homogen struktur orsakar strukturen en obalans
i belastningen mellan beräkningsnoder d̊a simuleringarna distribueras över
tusentals beräkningsnoder. För att minska denna obalans implementerade
vi en rudimentär algoritm för att bättre distribuera belastningen i systemet.

Programmet som kördes p̊a Titan superdatorn var implementerat s̊a
att kommunikationen mellan beräkningsnoder kunde genomföras asynkront.
Denna asynkrona kommunikation l̊ater grafikprocessorerna fortsätta jobba
samtidigt som data kommuniceras med andra relevanta beräkningsnoder i
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systemet. I avhandlingen diskuteras hur asynkron kommunikation hanteras
p̊a system med grafikprocessorer. Samtidigt diskuteras hur uppdelningen av
beräkningsdomänen lellan grafikprocessorerna skall göras för att l̊ata pro-
grammet fortfarande läsa och skriva data i ett mönster som är optimalt för
grafikprocessorer.

Nyare processorer härleder mera och mera av sin beräkningskapacitet
fr̊an SIMD vektorinstruktioner. Avhandlingen undersöker effekten denna typ
av vektorinstruktioner har p̊a ett LB program som körs p̊a b̊ade vanliga Xe-
on processorer samt p̊a Xeon Phi m̊angkärnsacceleratorer. Detta inkluderar
en ing̊aende analys av vilka optimeringstekniker som använts p̊a Xeon Phi
systemet för att f̊a maximal prestanda. Speciellt viktigt var hur det snabba
minnet används. Hur data ordnas i minnet och hur data manuellt skall läsas
in en tid före det behövs är grundläggande för att utnyttja minnesbandbred-
den i dessa system effektivt.
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Chapter 1

Introduction

Computational fluid dynamics (CFD) [6], the process of mathematical model-
based computer simulation of fluid flows, enables researchers to analyze fluid
flow phenomena in great detail. CFD allows hypothetical systems and sys-
tems that cannot be observed otherwise to be analyzed. For instance, if an
airplane manufacturer wants to know how certain modifications to the wings
of an airplane will perform, there is no need to build a scale model of the
wings for all the modifications they want to try. Instead the manufacturer
can design computer models of the wings and feed them into a CFD program
that will simulate how the air moves around the wings. Not only is this eas-
ier and cheaper, since no physical manufacturing is needed, it also enables
the engineers working on the problem to try countless small modifications
to the wings without having to build a new physical model each time. Even
though CFD greatly simplifies the design process, no matter how large the
computing resources we have are, a simulation can only be as realistic as the
underlying mathematical model. Before putting the wing into production
there is still some real wind tunnel tests that need to be carried out.

With the need to run multiple simulations, the speed that these simula-
tions can be run at becomes a key factor. Usually, these simulations require
powerful workstation computers or clusters of computers working together
for the solution to be available within a reasonable time. To achieve the
results requires that the resources used are utilized to the fullest and that
the simulation code is optimized for the computer system used.

There are fields where the researchers and engineers are trying to do the
most with the resources they have at their disposal. A good example comes
from the racing world of F1, where to keep costs down, the teams’ computing
resources are limited to a 25 teraflop system by the rules [7, 8]. That is,
they can run a system that can do 25 ∗ 1012 double-precision floating-point
operations per second. This forces the teams and application developers to
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optimize their codes and the way the resources are used in order to maximize
the number of simulations can be done with the limited resources available.

At the other end of the spectrum we have the supercomputer systems
used for scientific research, which have grown more and more powerful each
generation. The challenge with these systems is to be able to scale the simu-
lation to run on a significant part of the machine, and still run the simulation
at a satisfactory performance. Currently, as of November 2017, the largest
system in the world is just below 100 petaflops [9]. With faster systems be-
ing planned and built, some centers are aiming for exaflops machines, that is
machines capable of 1000 petaflops, by 2020 [10]. Scaling programs to these
new machines is by no means a trivial task. With the rise of accelerated
computing and more customized architectures, even being able to utilize
these machines might require large modifications to existing codes.

Fluid dynamics are also used in more time-critical situations. One such
example comes from the University College London group that is attempting
to use the lattice Boltzmann method to simulate the blood flow in the human
brain [11]. The goal is to improve the way aneurysms are treated. For
this, they need to be able to run their simulations in conjunction with the
treatment, requiring the simulations to be done in a short amount of time.

This thesis covers our work on a highly scalable lattice Boltzmann CFD
solver. It describes the work that allowed the solver to efficiently use compu-
tational accelerators to significantly increase the performance of the solver,
as well as the work carried out that allowed the solver to efficiently use what
was, at the time, the second most powerful supercomputer in the world.

The thesis is structured as follows: in chapter 2.1 we present the hard-
ware of modern supercomputers and clusters and discuss how these have
evolved over the past years. Chapter 2.2 covers the different programming
methods used within the thesis, and gives some basic examples of these
methods. The basic theory behind the lattice Boltzmann method is pre-
sented in chapter 3 and continues with the algorithms used to turn the
theory into program code. A discussion about the factors likely to limit the
performance of the solver is also included in the chapter.

Chapter 4 presents the first original research paper and discusses how
the programming of GPUs can be made easier using the OpenACC program-
ming standard. Chapter 5 covers how well the GPU-accelerated LB solver
could scale on the Titan supercomputer and what to take into consideration
when scaling an LB solver to such large machines. Chapter 6 covers how
we implemented asynchronous communication and how that improves the
performance of the GPU-accelerated LB solver. The use of Xeon Phi many-
core accelerators, as well as vectorization of the LB solver, is discussed in
chapter 7. Finally, chapter 8 discusses considerations that should be made
for large scale LB simulations and how these simulations can be carried out
on current supercomputer systems.
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1.1 Author’s contributions

All the articles in this thesis were made in cooperation with Dr. Keijo
Mattila and Professor Jan Westerholm. The author’s responsibility was de-
veloping the ideas for the articles, implementing and optimizing any code
needed and carrying out simulations to gather data for the article. Dr. Mat-
tila contributed with the theoretical background for the lattice Boltzmann
method. Both Dr. Mattila and Prof. Westerholm helped in preparing the
articles for publication.
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Chapter 2

High performance computing

High performance computing refers to the use of parallel computing re-
sources to run programs at a faster speed than a single workstation computer
is capable of [12]. These parallel computing resources come in the form of
clusters of computers connected with a high-speed network or supercomput-
ers, which are effectively more purpose-built clusters. This chapter covers
the hardware used in current HPC systems, as well as the programming
methods for these systems.

2.1 Hardware trends of modern compute clusters
and supercomputers

The TOP500 list [13] is used to rank the performance of supercomputers
around the world. The performance is measured by how many floating-
point operations the machines can perform per second while running the
Linpack [14] benchmark. All systems currently on the list are based on
some form of distributed system with multiple compute nodes connected to
each other over a fast network. Most of the systems employ regular server
CPUs for their computational power. The most widely deployed ones are
Intel’s commodity server CPUs, but also processors from AMD, IBM, Sun,
or for some machines even completely customized chips are used.

On the CPU side, there has been a steady increase in the core count with
each generation. Currently, the most ubiquitous are the 12 core CPUs as of
November 2017 [13], while the maximum core count purchasable for an Intel
server CPU is 28 cores and AMD offers up to 32 cores. As the core count
grows, the frequency tends to drop for each core added [15]. With the lower
frequency and higher core counts, parallelism of the code being run becomes
a more crucial factor. Any part of the code that cannot be fully parallelized
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will have its performance hurt by the lower clock frequency. Fortunately,
the CPUs still retain higher boost clock frequencies when only a few cores
are occupied, which helps serial sections of the code.

The most recent revolution in the HPC world has been the use of com-
putational accelerators, which are used to add additional floating-point per-
formance to the compute nodes. Accelerators usually come in the form of
general purpose graphics processors (GPGPU) [16] and manycore proces-
sors [17], but also some custom floating-point accelerators are used [18].
These accelerators are specifically designed to deliver substantial amounts
of floating-point performance. Since these rely on large amounts of paral-
lelism, and in some cases larger vector units for their performance, it does
limit their usage for normal datacenter tasks like for instance, serving web
pages.

2.1.1 CPUs

Since the introduction of the first dual core CPU system to the TOP500 list
in 2002 [19], the Power4 CPU from IBM, there has been a steady increase
in the core counts of the processors used in supercomputers. Adding the
fact that the most common configuration currently is to use two or more
CPUs per node, the parallelism of a single node has been increasing signifi-
cantly. With a higher core count, there has also been a slow decrease in the
frequency of the processors to keep the power consumption of the processor
manageable. This puts a larger burden on the programmers to be able to
efficiently parallelize their code to utilize the resources within a node.

The memory bandwidth available for each socket in a system has been
increasing with newer revisions of the DDR memory standard and the in-
crease in the frequency of the memory. The number of memory channels
connected to each socket also increases the available bandwidth for the CPU.
With the introduction of the Skylake CPUs [20], Intel went from 4 to 6 mem-
ory channels per socket. The AMDs Zen [21] architecture uses 8 channels
per socket, providing up to 341 GB/s of theoretical memory bandwidth for
a dual socket system. This is a substantial increase compared to 136GB/s
for a dual socket Haswell [22] system and 256 GB/s for a dual socket Sky-
lake system. From the Ivy bridge [23] generation up to the newest Skylake
generation of Intel CPUs each socket can support 768 GB or, with some
special CPU variants supporting up to 1.5 TB of memory, and AMDs Zen
generation CPUs supporting up to 2 TB per socket.

The modern CPU core has evolved to be good at running a wide vari-
ety of different codes. As such, the cores of a modern CPU have large and
complex cache hierarchies, with three or even four levels of cache between
the CPU and the main memory [24]. These caches are significantly faster
than the main memory of the system and are used as, among other things,
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Figure 2.1: An illustration of how SIMD vectorization is used to parallelize
an operation. Each vector, A and B, contains 8 values, which are added
elementwise into C with one instruction

temporary storage and a buffer between CPU and memory. To reduce the
observed latency for reading from the main memory, data is prefetched into
the cache hierarchy. The prefetching works by the processor trying to iden-
tify the access pattern used by the program and predicting what data will
be needed next and moving that into the cache structure ahead of time.

In addition to containing multiple processing cores, modern CPUs use
simultaneous multithreading (SMT) [25] to allow multiple threads to run in
the same core at the same time. The idea is to have multiple threads that
can use any resources that the other threads do not currently use. This
allows for a better utilization of the resources within a core. Mainstream
Intel and AMD processors currently both support 2-way SMT. The modern
CPU cores are also able to perform out of order execution, where the order
that the instructions executed are issued is based on when the operands for
the operations are available, instead of the order they are in the program
code.

To further increase the performance and parallelism of the CPUs, vector
instructions in the form of SIMD (Single Instruction Multiple Data) instruc-
tions are used [26]. These allow a single core to operate on multiple data
values with one instruction as illustrated in figure 2.1. The current genera-
tion mainstream SIMD instructions support 256-bit vectors using the AVX2
instruction set [27]. With AVX2, the core can process 4 double-precision
floating-point values at once. The current generation of server and HPC
specific processors use 512-bit vectors, with the AVX-512 instruction set
[28]. The AVX-512 instruction set enables those processors to process 8
double-precision floating-point values with one instruction. To use these in-
structions, the computation performed needs to be expressed in a form that
allows the use of these instructions.

There is some support from the compiler to automatically vectorize the
code, but this relies on the compiler to be able to identify which parts
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of the computation can be vectorized and to guarantee that vectorizing
these parts does not change the result of the computation. Guaranteeing
vectorization usually involves rewriting the program to explicitly use the
vector instructions or at least adding hints for the compiler as to which
sections should be vectorized and what data dependencies exist within the
program.

2.1.2 Nvidia GPUs

A more recent addition to the HPC field has been the introduction of com-
putational accelerators, hardware designed specifically to accelerate the pro-
cessing of floating-point operations. As a concept this is nothing new. The
original x87 FPU was already a floating-point accelerator. However, mod-
ern accelerators in HPC are massively parallel processors that are especially
designed for floating-point performance. Currently, the most widely used
accelerators in use in the HPC world are GPGPUs, with the clear majority
being Nvidia Tesla accelerators.

The GPGPUs have their roots in the processing of real time computer
graphics for computer games, rendering the 3D graphics shown on the screen
in real time. The rendering methods used for real time computer graphics
are massively parallel operations that rely heavily on floating-point arith-
metic. Combined with the growing screen resolution and improved graphics
quality, this has led to the GPU evolving into a massively parallel processor
specialized in floating-point math. The first GPGPU widely used within the
HPC community had a few hundred simple CUDA cores, but as on the CPU
side, the core count has grown significantly as newer GPUs are released, with
current GPUs having over 3000 simple CUDA cores [29].

Even though the GPUs have many cores, these are not the same kind of
cores that are found in regular CPUs, the CUDA cores are far simpler. The
cache structure on the GPU is also simpler and shallower and mostly used
as a coalescing buffer [16]. The GPU cores come with some limitations. The
cores cannot all operate independently, which means that they are unable
to each run a unique instruction every clock cycle. On the GPU, the cores
are arranged into larger groups of cores referred to as a streaming multi-
processor. The Pascal generation uses 64 cores per multiprocessor that can
perform single precision operations and 32 cores that can perform double
precision operations [29].

The parallelism within the GPU is based on the SIMT (Single-Instruction,
Multiple-Thread) paradigm [16], where multiple threads are executing the
same instruction at the same time. This is a comparable way to the SIMD
vectorization of regular CPUs. The difference from SIMD is that in the
SIMT case there are multiple cores performing the operation for the data
within the vector, instead of one core running the instruction. In the case
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Figure 2.2: An illustration of how multiple threads in a GPU execute the
same instruction in different values. Each thread adds together one value,
A and B, and stores the result in C

of the Nvidia GPUs, the threads are executed in groups of 32 [16], referred
to as a warp. This warp is then executed on the cores within a multipro-
cessor. All cores that are working on the same warp are executing the same
instruction but on different data. If there is divergence in the execution be-
tween the threads, the different branches will be serialized. The serialization
reduces the performance, since it still requires all cores within the warp to
participate [16].

Another feature that the GPUs carried over from the graphics world
is that they offer greater memory bandwidth than a normal CPU based
system. The recent Nvidia GPUs can deliver over 700GB/s [29] of theoretical
memory throughput. The memory bandwidth comes at the price of space,
with most of the GPUs used for HPC today having between 12 and 16 GB
of on board memory per GPU.

One of the major drawbacks of the GPGPU accelerators is that they are
added to the compute nodes as PCI-e or SXM2 [30] add-in cards. Since the
GPUs are add-in cards and cannot host themselves, they need a host system
to function, effectively a compute node with a normal CPU. As add-in cards,
the bus they are connected to limits the amount of bandwidth available for
communication between host and GPU, and between different GPUs in the
system. In the case of PCI-e cards, the maximum theoretical bandwidth
is limited to 16 GB/s [31]. To improve this situation, Nvidia introduced a
high-speed interconnect, NVLink [29] capable of 20-25 GB/s of bandwidth
per port, which can be used to communicate between GPUs in the system.
The NVLink interconnect can also be used to communicate with the host
CPU in certain systems where the host CPU supports an NVLink connection
[32].
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2.1.3 Xeon Phi

The Xeon Phi line of manycore accelerators follows a similar design as the
GPUs. They simplify the cores and pack more of them on to the chip.
Unlike the GPU, these do not have thousands of cores. The first generation,
codenamed Knights corner (KNC) [33], had up to 61 cores. The second-
generation Xeon Phi processors, codenamed Knights landing (KNL) [34],
have core counts between 64 and 72 cores. To further increase the number
of threads that can run the Xeon Phi, it supports up to 4-way SMT. Instead
of relying on a large core count for their performance, these use 512-bit
wide vectors to achieve a higher floating-point arithmetic performance than
regular CPUs can achieve.

The first generation Xeon Phis did not see wide adoption due to the
difficulties of getting performance from the programs running on it [35, 36].
The second generation improved on a lot of the issues compared with the
first generation. Instead of using a proprietary instruction set like the KNC
generation, the KNL generation uses a subset of the AVX-512 instruction set
[37]. It can also run code from older vector instruction sets, and in fact the
KNL processor can directly run binaries built for regular Xeon CPUs. The
KNL generation also moves away from being an add-in card that requires a
host system, like the KNC generation, into a self-hosted system where the
KNL processor is the only processor in the system [37]. Another substantial
change is the move away from a ring bus used as the core-to-core interconnect
on the KNC generation, to a mesh network. This mesh network improves
the core-to-core communication. Within each node in the mesh network
sits two cores that share the same L2 cache and the same connection to
the network. The memory controllers, both the high speed MCDRAM and
regular DDR memory, are connected to the same mesh.

As with the GPUs, the Xeon Phi processors employ a small amount of
fast memory to accelerate memory bound computation. The KNC gener-
ation uses GDDR5 memory, the same memory as used by contemporary
GPUs. The latest KNL generation uses 16 GB of MCDRAM capable of
delivering over 450GB/s [34] of memory bandwidth. A KNC processor is
also able to support standard DDR4 memory to enable it to run programs
requiring more than 16GB of memory. The MCDRAM on these can be used
in multiple modes. One alternative is to use it as a large last level cache
that is transparent from the view of the programmer. Data from the MC-
DRAM cache is accessed at a higher bandwidth than what is available from
the DDR4 memory space. Another mode is to use it as a separate memory
space, using special allocation functions and only placing certain structures
of the program in this faster memory.
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2.1.4 Interconnects

Current HPC systems use many technologies that exist in a regular datacen-
ter. The difference between HPC systems and those serving for instance web
pages is that the HPC systems are balanced differently. HPC system focus
on delivering the maximum floating-point performance in a specific power
and size envelope. HPC system also tend to use more advanced networks
to connect the nodes to each other. The node-to-node interconnects used
for HPC systems are set up to deliver higher bandwidth than those usually
found in regular data centers, and are designed to be capable of delivering
low latency communication.

The network topology, the way the nodes are arranged and connected to
each other in HPC systems, is often done to maximize the amount of band-
width available between two given nodes in the system. Common topologies
include fat tree topologies, cube, and torus topologies but also more ex-
otic layouts such as the dragonfly topology [38]. While the November 2017
TOP500 list does include a little over 200 systems using commodity 10 giga-
bit ethernet, the top systems all use more exotic interconnects. InfiniBand
[39], being the most widely used HPC focused network on the list, and Om-
nipath [40] networks can both be used to build a cluster with off the shelf
components, and are available from multiple server vendors.

Another interconnect option for HPC systems is to use one of the custom
interconnects available from some more HPC-focused server vendors. These
are available from vendors such as Cray, with their Aries [41] network used
in the XC line of supercomputers and the Tofu interconnect used by Fujitsu
for the K computer [42]. These custom interconnects attempt to deliver even
greater bandwidth and lower latencies to all the nodes, even when scaling
up the systems to thousands of compute nodes.

2.2 Programing models

The recent evolution in modern supercomputer systems is the addition of
more and more parallelism within a node, instead of scaling up the number
of compute nodes, leading to the programming of these systems becoming
more complex [43, 44]. Traditionally, HPC codes have relied heavily on the
message passing model of parallelism, usually implemented using MPI [45].
This model is based on processes that all have their own memory space and
run code serially. The processes communicate with each other by sending
and receiving messages. With this model, parallel execution is achieved
by running multiple processes. The drawback of this model is that as the
number of cores in the system increases, so does the number of processes,
making it harder to manage. The amount of communication needed also
increases, which can affect scaling. Memory usage is another big drawback
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of this approach. Since all processes have their own memory space they all
need their own copies of any shared memory structures.

MPI cannot be used on GPUs, since the GPUs require other parallelism
paradigms. To reduce the amount of MPI communication needed and to
enable the use of computational accelerators, HPC programs are moving to a
hybrid parallelism model [46, 47, 36]. This means that programs employ MPI
together with some other form of parallelism. This second level of parallelism
can be accelerator specific languages, to enable the use of accelerators, but
also shared memory parallelism [48] within a compute node. This allows the
program to cut down on the number of MPI processes needed to efficiently
use the resources available.

2.2.1 OpenMP

OpenMP [49] is one of the more popular APIs for shared memory parallelism
and most of the mainstream compilers have support for it [50]. OpenMP
gives the ability to implement varying degrees of parallelization, such as a
simple data parallel for loop, where the iterations of the loop are executed
in parallel. OpenMP is also able to do more complex task-based parallelism
where threads are spawned with the goal of completing a section of code in
parallel with either the main thread or other tasks.

In OpenMP, parallelism is described using simple compiler directives
inserted by the programmer into the program code. The use of directives
makes it easy to modify existing code without major changes to the code, in
the case the algorithms and methods used can be parallelized in that way.
Since OpenMP only uses compiler directives to parallelize the code it is still
possible to compile the code as a single threaded application. Sections of
code we want to execute in parallel are described as basic blocks starting
with a #pragma omp parallel directive. Within the block, execution is
performed in parallel by all active threads, and at the end of the section there
is an implicit synchronization guaranteeing that all threads have finished.
After the block, only one thread will be left to continue the execution of the
program until another parallel section is encountered.

Listing 2.1 illustrates how simple data parallelism can be expressed using
OpenMP, in this case the addition of two arrays. The goal in parallelizing
this example is that the addition within the loop will be executed in paral-
lel. Memory allocation and initialization has been excluded for the sake of
simplicity. The #pragma omp parallel directive has been combined with a
#pragma omp for directive to indicate to the compiler that the iterations of
the loop should be parallelized. The work within the loop is then distributed
according to the schedule used. In this case the default static scheduling is
used, which statically divides the loop iterations by the number of treads.
More complex scheduling, such as various kinds of dynamic scheduling, is
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also available. Dynamic scheduling enables the load of the loop to be more
evenly distributed, in case the iterations require a different amount of work.
This scheduling gives rise to some additional computational overhead be-
cause the distribution of work among the threads itself requires some effort.
When parallelizing a loop using OpenMP, it is up to the programmer to
guarantee that there is no dependency between the iterations of the loop.
Any dependencies could cause race conditions between the threads and thus
affect the correctness of the code.

Listing 2.1: Code example that shows how the addition of two arrays can
be parallelized with OpenMP

double *a, *b, *c;

#pragma omp parallel for

for (int i = 0; i < count; ++i){

c[i] = a[i] + b[i];

}

2.2.2 Vectorization

Vectorization using the single instruction multiple data (SIMD) paradigm
refers to the concept of having one instruction, apply the same operation to
multiple values at the same time. The length of these vectors varies with
CPU type and generation. The widest vectors used in modern x86 CPUs are
512-bit in Xeon Phi manycore processors [37] and the Skylake generation of
regular Intel Xeon processors [37]. The 512-bit vectors give the processor
the ability to process 8 double-precision or 16 single-precision values with a
single instruction.

The vector instructions form a separate instruction set from the regular
scalar instructions of the CPU. To use the vector functionality, the compiler
needs to generate vector instructions for the code. Ideally the compiler can
identify which sections of the code can be vectorized. However, automatic
vectorization relies on the compiler being able to identify which sections can
be vectorized and that the compiler can guarantee that vectorizing the code
will not change the result, something that is not always possible to do. In
cases where the compiler is unable to vectorize the code, the programmer
may need to modify the code in such a way that the compiler can vectorize
it.

One approach to guarantee vectorization is to use OpenMP directives
to control what parts of the program are vectorized. Since version 4.0 [51],
vectorization can be described in the same way as multithread parallelism is
expressed using OpenMP. A #pragma omp simd statement can be used to
indicate to the compiler that the code should be vectorized. The compiler
directives can also be used to circumvent the checks done by the compiler
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to guarantee correct results of the vectorized code. This is useful in the
case where the programmer knows that vectorizing the code will not affect
the result but the compiler is unable to detect this. One drawback here
is that the vectorization still relies on the compiler to generate the vector
instructions, and as such it might not be possible to vectorize computation
that requires transformations the compiler is unable to perform.

Finally, vectorized code can be manually generated using intrinsic func-
tions, as shown in listing 2.2. These functions are wrappers to specific
machine instructions. Using these guarantees that the execution will be
vectorized. Using intrinsic functions has the drawback of making the code
seem complex, since the regular operations between operands are replaced
with function calls. The intrinsic functions also limit the vectorization to
one specific instruction set. One way of improving this is to use a vector
math library or a compiler which defines the regular arithmetic operations
for the vector types as well. With these vector libraries, vectorized code can
be written in much the same way as scalar code, but the code is guaranteed
to be vectorized.

Listing 2.2: A code example showing how the addition of two arrays can be
vectorized using AVX vector instructions

double *a, *b, *c;

for (int i = 0; i < count; i = i+vecLen){

__m512d aV = _mm256_load_pd (&a[i]);

__m512d bV = _mm256_load_pd (&b[i]);

__m512d cV = _mm256_add_pd(aV , bV);

_mm256_store_pd (&c[i], cV);

}

2.2.3 CUDA programming

CUDA was introduced by Nvidia in 2007 [16] as a programming language
that allows the use of Nvidia graphics processors for general purpose com-
puting tasks. CUDA gives the ability to easily express the parallelism needed
to efficiently offload the computation to a GPU from Fortran and C/C++
code. CUDA is often considered a low-level language when it comes to GPU
programming, since it gives the programmer great control over how and
what the GPU executes and fine control over what data is transferred to
and from the GPU and how it is transferred.

The code that will be run on the GPU needs to be described in terms
of CUDA kernels. The kernel contains the code that will be executed by
each thread running on the GPU. When converting code that has previously
been parallelized with the help of OpenMP, the kernel code is the same code
which was in the loop body that was parallelized with OpenMP. The loop
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iteration variable is replaced with a thread id, computed from the thread
block and grid ID numbers.

With the GPU having a separate memory space from the host node, any
data used by the kernel running on the GPU also needs to be separately
allocated on the GPU. Data used by the kernel must be transferred to the
GPU before the computation on the GPU starts, and back to the host once
the data is needed by the host computation. With the recent introduction
of unified virtual addressing (UVA) [29], the problem of moving data to
and from the GPU can be simplified. With UVA, using special allocation
functions, we can allocate space in such a way, that we can transparently
use the same pointer in both CPU and GPU code. Using this allocation
method, the CUDA driver will ensure that the data is currently residing in
the correct memory space. Due to the PCI-e bus being slow, and needless
shuffling of data back and forth between device and host will significantly
impact the performance of any computation offloaded to the GPU. For best
performance programs should carry out as much computation as possible
with the data already on the GPU before the data is moved back to the
host.

Listing 2.3 shows how the code from the array addition example from
listing 2.1 can be converted to run on the GPU using CUDA. The major
difference from the OpenMP example is the addition of memory transfers
between the host system and the GPU device, first copying data from the
A and B pointers to the device before the execution, and then copying C
back to the host after the kernel has run. The memory allocation for the
device memory is also shown in this case since CUDA runtime functions
are needed to allocate memory on the GPU. The kernel code shown in
listing 2.4 contains the same code that was previously the main loop body.
The blockIdx, blockDim and threadIdx variables are predefined in the
programming language, and are used to compute the thread index for the
current thread.

Listing 2.3: CUDA host code for allocating memory and launching the
CUDA kernel on the GPU. In this example the thread block size is set
to 256 threads, this is then used to calculate how many thread blocks are
needed to create at least the number of threads that there are values in the
arrays.

double *a, *b, *c;

double *aDev , *bDev , *cDev;

cudaMalloc(aDev , sizeof(float)*count);

...

cudaMemcpy(aDev , a, count);

cudaMemcpy(bDev , b, count);

add <<<256, 1+( count /256) >>> (aDev ,bDev ,cDev , count)

cudaMemcpy(c, cDev , count);
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Listing 2.4: CUDA kernel code for adding two arrays. If the thread Id
number is higher than the number of elements in the arrays the thread
returns immediately to avoid out of bounds data accesses. Otherwise the
addition operation between the elements from the two arrays is performed.

__global__ void add(double *a, double *b, double *c, int count)

{

int i = (blockIdx.x * blockDim.x) + threadIdx.x;

if(i >= count)

return;

c[i] = a[i] + b[i];

}

When writing the kernels, special consideration must be given to code
structure and memory access patterns. On Nvidia GPUs, the threads of
a computational kernel are run in groups of 32 threads at the same time,
referred to as a warp. On the GPU, all threads within a warp are exe-
cuting the same instruction at the same time. Ideally, all threads execute
the same instruction but on different data, otherwise the execution of the
different branches within the warp will be serialized. This does not mean
code executed on the GPU cannot include divergence. However, execution
of branches will be serialized, which can affect the performance.

Memory accesses follow the same patterns as the other instructions ex-
ecuted by the GPU. All threads within a warp execute a memory access
operation at the same time but they have the possibility to access different
data. For the best performance, the threads within a warp should access
memory in a coalesced fashion. That is, threads within the same warp should
be accessing data from a contiguous memory space. While earlier GPU ar-
chitectures had strict limits on how threads from a warp could access data
within a coalesced block, that has now been relaxed and the threads can
access data in any order [52]. The optimal sizes for the coalesced blocks
that should be accessed has also been relaxed, with the Kepler and newer
generations having a load granularity of 32 bytes.

2.2.4 OpenACC

OpenACC [53] aims at giving the programmers the ability to offload com-
putation to accelerators using simple compiler directives like those used by
OpenMP. These directives are used to describe what computations should
be performed on the accelerator. It also handles the data movement between
the accelerator device and the host using similar compiler directives.

Code that contains loops already parallelized with OpenMP parallel di-
rectives is a suitable candidate to be offloaded to the GPU using OpenACC.
Existing OpenMP loops can easily be transformed to OpenACC offloaded
code. The nontrivial part is the data movement. The data used by the
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computation needs to be identified and moved to the GPU before the com-
putation can start. As with CUDA, once the data has been moved to the
GPU, it should be kept there for as long as possible, in order not to make
the entire simulation bound by the bandwidth of the PCI-e bus.

Listing 2.5 shows how the previously used array addition example can
be offloaded to the GPU using OpenACC directives. The #pragma acc

kernels directive instructs the compiler that the loop should be executed
on the GPU, and the datain and dataout directives instruct the compiler
how to move data between the host and the device. OpenACC will perform
dependency checks to ensure that the code can be parallelized with no side
effects. These checks can, however, be overridden, but it is then up to
the programmer to guarantee that there is no dependency between loop
iterations.

Listing 2.5: Code example that shows how the addition of two arrays can
be offloaded to the GPU using OpenACC

double *a, *b, *c;

#pragma acc kernels loop datain(a,b) dataout(c)

for (int i = 0; i < count; ++i){

c[i] = a[i] + b[i];

}

Even though OpenACC allows computation to be easily offloaded to the
GPU, it will still not transform the code for optimal execution on the GPU,
that task still resides with the programmer. In practice, there is still a need
to optimize the code to run on the GPU. For instance, the programmer
should make sure that the data access pattern is optimal for the GPU and
that the code follows the execution model of the GPU. In general, OpenACC
code should be written using the same basic ideas as those presented in the
CUDA programming section.
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Chapter 3

The lattice Boltzmann
method

The lattice Boltzmann method [54] is a method for computationally simu-
lating fluid dynamics. It has been used for simulations of fluid phenomena
at many scales, from microscopic porous media flows [5], to blood flows in
vascular systems [55] and large even aerodynamics dimulations [56]. It can
be used for both single and multicomponent fluid simulations, and allows
even more complex phenomena with particle suspensions and liquid crystals
to be simulated [57]. The method is well suited for parallel computation and
has been demonstrated to work well on distributed clusters utilizing regular
commodity CPUs [58], as well as on more specialized hardware with GPUs
[59].

This chapter covers the theory behind the lattice Boltzmann method as
well as the practical implementation aspects such as the different algorithms
that can be used for implementing the method. The chapter also includes
a simple estimation of the performance achievable with the different algo-
rithms and a discussion on how the data associated with the lattice sites
can be arranged in memory.

3.1 Lattice Boltzmann theory

The lattice Boltzmann method works by discretizing the entire simulation
domain with a regular lattice, with the kinetic model equation for the fluid
approximated only at the lattice sites. Within each lattice site, particle
velocity space is further discretized into a finite set of velocities. The 2D
example shown in figure 3.1 uses 9 discrete velocity vectors per lattice site.
This is referred to as a D2Q9 discrete velocity set [60], all except the center
one of these point to a neighboring lattice site. The DdQq notation is
commonly used to annotate a discrete velocity set, with d signifying the
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Figure 3.1: 2D illustration of the discrete representation of the domain and
the velocity vectors in the D2Q9 discrete velocity set within each lattice site
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Figure 3.2: An illustration of the D3Q19 velocity set.

number of dimensions and q the number of discrete velocity vectors used.
In our simulations, we use the D3Q19 discrete velocity set [60].

In the lattice Boltzmann method, the dynamic variable, fi(~r, t), is the
single particle distribution function. This describes the probability of finding
a particle at location ~r at time t with velocity ~ci. The D3Q19 velocity set,
illustrated in figure 3.2, ~ci are defined as

~ci =


(0, 0, 0)cr,

(±1, 0, 0)cr, (0± 1, 0)cr, (0, 0± 1)cr,

(±1,±1, 0)cr, (±1, 0,±1)cr, (0,±1,±1)cr,

(3.1)

with cr = ∆r/∆t, ∆r is the spacing of the lattice and ∆t the discrete time
step. The dynamics of the system is described by the lattice Boltzmann
equation

fi(~r + ∆t~ci, t+ ∆t) = fi(~r, t) + ∆tΩi

(
~f(~r, t)

)
, i = 0, 1, ..., q − 1. (3.2)
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Each time step is decomposed into two operations, the propagation and
relaxation operations. The relaxation is defined as

fi(~r, t
∗) = fi(~r, t) + ∆tΩi

(
~f(~r, t)

)
(3.3)

with Ω being the collision operator and fi(~r, t
∗) denoting the post relaxation

values, and the propagation by

fi(~r + ∆t~ci, t+ ∆t) = fi(~r, t
∗). (3.4)

The macroscopic fluid density ρ for a lattice site is computed from

ρ(~r, t) =

q−1∑
i=0

fi(~r, t). (3.5)

The macroscopic flow velocity ~u(~r, t) is computed by using

~u(~r, t) =
1

ρ(~r, t)

q−1∑
i=0

~cifi(~r, t). (3.6)

A commonly used collision operator is the Bhatnagar-Gross-Krook col-
lision operator (BGK) [60]:

Ωi = −1

τ

(
fi − feqi

)
(3.7)

where τ is the relaxation time related to the kinematic viscosity v = c2s(τ −
∆t/2), and feqi is the equilibrium function defined as

feqi = wiρ
(

1 +
~ci~u

c2s
+

(~ci~u)2

2c4s
− ~u2

2c2s

)
(3.8)

The weights, wi, are defined as

wi =


1/3, i = 0,

1/18, i = 1, 2, 3, 4, 5, 6,

1/36, i = 6, 7, ..., 17, 18.

(3.9)

For isothermal flows, cs is the speed of sound in the lattice and, for
D3Q19, is defined as cr/

√
3. For porous media simulations, the more com-

plex two relaxation time (TRT) collision operator [61] is widely used. For
the TRT operator, Ωi is defined as

Ωi = −λe
2

(fneqi + fneq−i )− λo
2

(fneqi − fneq−i ), (3.10)
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where fneqi = fi − feqi ,~c−i = −~ci, and the even parameter λe = 1/τe, τe is
determined by the value of kinematic viscosity, v = c2s(τe −∆t/2), and the
odd relaxation parameter we assign using λo = λ∗o/∆t = 8(2− λ∗e)/(8− λ∗e).

Lattice sites that represent solid geometry are not assigned any distri-
bution values. For values that would be propagated from these solid sites,
a boundary condition needs to be applied. The simple boundary conditions
commonly used are the bounce back and bounce forward boundary condi-
tion. In this work, we use the bounce back boundary condition [62]. In
practice, this boundary condition involves turning around any distribution
value moving into a solid site into the opposite direction, and placing them
back into the same lattice site they originated from.

3.2 Algorithms and implementation techniques

The propagation step of the LBM algorithm introduces a dependency be-
tween the neighboring sites in the lattice. When moving the distribution
values from the current lattice site to the neighboring sites, the distribution
value needs a location to be stored on the neighboring lattice site. The nat-
ural place is the location corresponding to the same distribution value on
the neighboring sites. But then those distribution values need to be moved
to the neighbor of the current neighbor and so on, until the propagation
reaches the edge of the domain.

There are various algorithms that address this inherent dependency be-
tween lattice sites. These approaches all have varying degrees of suitability
for parallel computation, different memory space requirements, and varying
performance on different architectures. Traditionally parallelism has been
described using the message passing paradigm. Each core is handled as a
separate process, which sets up its own small domain and runs the sim-
ulation for this domain only, with parallelism handled by communicating
with its neighboring processes. However, on modern supercomputers, this
approach quickly becomes unsustainable with machines that have hundreds
of thousands of cores. Also, assigning a separate process to each core will
increase the amount of communication needed and the memory usage of
the program, since some data structures are often replicated on each pro-
cess. Some MPI overhead also grows as the number of cores used grows [63].
While it is possible to run MPI with many ranks for large systems, some
form of multi-level parallelism is often useful.

For accelerated systems, especially with GPU accelerators, it is not pos-
sible to handle every core within the processor as a separate process. The
GPU programs need to be structured in a way to allow the processor to
iterate over the lattice sites in any order, as there is no method of control-
ling the order that parallel threads on the accelerators are executed. Also,
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using shared memory parallelism, such as OpenMP, having the ability to
iterate over the lattice sites in any order simplifies the way the code can
be parallelized on regular CPUs. Finally, since modern CPUs derive a lot
of computational performance from SIMD type vectorization, using these
vectors means the solver will have to be able to do multiple site updates at
the same time in a SIMD fashion. A better approach then is to distribute
the program over multiple nodes using the MPI paradigm, with one MPI-
process per node or accelerator. The parallelism within the nodes is then
handled by another level of parallelism, be that shared memory parallelism
with OpenMP or offloading the computation to an accelerator using CUDA
or OpenACC.

3.2.1 Lattice site addressing

When applying the propagation to the distribution values in the lattice sites,
there needs to be some way to compute where the neighboring lattice sites
reside in memory, as data from the current lattice site will be moved to
the neighboring sites. The simplest way to handle this would be to allocate
a three-dimensional array, the size of the bounding box of the simulation
geometry used. The location of the neighboring lattice sites can then be
computed by looking at the coordinate of the current lattice site and adding
the corresponding offset for the current distribution value. This approach
would be a direct addressing scheme for the lattice sites.

The direct addressing scheme, while simple to create and use, has some
drawbacks, the need to allocate space for all the lattice sites within the
bounding box of the geometry being the biggest. Since the samples used
for this work consists of a porous material, a significant percentage of the
volume consists of solid lattice sites, for instance the main sample has only
13 % fluid sites. Using the direct addressing scheme would force the solver
to allocate a lot of memory that will not be used for the fluid simulation,
and it would severely limit the amount of simulation data that is able to fit
into a compute node.

Additionally, allocating space for the solid sites has an adverse effect on
the performance of the solver. The performance impact comes from the way
memory accesses through the cache structure work on a modern processor.
On a hardware level, if the program requests a single value, that memory
access is not done for an individual value. In case the value requested does
not currently reside in the cache, the processor will always fetch an entire
cache line instead of a single value. In the case where there are unused,
solid, sites in the lattice, when a cache line containing data associated with
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such a site is requested by the processor, this unusable data is moved into
the cache structure. Fetching data into the cache that is not used by the
computation is wasting bandwidth, since there will be no computation done
with it.

To avoid the performance degradation associated with unused lattice
sites and to save memory space, the LB solver used here is implemented
using indirect addressing. In practice, indirect addressing requires data to
be allocated only for fluid site. This is done by precomputing the indices
used for the propagation targets for all the distribution values before the
simulation starts. During the simulation, these indices are read from an
array containing the propagation target indices for all lattice sites. With
the indirect propagation, we can implement almost any conceivable data
layout for the distribution values, and the lattice data can be arranged in
any order.

The downside of the indirect scheme is that it requires some additional
memory space for the indexing values, as well as consuming extra memory
bandwidth when reading the indexing values. Ideally, only one set of prop-
agation indices is needed for all but the center distribution value in each
lattice site. For simulations where 32-bit indices are sufficient, the solver
would need (Q− 1) ∗ 32 bits of space for the indexing values per lattice site.
When using porous media, or another media with a large amount of solid
lattice sites in the simulation geometry, the extra memory space required is
quickly offset by the saving coming from not storing solid lattice sites.

The performance impact of using indirect addressing will depend on
the algorithm used. Ideally, the distribution values will only be read and
written once per iteration. In the case where double-precision values are
used for the distribution values, 2 ∗ 64 ∗ Q bits ideally need to be accessed
for the distribution values while only (Q − 1) ∗ 32 bits are needed for the
indexing. The result is that the theoretical performance impact of using
indirect addressing should only be around 24% lower than in the case we
run a fluid only simulation.

For porous media, using direct addressing will have a significant per-
formance impact, in addition to the wasted memory space from storing all
the solid sites. Since some of the cache lines fetched will include data that
will not be used by the simulation, it will waste bandwidth that could be
used for actual simulation data. Figure 3.3 shows result from testing on
an Nvidia Tesla M2050, placing solid sites at random locations to achieve a
certain percentage of solid sites. The performance is measured in millions
of fluid lattice sites updated per second, MFLUPS. We only count the fluid
sites since no computation happens at the solid sites, and in fact since we
are using indirect addressing, we do not even allocate memory for them.
At roughly 10% of the lattice volume filled with solid sites, direct and indi-
rect addressing performed the same [64]. Increasing the percentage of solid
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Figure 3.3: The performance at different percentages of solid sites, compared
to the performance of the direct and indirect addressing schemes on a Tesla
C2050 GPU. Solid sites are placed at random into the simulation domain.

sites in the lattice will have the performance of the direct addressing scheme
falling further in a linear relation to the number of solid sites. The indirect
variant will see a declining performance while going towards 70% solid sites,
and a performance increase when going to a more solid simulation geometry.

3.2.2 Two-step algorithm

The two-step algorithm is one of the well-known implementation algorithms
for LBM [65]. The algorithm works by iterating over the lattice two times.
The first iteration is to apply the relaxation to each lattice site and the
second is to perform the propagation of values from site to site. The relax-
ation can be trivially parallelized, but the propagation needs to be done in
a carefully selected order, in order not to introduce race conditions into the
computation [66].

The benefits are that this algorithm only requires one location in mem-
ory for the distribution values associated with a lattice site and one set of
indices for the propagation. This method is memory bandwidth intensive,
as it requires the program to iterate over all lattice sites twice, while the
propagation step also requires the indices for indirect propagation.
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Figure 3.4: Two step algorithm illustrated using a D2Q9 example. The site
update happens in two discrete steps, one applying the relaxation the other
the propagation.

3.2.3 Two-lattice algorithm

The second well-known algorithm for implementing the LBM is the two-
lattice algorithm [65]. With this algorithm, the propagation step can be
parallelized by having each lattice site being associated with two memory
locations. In this case, it is unnecessary to iterate over the lattice site twice.
The program simply iterates over the lattice sites once, applying both the
relaxation and the propagation at the same time in a fused operation. For
the propagation on even time steps, data is read from lattice A and written
to lattice B after the relaxation and propagation, and then for odd time steps
the procedure is reversed, reading from lattice B and writing to lattice A, as
illustrated in figure 3.5. The propagation can be done in one of two ways. If
the propagation is done before the relaxation, it is a so-called pull scheme,
and if the relaxation is done after the propagation, it is a push scheme.
Since there are no dependencies between lattice sites, this algorithm can be
trivially parallelized with the post relaxed distribution values being written
to a completely different location than they are read from.

Iterating over the lattice sites once significantly reduces the required
memory bandwidth. The downside of this approach is that it requires two
memory locations for the distribution values within a lattice site, which
doubles the memory space required for the distribution values.

3.2.4 Swap algorithm

Another way to handle the inherent data dependencies in the LBM is the
swap algorithm presented by Mattila et al. [67]. The swap algorithm has
the benefit of only needing one storage location for the distribution values.
At the same time, it is possible to fuse the relaxation and propagation such
that the lattice can be iterated over just once each time step.
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Figure 3.5: Two lattice algorithm illustrated using a D2Q9 example. At
each site, the values are read from one lattice and written to another. Once
all sites have been updated, the lattices are swapped for the next time step.
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Figure 3.6: The swap algorithm illustrated using a D2Q9 example. The
values propagating to sites not visited for this time steps are swapped with
the values from the non-visited lattice sites.

The novelty of the swap algorithm is that the lattice sites need to be
iterated over in a very specific order, starting from one corner updating one
site at a time, and moving to the next. At each site, depending on if the
solver is using either the pull or the push scheme, the propagation is first
applied to all distribution values that will propagate to a site the iteration
has not yet visited. These propagations are done by swapping the values
with the opposing distribution value for that site, as illustrated in figure 3.6.
Once the values have been swapped, the relaxation is applied to all values
in the current site, alternatively, if the push scheme is used, the order of
relaxation and propagation is reversed.

Since the algorithm requires the sites to be iterated over in a very specific
order, it makes parallelizing the swap algorithm hard. The only way is to
divide the problem into as many parts as cores in the system, and run the
parts of the simulation as a single thread on the cores, i.e. pure MPI par-
allelism or similar task-based parallelism. This also limits the vectorization
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Figure 3.7: A-A algorithm illustrated using a D2Q9 example. At odd time
steps no propagation is applied, and at even time steps propagation is ap-
plied both when reading and writing the lattice data.

that can be done to vectorizing a single lattice site instead of updating mul-
tiple sites at once. With these restrictions, it is hard to achieve the massive
levels of parallelism needed for efficient utilization of GPUs.

3.2.5 AA algorithm

The AA pattern introduced by Bailey et al. [68] allows the lattice sites to be
updated in any order and for this reason the solver can be easily parallelized.
This comes with the requirement to have just one storage location for the
distribution values associated with each lattice site. Finally, it allows for a
fused relaxation and propagation implementation, and therefore the values
for each lattice site need to be accessed only once every time step.

The basic idea behind the AA pattern is to handle the propagation
differently between odd and even time steps. At odd time steps only the
collision is applied. As illustrated by figure 3.7, the distribution values are
written back to the opposing locations in the local site. At even time steps,
the propagation is applied twice. First, the values needed for the current
lattice site update are pulled from the neighboring sites, then the relaxation
is applied, and afterwards the newly updated values are pushed out to the
neighboring lattice sites. Due to how the odd and even time steps interact,
the values that are pulled in at the start represent the distribution values
for the opposite directions from which they are read.
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Since the site update for both the odd and even time steps only use
distinct memory locations, there are no race conditions introduced in the
site update code. This means that the updates can be executed in any
order. The solver also only needs one location for the distribution values.
Another benefit is that the same memory locations are used for both read
and write, which can, in some architectures, improve the performance. This
performance increase comes from the fact that the values are written back
into memory segments that may already be in the cache.

The indexing values used for the propagation at the even time steps are
the same for both the pull propagation and the push propagation. Since
both propagations use the same values, only one set of propagation indices
are needed. Additionally, since the propagation indices are only needed at
even time steps, it saves some memory traffic as the indexing variables are
read only at the even time steps.

3.2.6 Algorithm summary and applicability

The algorithms presented thus far all have varying degrees of suitability
for parallel computation. All of them can be parallelized if each core in
the system would be handled as a separate task using the pure MPI based
paradigm. But such approaches are difficult to scale and not applicable to
running on computational accelerators. Finally, it also limits us to vector-
izing the site update for a single site rather than vectorizing over multiple
sites. The algorithms presented also have different memory space require-
ments and different memory bandwidth requirements. The bandwidth being
one of the major factors in the performance of the LB model, the amount
of memory bandwidth needed is a good indicator of the performance of the
different algorithms. This is discussed further in chapter 3.3.

Table 3.1 shows a summary of the memory bandwidth requirements as
well as the memory space requirements for the presented algorithms. The
table also includes an estimate of the number of bytes needed for an ideal
site update with the D3Q19 discrete velocity set. This estimate is made
assuming double-precision, 8-byte values are used as distribution values and
4-byte integers as indexing values. These memory bandwidth numbers do
not account for any cache reuse that might reduce the actual data moved,
nor does it account for some architectures having to read in a cache line
before it can be modified. The table also does not account for extra data
that might get accessed when applying the boundary conditions. Regarding
the memory space requirements for the solvers there are only two options.
The algorithm relying on two lattices will require twice the amount of space
to store the distribution values and the others will only require one location
for the distribution values. The space needed for the indexing data is the
same for all algorithms.
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Table 3.1: Memory space usage and memory bandwidth requirements for the
different algorithms, assuming no cache effects. It is assumed that integers
are used as index values.

Algorithm
Memory space

(Bytes)

Memory bandwidth
per site update

(Bytes)

Bytes accessed
per D3Q19
site update

Two-
lattice

2*Q*sizeof(fi)+
(Q-1)*sizeof(int)

2*Q*sizeof(fi)+
(Q-1)*sizeof(int)

376

Two-
step

Q*sizeof(fi)+
(Q-1)*sizeof(int)

2*2*Q*sizeof(fi)+
(Q-1)*sizeof(int)

680

AA
Q*sizeof(fi)+

(Q-1)*sizeof(int)
2*Q*sizeof(fi)+

((Q-1)/2)*sizeof(int)
340

Swap
Q*sizeof(fi) +

(Q-1)*sizeof(int)
sizeof(fi)*((3*Q)-1)+

sizeof(int)*(Q-1)/2
476

The two-step algorithm iterates twice over the lattice data and will re-
quire more memory bandwidth, which will have a significant impact on the
performance. This makes it less attractive for a high-performance solver.
The swap algorithm, although it has low space requirements and does not
require the lattice sites to be iterated over twice, still requires the solver to
read some values twice. It is also significantly harder to parallelize without
resorting to a task based parallelism model. This difficulty is due to its re-
liance on iterating over the sites in a specific order. Algorithms that can only
be effectively parallelized using task based parallelism are less attractive for
massively parallel systems like GPUs and vectorization.

The two-lattice algorithm is an attractive algorithm, since it does not
come with a high memory bandwidth requirement and is easy to make mas-
sively parallel, but it has the downside of a larger memory space requirement.
Finally, the AA algorithm appears to be the best of both worlds. It is easy to
parallelize, does not require two storage locations for the distribution values
and does not require us to iterate twice over the lattice data. Additionally,
since the solver only needs the index values every second time step, the
solver has the possibility to perform better than the two-lattice algorithm,
and as such it appears to be the optimal one of the presented algorithms.

3.3 Simple estimate of the performance potential
of the LBM

The performance of the LBM depends on the amount of memory bandwidth
required by the solver. This can be determined by a simple analysis of the
algorithm used. The easiest way to highlight this is to look at the arithmetic
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Table 3.2: Arithmetic intensity for some of the architectures discussed in
this work.

Architecture
Theoretical peak

GFLOPS
(64-bit)

Bandwidth
(GB/s)

stream triad

Arithmetic
intensity

(flops/bytes)

Tesla K20x 1312 182 7.2 [71]

Tesla P100 4670 550 8.5 [4]

Xeon Phi 7210 2253 436.6 5.2 [4]

Xeon E5-2698v3 1178 116 10.2 [71]

intensity, flops per bytes of data accessed [69] by the solver. The arithmetic
intensity of the solver can then be compared to the flops per bytes of memory
bandwidth provided by the architecture the solver is running on to obtain
an estimate of the maximum performance achievable.

The BGK relaxation operator for the D3Q19 velocity set involves ap-
proximately 160 floating-point operations per site update [70]. The TRT
operator for the same velocity set is more complex and involves around 213
to 257 floating-point operations per site update, depending on implementa-
tion [5]. Using the AA algorithm, which has the lowest bandwidth require-
ments, and the upper limit of the reported floating-point operations for the
TRT relaxation function, the arithmetic intensity is only 0.76 floating-point
operations per byte of data accessed.

Table 3.2 shows the theoretical peak floating-point performance and the
stream triad benchmark bandwidth [72] of the architectures utilized within
this work. While achieving the theoretical peek floating-point performance
might seem far-fetched, programs that rely heavily on linear algebra can
often achieve close to the theoretical peak performance of the systems. The
most efficient systems on the TOP500 list are achieving over 90% of their
theoretical peak performance [13].

The stream benchmark is often used to measure the realistic memory
bandwidth a system can deliver. The idea behind the stream triad bench-
mark [72] is to read data from two different arrays, A and B, multiply the
value from B with a scalar K, add that result to the value from A, and store
the result into array C. The sizes of the arrays are chosen in such a way that
the data cannot fit into the cache structure of the processor. The opera-
tion performed by the benchmark includes only two arithmetic operations,
and it reads two values and stores one. The scalar K should be accessible
from the cache and does not contribute to the bandwidth used. The stream
benchmark is a good indication of the type of bandwidth achievable for a
bandwidth bound code, if the solver can efficiently use all the data moved
in from main memory.
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Table 3.2 shows that, for all the presented processors and accelerators,
there is significantly more floating-point performance than memory band-
width available. Using the TRT relaxation operator as a comparison, it is
clear that the available flops to bytes on the presented architectures are over
an order of magnitude more than required. To achieve the theoretical peak
arithmetic performance of the systems, the solver would have to do 40 to
100 floating-point operations with each double-precision value accessed.

3.4 Arranging the lattice data

Different processor architectures have different requirements for how data is
accessed. Most modern processors have some form of cache structure that
acts as a buffer between the memory and the processor. The idea behind
these caches is to have a smaller high speed lower latency memory space
closer to the cores performing the computation. Modern CPUs can have up
to three or four levels of caches, some which are shared across the entire
processor, and others which are distinct to each core. Generally, caches
closer to the cores offer a higher performance at the cost of size, with the
smallest caches being the closes ones to the individual cores.

Data is transferred to and between the caches in fixed size segments,
referred to as a cache line. The access is done in segments, and even if a
single value is accessed, an entire cache line is always brought into the cache
structure. For Intel x86 architectures 64-byte cache lines are used, so even
if only a single byte is read from memory, there will still be a full 64-byte
cache line moved into the CPU. With the caches being significantly smaller
than main memory, all data cannot be kept in them indefinitely, so as newer
data is moved in, the older data eventually will be evicted from the cache.

On Nvidia GPUs, the L1 cache line length is 128-bytes, but on newer
GPUs the loads are only cached in the L2 cache, which has a granularity
of only 32-bytes [52]. The GPUs are designed to use the caches more as a
coalescing buffer. This allows multiple threads from the same warp to access
their part of the cache line, allowing for spatial reuse of cache data. Since
the caches are smaller and the GPUs run significantly more active threads
than a regular CPU temporal data reuse is discouraged.

When programming for architectures with caches, the data accessed by
the program should be arranged in such way that the program is able to
use all the data that is transferred into the processor. Any data reuse from
the caches should be done before the data is evicted from the cache. The
way the data is arranged has a significant impact on how the processor can
use the data brought in. The differences in the way the data accesses work
results in some architectures benefiting from data arranged in one way, while
other architectures benefit from other ways.
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Figure 3.8: Illustration of the data layouts used. Topmost the collision opti-
mized, next the stream optimized. Third is the vectorized collision optimized
and at the bottom the bundle layout and how it can be vectorized.

3.4.1 Data layouts

The two elementary data layouts used for the LB method are the so-called
stream optimized and the collision optimized layouts [73]. These layouts
represent textbook examples of a structure of arrays (SoA) and an array
of structures data layout (AoS), respectively. Both layouts come with their
separate strengths and weaknesses, which can vary depending on the hard-
ware architecture used.

The collision layout, illustrated first in figure 3.8, has the benefit of
placing all values associated with a given lattice site next to each other in
memory. This makes manipulation of one lattice site easier. This layout
also guarantees that the values for one single lattice site will fit into as few
cache lines as possible. This in turn raises the chance that, when process-
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ing one lattice site, the next distribution value needed is delivered from a
lower latency cache. The downside is that if a thread wants to access the
value for a specific distribution value for multiple lattice sites, these ac-
cesses get strided in the memory. That is, the distribution values associated
with a lattice site are separated in memory by a fixed distance, or stride.
These strided accesses are detrimental to architectures such as GPUs, where
multiple threads should be fed from the same cache lines, since cache lines
accessed will include a lot of data that the threads are not necessarily able
to use. These strided accesses are also detrimental to vectorized LB imple-
mentations, which cannot access contiguous vectors from the memory and
need to assemble the data from strided memory locations.

The stream optimized layout places values representing the same distri-
bution value for different lattice sites next to each other in the memory, as
shown in figure 3.8. All values representing a certain distribution value for
different lattice sites are placed in contiguous memory locations. If a single
thread wants to access the values for one lattice site, the thread now needs
to do strided accesses. However, when accessing data for multiple lattice
sites, such as for a vectorized solver or GPUs, these accesses can be done
from contiguous memory space, which is the far more efficient access pattern
for these types of architectures.

There is no real limitation to how the lattice data can be arranged. If
the programmer is willing to keep track of this, one could propose more
complex data layouts as well. One such more complex data layout is the
bundle data layout [66], also illustrated in figure 3.8. This data layout groups
together certain distribution values into bundles, for instance for a D2Q9
discrete velocity distribution the bundles could be constructed as illustrated
in figure 3.8. The idea behind the bundle is to increase the locality of
the data and thus reduce the number of cache misses encountered by the
processor running the simulation.

Data layouts such as the collision optimized and bundle layouts have the
drawback that they will not perform well on GPUs or vectorized solvers,
since they do not conform to their data access requirements. These layouts
can however be modified by arranging the data to conform to the access
requirements for these architectures. For the array of structures type colli-
sion optimized data layout, instead of constructing the inner most structure
from data associated with a single lattice site, the structure should be con-
structed from multiple lattice sites. The number of lattice sites placed into
each structure should be the number of values that should be accessed at
the same time by a given architecture, or a multiple of the number of lat-
tice sites required. Then, instead of storing single values in the structure,
arrays of the size of the required number of lattice sites that are packed into
the structure are stored. These arrays should contain the same distribution
value from each lattice site as in the stream optimized data layout. This
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would effectively be an array of structures of arrays (AoSoA) data layout,
or a vectorized collision data layout. Figure 3.8 illustrates how to construct
this data layout. A similar approach to the vectorized collision layout can
be used for the bundle layout. Again, instead of storing single scalar values,
the bundles should be constructed of arrays with a size that is a multiple of
the required number of sites that need to be accessed at the same time.

A collision optimized layout that is optimized for coalesced access would
potentially be the optimal solution. This offers the locality benefits of having
all data associated with a lattice site close to each other in memory, as well
as being suited for coalesced accesses are required by the vectorized and
GPU based solvers.

Modern CPUs are very versatile and can handle a wide variety of different
access patterns. They can also reduce the impact of suboptimal access pat-
ters though prefetching and multi-level cache structures with large caches.
As such, a scalar solver performs similarly with many data layouts in the
case that any unused data brought in for the update of one lattice site is
reused by the update of another. The large caches help, since they allow un-
used data to stay in the cache structure longer, increasing the chance some
other lattice site update needs this data.

The GPUs benefit from data accesses where the running threads access
data from the same coalesced data segment. To get the optimal memory
bandwidth out of the system, the threads executing at the same time should
be accessing adjacent data. For this, the memory layout should be either
the stream optimized one or the vectorized version of the collision or bundle
layouts.

With vectorized solvers running on regular CPUs, the data layouts be-
come more important. This is due to the vectorized solvers updating mul-
tiple lattice sites at the same time. As such, the basic collision optimized
layout is no longer feasible, as it would require the values for the vectors to
be assembled from scattered memory locations. This leaves the stream and
vectorized layouts as the only valid options for a vectorized lattice Boltz-
mann solver.

The manycore Xeon Phi processors rely heavily on vectorization for their
performance. The data layout used for these should be like the vectorized
CPU solver and the GPU solvers, with different vector lengths. Layouts
such as stream optimized and the vectorized collision and vectorized bundle
layouts are also suitable, with values from at least 8 lattice sites placed in
the same structure.

35



36



Chapter 4

Simplified GPU
programming with
OpenACC

With GPUs offering more memory bandwidth than CPU-based systems,
the GPUs can offer better performance for LB solvers. The drawback with
GPUs is that they require the code to be expressed using a programming
language that can offload the computation to the GPU. Converting the
code to use these accelerator-specific languages requires parts of the code
to be rewritten. The OpenACC programming standard offers accelerator
programming using compiler directives to describe the parts of the code
that are to be parallelized. OpenACC directives can offload the parallel
sections to be executed on the GPU.

In article [1] we examine how OpenACC can be used to offload the com-
putation of the LB method to GPUs. It also examines how the performance
of the OpenACC version compared to the native CUDA version implemented
using the same techniques as the OpenACC version. This chapter presents
how OpenACC directives can be applied to an LB solver to offload the com-
putation to a GPU. This chapter also includes a high-level description of how
LB solvers should be implemented in order to efficiently use the resources
of a GPU.

The LB solver used for these tests is implemented using hybrid paral-
lelism, i.e. the solver uses MPI to communicate between compute nodes
or compute units and some other form of parallelism within the compute
nodes or within each accelerator. The LB method has already proven that,
if correctly optimized, it will perform very well on GPUs [59]. This makes
it a suitable candidate for evaluating the applicability and performance of
OpenACC as a simpler method for creating GPU programs.
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On a basic level, the LB code can be structured as a collection of loops,
iterating over all or part of the lattice sites and applying the propagation and
relaxation to the lattice sites. If there are any special boundary conditions
being enforced, those are usually done as separate loops. When distributing
the solver over multiple compute nodes, the simulation domain is divided
into subdomains. To keep the communication of a distributed solver to a
minimum, the subdomains should be kept as contiguous blocks. Then the
blocks are distributed over the parallel processes running the simulation.
Any value propagated out of the local domain on one compute node needs
to be moved to the neighboring compute nodes. This usually involves a
separate loop, iterating over the lattice site where the propagation moves
the distribution values outside the local domain. These loops gather the
values into a contiguous memory space. The communication is then done
from these contiguous buffers. Once the communication is completed, the
new values are scattered back into the local domain.

4.1 Lattice Boltzmann GPU implementation

With the GPU being a separate device, a key factor in performance is to keep
data on the device for as long as possible. If the lattice data is initialized
on the host, it needs to be moved to the device before the simulation starts.
The data should then stay on the device for the entire simulation and not
move back and forth between host and device. If the data is shuffled back
and forth between host and device, any performance benefit gained from
offloading the computation will often be negated by the transfers between
host and device. The bandwidth of the bus connecting GPU to the CPU
is more than an order of magnitude slower than the memory speed of the
device, which will limit the simulation speed.

The lattice site update needs to be described in terms of computational
kernels. The kernel describes what a thread running on the GPU will exe-
cute. The kernel should apply both the collision and the propagation oper-
ation to a single lattice site in a fused operation. These operations should
be done at the same time, to reduce the required memory bandwidth per
site update. For optimal GPU performance, the code and the data need
to be structured in a way that is beneficial to the execution model of the
GPU. The algorithm used needs to be one that does not introduce any data
dependency between lattice sites, in this case the two-lattice algorithm is
used. The lattice data also needs to be laid out by using a scheme that
allows the GPU to do coalesced accesses of data. Chapter 3.4 presents data
layouts that are optimal for the GPU, the most basic of these would be the
stream optimized layout, which is used in this case. Finally, the actual code
executed by the kernel needs to be such that it fits the SIMT execution
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for timeSteps

Propagate and collide !uid sites

Gather border data

Transfer border data to host

MPI communication with other hosts

Transfer border data from host

Scatter border data

Figure 4.1: The basic blocks of the LB solver before we added OpenACC
directives.

model of the GPU. In practice, multiple threads will be executing the same
kernel at the same time with different indices, and these threads should be
executing the same instruction at the same time.

When distributing this solver, the values that are propagated out of the
local domain need to be moved to the neighboring compute nodes. These val-
ues need to be transferred from the compute device to the network adapter.
For optimal performance, these transfers should be done in larger blocks, to
reduce overhead associated with the transfers and to improve the network
bandwidth of the transfers. To achieve this, the values that will be communi-
cated are placed into a contiguous memory space. Once the communication
is done, the values are spread out from these continuous memory locations
back to the lattice. Moving the data to and from contiguous memory space
is done by a set of small kernels that simply move the data associated with
some distribution values.

4.2 Lattice Boltzmann OpenACC implementation

The OpenACC code used for these tests is based on a serial CPU version
implemented using the same techniques, algorithm and data layout, as those
we used for the CUDA code. This was done to keep the OpenACC and the
CUDA versions as similar as possible, for a more direct comparison. The
serial code works in the same way as the CUDA code with the relaxation
being applied as a fused operation with one function iterating over all the
lattice sites. The communication is handled the same way, with values
packed into contiguous buffers before being communicated. As the GPU is
a discrete device with its own memory space that is separate from the host
CPU, data that needs to be communicated must be moved to and from the
device. Figure 4.1 shows the basic program flow together with the necessary
additional data transfers between the host and the device.

The idea behind OpenACC is to be able to express what part of the code
will be offloaded to the accelerator using simple compiler directives. As with
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for timeSteps
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#pragma acc data copy(..) copyin(..) create(..)

#pragma acc kernels loop independent

#pragma acc kernels loop independent

#pragma acc update host

#pragma acc kernels loop independent

#pragma acc update device

Figure 4.2: OpenACC directives added to the LB solver. These directives
control the data movement and what parts are offloaded to the accelerator.

OpenMP, the code the compiler should work with needs to be placed into
a structured block, and this block needs to be annotated with a directive
to signal to the compiler what it should do with the code. The directives
include hints to as how the compiler should parallelize the code and what
parts should be executed on the device.

Data transfers between host and device are also handled using compiler
directives. In C code, the data directives are either based on structured
blocks or can be added to other directives dictating how the code will be
offloaded to the GPU. In the case that they are applied to offload directives,
the data transfers will be handled once the execution of the parallel segment
starts. When applied to a structured block data transfers will happen as
the execution enters and exits the block. The use of data blocks allows the
data to be kept on the GPU for longer than just a single parallel loop.

Figure 4.2 shows the practical application of the OpenACC directives to
the LB program flow. To minimize the data movement between the host
and the device, the entire time stepping part of the code is placed in a
#pragma acc data block. In the beginning of the block the indexing data
is copied in to the device using the copyin directive, while the fluid data
is moved using the copy directive. These directives ensure that the data
will be copied to the device, once the execution enters the block, and the
fluid data will be copied back to the host once the execution exits the block.
Lastly, the additional buffers needed for the communication and the extra
lattice data needed by the execution are created using the create directives.
The create directive allocates space on the device upon entering the block
and then deallocates the data at the end of the block.
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The main loops of an LB solver are the ones iterating over all lattice
sites and updating them. This loop can be offloaded to the GPU using
the #pragma acc kernels loop independent directive. The kernels key-
word signifies that the following section should be executed on the acceler-
ator as a sequence of kernel operations. The loop construct is added to
describe the type of accelerator parallelism to use when executing the iter-
ations of the loop. Finally, independent is used to override the compiler
dependency analysis of loop dependencies, signaling that the data accesses
in the loop are independent. The independent directive is needed in this
case, since the loop contains indirect data accesses. These indirect accesses
restrict the compilers ability to parallelize the code, since the compiler can
no longer guarantee they will not cause any data race conditions.

The loop responsible for the gather and scatter of the data needed for
the communication is offloaded to the GPU in the same way as the main
loop. Again, since the gather and scatter operations involve some type of
indirect data access, the independent directive is needed for them to be
executed in parallel on the device.

The transfers of the communication data to and from the device occur
in the middle of the data segment used to keep all the simulation data
on the device. These communication buffers cannot easily be transferred
to and from the device using the standard data movement functionality.
OpenACC does provides a way to update either host or device data from
within a data segment in the form of the #pragma acc update directive.
The update directive allows the programmer to specify an array included in
a data segment that is to be copied either to the device or host in the middle
of a data segment. This allows the communication data to be moved to the
host to hand it off to MPI for the transfer between the different ranks, and
then back to the device, once the communication is done.

4.3 Performance

The compiler should only convert the sections marked with OpenACC di-
rectives into code that can be executed on an accelerator, and handle the
movement of data between host and device. The compiler does not modify
the code to be more suitable for running on the accelerator, that job still
falls on the programmer. The main factor that determines the usability of
OpenACC depends on any overhead associated with the way the code is
converted, or on any overhead associated with the resulting data movement
between host and device. Ideally, with no overhead from the generation of
the kernels and the data movement, the OpenACC version should achieve
similar performance to a CUDA version of the code implemented in the same
way.
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We set up a simple test to determine the performance of our OpenACC
version of the code and compared it with our CUDA version. Both solvers
were implemented using the same algorithm, in this case the two lattice-
algorithm. Both solvers used the same D3Q19 discrete velocity set, as well
as the same stream optimized data layout. Indirect addressing was used
in both cases, making the read and write operations from device memory
less trivial. Both solvers functioned in the same way with regards to the
communication, with the data moving through the host memory to the
other compute nodes using MPI.

The performance test was carried out on a cluster consisting of 8 nodes,
each of which contains two Nvidia Tesla C2050 GPUs and two 6-core Intel
Xeon processors. For the compilation, the PGI 12.10 compiler was used
to compile the OpenACC code, and for the CUDA code version 5.0 of the
CUDA compiler was used. The test case used was a simple 3D geometry
consisting of the simulation of the fluid flow between two planes, with the
edges of the domain being implemented as periodic in the other directions.
To test the performance, both solvers were run with varying sized domains
from 23 lattice sites to 1753 lattice sites. The only solid lattice sites in the
simulation was those at the edge of the domain in the y-direction, represent-
ing the two planes.

The sizes of the thread blocks that are being run on the GPU can have
an impact on the performance of the code [74]. The OpenACC compiler will
automatically choose the size of the thread blocks for any code it compiles,
unless a specific size is set using the OpenACC directives. For the main
kernels in the LBM code, the OpenACC compiler set the thread block size
to 256 threads. The compiler also used the same thread block size for all
the other kernels in the program. When compiling both the CUDA based
code, as well as the OpenACC one, both ended up using 42 registers for the
main LBM relaxation and propagation function.

Figure 4.3 shows the performance measured on a single GPU, comparing
the performance of both the CUDA and OpenACC implementations. Both
codes are running at the same thread block size, 256 threads. Using this
thread block size, the performance difference between OpenACC and CUDA
is just 0.5%, with the CUDA version being the faster one. For the CUDA
version, using a thread block size of 512 threads yields a better performance
as shown in figure 4.3. However, forcing the OpenACC version to the same
thread block size, there was no observable improvement in the performance
of the OpenACC code. Comparing the OpenACC version with the CUDA
version, running with a thread block size of 512 the CUDA version performs
1.05 times better than the OpenACC one.

The distribution of the solver was done using MPI, each GPU was han-
dled as a separate MPI rank. The communication from the GPU passes
through the host memory to the network. Figure 4.4 shows how the dis-
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one Tesla C2050 GPU.

40 60 80 100 120 140 160 180
Qubic problem size

40

60

80

100

120

Sp
ee

d 
pe

r G
PU

 (M
FL

UP
S)

OpenACC
Cuda

Figure 4.4: Multi GPU performance of the OpenACC accelerated LB solver
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tributed versions of the solver perform. In the distributed case, the CUDA
version gives, on average, a performance 1.22 times better than the Ope-
nACC version. The reason for the larger performance discrepancy was ex-
amined using the Nvidia profiler [75]. The profiler shows that the main
reason for the performance difference is down to a small delay between each
kernel launch in the OpenACC code that is not present in the CUDA code.
Additionally, the way the OpenACC version does the data transfers be-
tween the host and the device achieves a transfer speed that is about 1GB/s
slower than what was achieved with CUDA. Since, for this comparison, all
data transfers were executed synchronously with no overlapping, this speed
difference will be visible immediately when comparing the performance of
the solvers.

4.4 Conclusion

Even though the OpenACC code performs slightly slower than the CUDA
version, OpenACC should not be discarded as an alternative way to program
GPUs. When the experiments were run, the OpenACC version performed
marginally worse than the CUDA versions on single GPUs, but with a larger
difference on distributed solvers. However, the simplicity of just adding
compiler directives to existing code is a worthwhile tradeoff. Especially
if the goal is to quickly covert an existing code base to use GPUs, it is
far easier to get the code to use accelerators using OpenACC than with
CUDA. Sections of the code that are performance critical can be further
converted to CUDA code for optimization. The comparison made in this
chapter shows that, while OpenACC is a worthwhile alternative, it is by no
means a replacement for CUDA code. It is still possible to achieve better
performance with the CUDA code. Certain functions of the GPUs cannot
be used in OpenACC, one prominent example being the usage of the shared
memory on the GPU, which means there is still a need for CUDA to program
GPUs.
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Chapter 5

Large-scale parallel
computing using the lattice
Boltzmann method

This chapter covers additional GPU implementation techniques from article
[2] and [3]. We examine the influence of different data layouts on the per-
formance of GPU solvers, as well as the impact the choice of algorithm has.
This chapter also discusses the details of large scale LB simulations from the
same articles, and delves into how the I/O was designed. We also discuss
the effects of load balancing, and how the LB solver can both strongly and
weakly scale on, what was at the time, one of the most powerful supercom-
puters in the world.

Through the INCITE project [76] we gained access to the Titan super-
computer [77, 78] at the Oak Ridge national laboratory. At the time Titan
was the second fastest supercomputer in the world. Titan is a Cray XK7
machine [79], consisting of 18688 compute nodes. It derives most of its com-
putational power from Nvidia Tesla K20X GPUs. Each node has one GPU
which has 6GB of memory. The nodes use 16 core AMD Opteron CPUs,
with a single CPU powering each node with 32 GB of memory. The inter-
connect is Cray’s proprietary Gemini interconnect [80], which is accessed
through the HyperTransport bus of the CPU. Normally, this bus is used for
communication between CPUs in a node which require a high bandwidth
and low latency connection. The theoretical peak performance of the ma-
chine is rated as 27.1 PFLOPS, and in the industry standard LINPACK [14]
test Titan can achieve 17.59 PFLOPS. This performance makes it the first
supercomputer in the world to break the 10 PFLOPS barrier, placing it at
the top of the TOP500 list in November of 2012 [81].

Centers hosting the top tier machines want the people using these ma-
chines to be able to use the system efficiently and be able to use a significant
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Figure 5.1: Strong (right) and weak (left) scaling illustrated. The graphs
show how the ideal runtime and the total load changes in the two scaling
scenarios.

part of the machines. Researchers applying for resources on Titan are en-
couraged to show how their codes perform on the machine or machines of
similar scale before they apply for substantial amounts of resources [82].
These benchmarks should also reflect the real work planned to be carried
out with the resources. Large machines such as Titan are intended for simu-
lations that require the resources these machines offer. Smaller simulations
can be done on simpler and more easily accessible machines. Supercomput-
ing centers often provide other resources to users wanting to run smaller
parallel and serial jobs.

With the requirements of being able to efficiently use the large machines,
scalability becomes a very important aspect of any software that will be
run on these large-scale machines. The programs should show consistent
performance as the number of compute nodes the program is distributed
over is increased, i.e. show good scaling. In the HPC world, scaling is often
divided into two categories, strong and weak scaling.

When scaling a simulation using weak scaling, the problem size is scaled
up at the same rate as the number of computational nodes is increased.
Thus, the computational load per compute node stays constant. The goal
with weak scaling is usually to be able to fit a larger problem into the ma-
chine, and these additional nodes are needed due to the memory requirement
of the simulation in question. Good weak scaling implies that the runtime
of the simulation stays the same as the problem size and node count is in-
creased. Strong scaling, on the other hand, works with a fixed problem size.
The goal with strong scaling when adding more nodes is then to reduce the
total run time for the simulation. Running on twice as many nodes, ideally
the runtime should halve, as each node then gets half the computational
load. Figure 5.1 illustrates how the computational load per node changes as
the number of compute units used increases.
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Amdahl’s law [83] should always be taken into consideration when dis-
cussing parallel scalability. Amdahl’s law is expressed as:

Slatency(s) =
1

(1− p) + (p/s)
(5.1)

where Slatency is the total speedup achievable for the program if the parallel
portion p can be sped up by a factor of s. In simplified terms, it governs the
theoretical speedup that can be achieved by parallelizing a given workload.
In the case that only 50% of the total simulation can be parallelized, the
maximum speedup achievable is just 2 times better performance. If 75% can
be parallelized, the maximum speedup is 4 times faster. Even in the case
that as much as 90% of the computation can be parallelized, the maximum
speedup is still only 10 times faster, regardless of the number of processing
elements being used for the computation.

Weak scaling is considered to be easier to achieve than strong scaling,
since the load on each node will stay the same, and Amdahl’s law generally
does not become the limiting factor. Collective operations and networks
where the bandwidth decreases as more nodes are communicating can still
make the program experience sub-optimal weak scaling. Strong scaling, on
the other hand, tends to be harder to achieve. With strong scaling the data
assigned to a specific node decreases as the number of nodes is scaled up.
This gives the local node less data to work with, which equates to less work
to be executed in parallel, and any serial sections will affect the total runtime
more. The smaller per node computational load also tends to make overhead,
caused by communication or threading, become more apparent. In the LB
case and other stencil-based solvers, the communication volume does not
decrease in the same ratio as the computational load. Any imbalances and
bottlenecks in the interconnect will become more pronounced when strongly
scaling the simulation, as the communication becomes a large part of the
simulation.

5.1 Input sample

For all large-scale simulations, a porous media sample generated by Hilfer et
al. [84] was used. This sample is freely available online and represents the
microstructure of Fontainebleau sandstone, a subsample of which is shown
in figure 5.2. The sample is available in different resolutions, ranging from
458 nm per voxel to 117 µm per voxel, halving the size of the voxels at each
step. The porosity of the sample is approximately 13%. While the samples
consist of large number of voxels, the fluid will only be simulated for the
13% that is not solid.

These samples are named based on the size of the voxels in them. The
naming is based on how many times larger the voxels are compare to the
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Figure 5.2: An illustration of the sandstone input sample used. Left is a
representation of the full input sample representing N3 voxels. Right is the
red cube from the left enlarged, the red cube consists of (N/8)3 voxels. The
blue part is the pores within the structure, and with the sandstone removed,
it is the fluid flow within these pores that is simulated.

915.5 nm sample. The lowest resolution sample is denoted as A128 and the
highest as A0.5. For the simulation runs on Titan, all samples from the A16
sample to half of the A1 sample were used, with voxel sizes from 14.648 µm
to 0.9155 µm.

5.2 GPU data layout and algorithm performance

On the GPU, basic implementation decisions can heavily influence the per-
formance of the LB solver. Choosing the right algorithm and, more im-
portantly, data layout is the key to a well performing GPU accelerated LB
solver. The OpenACC comparison work was carried out using the two-
lattice algorithm, since it is the simplest algorithm that fits the execution
model of the GPU. However, it is not the best algorithm to use when run-
ning an LB solver on the GPU. On Titan using 1024 compute nodes, the
Two-lattice and AA algorithm were compared using the porous media sam-
ple. The two-lattice algorithm achieved a per node performance of 286.4
MFLUPS, while the AA algorithm could run at 384 MFLUPS, a 1.34 times
better performance.

The data layout is also a major factor in the performance. Since the
GPU performs best when doing coalesced memory accesses, the data layout
needs to be such that non-propagated data accesses can be done coalesced.
The stream optimized data layout would allow for this, and is a viable
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Figure 5.3: Data layout performance for 1024 nodes on Titan. The measure-
ments were carried out using a porous media sample using the AA algorithm.

candidate for running on GPUs. However, testing showed that there are
better alternatives. Figure 5.3 shows the measured performance for different
data layouts. These tests are from 1024 nodes on Titan using a porous media
sample running the AA algorithm.

The collision optimized layout has the lowest performance at 93 MFLUPS,
the regular bundle layout achieves 216 MFLUPS, and the stream optimized
layout achieves 351 MFLUPS. Both the collision and bundle layouts can be
made to perform better by vectorizing them; instead of placing one value
into the structure for each site, values from 16 sites are placed into the
same structure. This layout allows non-propagated accesses to be done per-
fectly coalesced. These vectorized collision and bundle layouts can run at
375 MFLUPS and 383 MFLUPS respectively, 1.067 and 1.09 times better
performance than the basic stream optimized layout.

5.3 I/O

File I/O is easy to perform on a single system, such as a desktop worksta-
tion. It can often be done from a single process using the standard I/O
libraries and still be able to achieve satisfactory performance. On larger
systems, having a single process being responsible for all the file accesses for
the simulation is impractical. The I/O bandwidth becomes limited by the
network bandwidth of the single node doing the I/O, even if the file system
could deliver more than the network bandwidth of a single node. As the
amount of data needed for the simulations and the number of nodes being
used grows, using one process for file I/O is simply not feasible after a point.
The solution is to use some form of I/O functionality that can distribute the
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file I/O over multiple processes and compute nodes and thus distribute the
I/O load.

On the top clusters and supercomputers in the world, the file system
used is always a parallel file system, the most popular being the Lustre file
system [85], as it is on the Titan supercomputer. The Lustre file system
[86] builds on having one or more metadata servers and one or more object
storage servers. These systems usually have orders of magnitude more object
storage servers than metadata servers. The metadata servers are responsible
for storing the metadata for the file system, such as the filenames, directories,
file permissions, etc.

The object storage servers (OSS) are responsible for storing the actual
data associated with the files. The actual data is stored on object storage
targets (OST) within an OSS, with each server capable of hosting multiple
OSTs. The OSTs are then generally backed by several disks in a RAID type
configuration that provide data redundancy and availability.

A file stored in the Lustre system is stored in one or more OSTs. When
using multiple OSTs the file is striped across the different OSTs using some
chosen block size. The more OSTs the file is distributed across, the higher
is the theoretical bandwidth available when performing operations involving
that file [87]. This means that the parallel performance of a Lustre system
is directly related to the number of OSTs available.

Choosing a default value for how many OSTs a file is distributed over is
a complicated task, as some cases benefit from files being distributed over
many OSTs, while others do not. Usually, a low default stripe count is set
between 2 and 8. Even on a system as big as Titan, the default stripe count
is only 4. The main reason for a low default stripe count is that in the case
that users are using small files, having them striped over many OSTs will
be detrimental to performance.

One way to implement parallel I/O is to have one file per process running
on the system, the idea being that each process can independently access
the file associated with that process. In the case that the files are placed
on different OSTs in a Lustre system, the simulation can benefit from the
speed offered by accessing multiple OSTs simultaneously. The downside of
this scheme is that to change the load balance or the number of nodes partic-
ipating in each simulation, the files need to be regenerated and rearranged.
Many operations with different files also put a higher load on the metadata
server. There is also a challenge managing the considerable number of files
on larger systems, since the user needs to ensure that the files are distributed
over multiple OSTs.

A more convenient solution is to use a single file that is accessed by all
the processes in the simulation. A parallel I/O library is then used to enable
more than one process to participate in the I/O operation in parallel. One
such parallel file I/O library is MPI-I/O [88], which has been part of the
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MPI standard since MPI version 2.0 and provides the user with the needed
functionality for parallel file access.

MPI-I/O provides parallel I/O functionality along the same lines as the
regular send and receive operations of MPI. The library can perform collec-
tive I/O, asynchronous I/O, read and write using MPIs data types. When
performing parallel I/O, the library has the possibility to merge scattered
accesses from multiple ranks into larger requests. The data accesses can be
reorganized and distributed over multiple nodes doing the file access.

Using the data type functionality of MPI, MPI I/O provides a conve-
nient way for each process to access a specific subdomain from the input
file. MPI datatypes can be used to describe the access pattern a process
will have to a file. The view of a process into that file can then be limited,
so that the process can see the data it will be accessing, as if it were con-
tiguous. Any collective operations to this file will then be handled by the
underlying library and file system. These collective operations can stitch
together the non-continuous accesses from separate processes from the same
file into larger contiguous transfers.

In the simulations carried out on Titan, the input data is a collection of
voxels representing a 3D cuboid. From this cuboid, individual MPI ranks
will access a smaller cuboid space, and this type of access fits well with the
parallel I/O capabilities of the MPI I/O library. The total amount of data
and the number of nodes participating varies between the different samples,
the smallest sample used is 1 GB and the largest 4 TB. From the 4 TB file
half was used, or 2 TB of data.

The porous media sample was used to test the performance of the default
settings of the Lustre file system on Titan. On 1024 compute nodes an
aggregate performance of 274 MB/s was measured. At that speed our largest
samples would take hours to access. With the computational performance
of the GPUs, even when filling up the memory of the GPUs, running the
simulations for the largest input samples would take less than an hour. The
slow I/O would result in the simulation wasting resources for the many hours
it takes to read the data into the machine.

During the first years of its use, the Titan system, the maximum stripe
count for a file was 160. This was due to software limitations of the system
at that time. With the stripe count set to 160, a performance of 6146 MB/s
was measured using 8192 nodes and an input sample of 512 GB in size. At
this speed, even the largest of the samples could be read in a reasonable
time. After an update to the Lustre system, the full potential of the file
system was unlocked and the maximum stripe count for a file grew to 1008.
The increased stripe count allowed the solver to read the 512 GB sample at a
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speed of 177 GB/s using 8192 nodes and at a speed of 314 GB/s using 16384
nodes. For the largest runs on 16384 nodes, this meant the 2 TB sample
could be read in just 6.5 seconds, allowing most of the allocated time to be
spent running the numerical simulations on the GPUs.

5.4 Load balance

For simulations distributed over many compute nodes, the way that the
computational load is distributed over the nodes becomes a key factor in
the performance and scalability of the program. Improperly distributed,
the simulation ends up with some nodes having more load assigned to them.
The load imbalance can cause the program to end up with parts of the sim-
ulation running only on a subset of the compute nodes and the others being
idle, since those nodes have already completed their work for the current
iteration. In the case with one or a few nodes doing more computation, it
will effectively slow down the computation on the other nodes, since they
will be waiting on the computation on the overloaded nodes.

Having a few nodes with a lower load than the rest is less harmful to
the performance, since then the only nodes waiting will be the few nodes
that finished their computation early. One thing to note is that modern
processors work with dynamically scaling clock frequencies. Thus, there is
no guarantee that the computation will progress at the same speed on all
nodes. This makes achieving the perfect load balance near impossible. The
efforts presented here are only trying to distribute the load evenly among
the nodes and not accounting for any performance difference between the
nodes.

Figure 5.2 shows a cross section of the input sample. On a large scale,
the material appears very homogenous, with the fluid sites in the simulation
evenly distributed across the input sample. On a smaller scale with the high-
resolution sample distributed over many compute nodes, the load variance
between the load assigned to each domain starts to vary significantly.

Figure 5.4 shows how the sizes of the local domains differ from the aver-
age size when dividing the A4 sample into different numbers of subdomains,
ranging from 1024 to 16384 subdomains. The orange colored line repre-
sents the distribution with no load balancing applied, and the domain is
divided into equally sized cuboid domains. As the number of subdomains
is increased, the difference between the most and the least loaded subdo-
main grows. At 1024, the most loaded domain has 1.07 times more fluid
sites than the average load. Scaling up to 16384 subdomains, the difference
is larger, with the largest domain having 1.65 times larger load than the
average. The figure shows that the distribution is such that a few domains
have significantly larger load assigned to them than the rest of the domains.

52



0 512 1024

Domain

0.5

1.0

1.5
Ba

la
nc

e 
ra
tio

 
(c
om

ap
re
d 
to
 m

ea
n)

1024 Domains

0 1024 2048

Domain

2048 Domains

0 2048 4096

Domain

4096 Domains

0 4096 8192

Domain

0.5

1.0

1.5

Ba
la
nc

e 
ra
tio

 
(c
om

ap
re
d 
to
 m

ea
n)

8192 Domains

0 8192 1638
4

Domain

16384 Domains

Balanced
Unbalanced

Figure 5.4: Illustration of the effect our load balancing has on the distribu-
tion of the fluid sites of the A4 sample, starting from 1024 subdomains and
showing the distribution up to 16384 subdomains.

The imbalance in the load will have a significant impact on performance,
especially for the simulations using more than half of the supercomputer.
To alleviate the imbalance, some form of load balancing scheme is needed.
With the input sample being homogeneous, i.e. there are not wildly different
geometries in certain parts of it, a basic load balancing scheme can be used
and still give satisfactory results.

To improve the load balance, a basic recursive bisection load balancing
scheme was implemented. This scheme works by taking the entire simulation
domain and dividing it into two cuboid domains, divided in such a way
that they contain the same number of fluid sites. Each of these two cuboid
domains is then divided into two new domains in the same way as the original
split, each of which is further divided into two domains, until the number
of needed domains have been generated. The downside of this scheme is
that it is limited to a power of two number of domains, and the domains
need to be cuboid shaped. The granularity with which the split ratio can
be adjusted is limited to one slice of voxels sites, which can result in some
minor imbalance when dividing a domain, preventing the load from being
balanced perfectly.

With this scheme, the load balance situation of the simulation can be
improved. The blue colored line in figure 5.4 shows the distribution of
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Figure 5.5: Comparison of the performance of the load balanced solver versus
the solver with no load balancing. The simulations were carried out using a
two-lattice solver with the A4 input sample.

the load for different numbers of subdomains. Even though a simple load
balancing algorithm was used, it does improve the balance between the
different domains significantly. With the load balancing applied for 16384
subdomains, the maximum number of fluid sites in a subdomain is just 1.028
times larger than the average. Figure 5.5 shows the impact the better load
balance has on the performance of the solver. This test was carried out
using the A4 resolution of the input sample, starting from 1024 nodes and
scaling up to 16384 compute nodes. In this case the two-lattice algorithm
was used.

Distributing the solver over 8192 nodes or less, there is a clear perfor-
mance advantage in performing the load balancing. At 8192 nodes running
the solver with load balancing is 1.18 times faster than without load bal-
ancing. Assuming perfect scalability, this speedup would be the equivalent
of having slightly less than 1500 additional nodes running the unbalanced
version of the simulation. Scaling up to 16384 nodes, there is a sharp de-
cline in the performance of the balanced version. This performance hit can
be attributed to the non-balanced version having a simpler communication
pattern, as all nodes communicate with 18 neighboring nodes. The balanced
version can communicate with more nodes and in a less structured way. As
a by-product of how the load balance was implemented, the domains are
also distributed in a more random fashion across the machine.
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5.5 Scalability

The Titan supercomputer at the Oak Ridge national laboratory was used
to evaluate how well the LB solver is able to scale to large supercomputer
systems. As presented previously, it is a GPU accelerated supercomputer
consisting of 18688 compute nodes, each with one K20x GPU and one AMD
Opteron 6274 CPU. The interconnect used in Titan is Cray’s proprietary
Gemini interconnect [80], an evolution of Cray’s earlier Sea Star intercon-
nect. The interconnect is laid out as a three-dimensional torus with a pair
of compute nodes sharing the same network interface, referred to as a router
in the torus. Each router is connected to its nearest neighbors in three di-
mensions. The routers at the end are then connected to the node at the
opposite end of the row, forming a torus in all directions. Each router has a
total of 10 torus links that are used to connect to the neighbor routers. In
the case of Titan, these links provide 4 links in the X and Z directions, a pair
in both the positive and negative X and Z directions, and 2 links in the Y
direction, with only one link going to each neighbor in the Y direction. Due
to the imbalance in the number of links used, the nodes are physically laid
out in such a way as to favor the X and Z dimension and to deemphasize
communication in the Y direction. There are 25 pairs of nodes in the X di-
rection and 24 pairs in the Z direction, but only 16 pairs in the Y direction.
Bland et al. [89] measured the bidirectional MPI bandwidth per node in
the different directions in the torus. In the X direction they achieved 10.6
GB/s, 10.5 GB/s in the Z direction and just 5.40 GB/s in the Y direction.

This type of network topology offers some benefits. The topology avoids
the need for network switches and keeps the cable runs short. The network
also allows the systems to be easily scaled up by simply adding cabinets of
compute nodes. This topology does have some significant drawbacks, with
each pair only being connected to its nearest neighbors. Messages going to a
compute node further away must pass through multiple other routers on its
path to the target compute node. Since the network has no switches, every
network router must, in addition to the network traffic caused by the pair
of node from the current router, also handle other communication moving
through the network. Additionally, as the machines increase in size, the
maximum number of hops between two points in the network will increase.
At the same time, each router must handle traffic from the additional nodes,
further impacting the performance of the network.

For the scaling test, a porous media sample was used. The resolution of
the samples used varies, starting from 10243 lattice sites to 163843. Due to
memory restrictions, only half of the 163843 sample was used, for all other
samples the entire sample was used. For the scaling runs, the AA algorithm
was used, in addition to asynchronous communication, the implementation
of which is presented in section 6. The simulation was carried out using
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Figure 5.6: Weak scaling results for the porous media samples, starting from
8 nodes up to 16384, running the AA algorithm on Titan.

the vectorized bundle data layout, with values from 16 lattice sites packed
into each structure. The load balance used is the simple recursive bisection
described in section 5.4.

5.5.1 Weak scaling

The weak scaling results are shown in figure 5.6, with the different resolutions
of the input sample being used for different compute node counts, starting
at 8 compute nodes with the A16 sample at 10243 voxels, with around 144
million fluid sites, scaling up to 4096 compute nodes with the A2 sample
with 81923 voxels. The largest runs were carried out using 16384 compute
nodes, and used half the A1 sample, consisting of 16384∗16384∗8192 lattice
sites of which 295 billion are fluid sites. All of these runs took between 43
and 46 milliseconds per iteration.

The initial run with 8 nodes is allocated within a contiguous segment in
the machine and benefits from a lower latency between the nodes. Increasing
to 64 nodes, there is a small drop in the performance, since the nodes are
no longer guaranteed to be located close to each other. As the simulation
is scaled to more nodes, there is a minor increase in the performance, going
from 64 to 512 and again going to 4096 nodes. This is due to the higher
resolution having larger cavities in the sample. Due to the larger cavities,
there is less divergence in the site update code, since the ratio of sites that
the boundary condition is applied to is lower. Overall, the weak scaling
performance is excellent.
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5.5.2 Strong scaling

The strong scaling results are more interesting. As the simulation load per
node drops, the effect of the network starts to become more apparent. Each
strong scaling run starts with around 1.7 ∗ 107 fluid sites per GPU. Testing
with the same porous media sample, a single GPU can maintain the same
performance using 1.7 ∗ 107 fluid sites as it can with 2.7 ∗ 105 fluid sites.
In fact, at 3.4 ∗ 104 fluid sites, a single GPU still maintains 84% of peak
performance.

Starting with the smallest sample, A16, which has a resolution of 10243,
this sample needs at least 8 compute nodes to fit into GPU memory, and the
maximum it was scaled out to was 4096 compute nodes. The A16 sample
follows the ideal scalability well up to 256 compute nodes, with each GPU
assigned 5.5 ∗ 105 lattice sites. When going to 512 compute nodes, where
each node is assigned 2.7 ∗ 105 lattice sites, the performance drops off. The
performance only improves 1.7 times when doubling the compute nodes from
128 to 256, even though a single GPU is still able to perform well at that
load. Further doubling the compute nodes to 512 brings the per GPU load to
1.36∗105 lattice sites. This increase in nodes yields a 1.19 times performance
improvement, even though the single GPU tests show better performance
at that load.

The A8 sample, starting from 64 nodes, starts to deviate from the ideal
scalability when going past 1024 compute nodes. It gradually diverges from
the ideal scaling up to 4096 compute nodes, and when scaling further to
8192 compute nodes, there is a steep divergence from the ideal scaling. The
run on 8192 compute nodes is a fraction of a percentage slower than the one
at 4096 compute nodes. For the A8 sample, the run on 4096 compute nodes
equals 2.7 ∗ 105 sites per GPU, a size where a single GPU is still able to
maintain the same performance as fully loaded. The run at 8192 compute
nodes equal 1.36 ∗ 105 fluid sites per GPU, a size where a single GPU is still
able to achieve over 84% of the peak performance.

The A4 run also experiences a significant divergence from the ideal scal-
ing, when moving past 4096 compute nodes. Finally, the A2 sample fares
better than the others, but is also not able to keep close to the ideal scaling
when going past 4096 compute nodes. At 16384 compute nodes, the A2
sample is far off the ideal speed, even though each GPU is assigned 4.4∗106

lattice sites at that node count, achieving only a 1.24 times speedup from
8192 to 16384 compute nodes.

Overall, the simulation of the different resolution samples can be strongly
scaled, at least to some degree. The smaller samples that fit on a smaller
number of nodes are far better at scaling than the larger samples. With the
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Figure 5.7: Strong scaling for the AA solver using the porous media samples
running on Titan.

larger samples, there are significant difficulties scaling up from 4096 compute
nodes to 8192 nodes, with multiple samples encountering difficulties at the
same number of compute nodes.

5.5.3 Scaling difficulties

When testing the weak scaling, there were no difficulties scaling up. The
performance for all different resolutions at their respective node counts are
virtually the same. However, when testing strong scaling, the simulation
encountered some difficulties scaling to and past 8192 compute nodes.

The load balancing scheme is shown to evenly distribute the computa-
tional load across the compute nodes. Section 5.5.2 showed that testing on
a single GPU indicates that it still can perform, with the amount of load
assigned to the individual GPUs for these runs. Ruling out the individual
GPU performance and the load balance, the remaining factor that can affect
the scalability of the solver is the network of the machine.

The first potential problem with the network comes from how the nodes
in Titan are structured. The network interface sits on the Hypertransport
bus, a bus that is normally used to communicate between CPUs in the same
node. While this bus provides substantial amounts of bandwidth to the
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network at a low latency, the downside is that all communication from the
GPU must move through the host CPU memory to get to the bus. This
additional hop adds latency to each MPI transfer.

The topology of the network is likely a major limiting factor in the
strong scaling tests. In theory, the type of interconnect used in Titan is
well suited for this type of solver. The LB solver only uses nearest neighbor
communication and the interconnect network in Titan is built around each
node, being connected to its nearest neighbors. Which means, perfectly
distributing and arranging each process of the solver, would result in each
node only communicating with its neighbors. However, in practice, Titan is
shared among different users, all running their own simulations at the same
time. This means that when a single user is allocated a group of nodes,
there are no guarantees where they will be located. The different amount of
bandwidth that is available in different directions, combined with no exact
control over what nodes are allocated to the user, and how the tasks are
placed will also affect the scalability of the solver. With no control over the
task placement, there is no way of avoiding the slower communication paths.

The difference observed when testing the performance between the load
balanced and the non-load balanced solver is that the non-load balanced
version has a constant 18 neighbors it communicates with. However, with
the introduction of the load balancing scheme, the number of neighbors each
compute node needs to communicate with grows. For the balanced version,
the worst-case scenario observed was one processes having to communicate
with 24 other processes. Another drawback is that, as a by-product of
the implementation of the load balancing scheme, the order of the nodes is
further shuffled compared to the non-load balanced solver. This can lead to
nodes working on adjacent parts of the geometry being physically separated
within the machine. The load balanced versions had each node moving data
from the nodes to the network at a rate of 2.9 TB/s, and with the way
the asynchronous communication works, they are not sending and receiving
constantly.

5.6 System utilization

To determine how well the system was utilized by the simulation, the Nvidia
profiler was used to determine the floating-point operations performed and
the number of bytes accessed per each lattice site update. According to
the profiler, each lattice site update consists of 279 floating-point operations
and on average 545 bytes of memory transferred. This is the total number
of bytes transferred by the GPU, and includes all data transferred between
the GPU and the on-board memory, including data that is not used by the
simulation.
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The largest runs performed were done using 16384 GPUs. This run used
half the A1 sample and ran at 6.45 ∗ 1012 lattice updates per second. Based
on the measured floating-point operations per lattice site update, this results
in a total floating-point performance of approximately 1.8 PFLOP for the
largest simulation run. This is roughly 10% of the measured Linpack per-
formance of the Titan supercomputer, which was measured at 17.6 PFLOP
[81].

The total theoretical memory bandwidth for one GPU in Titan is 250
GB/s [90]. Using this bandwidth gives us a theoretical peak memory band-
width for 16384 GPUs of 3.9 PB/s. The profiler measurements of 545 bytes
of data needed per site update, combined with speed of an average GPU
from the run, gives us a per GPU bandwidth of 209 GB/s, or 3.3 PB/s for
all the GPUs in the simulation. This is roughly 84 % of the total available
bandwidth on the GPUs. While the solver was not able to achieve more than
10% of the numerical performance of the machine, it managed to utilize a
significant portion of the memory bandwidth of the GPUs in the machine.

5.7 Scalability conclusion

By having access to the Titan supercomputer, we could examine how the
LB solver scales to large scale systems. For large systems, how the paral-
lel I/O system is used can significantly reduce the time taken to perform
setup of the solver. Using Titan, we showed that the LB solver can scale
up to petaflop scale machines when using weak scaling. The largest weak
scaling simulation carried out was on 16384 compute nodes and achieved
a sustained floating-point performance of 1.8 PFLOP. The simulation at
that scale could, however, utilize 84% of the available memory bandwidth
of the GPUs in the system. For strong scaling, the network appeared to be
the biggest bottleneck, preventing some samples from scaling well to 8192
compute nodes.
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Chapter 6

Asynchronous
communication

One key aspect in both article [2] and [3] was the usage of asynchronous
communication between the GPUs in the system. This chapter examines
how the asynchronous communication is implemented and what impact it
has on the performance of the solver. It also covers the what steps need to
be taken when implementing it to maintain data access patters that are still
favorable for the GPU.

Asynchronous communication is a well-known concept in the HPC field.
The idea is that the communication between different processes is done
while the processors running the tasks execute other work related to the
simulation. Ideally, the communication should finish before the data com-
municated is needed by the receiver. If the communication finishes before
the computation, the communication is effectively done for free, since the
simulation will never be waiting for the communication, and will be able to
work on the computation the entire time.

On pure CPU systems, asynchronous communication requires some in-
tervention from the CPU [91]. Some systems have special hardware in the
network adapter allowing it to process part of the communication protocol
stack independently of the CPU [92]. Without special hardware, the CPU
will need to take part in the communication, while at the same time, it
should perform the computation for the simulation. This will either result
in a lower performance for the computation or no progress for the asyn-
chronous communication. On a GPU accelerated system, on the other hand,
getting asynchronous communication to work is far easier, since the GPU
is a separate part of the system that performs the computation without
any real involvement from the host CPU, apart from launching the kernels.
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This allows the CPU in the system to perform any operation related to the
communication for the program, without impacting the performance of the
computation.

In the case of the LB solver, the main computation task is to apply the
relaxation and propagation to each lattice site as a fused operation. The
distribution values that are propagated outside the local domain for a given
node is the data that needs to be communicated. This data needs to be
transferred to the neighboring compute nodes before the start of the next
time step. Before the communication starts, the updates of the sites whose
values propagate outside the local domain need to be completed. To enable
the LB solver to communicate asynchronously, the lattice sites need to be
updated in two parts. The first part will update the lattice sites at the edges
of the local domain, the ones that will be communicated. Next, the second
part will update the sites at the interior of the local domain. While the
interior sites are updated, the data that needs to be communicated can be
transferred to the correct neighboring compute nodes.

On the GPU, to run things concurrently, for example multiple kernels at
the same time, or data transfers at the same time as kernels, the operations
need to be assigned into streams [16]. A stream is a queue of operations the
GPU will perform, like kernels launches, data transfers, etc. The operations
within a stream are run in the order issued and are not overlapped with
each other. Operations from different streams, however, can be executed
simultaneously.

For the GPU implementation, the LB solver uses two streams. Into
the first stream, the kernel that handles the computation of the sites at
the edge of the local domain is issued. Into the first stream, the transfers
of the communications data between the host to device are also issued.
Additionally, to optimally utilize the bus between the device and the host,
data transfers over it should be done in bigger blocks. For this purpose,
the program runs two additional helper kernels that gather the data to be
communicated into contiguous memory space, before it is transferred to the
host. The other helper kernel does the opposite, it scatters the data, once the
communication is done. These gather and scatter kernels are also issued into
the first stream. Into the second stream, only the kernel that is responsible
for updating the lattice sites at the interior of the local domain is issued,
these are all the sites that do not participate in the communication.

The order in which the different kernels, communication, and data trans-
fers are started is the key to having the simulation to run correctly and al-
lowing the communication to be performed asynchronously. Each time step
starts by updating the lattice sites that contain data that will be commu-
nicated. Then the data is gathered into the communications buffers. Once
this kernel is done, the kernel that performs the computation for the inte-
rior lattice sites is started. At the same time as the interior computation
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Figure 6.1: The timeline for an asynchronous GPU solver, showing the order
the kernels and data transfers are issued.

is started, the transfer of data from the device to the host is also started.
This way the transfer between device and host will be overlapped with com-
putation. Once the data is on the host, the communication with relevant
compute nodes is done, and once the incoming communication data has been
received, the data transfer back to the GPU is started. If the update of the
interior lattice sites has not finished by the time the data has been trans-
ferred back to the GPU, the communication has been achieved completely
asynchronously. Lastly, the data received needs to be scattered back into
the correct places in the lattice data for the current compute node. The
entire timeline for how the time step is executed is shown in figure 6.1.

The performance impact of running the communication asynchronously
depends heavily on the type of simulation geometry used. Factors such
as the amount of data that needs to be communicated, the speed of the
network used and the amount of computation done by each node affect
the potential performance benefit from using asynchronous communication.
Programs where either the communication or the computation takes signif-
icantly longer than the other will show poor speedup from asynchronous
communication, whereas problems where they take roughly the same time
asynchronous communication can result in almost two times better perfor-
mance.

6.1 Dividing the computational domain

To facilitate the overlapping of communication with computation, the com-
putational domain needs to be divided into two separate parts. One part
consists of the sites at the edge of the local domain, and another part is the
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rest of the lattice sites. The näıve approach to dividing the domain is to first
update the lattice sites at the very edge of the local domain and then, while
the communication happens, update the rest. This approach however will
cause memory accesses for all the lattice site updates to become misaligned,
and this misalignment will cause memory bandwidth to be wasted.

The misalignment is caused by how most CPUs and GPUs access mem-
ory. Instead of a single value multiple values, one cache line, is fetched at
once since it is likely that the program will need at least some of the adjacent
values as well. With the appropriate data layouts for the GPU, these adja-
cent values will be the same distribution values from other lattice sites. In
this näıve implementation, the kernel updating the lattice sites at the edge
of the local domain will not use all the data brought in to the processor,
because it only updates some lattice site from the segment and thus only
uses some of the values in the cache line. This misalignment also carries
over to the interior lattice sites. Cache lines brought in, which contain data
from edge sites, will not be fully utilized when updating the interior sites,
since the edge sites are already updated, and that data will be brought in
unnecessarily. On the GPU, where multiple threads in a warp are fed from
the same cache line, this will result in an additional segment being fetched
to supply all threads with data. This misalignment will cascade down to
any subsequent warps as well, since the current warp consumes data in the
segments for the next warp. The effect for the interior sites is, however, of-
ten masked by the fact that the additional segment brought in can be used
by other warps that can now find that data in the cache structure.

Correcting for this misalignment is easily done by changing how the
domain is divided. Instead of processing a single lattice site from the cache
line fetched, all the lattice sites that have values that fall within that cache
segment are processed. Since that data is already brought into the processor,
it should be utilized at that time as well. The only downside is that the
wider segments around the edge sites reduce the amount of computation
that can be used to hide the communication. Using a whole cache line
aligned segment around the edge sites gave 1.16 times better performance
for the solver. In this case, the test was carried out on a Kepler basted GPU
and using segments of 16 lattice sites.

6.2 Removal of halo sites

To make the implementation of the lattice Boltzmann method and other
lattice based solvers easier, an extra layer of lattice sites is often added
around each local domain on each compute node. Such a layer, referred to
as a ghost or halo layer, simplifies the propagation of values moving outside
of the local domain. The idea behind having a layer of ghost sites is that
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it makes the propagation step easier, since the same propagation operation
can be applied to all lattice sites in the same way, regardless of where in
the local domain the site is located. The values from these ghost sites
are then collected and placed into contiguous memory locations, before the
communication starts.

When adding an extra layer around the computational domain, that
layer is not used for the collision operation. The effect of this unused data
is the same as allocating memory space for the solid lattice sites. Data from
these ghost sites are not used by the simulation. Since a full cache line will
be fetched for each access, this unused data will be moved around and will
consume memory bandwidth and affect the performance of the code.

Indirect addressing enables the solver to arrange the lattice sites in any
order, which allows the solver to be implemented without utilizing ghost
sites. If, instead of propagating values to the ghost sites, the bounce back
boundary condition is applied to the components going out of the local
domain, there is no need for the ghost sites. Since all the indices are pre-
computed, applying the bounce back boundary condition will not change
how the propagation is applied, since the propagation still reads the target
index from the indexing array. The bounced back location is not needed by
any other distribution values, as that is where the values after the commu-
nication should be written. Since the locations are not needed, the location
can be borrowed for the values that would propagate out of the local domain.

This approach offers some benefits. Since no data is allocated for the
ghost sites, this reduces the memory usage to some degree. The major
benefit is that it allows the solver to more efficiently utilize the memory
bandwidth and improve the alignment of data in the memory. The downside
is that the bounce back boundary condition now needs to be enforced at the
edges of the local domain, even if the value propagates further in the global
domain. Getting rid of the halo sites for a GPU based two-lattice solver
using the porous media sample yielded a speedup of 1.18.

Combined with the cache line aligned way of dividing the computational
domain, all non-propagated accesses of lattice data can be done as perfectly
aligned accesses. Furthermore, if the data layout fulfills the data access
requirements of the GPUs and vectorized solvers, this allows us to access
contiguous vectors with no need to assemble them.

6.3 Performance of asynchronous communication

The performance impact of asynchronous communication depends heavily
on the input samples used, what system the code is run on, what network and
network topology is used and a myriad of other factors. For the benchmark,
a realistic simulation run was chosen, in no way picked to overemphasize
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the impact of our implementation. The simulation geometry was the same
porous media sample as the one used for the GPU scaling tests, and the sys-
tem used was the Titan supercomputer, using the same GPU based solver as
the one used for the scalability tests. For the asynchronous communication
test on Titan, we used a large case with the A4 resolution sample running
on 1024 nodes. The solver was implemented using the two-lattice algorithm.

For the synchronous case, the solver was implemented so that it com-
pleted all the computation before the communication started, and only when
the communication was done did it move to the next time step. While the
asynchronous alternative divided the lattice sites into edge and interior lat-
tice sites, it first performed the site updates for the edge lattice sites and
then, while it started the communication, also started the computation of
the interior lattice sites. Both cases were implemented using no halo sites.
The observed speedup of going from synchronous to asynchronous was 1.13.
The performance per GPU increased from 255 MFLUPS for the synchronous
case to 289 MFLUPS for the asynchronous case.

6.4 Asynchronous communication conclusion

With the GPU being a separate part of the system, it leaves the CPU free
for other tasks. One task it can work on is the communication. With the
CPU doing the communication at the same time as the GPU is busy working
on the computation, the communication can be performed without affecting
the runtime of the solver. For this, the computation needs to be divided into
two parts, such that the warps of the GPU are able access non-propagated
data perfectly aligned. This ensures that the solver effectively utilizes the
data accessed by the processor. With bandwidth bound solvers, the usage
of halo data around the local domain will introduce unused data into the
simulation data, which when accessed will waste memory bandwidth.
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Chapter 7

Xeon Phi and vectorized
lattice Boltzmann

Article [4] focuses on our efforts with a vectorized LB solver and how to
enable the solver to efficiently use the Knights landing generation (KNL)
of manycore Xeon Phi processors from Intel. While the focus of the opti-
mization was the KNL architecture, some of the improvements are directly
portable to systems based on regular Xeon CPUs as well. The optimiza-
tion work that was applicable was also ported to a Haswell-based CPU only
system.

The KNL system used was a Ninja developer platform [93], which has
one Xeon Phi 7210 processor [94] running at 1.3 GHz and 96 GB of DDR4
memory running at 2133 MHz. The KNL processor has an additional 16
GB of fast MCDRAM memory sitting on the same package as the processor.
For comparison, a dual socket Haswell-based system was used. The Haswell
system included two 2690 v3 CPUs [95] running at 2.6 GHz and 64 GB of
DDR4 memory running at 2133 MHz. On the Xeon Phi system, all initial
runs were carried out with the MCDRAM in cache mode. This mode allows
the MCDRAM to act as a large last level cache to the processor. The core
configuration set in quadrant mode which exposes all cores and memory
controllers as a single shared memory domain.

This chapter covers the optimization work presented in the article and
discusses the performance results achieved. The key optimization techniques
focus on how the memory bandwidth can be efficient utilized by choosing
the appropriate data layouts and the addition of prefetching instructions
into the code. In this chapter, we also present a method for applying SIMD
vectorization to the LB solver to enable it to efficiently use the vector in-
structions available on modern CPUs.

While the original publication uses both a porous media case and a
Poiseuille flow case, however, for the sake of brevity this chapter will only
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cover the porous media case since the Poiseuille flow case is an overly ideal
simulation. The porous media case is from the same Fontainebleau sand-
stone sample as the one used for the large-scale GPU simulations on the
Titan supercomputer, presented in chapter 5. For the simulations carried
out in this work, a 5123 voxel sub sample from the A4 sample was used.

7.1 Vectorized lattice Boltzmann

There are two obvious ways of applying vectorization to a lattice Boltzmann
implementation. The vectorization can either be done to the update of a
single lattice site or to the update of multiple lattice sites at the same time.
While the collision operation does include some symmetry, for instance,
between values in opposing directions, and it is feasible to pack these into
vectors, they will not optimally fill out these vectors. Part of the collision
operation also requires summing together all values for a site, and summing
the components of a SIMD vector is not the intended use of vectors and
requires multiple operations.

A better solution is to vectorize over multiple lattice site updates, filling
the vectors with the same distribution values, just from different lattice sites.
For the collision operation, vectorizing over multiple sites will apply the same
operation to data from multiple lattice sites. This is easily implemented by
using vector data types instead of scalar types for the collision function.
With vector types that have the common arithmetic operations defined for
the vector data types, the collision operator can be written in the same
way the scalar version is written. Implementing these operations for the
vector data types is easily done with overloaded operators that will call the
intrinsic functions for those operations. Listing 7.1 shows how the BGK
collision operator is implemented using 512-bit vectors. It also shows how
the addition operator is implemented for 512-bit vector types.
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Listing 7.1: Pseudo code showing how the vectorized collision operation is
implemented using AVX-512 vectors.

func Update(__m512d f[Q] ,double g, double tau , double dt)

__m512d den = 0

__m512d mom [3] = 0

for each i do

den += f[i] end

mom [0] += C[i][0]*f[i]

mom [1] += C[i][1]*f[i]

mom [2] += C[i][2]*f[i]

end

__m512d vel [3] = mom/den + dt*g/2

__m512d feq[Q]

Eq2(den ,vel ,feq)

// Relaxation (BGK) and

// external forcing (linear)

double r1 = dt/tau , r2 = 1-r1/2

for each i do

__m512d fneq = f[i]-feq[i]

__m512d cdotg = DotProd8(C[i],g)

__m512d facc = dt*W[i]*den*cdotg/CT2

f[i] -= r1*fneq // BGK

f[i] += r2*facc // forcing

end

end

func Eq2(__m512d den , __m512d vel[3], __m512d feq[Q])

__m512d udotu = DotProd8(vel ,vel)

for each i do

__m512d cdotu = DotProd8(C[i],vel)

feq[i] = 1-udotu/2CT2

feq[i] += cdotu/CT2

feq[i] += cdotu*cdotu/2CT4

feq[i] *= W[i]*den

end

end

operator +( __m512d lhs , __m512d rhs)

return _mm512_add_pd (lhs , rhs)

end
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Listing 7.2: Pseudo code showing how the propagation step is vectorized
using AVX-512 vectors.

// iterate and process fluid sites in blocks of 8 consecutive

sites

func Evolve(double tstep , double g, double tau , double dt)

// read ,update ,and

// write fi values

for n=0 until n < fsN

using n+=8 do

__m512d f[Q] = Gather8(n)

Update(f,g,tau ,dt)

Store8(f,n)

end

end

func Gaterh8(int n)

for each i do

f[i] = _mm512_i32gather_pd(propIndex[i],buffIn , 8)

end

func Store8(__m512d f, int n)

for each i do

_mm512_store_pd(buffOut , f[i])

end

end

In a vectorized implementation, data should ideally be accessed as con-
tiguous vectors from the main memory of the system. That way the data
can be loaded as a complete vector and not assembled into one from scat-
tered values. Ideally, for the best performance these loads should also be
done from addresses aligned on vector length boundaries. This access re-
quirement cannot be fulfilled for the propagation step of the LB method, as
the propagation will inevitably move the location of the lattice data. At the
very least, the addresses written to will no longer be aligned properly. In a
more realistic simulation that includes solid lattice sites, the components in
one vector will need to be accessed from scattered memory locations. This is
because the boundary condition enforced when propagating into a solid site
usually causes a divergent memory access from the rest of the vector. Non-
propagated accesses, however, can be done as contiguous vectors aligned on
vector length boundaries, if the data layout chosen allows for this.

Assembling and disassembling vectors was made easier in the AVX2 and
AVX-512 instruction sets, as these introduced gather and scatter opera-
tions. The AVX2 instruction set supports only gather operations, while the
AVX-512 supports both gather and scatter operations. Gather and scatter
instructions take as arguments a pointer from where to start the access and
an offset from the pointer for each component in the vector. Using these
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gather and scatter instructions allow the processor to do indirect access for
each component in a vector with a single instruction. Vectorizing the prop-
agation step of the LB solver using these function is a far easier task than
without them, since the programmer no longer needs to manually pack and
unpack data for the vectors. With these functions, any propagated accesses
can be done with a single call to an intrinsic function, since the propagated
access of lattice data are effectively indirect memory accesses.

Listing 7.2 shows a pseudo code example for how the propagation can
be vectorized using 512-bit vectors. The propagation is done using a pull
scheme two lattice algorithm, with the propagation happening when the
values are read. The propagation is done using the mm512 i32gather pd

intrinsic. When written back into memory, a normal store function is used
that will store the values of the vector into contiguous memory, in the order
they are in the vector.

7.2 Algorithm performance

The AA and the two-lattice algorithm were both tested on a regular Haswell
generation based Xeon system and the Knights landing Xeon Phi system.
Both systems used the stream optimized data layout and ran with the maxi-
mum number of threads available. These tests showed that, on both systems,
the AA algorithm offers superior performance, compared to the two-lattice
approach. On the Haswell system, the AA algorithm can achieve 246.2
MFLUPS with the porous media case, while the two-lattice implementation
is able to reach only 123 MFLUPS. On the KNL system, the AA algorithm
performs 6 times better than the two-lattice algorithm. In this case, the AA
algorithm achieved 178.2 MFLUPS, while the two-lattice algorithm achieved
only 30 MFLUPS. On neither system is there any difference between imple-
menting the two-lattice algorithm using either a push or a pull scheme.

7.3 Thread count and vector length

The Haswell system supports up to 256-bit vectors through the use of the
AVX2 instruction set which allows a core to process 4 double-precision values
with one instruction. The KNL architecture is the first system to use the
512-bit version of the AVX instruction set, called AVX-512, allowing it to
process vectors which fit 8 double-precision values.

Figure 7.1 shows the measured performance for different vector lengths
used on the two tested systems. On the Haswell system, the performance
increase from using scalar values to using 256-bit AVX2 vectors was 1.055
for the porous media case. For the KNL system, switching from scalar to
AVX2 for the LB solver yielded a speedup of 1.77. Further expanding the
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Figure 7.1: Performance of different vector lengths and thread counts on a
dual socket Haswell system and a Knights landing Xeon Phi.

vectors to AVX-512 vectors shows a performance increase of 1.3, compared
to AVX2 vectors. The total speedup from scalar to fully AVX-512 vectorized
code on the KNL system is 2.31.

The KNL processor supports up to 4-way simultaneous multi-threading
(SMT), allowing the 64 core KNL processor to run up to 256 threads. The
regular Xeon CPUs support only 2-way SMT, resulting in a 12 core CPU
being able to run 24 treads simultaneously. SMT improves the efficiency of
superscalar CPUs by allowing multiple threads to use the resources of the
core at the same time. Increasing the number of threads each core is running
does have the side effect of increasing the contention for the resources that
exist within a core.

On the Haswell system, running the simulation with SMT using 2 threads
per core instead of just one yields a 1.05 times better performance for the
porous media case. On the KNL system, running too many threads has
a detrimental impact on the performance. The solver performs 1.33 times
better running with only 128 threads, compared to 256 threads. More ac-
tive threads on the KNL system leads to less resources, cache space and
prefetching units available per thread. Since two cores already share some
of those resources [37], each thread ends up with far fewer resources than
on the Haswell comparison system.
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7.4 Prefetching

The latency of the computers main memory is high, in the order of 100 times
higher compared to the latency of the internal caches of the processor [24].
Most modern x86 based CPUs will try and predict what data the program
will need next, and pre-emptively start moving the data the processor pre-
dicts will be needed into the CPU before it is accessed by the program. This
prefetching of data is often implemented in hardware, where the processor
has a number of prefetching units per core that attempt to identify the ac-
cess patterns used, and predict what data will be accessed next. This way,
when the program eventually needs the data, it will already reside in the
much lower latency caches of the processor, thus the full latency of the main
memory can be avoided. While prefetching cannot improve the memory
bandwidth utilization of a program past what the theoretical bandwidth of
the slowest memory used is, it is key to hiding the latency of that memory.

In case the hardware is not able to predict the data access patterns, the
programmer can still try to help the hardware by using software prefetching
instructions inserted into the program. These instructions can be used to
manually start the data movement before the data is needed. This is es-
pecially useful for indirect memory accesses, where the programmer might
know what data will be accessed next, while the processor might not be able
to deduce this from the previous access patterns.

In the LB solver, there is a loop that iterates over the lattice sites being
updated. Prefetching instructions are added as an additional step each
iteration of the loop. This step issues prefetching instructions for the values
needed for a future iteration of the loop. Testing how many iterations ahead
the prefetching should be issued showed what prefetching distance offered
the best performance.

In the LB case, running on regular Xeon CPUs of the Haswell generation,
prefetch instructions were only added to the odd time steps. Since the odd
time steps apply the propagation which involves indirect memory accesses,
it is harder for the processor to predict these. There was also no observable
performance increase when adding the instructions to the even time steps.
When running with the porous media sample, adding prefetching for the
propagated data accesses provided a speedup of 1.05.

In the KNL processor, the need for manual prefetching is far greater.
On this architecture, the prefetching hardware has been slightly extended,
compared to what is available on the Haswell system. However, in the KNL
processor, the hardware capable of prefetching data from the main memory
is shared between two cores, resulting in each core having less prefetching
resources than the HSW core. Combined with the fact that the KNL cores
can run four threads instead of two, this further diminishes the prefetching
resources available for a single thread, if all threads are used.
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Figure 7.2: A comparison of the performance of the LB solver running on a
Xeon Phi with different prefetching distances.

On the KNL system, both the non-propagated and the propagated ac-
cesses of lattice data benefitted from the addition of prefetching instructions.
In addition, there is also an observable increase in the performance when
adding prefetching instructions for the index variables used for the prop-
agation. Figure 7.2 examines how far ahead data should be prefetched.
It is split into odd and even time steps, and shows the performance when
prefetching the lattice data N iterations ahead of the current one. The figure
also includes the performance for the odd time step when adding prefetching
instructions for the index data used for the propagation. For the even time
step accesses of the distribution values, the optimal distance is to issue the
prefetching instruction 1 iteration ahead, for the lattice data for the odd
time steps the ideal distance is 2 iterations. Finally, the indexing data for
the odd steps gives the best performance if prefetched 4 iterations ahead.
The total speedup when adding prefetching to the LB solver was 1.333. The
figure also shows how the performance decreases if prefetches are done too
far ahead.

7.5 Data layout

As with the GPU, the data layout affects the performance the solver can
achieve on CPUs and Xeon Phis. With vectorization being key on both
architectures, the data layouts that are not suited for vectorized accesses
are discarded. Performance comparison was carried out using the stream
optimized and the vectorized version of the collision optimized data layout,
the AoSoA layout, with different numbers of lattice sites packed into the
structure. The data layout performance was measured before and after the
prefetching instructions were added.
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Figure 7.3: The effect different data layouts have on the performance of the
solver running on a dual socket Haswell system.

Figure 7.3 shows the performance for the different data layouts, with
and without prefetching on the Haswell system. With no prefetching, the
peak performance is achieved using the AoSoA layout, with 256 sites in each
structure. Adding prefetching does not change what data layout is the most
optimal, but the stream optimized layout sees a larger performance increase,
to about the same performance as the AoSoA layout.

On the KNL system, shown in figure 7.4, the addition of prefetching
changes which data layout is optimal. With no prefetching added to the
code, the optimal data layout was the AoSoA, with 64 sites packed into each
structure. With the prefetching added, the optimal data layout was still the
AoSoA layout, however now with only 8 sites packed into each structure, as
tightly packed as possible, with AVX-512 vectors containing 8 values. With
this data layout, the performance achievable was 841.8 MFLUPS, 1.52 times
better for the same layout without prefetching.

7.6 MCDRAM and NUMA modes

The high speed MCDRAM on the KNL system can be configured in three
modes, the simplest being caching mode, which uses the MCDRAM as a
large last level cache and hides it from the user. It is, however, possible
to configure it as a separate memory space that the programmer can use,

75



St
re
am

Ve
ct
or
ize

d 
 c
ol
llis

io
n 
8

Ve
ct
or
ize

d 
 c
ol
llis

io
n 
16

Ve
ct
or
ize

d 
 c
ol
llis

io
n 
32

Ve
ct
or
ize

d 
 c
ol
llis

io
n 
64

Ve
ct
or
ize

d 
 c
ol
llis

io
n 
12

8

0

100

200

300

400

500

600

700

800
Pe
rfo

rm
an
ce
 (M

FL
UP

S)

With prefetching
Without prefetching

Figure 7.4: The performance for different data layouts for the solver running
on a Knight landing Xeon Phi system.

referred to as flat mode. It can also be configured as a hybrid cache and flat
memory, where some of it acts as a cache and some as a separate memory
space. Utilizing the memory in flat mode requires the use of specialized
allocation functions that allocate space from the MCDRAM. These are used
to store data that need high speed access. In flat mode, there is no risk of
data used by the simulation being evicted from the cache, and it can provide
some additional bandwidth [37].

The mesh network connecting the cores to each other within the KNL
processor can be configured in varying cluster modes. The default for most
systems is quadrant mode, which presents the processor as one unified mem-
ory space and allows the processor to be used as a regular multicore CPU. Of
the other modes offered, the most interesting one for running an LB solvers
is the sub NUMA cluster (SNC) mode, particularly the SNC-4 mode, which
divides the processor into 4 parts. In this mode, the MCDRAM is divided so
that each cluster has access to a quarter of the memory through two mem-
ory controllers. The benefit of SNC-4 is that, by dividing the processor into
smaller parts, the memory used by the cores within a cluster is allocated
from the nearest MCDRAM location. Accessing memory from the nearest
memory space lowers the latency for the memory accesses [37].
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Switching the memory into flat mode and allocating the lattice data and
propagation indices explicitly in the faster memory yielded a speedup of
1.083 for the porous media case. Switching the core to core interconnect
from the default quadrant mode to SNC-4 when the MCDRAM is in flat
mode gives another 1.02 times speedup.

7.7 Streaming stores

Streaming or non-temporal stores refers to store operations that can bypass
the cache structure of the processor. Normally, on an X86 architecture,
when a value from memory is updated, if the cache line of that value is
not in the cache structure, the cache line needs to be read into the cache
structure for the value to be modified. In the case where all the values in
the cache line are updated, it is possible to circumvent the need to bring the
cache line in by using streaming stores. These will overwrite the entire cache
line in the memory. Overwriting the entire cache line could possible halve
the memory bandwidth needed to store that data by eliminating the read
for ownership operation [96]. In the case that a streaming store is issued
for a value already in the cache structure, on most X86 architecture that
also marks the cache line for eviction. Evicting the line could free up space
in the cache and save data that is still needed from being evicted from the
cache.

Since the vector length is the same as the cache line length in the KNL
system, the use of streaming stores is straightforward. When storing a vec-
tor back into memory, the programmer can, using intrinsic functions, issue
a streaming store for that operation, if the data is not needed again imme-
diately. With the AA algorithm, there is only one point where streaming
stores are applicable, and that is when storing non-propagated lattice data.
Since the propagated writes are going to scattered location, and in some
cases updating only one value from a cache line in the process, it is not ad-
visable to issue streaming stores for such accesses. When issuing streaming
stores for these runs, the risk of evicting data that will still be used is high.
In fact, no streaming scattered store functions exist.

From a performance perspective, the use of streaming stores has only a
marginal effect on the performance. In flat mode, the speedup observed for
the porous media case was 1.023, in cache mode the performance increase
was 1.032. However, since in the AA algorithm any locations that data are
stored to are already in the cache structure, the only benefit is that the
programmer can influence what data is evicted from the cache.
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7.8 Conclusion

In the regular Haswell system, vectorizing the LB solver resulted in minor
performance gain of around 1.05. Further choosing the optimal data layout
yielded a speedup of 1.06, and adding prefetching to the accesses of the lat-
tice data for the odd time steps gave another 1.05 times better performance.
Overall, the speedup achieved from vectorizing and tuning the LB solver on
the Haswell system was 1.17, or 41.5 MFLUPS, resulting in a final speed of
287.7 MFLUPS.

The KNL system saw a larger performance increase when vectorizing the
solver. Comparing scalar to full AVX-512 vectors yields 2.31 times better
performance. Reducing the number of running threads from 256 to 128 gives
another 1.35 times speedup. Changing the data layout from the stream op-
timized layout to the AoSoA yields another 1.14 times better performance.
With the more limited prefetching of a KNL core, the addition of manual
prefetching to the code gave 1.3 times higher performance. Tweaking the
parameters of the data layout with prefetching gave a minor 1.025 times
increase in the performance. Switching the MCDRAM to flat mode in-
creased the performance 1.083 times, and the final tuning with SNC mode
and streaming stores gave another 1.033 and 1.02 times better performance,
respectively.

Starting from the baseline AA algorithm with the optimization, the total
speedup was 5.4 or 783.4 MFLUPS, with the maximum performance mea-
sured for the porous media case being 961.6 MFLUPS. Most of the large
speedups come from the way memory is used by the program. The data
layout used and the addition of prefetching instructions into the code being
key to how efficiently the memory bandwidth can be utilized.

It should be noted that while the optimization techniques used are likely
to at least to some degree be applicable to future architectures, the specific
values used are likely to change. How far ahead data needs to be prefetched
and how many lattice sites are packed into each structure will probably
change. We already see that the Haswell and Knights Landing systems
achieve the best performance with different number of lattice sites used
in each structure in the AoSoA data layout. However, techniques such as
vectorization and the addition of prefetching work on both architectures.

With the AVX-512 vectorized solver, each site update requires 340.5
bytes of data to be moved. The memory needed comes from reading and
writing 19 double-precision values. The odd steps also need 18 indexing
values, and each vectorized site needs one integer for loop iteration to lattice
site mapping. That results in at least 327 GB/s of bandwidth to sustain
that simulation speed.

An evolution of the same GPU solver used on Titan can on a P100 GPU
achieve 1181.5 MFLUPS. When comparing with the GPUs, one needs to
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consider that the GPUs deliver a higher memory bandwidth. While the
Xeon Phi 7210 processor can deliver 436.5 GB/s of bandwidth in the stream
triad benchmark, the P100 GPU delivers 550 GB/s in the same benchmark,
113.4 GB/s more than the KNL processor. Using the näıve estimate of
327 GB/s of bandwidth required for the Xeon Phi to run at 961.6 MFLUPS
results in the code being able to achieve 75 % of the stream bandwidth. This
is a significant improvement from what others reported being achievable on
the KNC [97]. Doing the same estimate for the GPU, using 344 bytes per
site update, gives 406.4 GB/s for 1181.5MFLUPS or 74 % of the stream
bandwidth. Both the GPU and the KNL are similarly efficient at running
the porous media case. Taking into account that the Xeon Phi can run much
the same code as a regular Xeon CPU and the KNL processor is self-hosted
and does not need an additional system to run, we conclude that the KNL
processor is an attractive choice for LB simulations.

79



80



Chapter 8

The lattice Boltzmann
method, a petaflop and
beyond

The large-scale simulation runs demonstrated that our LB solver can run on
one of the top supercomputers in the world and scale well past one petaflop.
Even though it was only able to achieve about 10% of the measured peak
arithmetic performance of the machine, we could utilize significant parts of
the available memory bandwidth of the machine. With memory bandwidth
being the limiting factor performance-wise, the KNL generation of Xeon
Phi is a contender for running accelerated LB solvers. This is due to its
faster MCDRAM on package memory and an improved architecture from the
KNC generation. The newer Pascal generation GPUs also offer a significant
performance increase compared with the older Kepler generation, due to
their use of HBM2, which operates at up to 3 times higher bandwidth than
the GDDR5 memory used on older cards [29].

While these accelerators with their faster memory offer superior per-
formance, this performance comes at the cost of the size of the simulation
domain that can fit into a single accelerator. Both the Pascal P100 GPUs
and the KNL generation of Xeon Phis have 16GB of fast memory. For the
GPU, that is all the memory it has, and in case more data is needed, that
must be exchanged over the PCI-e bus, which at 16 GB/s is slow compared
to the memory bandwidth of these accelerators. For the few types of systems
that support it, currently only PowerPC systems, the NVLink interface can
be used to communicate to the host CPU. The first generation of NVLink
runs at 20 GB/s per lane, with each Pascal GPU having 4 lanes. Most sys-
tems, however, use these lanes for communication between GPUs and not
to communicate with the CPU. Both the PCI-e and NVLink busses are still
significantly slower than the GPUs own memory, and moving simulation
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data to and from the GPU during the simulation would severely impact the
performance of the solver. The Xeon Phi can also support up to 384 GB of
DDR4 memory, in addition to its MCDRAM. If the simulation data does
not fit into the MCDRAM and spills over the DDR memory, that will effec-
tively reduce the performance of the solver to run at DDR4 memory speeds.
While this is a better situation than the GPU case, it raises the question
why to use the accelerator at all for simulations of large systems. A system
based on commodity CPUs could be used instead, and those systems are
widely more accessible.

Regular CPU based systems have the benefit of supporting vastly more
memory per node than the accelerators. The latest generation Intel CPUs
support up to 1.5 TB of memory per socket, and AMD systems support up
to 2 TB per socket. This would allow the same simulation that required
large amounts of memory to be run on far fewer compute nodes using CPUs
instead of accelerators. One example comes from our work with Mattila et
al. [5], which includes our performance results from the large scale runs on
Titan, but also those carried out on a CPU only system. In this case the
system used was the ARCHER computer at EPCC. The system consists of
3008 nodes, with two 12 core CPUs and 64 GB of memory per node. On that
system, the A2 sample could fit into 320 compute nodes and the entire A1
sample could be simulated using 2880 compute nodes. On ARCHER, half of
the A1 sample would fit into 1440 compute nodes, which is less than a tenth
of the number of nodes used on Titan. Naturally, the CPU only system ran
at a lower performance than the accelerated system, achieving only a little
over 150 MFLUPS per node for the A2 sample and around 130 MFLUPS for
the A1 sample. With similar CPUs as the ARCHER system, our vectorized
CPU solver can, however, perform better than what was reported by Mattila
et al.

For simulations of large fluid systems, it is clear that on CPU systems
it is far easier for large simulations to fit into the systems. While one can
build an accelerated system with the same amount of fast memory, the
sheer number of nodes and hardware cost of such systems would outweigh
any performance benefits. The downside with the CPU only systems is the
speed the simulations will run at. The good news is that the bandwidth of
the CPU systems is increasing. Intel’s Skylake CPUs come with 6 channels
of memory, offering a theoretical performance of 250 GB/s for a dual socket
system. AMD‘s Epyc CPUs offer 340 GB/s for a dual socket system, which
is more than the theoretical performance of the K20X GPUs in Titan. The
bandwidth improvement in both CPU architectures should translate into an
improved LB performance on those systems.

On the accelerated side, the memory performance has also continued
to increase. Nvidia‘s Volta GPU architecture offers up to 900 GB/s of
theoretical bandwidth with the V100 GPUs. This architecture also comes
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with an improved memory controller, and is claimed to offer 850 GB/s of
bandwidth in the stream triad benchmark [98]. Other accelerators, such
as the SX-10+ vector processor from NEC which uses 6 HBM stacks [18],
compared to the 4 used on Nvidia‘s GPUs, and offer a theoretical memory
bandwidth of 1.2 TB/s.

For outright performance and time-critical simulations, the better choice
is currently to use accelerated systems. Considering how the evolution of
the performance of both accelerators and CPU systems have progressed, the
performance advantage of the accelerators is unlikely to change in the near
future. However, for large fluid systems, obtaining access to large enough
accelerated machines that will fit these simulations will be out of reach
for most scientists. In those cases, the additional bandwidth of the newer
CPUs will result in per node performance comparable to the performance
we achieved using the accelerated Titan supercomputer.
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Chapter 9

Conclusion

The work in this thesis has focused on the lattice Boltzmann method and
how it behaves on current accelerated supercomputer systems. We have
shown the benefit of using computational accelerators and that they offer
great performance for running LB solvers. While the solver is not relying on
the computational performance of GPUs and manycore accelerators, they do
provide significantly higher memory bandwidths than regular CPU systems.
With the performance of the LB method being highly reliant on the memory
bandwidth of a system, accelerators provide an excellent platform for high
speed LB solvers.

We have shown that it is possible to create programs for GPUs without
resorting to low level languages, using OpenACC, while reaching similar per-
formance. Thus, the usage of accelerators should not be dismissed because
they require specialized programming languages. For the Xeon Phi many-
core accelerators, we showed that, while the Xeon Phi processor can run
standard C++ code, it is important to fine tune the solver for that archi-
tecture to get the best performance. Unsurprisingly, being memory bound,
most of the key optimizations applied revolved around how the system used
the smaller on package high bandwidth memory.

Large scale accelerated systems are becoming more and more prevalent,
and we showed that it is possible to scale a GPU-accelerated LB solver to
well over one petaflop of computational performance using these systems.
While this was only 10% of the Linpack performance of the system, we
utilized 84% of the available memory bandwidth. Therefore, bandwidth
bound simulations, such as LB simulations, would benefit performance-wise
if new computing systems are built with sufficient memory bandwidth and
not focusing solely on the arithmetic performance.
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[47] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl. Tack-
ling Exascale Software Challenges in Molecular Dynamics Simulations
with GROMACS, pages 3–27. Springer International Publishing, Cham,
2015.

90



[48] B. Chapman. Using OpenMP. MIT University Press Group Ltd, 2007.

[49] OpenMP Architecture Review Board. OpenMP Application Program
Interface, July 2015.

[50] OpenMP. OpenMP compilers & tools. Available at: http://

www.openmp.org/resources/openmp-compilers/ Retrived: 2017-12-
02.

[51] OpenMP Architecture Review Board. OpenMP Application Program
Interface, July 2013.

[52] Professional CUDA C Programming. Wrox Press Ltd., Birmingham,
UK, UK, 1st edition, 2014.

[53] OpenACC.org. The OpenACCTM Application Programming Interface,
November 2015.

[54] S. Succi, R. Benzi, and F. Higuera. The lattice Boltzmann equation:
A new tool for computational fluid-dynamics. Physica D: Nonlinear
Phenomena, 47(1):219 – 230, 1991.

[55] D. Groen, J. Hetherington, H. B. Carver, R. W. Nash, M. O. Bern-
abeu, and P. V. Coveney. Analysing and modelling the performance
of the HemeLB lattice-Boltzmann simulation environment. Journal of
Computational Science, 4(5):412–422, sep 2013.

[56] A. Ribeiro, D. Casalino, and E. Fares. Lattice-Boltzmann Simulations
of an Oscillating NACA0012 Airfoil in Dynamic Stall, pages 179–192.
Springer International Publishing, Cham, 2016.

[57] A. Gray, A. Hart, O. Henrich, and K. Stratford. Scaling soft mat-
ter physics to thousands of graphics processing units in parallel.
International Journal of High Performance Computing Applications,
29(3):274–283, 2015.

[58] C. Godenschwager, F. Schornbaum., M. Bauer, H. Köstler, and
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