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Summary

The goal of the project was to find methods for creating an accurate overall understanding of 
the current status of the transport system and to predict changes in traffic conditions. The most 
important task in achieving this was travel time prediction. Another goal was to find methods to 
assess the risk of incidents. In addition, an overall assessment of the monitoring system was 
performed considering specifically the needs of short-term prediction and incident risk 
assessment.

Best practices were sought among other road operators, in the literature and from small data 
pilots. Existing applications in use by the Finnish Transport Agency were evaluated based on 
theory and practice found in literature and in data pilot studies.

A slightly modified version of the dynRP travel time prediction model of the Danish Road 
Directorate was piloted on Ring I of the Helsinki Metropolitan Area. The main results showed 
that a 15-minute prediction model gave better travel time estimates than just using the latest 
measurement, especially in congested conditions. The model did not fulfil the threshold of 
keeping maximum errors between 1 0 -2 5 %  prevalent in the literature. Nevertheless, if decisions 
must be made proactively, the use of this forecast, although not perfect, would lead to better 
decisions more often than when using just the latest measurement. Therefore the use of this 
model can be recommended.

Furthermore, shorter-than-15 min prediction models provided more accurate estimates than 
the 15 min model. However, with the former, the latest measurement served better as an 
estimate, and the difference from the prediction model was small if any, or even negative. 
Therefore, the use of these shorter-term models cannot be recommended.

The Dutch Rijkswaterstaat Traffic Management Centre has several procedures that can be 
considered best practice in incident risk assessment and management. It is recommended that 
a procedure be set up to systematically collect and use information on events that affect traffic. 
These annual forecasts should be studied in weekly meetings to detect abnormalities of traffic 
in the coming week and find solutions for (proactively) operating the traffic. The success of the 
previous week’s operations should also be evaluated in order to perform better next time. The 
annual traffic forecast can also be used in the planning of timing of road works.

Incident data analysis for Ring I included road weather conditions in addition to traffic flow 
status information. The results indicate that some circumstances have higher incident risk than 
others, like evening rush hour, reduced visibility and moderate or abundant snowfall. However, 
the statistical significance of the results could not be studied here. This should be examined 
further with a larger dataset.

Travel time is a reactive measure, as it can be measured only with delay. Therefore it is 
recommended that in areas with regular congestion, the traffic flow be monitored using 
sufficiently densely-spaced cross-section specific detectors capable of monitoring reliably at 
least the traffic volume and speed. In areas where regular congestion does not take place, 
traffic monitoring serves incident management and traffic information (e.g. media). In such 
areas, travel time monitoring would be sufficient to indicate the consequences of incidents and 
the level of congestions. The system could be supplemented by road user notifications.
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Tiivistelmä

Hankkeen tavoitteena oli löytää menetelmiä tuottaa tarkka yleiskäsitys liikennejärjestelmän 
tilasta ja ennustaa liikennetilanteen muutokset. Tärkein tehtävä tavoitteen saavuttamiseksi oli 
matka-ajan ennustaminen. Toinen tavoite oli löytää menetelmiä, kuinka arvioida liikenteen 
häiriöriskiä. Lisäksi tehtävänä oli arvioida liikenteen seurantajärjestelmä yleisellä tasolla 
ottaen huomioon lyhyen aikavälin ennustamisen ja häiriöriskin arvioinnin tarpeet.

Hankkeessa etsittiin hyviä käytäntöjä muilta tienpitäjiltä, kirjallisuudesta ja pienten 
aineistotutkimusten perusteella. Liikenneviraston käytössä olevia järjestelmiä arvioitiin 
kirjallisuudesta ja aineistotutkimuksista löydetyn teorian ja käytännön tulosten perusteella.

Hieman muokattua versiota Tanskan tiehallinnon käyttämästä dynRP matka-ajan ennuste
mallista kokeiltiin Kehä I:llä Helsingissä. Päätulokset osoittivat, että etenkin ruuhkaolo- 
suhteissa 15 minuutin ennustemalli antoi parempia matka-aika-arvioita kuin viimeisin mittaus. 
Mallin tarkkuus ei täyttänyt kirjallisuudesta löytynyttä kriteeriä, että keskimääräisen virheen 
suuruus saisi olla korkeintaan 10 -25  % .  Jos päätöksiä kuitenkin pitää tehdä ennakoivasti, 
mallia käyttämällä päästään parempiin päätöksiin kuin viimeisiä mittauksia käyttämällä, 
vaikkei malli täydellinen olekaan. Siksi mallin käyttöönottoa voidaan suositella.

Lyhyemmän aikavälin kuin 15 min ennustemallien antamat ennusteet olivat tarkempia kuin 15 
min mallin. Lyhyemmällä aikavälillä myös viimeisin mittaus tarjoaa kuitenkin paremman 
estimaatin, ja ero ennustemalliin oli pieni, jos sellaista yleensä oli, tai jopa negatiivinen. Tästä 
syystä näiden lyhyemmän aikavälin ennustemallien käyttöä ei voida suositella.

Rijkswaterstaatin liikennekeskuksella oli useita hyviä käytäntöjä häiriöriskin arviointiin ja 
häiriön hallintaan. Suositellaan, että Liikennevirastoon luodaan järjestelmällinen menettely
tapa kerätä ja hyödyntää tietoa tapahtumista ja muista liikenteeseen vaikuttavista, ennalta 
tiedossa olevista asioista. On suositeltavaa, että tätä vuosiennustetta katsotaan viikko
kokouksessa aina seuraavan viikon osalta, jotta voidaan ennakoida liikennetilannepoikkeamat 
ja löytää niihin (proaktiiviset) keinot operoida liikennettä. Kyseisissä viikkokokouksissa olisi 
hyvä käydä läpi myös edellisen viikon operoinnin onnistuminen, jotta seuraavalla kerralla 
voitaisiin onnistua vielä paremmin. Vuositason liikenne-ennustetta voitaisiin käyttää myös 
tietöiden ajoituksen suunnitteluun.

Kehä I:n liikennehäiriöaineiston analyysi sisälsi tiesääolosuhteet liikennetilannetiedon lisäksi. 
Tulokset viittasivat siihen, että joissakin olosuhteissa häiriöriski tosiaan on korkeampi kuin 
toisissa, kuten iltaruuhkan aikaan, näkyvyyden alentuessa tai kohtalaisen tai runsaan 
lumisateen aikaan. Tulosten tilastollista merkitsevyyttä ei kuitenkaan voitu nyt tutkia. 
Tutkimusta tulisikin jatkaa suuremmalla aineistolla.

Matka-aika on reaktiivinen suure, joka voidaan mitata ainoastaan viipeellä. Tästä syystä on 
suositeltavaa, että säännöllisesti ruuhkautuvilla alueilla liikennevirtaa monitoroidaan riittävän 
tiheällä poikkileikkauskohtaisella liikenteenmittausjärjestelmällä, joka on kykenevä seuraa
maan luotettavasti vähintään liikennemäärää ja nopeutta. Alueilla, joissa liikenne ei 
säännöllisesti ruuhkaudu, liikenteen seuranta palvelee häiriönhallintaa ja tiedotusta (esim. 
mediaa). Tällaisilla alueilla matka-ajan seurantajärjestelmä olisi riittävä indikoimaan 
häiriöiden seuraukset ja ruuhkan tason. Järjestelmää voitaisiin täydentää tienkäyttäjien 
ilmoituksilla.
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Sammanfattning

MaLsättningen med projektet var att hitta metoder för att biLda en korrekt aLLmän uppfattning 
om nuLäget i trafiksystemet och förutse ändringar i trafiksituationen. Den viktigaste uppgiften 
för att na detta maL var att uppskatta restiden. Den andra maLsättningen var att hitta metoder 
för att bedöma störningsrisken i trafiken. DärtiLL hade man som uppgift att utvärdera trafikens 
uppföLjningssystem pa ett aLLmänt pLan genom att beakta kraven som stäLLs pa de kortsiktiga 
prognoserna och pa bedömningen av störningsrisken.

Man sökte efter god praxis bLand övriga väghaLLare samt med hjäLp av Litteratur och mindre 
materiaLstudier. Systemen som används vid Trafikverket utvärderades utifran den teori och de 
praktiska resuLtat som presenterades i Litteraturen och materiaLstudierna.

En nagot omarbetad version av modeLLen dynRP som danska vägdirektoratet använder för 
restidsuppskattning testades pa Ring I i HeLsingfors. De huvudsakLiga resuLtaten visade att 
man särskiLt i rusningstrafik kunde uppskatta restiden bättre med en 15-minuters prognos- 
modeLL än med den senaste mätningen. ModeLLens noggrannhet uppfyLLde inte kraven som 
stäLLts i Litteraturen, dvs. att den genomsnittLiga feLmarginaLen far vara högst 1 0 -2 5 % . Om 
besLutsfattandet ända kräver förutseende, uppnar man bättre resuLtat genom att använda 
denna, om än ofuLLständiga, modeLL än att använda de senaste mätningarna. Därför kan man 
rekommendera att modeLLen tas i användning.

De prognosmodeLLer som var mer kortsiktiga än 15-minutersmodeLLen gav mer exakta 
prognoser än 15-minutersmodeLLen. Pa kort sikt ger ocksa den senaste mätningen ett bättre 
estimat och om det överhuvudtaget fanns nagon skiLLnad meLLan mätningen och prognos- 
modeLLen, var skiLLnaden försumbar eLLer tiLL och med negativ. Därför kan användningen av 
kortsiktiga prognosmodeLLer inte rekommenderas.

Vid Rijkswaterstaats trafikcentraL har man ett fLertaL exempeL pa god praxis i fraga om 
bedömning av störningsrisken samt störningshantering. Det rekommenderas att Trafikverket 
skapar ett systematiskt tiLLvägagangssätt för att samLa in och utnyttja informationen om 
händeLser och övriga redan kända faktorer som paverkar trafiken. Pa veckomötena borde man 
aLLtid studera denna arsprognos för den kommande veckans deL, för att man ska kunna förutse 
avvikeLser i trafiksituationen och vidta (proaktiva) atgärder för att Leda trafiken. Pa vecko
mötena i fraga skuLLe det ocksa vara bra att ga igenom hur trafikLedningen fungerade 
föregaende vecka, för att man nästa gang ska Lyckas ännu bättre. En trafikprognos pa arsniva 
kunde ocksa användas för tidspLaneringen av vägarbetena.

AnaLysen av materiaLet gäLLande trafikstörningarna pa Ringväg I innehöLL, förutom information 
om trafiksituationen, även information om vägvädersituationen. ResuLtaten visar att störnings
risken faktiskt är större under vissa förhaLLanden, som t.ex. i kväLLsrusningen, vid nedsatt sikt 
eLLer vid mattLigt eLLer ymnigt snöfaLL. Det var inte möjLigt att ta med den statistiska betydeLsen 
av resuLtaten i denna undersökning. Undersökningen borde fortsättas med en utvidgad 
materiaLbas.

Restiden är en reaktiv storhet, som bara kan mätas med en viss tidsförskjutning. Därför 
rekommenderas att man i omraden med aterkommande trafikstockningar övervakar trafikfLödet 
i en specifik tvärsektion med hjäLp av ett tiLLräckLigt heLtäckande trafikmätningssystem, som 
atminstone kLarar av en tiLLförLitLig uppföLjning av trafikmängden och hastigheten. I omraden 
utan regeLbundna trafikstockningar betjänar uppföLjningen av trafiken störningshanteringen 
och informationsspridningen (t.ex. medierna). I sadana omraden skuLLe ett system för 
uppföLjning av restiden vara tiLLräckLigt för att indikera konsekvenserna av störningarna och 
trafikrusningens niva. Systemet kunde kompLetteras med trafikanternas meddeLanden.
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Preface

The Finnish Transport Agency is searching for a method that would give a situation
aware overall understanding of traffic on the road network at any given time to 
support the operative work of traffic management operators at Finnish traffic 
management centres. This understanding, or overall picture if presented in visual 
from, should also include short-term prediction of the traffic situation. VTT Technical 
Research Centre of Finland conducted a study that targeted finding methods for 
creating an accurate overall understanding of the current status of the transport 
system and to predict changes in traffic conditions.

Senior Scientist Satu Innamaa was the project manager at VTT. She was responsible 
for the deliverable, piloting of the Danish travel time prediction model, analysis of the 
Dutch incident management model, incident clustering, evaluation of the traffic 
monitoring system, and the discussion chapter. Research Scientist Eetu Pilli-Sihvola 
was responsible for literature reviews and evaluation of the incident information 
message content. Research professor Ilkka Norros was responsible for the incident 
data analysis. The project’s steering group consisted of Aapo Anderson, Kari Hiltunen, 
Risto Kulmala and Michaela Koistinen of the Finnish Transport Agency. Sami Luoma 
of the Traffic Management Centre also participated in discussions on the 
recommendations given in the deliverable.

Helsinki, July 2013

Finnish Transport Agency
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1 Introduction

In managing the road network, taking action before traffic conditions become 
congested is often a more effective solution than just reacting to congestions as they 
take place and are observed. This approach to transport network management is 
generally referred to as proactive traffic management. To be able to manage traffic 
proactively, information about the status of the traffic flow (e.g. average speeds, 
travel times or traffic volumes) is needed. This information includes short-term 
forecasts of the traffic situation.

In Finland, the Finnish Transport Agency is  searching for a method that would give a 
situation-aware overall understanding of traffic on the road network at any given time 
to support the operative work of traffic management operators at the Finnish traffic 
management centres. This understanding, or overall picture if presented in visual 
from, should also include short-term prediction of the traffic situation.

Because information on the predicted state of the traffic network would be used in 
operative traffic management activities, it is essential that the approach be practical, 
the output of sufficient quality, and information on the quality of forecasts easily 
accessible. Specifically, a key element in proactive traffic management is the 
prediction of travel time in different traffic and road weather circumstances. Certain 
combinations of traffic flow and road weather conditions could be more likely to 
result in incidents than others. In addition, ways to monitor and identify risk factors 
on the road network should be developed to be able to anticipate the potential 
emergence of accidents and other traffic incidents and to be able to predict their 
likely consequences.

The goal of the project was to find methods for creating an accurate overall 
understanding of the current status of the transport system and to predict changes in 
traffic conditions. The most important task in achieving this is travel time prediction. 
Another goal was to find methods for assessing incident risk. The final task was to 
carry out an overall assessment of the monitoring system considering the needs of 
short-term prediction and incident risk assessment.
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2 Travel time prediction

2.1 Danish model -  dynRP

2.1.1 Background

The Danish Road Directorate has used short-term forecasts of travel time as part of 
their traffic management system on the very busy M3 motorway near Copenhagen for 
years. The suitability of the prediction model was evaluated in Finnish conditions in 
2006 (Innamaa and Silla 2006).

The results of the evaluation were satisfactory. The evaluation study recommended a 
travel time prediction model like the one used by the Danish Road Directorate, which 
is derived from a regression model based on latest measurements and historic 
averages for use on short road sections with regular heavy traffic or alternatively 
always freely flowing traffic. In addition, they recommended that the models be based 
on 5-minute medians. (Innamaa and Silla 2006)

The model used in the Copenhagen area was later replaced with the dynRP model. 
The drawback of the earlier model was that it required manual updating. The new 
model, described in detail in the following section, could be fully automated.

2.1.2 Description of the model

The Danish Road Directorate uses the dynRP model to predict travel times 
automatically in real time (Danish Road Directorate, no date). Their monitoring 
system is based on loop detectors; thus travel time is estimated from loop detector 
data. The forecast is given for 15 and 30 minutes ahead.

The model is based on two curves: one presenting free flow speed and the other 
historic averages. Through interpolation and extrapolation, the travel time is 
predicted assuming the ratio between measured travel time and historic average to be 
constant.

Historic averages are updated automatically daily using e.g. the past 6 months of 
data. All day types are treated separately: Monday, Tuesday/Wednesday/Thursday, 
Friday, Saturday, and Sunday/Holiday.

Historic averages are used only in normal traffic conditions. The normality of 
condition is determined from threshold values. If the traffic condition is considered 
abnormal, the last measurement is used as the best forecast. The dynRP flow chart is 
shown in Figure 1.

The Danish Road Directorate recommends that an automated system be created to 
accompany the dynRP method to compare given forecasts with true, measured 
outcomes and to give an alarm if certain thresholds are exceeded (poor quality of 
forecasts, usually a sign of abnormal traffic flow).
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Figure 1. Generation of travel time forecasts with the dynRP travel time prediction model (Danish Road Directorate, no date)
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2.1.3 Pilot on Ring I 

Pilot area and data

The Danish dynPR travel time prediction model was piloted on Ring I in the Helsinki 
metropolitan area. As the traffic monitoring system on Ring I is based on a travel time 
camera system, dynPR needed to be slightly modified.

The pilot was conducted on two links of Ring I, Konala-Pakila (eastbound) and 
Pukinmaki-Konala (westbound). The Pukinmaki-Konala link (free flow travel time 
approximately 330 seconds) was longer than Konala-Pakila (approx. 180 seconds).

The piloted version of the model was based on direct travel time measurements 
monitored using the existing licence plate reader camera system. As travel time 
observations include outliers -  both due to failures in the monitoring system and due 
to vehicles stopping on the way at e.g. a supermarket -  the median is a more suitable 
indicator than an average value. Therefore, for these links a historic model was 
calculated as a median of the last 5-minute median travel times determined for every 
minute during 2011 and 2012. Data from 2011 was used in creating the model and that 
from 2012 was used in testing it.

Due to outliers in the travel time data, small numbers of travel time observations also 
cause outliers to the median values. Therefore, it was decided that the median should 
be based on at least 5 observations before it could be included in the calculation or 
testing of the model. The proportion of time with a sufficient number of observations 
was 4 5 .4 -4 6 .3 %  on test links (Table 1).

Table 1. Proportion o f time with given number of observations per 5  minute peri
od; months when travel time monitoring did not perform well are exclud
ed

Sample size Pukinmaki-Konala Konala-Pakila

0 24.9% 2 6 .9 %

1 1 1 .8 % 10 .4 %

2 7.6% 6 .7%

3 5 .7% 5 .1%

4 4 .7% 4 .1%

5 4 .0% 3 .5%

6 3 .6% 3 .1%

7 3 .4% 2 .8 %

8 3 .1% 2 .5%

9 3 .0% 2 .2 %

10+ 2 8 .3 % 32.3%
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Basic model

First the model was built for the 2011 using all travel time medians that were based on 
at least 5 observations (Figure 2). The model was calculated as the median value of 
median travel times measured for that particular moment in time (1 minute slot) and 
weekday. In the models, travel time was considered equal to free flow travel time if 
fewer than 5 medians were available for the corresponding minute and day.

K o n a la -P a k i la

400

350

300

------Sunday
250

------Monday

------Tuesday
200

------Wednesday

— Thursday

150 — Friday

— Saturday

100

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00

Figure 2. Historic median models of 5-m inute m edians (based on at least 5  obser
vations) determined fo r every minute and weekday, free flow  travel time 
if  there were less than 5  m edians fo r the corresponding minute and day
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In Denmark, Tuesday, Wednesday and Thursday were combined into one average. 
However, based on the result all weekdays seemed to differ on Ring I (Figure 2) and 
keeping them all separate was justifiable.

The basic model was tested with 2012 data. Only those observations were included in 
the test data set that were based on at least 5 observations and were not measured 
during night-time (00-05).

The forecast was calculated as a product of historic median travel time of the current 
weekday 15 minutes ahead from the current moment and the ratio between the 
current travel time and corresponding historic median:

7T00_
7T+15 = = ^ 7 T +15

T X j  rTl r T1 T  1 j

1 1 00

If the measured travel time or forecast was faster than the free flow speed (330/180 
s), the value was replaced with the free flow speed for the error calculation.

The results were calculated for moments at which the measurement value 
corresponding to the period of the predicted outcome existed. The average absolute 
value of the relative error was 3 .2 -4 .1 %  for all traffic conditions and 13 .3 -1 5 .2 %  for 
congested conditions, determined as traffic for which the travel time has risen to at 
least 1 0 %  above the free flow median (Table 2). As the proportion of congestion was 
rather small, the overall performance of the model was satisfactory (8 2.0 -8 7.2%  of 
the time the error was < 5 %  and 9 6 .5 -9 6 .9 %  of the time < 2 0 % ) , but the performance 
was clearly poorer in congested conditions (30 .4 -3 0 .5 %  and 7 6 .6 -8 1.8 % , 
respectively).

Table 2. Model test results based on 20 12 data. Traffic was considered congested 
if  measured travel time fo r the prediction moment was at least 1 0 %  
above the free flow  median.

Pukinmaki-Konala Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela

tive error 4 .1% 13.3% 3 .2% 15.2%

Proportion of time when error 

< 5% 8 2 .0 % 30 .4% 8 7 .2 % 30 .5%

Proportion of time when error 

< 1 0 % 91.9% 55 .9% 93 .6% 52.3%

Proportion of time when error 

< 2 0 % 96 .5% 8 1 .8 % 96 .9% 7 6 .6 %

The correspondence of predicted and measured outcomes as flow status classes were 
studied (Table 3, more detailed results in Annex A). The results show that most of the 
free flowing traffic (travel time at most 1 0 %  over free flow travel time) was predicted 
correctly (success rate 9 5.6 -9 7.2%). In addition, most of the stopped traffic (travel 
time more than 9 0 %  over free flow travel time) was predicted correctly (78.7-82.0%).
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However, the flow status classes between them were predicted more poorly, with 
3 7 .6 -6 2 .9 %  success rate for flow with travel time 1 0 -7 5 %  over free flow travel time. 
The worse performance was for the flow status with travel time 7 5 -9 0 %  over free flow 
travel time, with only 14 .2 -19 .0 %  success rate. Large errors (at least two flow status 
classes) were most frequent for flow with travel time 2 5 -7 5 %  or > 9 0 %  over free flow 
travel time (11.0 -13 .6 % ). Large errors were least frequent for the two most fluent flow 
classes (0 .7-2 .7% ).

Table 3. Test results as correspondence of flow  status classes, the basic model

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 2 5 -7 5 % 75- 90 % > 90%

Konala- 

Pakila link

Correct class 97-2% 43 -6% 47-2% 14-2% 78 -7%

False by more 

than one class 0 .7% 2 -7% 13-6% 8 -5% 11-9%

Pukinmäki- 

Konala link

Correct class 95 -6% 37-6% 6 2 -9 % 19-0% 8 2 -0 %

False by more 

than one class 1-3% 2 -7% 13-1% 4 -1% 1 1 -0 %

The classes when the measured travel time was 1 0 -2 5 %  and 7 5 -9 0 %  of the free flow 
travel time seemed always to perform the worst (Table 3). It is probably because 
these classes mainly exist as "passing" classes, between more stationary classes, i.e. 
congestion seldom remains (time-wise) in these classes but changes either for the 
better or worse, which is why they are hard to predict. This could also be typical, of 
course, for these sections.

As a comparison for the prediction model, the performance of use of the last 
measured value as a forecast was studied (Table 4). On the Konala-Pakila link the 
average relative value of relative error was equal to or almost equal to the prediction 
model above. On the Pukinmaki-Konala link the prediction model performed better 
than when using the last measurement (e.g. 1 3 .3 %  vs. 1 7 .7 %  average absolute value 
of relative error in congestion). When looking at correspondence of flow status 
classes (Table 5 and Annex A), it can be seen that the proportion of correct classes 
was worse with direct use of the last measurement for all classes, except free flowing 
class where the performance was very similar. In addition, the proportion of large 
errors was greater with direct use of the last measurement in these traffic conditions.
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Table 4. Results when the last measurement is used as a forecast. Traffic was 
considered congested if  the measured travel time fo r the prediction mo
ment was at least 1 0 %  above the free flow  median.

Pukinmäki-Konala Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela
tive error 4 .8% 17.7% 3 .2% 15.6%

Proportion of time when error 
< 5% 8 1 .1 % 2 0 .1 % 8 7 .1 % 2 8 .7 %

Proportion of time when error 
< 1 0 % 89 .9% 41.1% 93 .5% 51.2%

Proportion of time when error 
< 2 0 % 94 .7% 71.0 % 9 6 .8 % 75.8%

Table 5. Test results when using the last measurement as a forecast, by flow  sta
tus class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Konala- 

Pakila link

Correct class 96 .9% 40 .1% 43 .0% 9 .0% 77.2%

False by more 

than one class 0 .7% 2 .6 % 2 2 .6 % 1 1 .8 % 13.8%

Pukinmäki- 

Konala link

Correct class 9 6 .0 % 2 5 .6 % 41.2% 14 .6 % 76 .3%

False by more 

than one class 1 .6 % 4 .3% 2 9 .8 % 7.7% 15.4%

In the results above, the forecast was calculated from the historic median curve 
independent of the ratio between the current state and the curve value. However, the 
Danish Road Directorate suggests using a threshold above which the last 
measurement is used instead of the forecast. Such a threshold value was sought by 
studying the proportion of time when the forecast would have been a more accurate 
choice as a function of the ratio between current state and historic curve (Figure 3). 
Nevertheless, the historic median based forecast was more reliable than the latest 
measurement, even if the difference between the latest measurement and the historic 
median was 10 0 % . Therefore it is recommended always to extrapolate the forecast 
from the historic value.
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Figure 3. Proportion of time when the historic median based forecast was better
than the last measurement as a function o f the threshold value fo r the 
difference of the last measurement from  the corresponding historic val
ue. Traffic was considered congested if  the travel time was at least 1 0 %  
longer than in free flow

Seasonal models

Wintertime includes more varying road weather conditions than summer. In Finland, 
some roads also have lower speed limits during the winter season, but not our test 
road. Nevertheless, the model was divided into two parts: November-March as 
wintertime and April-October as summertime. Otherwise, the same principles were 
applied as with the basic model. The historic median curves show that although the 
timing of congestion was approximately the same for both seasons, there was a 
difference in the level of congestion (Figure 4 and Figure 5).
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Pukinmaki-Konala, Summer

1200

1000

300
------Sunday

------Monday

------Tuesday
bOO

------Wednesday

------Thursday

------Friday
IOC

------Saturday
*****

200

5:00 7:00 9:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00

Figure 4. Seasonal models fo r the Pukinmäki-Konala link.
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Konala-Pakila, Winter
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Figure 5. Seasonal models fo r the K o n ala-P akila  link.

The performance of the seasonal model (Table 6) for the Konala-Pakila link was 
slightly better than that of the basic model (Table 2) for all conditions, but slightly 
worse for congestion. On the Pukinmaki-Konala link, the seasonal model performed 
slightly worse both overall and for congested conditions. However, the differences 
between the models were small. The proportion of correct flow status classes was 
roughly equal to those of the basic model for the most fluent class on the Konala- 
Pakila link, and for the two most fluent flow status classes on the Pukinmaki-Konala 
link (Table 7). The same applies to the proportion of road status classes wrong by 
more than one class. In addition, the latter proportion was equal also for the most 
congested class. However, the seasonal model performed better in terms of the 
proportion of correctly predicted class where the travel time was 2 5 -7 5 %  over the free 
flow travel time on the Konala-Pakila link, for the most congested class on the other
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link. The proportion of flow status classes wrong by more than one class was smaller 
in class travel time 7 5 -9 0 %  over the free flow travel time on both links. The other 
indicators were worse for the seasonal model than for the basic model. Thus season 
has an effect on travel time patterns, but dividing the year into two seasons does not 
improve the modelling procedure because of the strong variation.

Table 6. Seasonal model test results based on 20 12 data. Traffic was considered
congested if  the measured travel time fo r the prediction moment was at 
least 1 0 %  above the free flow  median.

Pukinmäki-Kon a la Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela

tive error 4 .2% 14.1% 3 .3% 15.8%

Proportion of time when error 

<5% 8 1 .0 % 2 9 .0 % 89 .5% 2 9 .6 %

Proportion of time when error 

< 1 0 % 91.3% 5 2 .6 % 95 .9% 52.3%

Proportion of time when error 

< 2 0 % 9 6 .0 % 79 .0% 97 .8% 75.3%

Table 7. Test results of the seasonal model by correspondence of flow  status clas
ses.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Konala- 

Pakila link

Correct class 97 .3% 4 1 .8 % 55.2% 9 .5% 77.1%

False by more 

than one class 0 .7% 3 .6% 15.4% 6 .6 % 13.9%

Pukinmäki- 

Konala link

Correct class 95 .3% 37.2% 6 1 .3 % 17.0% 83 .4 %

False by more 

than one class 1.4 % 3 .0% 1 6 .2 % 3 .2% 1 1 .0 %

Model of exceptional conditions

The data appeared to be divided into free flow days and days with varying levels of 
congestion; thus models were built representing only those occasions when the 
median travel time exceeded the free flow travel time by at least 1 0 %  (Figure 6). The 
model covered the whole year using travel time medians based on at least five 
observations. The travel time was considered equal to free flow travel time if there 
were fewer than eight medians for the corresponding minute and day. The threshold
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was set higher here than for the other models, as with a smaller threshold there were 
lots of isolated peaks (single higher value), which is undesirable.

P u k m m a k i-K o n a  la
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Figure 6. Model fo r exceptional cond itions

The forecast was made for this model following the same principles as for the basic 
model if the current travel time was at least 1 0 %  higher than the free flow travel time. 
If it was less, the forecast was equal to the latest measurement.

The average absolute value of error was very similar to the basic model over all 
conditions, but surprisingly worse in congested conditions (Table 8). For the 
Pukinmaki-Konala link, the proportions of error of a certain magnitude were very 
similar to the basic model but slightly worse for the other link. In congested 
conditions, both models of exceptional situations performed worse than the basic
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model. When looking at the correspondence of flow status classes, the model of 
exceptional situations performed better in the most congested conditions than the 
basic model, equally in free flow conditions, and mostly worse in milder congestion 
(Table 9). It can be concluded that the prediction of free flow and exceptional 
conditions improved at the expense of performance in the prediction of milder 
congestion. Therefore, this model cannot be recommended for general use.

Table 8. Test results from  the model of exceptional situations based on 20 12  data.
Traffic was considered congested if  the measured travel time fo r the pre
diction moment was at least 1 0 %  above the free flow  median.

Pukinmäki-Kon a la Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela

tive error 4 .3% 15.3% 3 .5% 17.4 %

Proportion of time when error 

<5% 8 2 .0 % 2 4 .8 % 8 6 .4 % 2 2 .3 %

Proportion of time when error 

< 1 0 % 91.2% 49 .0% 92 .7% 44 .3%

Proportion of time when error 

< 2 0 % 95 .8% 7 8 .2 % 96 .3% 72.9%

Table 9. Test results from  the K onala-Pakila model of exceptional situation by 
flow  status class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Konala- 

Pakila link

Correct class 97.8% 17.5% 54 .0% 13.7% 8 1 .9 %

False by more 

than one class 0 .9% 4 .4 % 27.7% 6 .6 % 12 .8 %

Pukinmäki- 

Konala link

Correct class 9 6 .8 % 15.3% 5 6 .2 % 2 0 .4 % 8 6 .5 %

False by more 

than one class 1.5% 3 .5% 3 0 .0 % 3 .2% 8 .3%

Forecasts for shorter prediction period

If a forecast accuracy of 15 minutes is not satisfactory, shorter prediction periods can 
be used. We therefore tested what the accuracy of forecasts would be if the prediction 
period was shorter: 10, 5 or 1 minute(s). The basic model was applied.

The result of the basic model for different prediction period lengths was clear: it
improved with a shorter prediction period, as seen in a smaller average error, smaller
proportion of large errors, bigger proportion of correct forecasts and smaller



22

proportion of forecasts false by more than one class (Table 10 -  Table 15 and Annex 
A).

Table 10. Test results from  the basic model fo r a 10-m inute prediction period. Traf
f ic  was considered congested if  the measured travel time fo r the predic
tion moment was at least 1 0 %  above the free flow  median.

Pukinmaki-Konala Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of relative error 3 .4% 10 .9 % 2 .8 % 1 2 .1 %

83.3 87.6

Proportion of time when error < 5 % % 35.6% % 33 .0%

93.4 94.6
Proportion of time when error < 1 0 % % 6 2 .8 % % 5 8 .8 %

97.6 97.8
Proportion of time when error < 2 0 % % 8 7 .2 % % 83.5%
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Table 11. Test results from  the K onala-Pakila basic model fo r a 10-m inute predic
tion period by flow  status class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Konala- 

Pakila link

Correct class 97 .5% 43 .6% 57.0% 15.0% 8 3 .8 %

False by more 

than one class 0 .5% 1 .0 % 1 0 .5 % 2 .6 % 8 .4%

Pukinmäki- 

Konala link

Correct class 96 .3% 42 .3% 6 8 .1% 25.5% 8 6 .6 %

False by more 

than one class 0 .8 % 1 .8 % 9 .7% 1.3% 7.1%

Table 12. Test results from  the basic model fo r a 5-m inute prediction period. Traffic
was considered congested if  the measured travel time fo r the prediction 
moment was at least 1 0 %  above the free flow  median.

Pukinmäki-Konala Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of relative error 2 .8 % 7.8% 2 .2 % 8 .2 %

85.4 89.3
Proportion of time when error < 5 % % 44 .5% % 44 .2%

95.6 96.4
Proportion of time when error < 1 0 % % 74.6% % 72.1%

99.0 99.0
Proportion of time when error < 2 0 % % 94 .1% % 92.5%

Table 13. Test results from  the K onala-Pakila basic model fo r a 5-m inute predic
tion period by flow  status class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Konala- 

Pakila link

Correct class 97.6% 50 .7% 71.5% 2 6 .6 % 9 0 .6 %

False by more 

than one class 0 .2 % 0 .3% 5 .1% 2 .5% 2 .9%

Pukinmäki- 

Konala link

Correct class 97.1% 46 .7% 77.3% 3 2 .6 % 90 .9%

False by more 

than one class
0 .3% 0 .3% 5 .3% 0 .1 % 3 .3%
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Table 14. Test results from the basic model for a 1-minute prediction period. Traffic
was considered congested if  the measured travel time for the prediction
moment was at least 1 0 %  above the free flow median.

Pukinmaki-Konala Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela

tive error 1 . 1 % 3 .0% 0 .8 % 2 .6 %

Proportion of time when error 

<5% 96 .5% 8 2 .4 % 97.7% 8 6 .0 %

Proportion of time when error 

< 1 0 % 99 .4% 95 .9% 99 .5% 96 .4%

Proportion of time when error 

< 2 0 % 99 .9% 99 .6% 99 .9% 99 .6%

Table 15. Test results from  the K onala-Pakila basic model fo r a 1-m inute predic
tion period by flow  status class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Konala- 

Pakila link

Correct class 99 .0% 79 .0% 90 .3% 6 7 .2 % 97.8%

False by more 

than one class
0 .0 % 0 .0 % 0 .4 % 0 .0 % 0 .4 %

Pukinmäki- 

Konala link

Correct class 9 8 .8 % 77.0% 91.3% 6 1 .8 % 96 .5%

False by more 

than one class 0 .0 % 0 .0 % 0 .7% 0 .1 % 0 .5%

As shown above, the performance increases as the prediction period decreases. 
However, this is also true with the last measurement used as the forecast. Thus the 
suitability of the models is not certain despite better performance. Consequently, the 
same performance indicators were calculated for 10-minute, 5-minute and 1-minute 
prediction periods assuming that the forecast would have been equal to the latest 
measurement.

For the 15-minute model, the forecast based on historic median curve outperformed 
the last measurement. However, for the Pukinmaki-Konala link the historic median 
curve worked better than the last measurement, except for the 1-minute forecast 
where the last measurement was better (Table 16 -  Table 21 and Annex A). For the 
Konala-Pakila link, the last measurement was more accurate than the historic median 
based for all prediction periods: 10 minutes, 5 minutes and 1 minute. Thus the use of a 
historic median based forecast can only be recommended for a 15-minute period.
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Table 16. Test results from the latest measurement for a 10-minute prediction pe
riod. Traffic was considered congested if  the measured travel time for the
prediction moment was at least 1 0 %  above the free flow median.

Pukinmäki-Kon a la Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela

tive error 3 .8% 13.7% 2.7% 11.7%

Proportion of time when error 

< 5% 8 2 .6 % 2 6 .2 % 8 8 .3 % 34.8%

Proportion of time when error 

< 1 0 % 91.8% 51.0% 94 .8% 6 0 .3 %

Proportion of time when error 

< 2 0 % 96 .7% 8 2 .1 % 9 8 .0 % 8 4 .6 %

Table 17. Test results from  the latest measurement fo r a 10-m inute prediction pe
riod by flow  status class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Konala- 

Pakila link

Correct class 97 .4% 44 .4% 5 2 .8 % 1 6 .7 % 8 2 .9 %

False by more 

than one class 0 .4 % 0 .8 % 1 2 .7 % 5 .1% 8 .4%

Pukinmäki- 

Konala link

Correct class 96 .7% 31.0% 53.5% 2 0 .8 % 8 3 .0 %

False by more 

than one class 1 .0 % 2 .8 % 18 .7 % 2 .0 % 9 .2%
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Table 18. Test results for the latest measurement for a 5-minute prediction period.
Traffic was considered congested if  the measured travel time for the pre
diction moment was at least 1 0 %  above the free flow median.

Pukinmäki-Konala Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela

tive error 2 .8 % 8 .5% 2 . 1 % 7.5%

Proportion of time when error 

<5% 85 .5% 4 0 .2 % 90 .3% 4 6 .4 %

Proportion of time when error 

< 1 0 % 95 .2% 71.1% 97.1% 77.4%

Proportion of time when error 

< 2 0 % 9 8 .8 % 93 .1% 99 .2% 93 .8%

Table 19. Test results from  the latest measurement fo r a 5-m inute prediction peri
od by flow  status class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Konala- 

Pakila link

Correct class 97.9% 53.7% 6 9 .2 % 2 8 .7 % 90 .7%

False by more 

than one class 0 .1 % 0 .3% 4 .5% 3 .7% 2.3%

Pukinmäki- 

Konala link

Correct class 97.6% 4 1 .6 % 71.0% 32.2% 9 0 .0 %

False by more 

than one class 0 .3% 0 .5% 7.2% 0 .1 % 3 .2%
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Table 20. Test results from the latest measurement for a 1-minute prediction
period. Traffic was considered congested if  the measured travel time for
the prediction moment was at least 1 0 %  above the free flow median.

Pukinmäki-Konala Konala-Pakila

A ll Congestion A ll Congestion

Average absolute value of rela

tive error 0 .9% 2-3% 0 -7% 1 -8 %

Proportion of time when error 

< 5% 97-3% 87 -1% 9 8 -6 % 91-8%

Proportion of time when error 

< 1 0 % 99 .5% 97-0 % 99 -8% 98 -1%

Proportion of time when error 

< 2 0 % 99 -9% 99 -6% 10 0 -0 % 99 -7%

Table 21. Test results from  the latest measurement fo r a 1-m inute prediction
period by flow  status class.

Measured output, %  over free flow travel time

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Konala- 

Pakila link

Correct class 99 -3% 84 -6% 92-5% 8 0 -7 % 98 -1%

False by more 

than one class 0 -0 % 0 -0 % 0 -4 % 0 -0 % 0 -3%

Pukinmäki- 

Konala link

Correct class 99 -2% 79 -3% 92-4% 74-7% 97 -2%

False by more 

than one class 0 -0 % 0 -0 % 0 -7% 0 -1 % 0 -4%

Use of loop detector data

There are five inductive loop stations on the Pukinmaki-Konala link and three on the 
Konala-Pakila link. Basic traffic flow diagrams created for these cross-sections 
(examples in Figure 7) show that the traffic flow can have a free-flow speed of up to 
about 330-480 vehicles/5 minutes/direction depending on the cross-section (number 
of lanes). However, all measurement stations also include observations of saturated 
flow conditions down to almost zero volume with very low speed. Consequently, traffic 
volume alone does not describe the traffic condition nor can it be used (alone) to 
increase the prediction power.
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Figure 7. B asic diagram s from  westbound inductive loop detectors, based on 20 11
and 20 12 data

Traffic intensity is a measure of the average occupancy of a facility (detector) during 
a specified period of time and defined as the ratio of the time during which a facility is 
occupied (continuously or cumulatively) to the time this facility is available for 
occupancy. Traffic intensity increases with traffic volume, but also with decreasing 
speed. In theory, the intensity speed curve is decreasing (like in Konala). However, in 
practice it may have two curves (like in Pukinmäki). The data processing system of 
the Finnish Transport Agency does not include intensity as a variable in its 
summaries, but this could be added.
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The fusion of travel time and cross-section specific measures is not straightforward 
and requires further study.

2.1.4  Discussion and recommendations

Innamaa (2009) summarizes the literature on the impact of travel time information 
accuracy on benefits as follows: An increasing reliability of information results in 
higher compliance of e.g. route recommendations based on the information. The 
exact numeric definition for sufficient accuracy depends on the city and time of day. 
The net benefit from an advanced traveller information service was positive in studies 
included in the review only if the error in information provided by the service was 
below the range of 1 0 -2 5 % .  Although a lower limit for the accuracy of information is 
critical, there is also an upper limit above which further improvements for the model 
are not necessary. Jung et al. (2003) noted that once a regional advanced traveller 
information system reaches a level of error near or below 5 % ,  benefits from further 
improvements to service accuracy may be outweighed by the costs associated with 
these improvements.

The so-called basic model performed better than the model split by season (on the 
road without lowered winter speed limits) or a model concentrating on exceptional 
conditions. The difference when using the latest measurement as the forecast was 
small overall, but greater in congested conditions, where the prediction model 
performed better than the latest measurement.

Based on these findings, only the 1-minute basic model fulfilled the requirement of at 
most 1 0 %  error at least 9 5 %  of the time in congested conditions. The same model is 
the only one fulfilling the criterion if the error range is widened to 2 0 % . However, 
then also the 5-minute model comes close to fulfilling the criterion, 9 2 .5 -9 4 .1%  of the 
time. With the proportion of time error less than 2 0 %  over all observations, all 
prediction period lengths fulfil the criterion. If the accepted error range is set to 1 0 % ,  
only the 5-minute and 1-minute models meet the criterion.

However, for the 10-minute, 5-minute and 1-minute prediction periods on the Konala- 
Pakila link, the latest measurement outperformed the historic median based forecast. 
On the Pukinmaki-Konala link this was the case only for the 1-minute prediction 
period. Therefore the recommendation for shorter period prediction models is 
questionable. For the 15-minute model the historic median based forecast was better 
than use of the last measurement. However, it did not fulfil the threshold of at most 
1 0 -2 5 %  error. Therefore the use of forecasts may not be beneficial. Nevertheless, if 
decisions must be made proactively, the use of this forecast although not perfect 
would lead to better decisions more often than when using just the latest 
measurement.

On road sections where the annual median is equal to the free flow travel time, the 
forecast would in practice be equal to the latest measurement, even if a historic 
median based forecast were used. Thus, the decision concerns only roads where the 
travel time increases frequently.

The travel time level alone does not describe how close the traffic flow is to getting 
saturated. The cross-section specific traffic volume alone does not describe the traffic 
condition, nor can it be used (alone) to increase the prediction power. The fusion of 
travel time and cross-section specific measures is not straightforward and requires 
further study.
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If a prediction model is set up, a system collecting information on the circumstances 
(traffic, road weather) in which the model failed or was successful should be set up for 
further development of the model.

For setting up a model for a specific link the following procedure is recommended:

1. Collect travel time data for 1 year on links with no lowered winter speed limit 
and for 2 years on links with lowered winter speed limit.

2. Calculate the median travel time for 5-minute periods using a 1-minute 
interval.

3. Filter out all medians where the number of observations is smaller than five.

4. Determine the historic median for each minute of the day and day of the week 
based on the remaining medians from step 3. If the link has lowered winter 
speed limits, determine the historic median separately for the winter speed 
limit period and the summer speed limit period.

5. Use historic averages as a model. For night-time (00-05 am), use free flow 
travel time. Replace any historic average faster than the free flow travel time 
with the free flow travel time.

6. Update the model once a month.

7. Report the performance of the model once a month, analysing traffic and 
weather conditions when the model performed well and poorly.

The prediction procedure is shown in Figure 8.

Have you determ ined the m edian 
curves for travel tim e on this link?

No W ere you ab le  to m easure at least 5 
travel tim e o bservatio ns?

No

Yes

W ere you ab le  to m easure at least 5 
travel tim e observatio ns?

Yes

Yes

Figure 8. Recommended principles fo r m aking a forecast; however the given fore
cast should never indicate a travel time faster than free flow  speed

If a prediction model is set up following the principles of this pilot, it must be 
acknowledged that the model works better the closer the traffic situation is to its 
median (or average) performance. When the traffic volume is smaller than normal due 
to e.g. a vacation period, or when a traffic accident or other incident takes place or the
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road weather condition is  hazardous, the model most likely performs more poorly, and 
operator expertise on development of the traffic situation overrides it.

2.2 Other models found in the literature

The literature review of existing travel time prediction models focused on recently 
reported models that have shown good results in congested conditions and that have 
used real travel time data with relatively good results. In addition, models combining 
travel time data with other data sources were examined.

Bayesian inference-based dynamic linear model

A Bayesian inference-based dynamic linear model (DLM) developed by Fei et al. 
(2011) used the median of historical travel times, tim e-varying random variations, and 
a model evolution error to acquire an online prediction of short-term travel time on a 
stretch of freeway. The method looked at forecasting as a stochastic process and 
provided predicted travel times along with their associated confidence interval to 
account for the dynamics and uncertainty of traffic according to the concept of 
Bayesian inference.

Bayesian forecasting is  a learning process that revises sequentially the state of a 
priori knowledge of travel time based on newly available information. To better track 
travel time fluctuations during non-recurrent congestion due to unforeseen events 
(e.g. incidents, accidents, or bad weather), the DLM was integrated into an adaptive 
control framework that can automatically learn and adjust the noise level of the 
system evolution. (Fei et al. 20 11)

Fei et al. (20 11) tested their model on an interstate segment in Northern Virginia, USA 
with an imbalanced traffic flow pattern, where the majority of commuting traffic in the 
morning peak hours flows eastbound to Washington, DC. The examined time periods 
were 5 .0 0 -11.0 0  and 14.00-20.00. The mean absolute error was found to be 0.8 
minutes, whereas the mean absolute percentage error was close to 1 0 % .  Fei et al. 
found that the experiment results based on real loop detector data suggest that the 
proposed method is  able to provide accurate and reliable travel time prediction under 
both recurrent and non-recurrent traffic conditions. They also thought that the 
proposed method could satisfactorily capture travel time fluctuations due to demand 
variations and capacity reduction.

Extended Kalman filter model

Van Lint (2008) developed an extended Kalman filter (EKF)-based online-learning 
approach which can be applied online and offers improvements over a delayed 
approach in which learning takes place only as actual travel time data is  available. 
The approach relied on data-driven state-space neural networks (SSNN), and the 
source data consisted of spot mean speeds and vehicular flow per minute from dual 
inductive loops that were installed, on average, every 500 metres along a freeway 
stretch. As output, the method produced estimated travel times.

Van Lint (2008) tested the approach on a 7-km  three-lane southbound freeway stretch 
between The Hague and Delft in the Netherlands. Data was chosen to represent 
regular congestion, which is  why a ll congested weekday afternoon periods (between 
14.00 and 20.00) in 2004 were chosen. Note that in a ll selected peak periods there
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were cases where the travel time during congestion was at least twice as high (i.e. >10 
minutes) as the corresponding free-flow travel time (around 4 minutes). The 
reliability of the new approach was found to be significantly better than either 
instantaneous travel times or historic average. The root mean square errors (RMSE) 
for each of these approaches for the same data were: 100 seconds (SSNN), 167 
seconds (instantaneous), and 250 seconds (historic)

Lane-by-lane tracing model

Li and Rose (2011) examined different kinds of travel time prediction methods in 
terms of how well they take into account the variability in travel times. Three models 
were examined, of which the first, called lane-by-lane tracing, relied on speed data 
from each lane to replicate the trajectories of relatively slow and relatively fast 
vehicles on the basis of speed differences across the lanes. The second model was 
based on the relationship between mean travel time (estimated using a neural 
network model) and driver-to-driver travel time variability. The third model was based 
on recent historic values.

Each of the models produced predictions of percentile travel times (10th and 90th 
percentiles) based on data collected from a toll road in Melbourne, Australia. The 
mean average percentage errors of the percentile travel times ranged from 6 %  to 9 %  
and of mean travel times from 8 %  to 1 2 % .  The authors found that the results 
confirmed that the lane-by-lane tracing model can provide reliable estimates of the 
90th and 10th percentile travel times when predicting up to 1 hour ahead. Since that 
model relies on nothing more than the speed information provided by inductive loop 
systems installed on most urban freeways today, it can be taken into use quite easily. 
(Li and Rose 2011)

Stochastic model

Hofleitner et al. (2012) developed a model especially for arterial traffic that includes a 
lot of turning traffic and signalised intersections. Their method estimated the 
probability distribution of travel times (rather than only the mean) between any two 
locations on the network. The stochastic model was based on traffic flow theory, and 
it learned parameters with a physical interpretation (such as fundamental diagram 
and signal parameters) and also learned turn movement probabilities within the 
arterial network. Using the learned parameters, real-time estimation and prediction of 
traffic conditions was performed using a customized particle filter.

The Hofleitner et al. model also leveraged historic data to estimate traffic conditions 
in real time throughout the network even where little or no real-time data was 
received. This is due to the model’s ability to accurately track flows through the 
network as well as the relative recurrence of arterial traffic dynamics.

The data used as a basis of the model’s estimations was collected as floating car data 
from taxicabs driving around the San Francisco street network. The mean absolute 
error of the estimations was found to be approximately 20 seconds, which translated 
into a mean absolute percentage error (MAPE) of around 3 8 % . (Hofleitner et al. 2012)



33

Hybrid model of traffic flow and k-nearest neighbour

Lim and Lee (2011) developed a hybrid model using a fusion algorithm that 
sim ultaneously utilises data from both point and interval detection systems. The 
fusion algorithm was based on the traffic flow and k-nearest neighbourhood (k-NN) 
models. This method predicted future values by searching k data points in the past 
that were most sim ilar to the current data, and then applying weighted mean values 
depending on the degree of sim ilarity. The final predicted travel time was estimated 
by incorporating the predicted travel time variation into the travel time given by 
interval detection systems.

Lim and Lee (2011) tested their model on a 3.4 km-section of highway near Yangjae 
with three point detection systems measuring mean speeds (video image detectors) 
and two interval detection systems estimating travel times based on floating car data 
(DSRC). Both point and interval detection systems were installed at the starting and 
end points. One point detection system was additionally installed at an intermediate 
point. The test site is  a continuous flow road of four lanes, and the test section 
includes two in-ram ps and two outgoing ramps.

The mean average percentage error of the Lim and Lee model was found to be in the 
range of 1 1 - 1 9 % .  Travel time error caused by the time lag of interval detection 
systems was observed to be reduced by as much as 4 4 % .  Based on the results, the 
authors expect the proposed algorithm to have significant potential for real-time 
applications.

Hybrid model of historic pattern and Newell’s traffic flow model

Tao et al. (2012) developed a hybrid traffic prediction model for congestion-prone 
corridors. This hybrid model consisted of two major prediction components: a historic 
pattern recognition model for predicting recurring congestion, and Newell’s traffic 
flow model for predicting non-recurring congestion. For a congestion-prone corridor, 
when real-time traffic data is  available, a model switcher is  first used to decide which 
prediction module should be applied based on current and predicted non-recurring 
traffic condition data.

As input the model used information about the traffic network, sensor locations, 
sensor data (flow & speed), and incident, weather and work zone data. The outputs 
were link-based travel time estimates presented in visual form on an end-user portal. 
(Tao et al. 2012)

Travel time reliability was predicted ramp-to-ramp for the interstate portion of the 
trip only. Arterial street travel was excluded. Interstates 66 and 495 in Northern 
Virginia are the two busiest commute corridors in the region, connecting downtown 
Washington DC and surrounding residential areas in Northern Virginia. (Tao et al. 
2012)

The “reliability-based” travel time information was well received by users, as 
compared to average travel time. As a result, users became aware of non-recurring 
events and the likely impact of these on their commute schedules. The difference 
between measured and predicted travel times ranged from 5 to 8 minutes (with 18 
minutes being the longest total time). (Tao et al. 2012)
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3 Incident risk assessment

3.1 Literature review

3 .1.1  Incident duration estimation

A method developed by Khattak et al. (2012) analysed traffic incidents and presented 
an online tool (iMiT, incident Management integration Tool) that could dynamically 
predict the duration of incidents, the occurrence of secondary incidents and 
associated incident delays.

In related literature, variables that are positively associated with longer incident 
durations include longer response times, accidents (as opposed to other types of 
incidents), lane blockage, adverse weather, more heavy vehicles involved in an 
incident, injury or fatality, occurrence during peak hours, incidents located farther 
away from a traffic operations centre (partly resulting in longer response times), more 
vehicles responding from various agencies, and freeway facility damage. (Khattak et 
al. 2012)

Generally identified factors associated with the occurrence of a secondary incident 
include peak hours, weekdays, season, the clearance time of primary incidents, lane 
blockage duration of a primary incident, more vehicles involved in a primary incident, 
and primary vehicle rolling over. (Khattak et al. 2012)

The iMiT prediction tool was developed based on rigorous statistical models for 
incident duration and secondary incident occurrence -  it uses a theoretically based 
deterministic queuing model to estimate associated delays. Ordinary least squares 
(OLS) regression models were estimated for incident duration with the following 
specification:

Incident duration = fh + h(TIMEOFDAY) + ^»(WEATHER) + 
^(LO CATIO N) + h4(AVANNDAILYTRAFFIC) + h(DETECTIO N ) + 
h(VEH ICLES) + h(IN CTYPE) + h(LANECLOSE) + h(EM S) + 
ho(RTSHOULDERAFF) + hi(RAMPAFF) + /^(LFSHOULDERAFF) + s

iMiT relies on available inputs about the roadway conditions, and incoming incident 
information including location, time of day and weather conditions. The main inputs 
to the dynamic incident delay prediction are incident severity, incident duration, 
traffic volume, and road geometry information. Output of the method and the iMiT 
tool is information about primary and secondary incidents: estimates for their 
clearance time, total delay and maximum queue length are provided. (Khattak et al. 
2012)

The roadway inventory and traffic incident data was provided by the Hampton Roads 
Traffic Operations Center based on safety service patrol records. 37 934 incidents 
from the Hampton Roads Areas (100+ miles of roads) between January 2004 and June 
2007 were analysed to identify primary, secondary and independent incidents using a 
method based on queue length calculations (with 15 minutes added to the clearance 
time of the primary incident when a lane is blocked by the incident, and there are no 
associated secondary incidents in the opposite direction). (Khattak et al. 2012)
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The incident duration model estimated with 2006 incident data the incident durations 
in 2007. Both the mean average percentage error (MAPE) and root mean squared 
error (RMSE) are relatively low for incidents of average durations, i.e. incidents that 
lasted about 10 -30  minutes (MAPE 3 7 -4 7 % , RMSE 8-13 minutes). However, both are 
quite large for substantially longer or shorter than average incidents. As is often the 
case, the duration model does not predict extreme values well. In particular, MAPE is 
largest when the incidents last less than 10 minutes. The largest RMSE are observed 
when incidents last very long, i.e. more than 2 hours. This indicates that the model 
does not perform adequately for predicting durations of extreme incident events. 
However, for incidents lasting 10 -30  minutes, the model can provide realistic 
predictions. (Khattak et al. 2012)

Khattak et al. (2012) assessed that this kind of tool could be used in TMCs to help 
support decision-making. Although iMiT is currently calibrated using the Hampton 
Roads incident data, the methodology is likely transferable to other regions by using 
local data for the calibration.

Figure 9. The methodology of iM iT (Khattak et al., 20 11)

Hojati et al. (2012) have also investigated incident duration and identified 
contributing variables in Australian conditions. They presented a new framework for 
comprehensive traffic-incident data mining and analysis towards an incident delay 
model and travel-time reliability modelling.

Generally, the difficulty in recording incident data and its related variables at the 
required level of quality was one of the most important issues in analysing the 
characteristics of traffic incidents. In the creation of this framework, significant 
variables on incident duration were identified using an ANOVA test for each type of 
incident. The process involved cleaning the data. Next, all the sources were linked by 
referring to the coordinates, date, and time of the incidents. After this, further 
variables were calculated: e.g. duration of rainfall for each incident. (Hojati et al. 
2012)

Incident data (4926 records for unplanned incidents in the cleaned data) was 
obtained from the Queensland Department of Transport and Main Roads’ STREAMS 
Incident Management System (SIMS). The incident data was from urban freeways for 
South East Queensland (SEQ) for a one-year period from November 2009 to 
November 2010. (Hojati et al. 2012)
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SIMS events were classified as traffic incidents, equipment faults or other events. 
Various types of incident information were recorded in SIMS including: priority, 
incident location, type, classification, start-time and end-time, request and arrival 
time of assistance, towing requirement, number of injuries and fatalities, medical 
attention required, and chemical spill. Weather data received from 10 weather 
stations included rainfall, temperature, humidity, and wind speed and wind direction 
for the same period as the incident data. In addition, information about the links and 
temporal effects were used as inputs. (Hojati et al. 2012)

Output of the process was initial data analysis and establishment of relationships 
between: traffic volume & weather conditions, incidents & weather conditions, and 
travel time & incidents & weather conditions. Based on these results, models were 
created for incident management and travel-time reliability monitoring. (Hojati et al. 
2012)

Statistically significant differences were found for 22 possible independent variables 
for crashes. However, because of the correlation between some variables, only 15 
possible variables were selected. A total number of 3251 incidents were recorded, 
giving an average frequency of two crashes, four hazards, and three stationary-vehicle 
incidents per day. The related incident durations were 43, 74 and 41 minutes 
respectively. The results showed that incident duration varied across the types of 
incident, time of day, and day/weekend of the week; however, no significant difference 
regarding month of the year, week of the month, and holiday/school holiday was 
observed. (Hojati et al. 2012)

The findings of Hojati et al. (2012) suggested that debris, breakdown and multiple- 
vehicle crashes were the major sources of incidents on freeways. Furthermore, 
freeway incident duration varied across the types of incident and time of day, and 
whether it was a week day or weekend day. However, there were no significant 
differences in relation to day, week or month of the year. In addition, the findings of 
the study of Hojati et al. revealed a high variance of incident duration within each 
incident type. A variety of probability distribution functions were employed to test the 
best model for the duration frequency distribution for each category of incident. 
Lognormal distribution was found to be more appropriate for crashes, but log-logistic 
distribution was more appropriate for hazards and stationary vehicle incidents.

The results of the analysis of Hojati et al. (2012) indicated that incident duration of 
crashes, hazards and stationary vehicles on freeways and freeway ramps were likely to 
be highly significantly different. Therefore, incidents on freeway ramps need to be 
analysed separately and this group of incidents was excluded from further analysis. 
No statistically significant differences were found for month of the year, week of the 
month, and day type (i.e. normal day or public/school holiday) to predict incident 
duration. Conversely, weekdays vs. weekend day incidents made a significant 
contribution to predicting incident duration.

In addition, the findings of Hojati et al. (2012) revealed that the variance in incident 
duration within each incident type was fairly large. The analysis of the effects of three 
weather conditions on traffic incident duration indicated that rain precipitation 
significantly affected incident duration for all three types of incidents, but air 
temperature only affected stationary-vehicle incidents. Moreover, the results 
indicated that distance from the nearest city’s business district is a significant 
variable on crash and hazard incidents, but not on stationary-vehicle incidents. In
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addition, the volume-capacity ratio for the link in which an incident happened was 
found to be highly significant on incident duration in all three types of incidents.

3.1.2 Secondary incident risk estimation

Vlahogianni et al. (2012) introduced a neural network model approach to extract 
useful information on variables that are associated with the likelihood of secondary 
accidents. Specifically, traffic and weather conditions at the site of a primary incident 
were examined. To detect secondary incidents, a dynamic threshold methodology was 
used that considers real-time traffic information from loop detectors. Two sensitivity 
measures to evaluate the significance of the variables were used (mutual information 
and partial derivatives).

As input to the model of Vlahogianni et al. (2012), 3500 incident records between 
2007 and 2010 were used. The data was from the Attica Tollway, a 65-km urban 
motorway connecting two major interurban motorways, Athens International Airport, 
and Athens city centre. This incident information was supported by traffic-related 
information including exact location, number of lanes blocked, total duration of the 
incident, vehicle type, and number of vehicles involved. Factors such as prevailing 
traffic conditions (speed and volume) and weather conditions (rainfall intensity) were 
also considered.

As output the Vlahogianni et al. model estimated the contribution of different 
variables to the likelihood of secondary incidents. In addition, the results showed that 
a multilayer perceptron with a supporting function acting as a general Logit model 
performed best among the different models.

The likelihood of the proposed model yielding incorrect classification of secondary 
incidents varied between 6 %  and 7 % .  The results suggested that traffic speed, 
duration of the primary accident, hourly volume, rainfall intensity, and the number of 
vehicles involved in the primary accident are the top five factors associated with 
secondary accident likelihood. However, changes in traffic speed and volume, number 
of vehicles involved, blocked lanes, and percentage of trucks and upstream geometry 
also significantly influence the probability of having a secondary incident. 
(Vlahogianni et al. 2012)

Vlahogianni et al. (2012) assessed that the proposed neural network approach is 
promising as a transport managerial tool for TMCs to support decision-making. It 
could potentially be extended to other transport applications as well.

3.1.3 Traffic flow prediction under atypical conditions

Castro-Neto et al. (2009) created an application of a supervised statistical learning 
technique called online support vector machine for regression (OL-SVR) for the 
prediction of short-term freeway traffic flow under both typical and atypical 
conditions. The OL-SVR model was compared with three well-known prediction 
models including Gaussian maximum likelihood (GML), Holt exponential smoothing, 
and artificial neural network models.

Input data used for testing the application was 5-minute loop detector data obtained 
from the California Freeway Performance Measurement System (PeMS). This system 
continuously collects 30-second loop detector data in real-time for more than 8100 
freeway locations throughout the state of California. These data were then
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aggregated into 5-minute periods. The California Highway Patrol provided incident 
data in real-time with incident characteristics, including type of incident, starting 
time, location, and subsequent details about the incident. (Castro-Neto et al. 2009)

The performance of the OL-SVR application was evaluated using mean average 
percentage error (MAPE). For typical traffic conditions MAPE was 5 .9 % , and for 
atypical condition 1 3 .1 % . The resultant performance comparisons suggested that the 
GML method, which relies heavily on the recurring characteristics of day-to-day 
traffic, performed slightly better than other models under typical traffic conditions, as 
demonstrated by previous studies. However, the developed OL-SVR was the best 
performer under non-recurring atypical traffic conditions. (Castro-Neto et al. 2009)

Castro-Neto et al. (2009) suggested that future research regarding the OL-SVR model 
should look into multivariate time series models that incorporate spatial and 
temporal correlations among adjacent vehicle detection stations to improve 
prediction accuracy, especially when multi-step look-ahead forecasts are desired. In 
addition, future studies may evaluate the performance of OL-SVR for various look
back intervals, forecasting horizons, and data resolutions. Extension of this work may 
address the prediction of other short-term traffic parameters such as average speed 
and travel time.

3.1.4  The significance of traffic conditions

Ishak and Alecsandru (2005) performed an investigation of the characteristics of pre
incident, post-incident, and non-incident traffic conditions on freeways. The 
characteristics were defined by second-order statistical measures derived from 
spatiotemporal speed contour maps (Figure 10). Four performance measures were 
used to quantify properties such as smoothness, homogeneity, and randomness in 
traffic conditions in a manner similar to texture characterization of digital images.

1
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Figure 10. Example of a spatiotemporal speed contour map (Ishak and Alecsandru,
2005).
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The study of Ishak and Alecsandru (2005) was conducted using data collected from 
the freeway corridor I-4 in Orlando, Florida. The study corridor was nearly 40 miles 
long and six lanes wide. The entire corridor was instrumented with 71 inductive dual
loop detectors or stations, spaced approximately half a mile apart. Each detector 
station collected three traffic parameters -  traffic volume, lane occupancy, and speed 
-  from each of the six lanes. The system supported data resolution of 30 seconds.

With real-world incident and traffic data sets, statistical analysis was conducted to 
seek distinctive characteristics of three groups of traffic operating conditions: pre
incident, post-incident, and non-incident. Incident data was also collected from 
various sources, and a total of 116 accidents, reported on different days, were selected 
for the analysis. Traffic conditions before and after the incident occurrence were 
separated into two groups: pre-incident conditions and post-incident conditions. Pre
incident conditions were restricted to observations that took up to 10 minutes before 
the incident happened, whereas post-incident conditions were collected from 
observations taken up to 10 minutes after the incident. The second-order statistical 
measures outlined earlier were computed for each group by using speed data 
collected from loop detectors. An arbitrarily selected time-space window of 5 minutes 
and three detector stations were used as the basis for calculation of each measure. In 
addition, non-incident traffic conditions were collected from a total of 5 weekdays in 
2001 and used for comparative analysis. (Ishak and Alecsandru 2005)

The statistical analysis showed slight variations among the three groups (pre-, post-, 
and non-incident conditions) in terms of each of the four measures used. Although 
the nonparametric tests showed that the distribution of each measure within each 
group is different, a consistent pattern was not detected within the categories of each 
measure. Such inconsistency led to the conclusion that the pre-, post-, and non
incident traffic conditions may not be readily discernible from each other and that 
specific characteristics of precursory conditions to incidents may not be clearly 
identifiable. Such a conclusion, however, is driven by limited incident and traffic 
datasets and selected second-order traffic performance measures. Additionally, 
environmental factors such as inclement weather conditions were not accounted for 
in this study. (Ishak and Alecsandru 2005)

Ishak and Alecsandru (2005) suggested that further research should be conducted to 
include a broader sample of data and possibly more sophisticated measures and to 
account for factors such as weather conditions and possible inaccuracies in detector 
data.

3.1.5 Travel time estimation under incident conditions

Kamga et al. (2011) examined the distribution of travel time of origin-destination 
pairs on a transportation network under incident conditions using a transportation 
simulation dynamic traffic assignment (DTA) model. In the DTA model, incident on a 
transportation network was executed under normal conditions, under incident 
conditions without traveller information, and finally under incident conditions 
assuming that users had perfect knowledge of the incident conditions and could 
select paths to avoid the incident location. DTA models could estimate and predict 
time-dependent network conditions by capturing the temporal and spatial variations 
in dynamic traffic networks. DTA models produced the time-space trajectory of each 
individual vehicle from its origin to its destination. The used methodology provided 
insights into the usefulness of integrating a fully calibrated DTA model into the 
analysis tools of a traffic management centre.
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The DTA model used by Kamga et al. had as its input the topology of the network in 
G IS format, the geometry of the roadway in question, traffic control data (signal 
timing, speed limit, lane movement designation, vehicle class prohibitions, ramp 
metering, signal pre-emption), bus routes, schedules and average dwelling time per 
bus stop, and the origin-destination matrices for each vehicle class (e.g. passenger 
cars, trucks, buses).

The area used for the simulation was part of the greater Chicago road network. The 
network configuration consisted of 123 nodes and 194 origin-destination pairs, thus 
allowing for alternative routes for origin-destination pairs. The total demand of the 
network during the 10 hours of the simulation assignment was 162,626 vehicles. 
(Kumga et al. 2011)

The results of Kumga et al. (2011) suggest that incidents have a different impact on 
different origin-destination pairs. The results confirm that an effective traveller 
information system has the potential to ease the impacts of incident conditions 
throughout the transportation network. In their conclusion, Kumga et al. stressed that 
the use of information may be detrimental to some origin-destination pairs while 
benefiting others. The impacts of incidents are not just on vehicles originating 
upstream or traversing the incident location; vehicles originating downstream or not 
traversing the incident location may also be negatively impacted by the incident.

3.2 Dutch incident management model

3.2.1 Long-term and short-term incident risk assessment

The Rijkswaterstaat Traffic Management Centre (TMC) carries out long-term incident 
risk assessment with annual and weekly forecasts (This chapter is based on van den 
Berg and van Wijngaarden, 2013). On an annual level, risk assessment is done by 
keeping a list of road works, big events etc. that are known to affect traffic for the 
following year. This list is done per area. This long-term forecast or situational picture 
is updated on a monthly basis and is used for traffic management and planning of 
road works as follows:

• Two road works are performed in the same direction of a certain road section 
simultaneously rather than in sequence.

• Road works are not performed on an alternative route or detour around other 
road work.

Every week, the items in the annual forecast are checked. The weather forecast is 
included and other issues are listed that potentially affect traffic, together with their 
estimated effects. This is done in a weekly meeting with traffic operators, traffic 
engineers, traffic inspectors, and those responsible for road works (project managers) 
to combine data and knowledge. The latter group is the best for estimating the effect 
of road works on traffic flow and timing of traffic jams. The aim of the weekly forecast 
is to specify for TMC which parts of road network need special attention. The meeting 
also addresses how to increase traffic flow fluency. This weekly rhythm provides 
adequate time to e.g. code an appropriate message to variable message signs.

The meeting also looks back on abnormal congestions of the previous week. The 
purpose is to determine the cause of the congestion and means to overcome such
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congestion in the future. For example, the infrastructure provider can paint a new 
solid line where merging is problematic, or build new overhead signalling or traffic 
lights for traffic management. Once a month all the challenges that could not be 
solved in weekly meetings are discussed again. These ‘monthly’ challenges are more 
complex and harder to solve. In the monthly meeting traffic engineers and specialists 
analyse the problem and propose solutions.

On a daily basis, traffic situation forecasts (maps) are prepared twice a day, for the 
morning and evening shifts. The same week of the previous year is chosen and serves 
as a forecast; if something exceptional happened then, the forecast is corrected to 
represent the average traffic situation. In addition, Easter and other holidays are 
treated separately. Previously, traffic flow status was allocated to 5-6 classes. 
However, traffic operators did not really use it, as they already knew the normal traffic 
situation. Therefore in the new system, only differences from normal are provided. 
These are of interest to traffic operators. The information is for internal use only, not 
for the public. In the future, the information should be based more on data than it is 
currently.

3.2.2 Proactive means to reduce incident risk 

Rush lane

In the Netherlands there are two basic types of rush lanes: one on the left and one on 
the right (hard shoulder).

Left side rush lane: When the traffic volume nears capacity but the flow is still fluent, 
an extra rush lane is opened. The lane is narrower than the normal lane (like a hard 
shoulder but on the left); therefore a lower speed limit is imposed when it is open. 
When the traffic volume diminishes again, the rush lane is closed. It is important not 
to keep the rush lane open when normal lanes are enough, as it reduces throughput.

The threshold for opening or closing the rush lane also depends on the weather 
conditions, as the capacity is reduced in inclement weather.

If a certain road section suffers from capacity problems, the traffic engineer ensures 
that the traffic operators are aware of the problem and know how to manage traffic in 
the area (closer attention, faster reaction).

Road service vehicle at new road work sites

Utrecht TMC has noticed that new road works lead to a higher number of incidents 
than those that have already lasted longer. It may be that new road works come as a 
surprise to drivers. In addition, the building up phase of the work may be riskier than 
later phases.

To be able to react fast to potential incidents, a road service vehicle (road salvage 
team) is sent to the site proactively to provide immediate aid if an incident takes 
place. At the moment, this is done ad hoc but the TMC hopes to develop a more 
systematic approach to assessing the need for such proactive help.

In addition, TMC pays closer attention to the vicinity of a new road work than it 
normally would, adding further means of traffic control if necessary. In extreme cases
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the road work can be interrupted if the congestion it causes is too severe. For major 
road works, TMC can set up another desk for managing traffic in the vicinity of the 
construction site.

Road surface maintenance

The Dutch road network is paved with open asphalt, which dries fast after rain but is 
more susceptible to wear and tear. Prolific salting during the winter season is a 
further burden on the road surface.

Potholes appear on a daily basis, needing quick attention from road maintenance 
crews. They are repaired regularly at night to keep the road network safe for traffic. 
During small-scale night-time road works the corresponding lane is closed to traffic.

There are some 5000 minor road works per year in the area of Utrecht TMC, typically 
60 per night, including both emergency repairs and proactive maintenance.

3.2.3 Incident detection

For the fast detection of incidents, Utrecht TMC has developed an incident detection 
algorithm of its own. This does not predict incidents but detects them very quickly. 
Earlier, incident detection was only dependent on phone calls to the emergency 
exchange. Emergency authorities informed TMC of incidents on roads, but the 
information came with some delay. There is no phone number for road user reports.

The method is based on relative differences in 1-minute traffic intensity and spot 
speeds at consecutive traffic inductive loop detector points (and over one point) 
installed every 400-500 metres. Drops in speed are identified, and set off an incident 
warning if the difference in speed and intensity between upstream and downstream 
measurement stations is sufficient.

When the system warns of a potential traffic incident, this is confirmed by observation 
cameras before incident management is initiated. The cameras are located 
approximately every 500 metres on the road network.

The method has been piloted on a 20 km two-lane road stretch. Although it is simple, 
it was proven to be efficient. Now the aim is to take expand it also to on multilane 
roads all over the Netherlands. In the multi-lane approach, an average is calculated 
over all lanes so that the data is similar to the two-lane approach. Monitoring the 
traffic situation per lane is also being considered, but this would complicate the 
model. Attempts are being made to improve the method in order to set off fewer false 
alarms.

3.2.4 Reactive means to minimise consequences of incidents

When an incident takes place, it is important to provide the right information at the 
right time. This applies to both TMC personnel and road users. There are several 
means of traffic control that TMC can employ upon detection of an incident, including 
lane control, variable speed limits and VMS messages. Once an incident is detected, 
the corresponding lane is closed with an X sign to guide traffic to other lanes. The 
effectiveness of the lane control is high and road users obey the signs, trusting that 
the lane has been closed for a valid purpose (rush lanes, road works, accidents).
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Maintaining this trust is essential. The speed limit is also lowered to lane-specific 
variable speed limits.

VMS messages provide information on travel time (normal travel time +  delay) and 
location of incident. There is a rerouting book with fixed messages programmed for 
VMS. If the incident is known about in advance (e.g. road work or big event), VMS 
messages can be tuned to fit the situation.

In the case of a traffic accident, an alternative route is recommended by VMS at a spot 
where the driver can still choose an alternative if he/she deems it necessary. It has 
been observed that if the congestion is visible from the VMS position, the proportion 
of drivers taking the detour is higher than when the congestion is further away.

When an incident has been detected, TMC monitors the development of traffic on the 
affected route and on any detour for a while before recommending the detour, to 
make sure the detour is helpful. VMS give the travel time on both routes and the cause 
of delay (road work, congestion, etc.) on the route with the incident.

In the current traffic monitoring system, the flow status is given in three classes: 
green (speed down to 7 0 %  of free flow speed), orange (a lot of traffic but still 
flowing), and red (congestion). A fourth class may be needed between green and 
orange to indicate where the risk of congestion is elevated. Usually the speed is 
monitored, but it is a very reactive measure. Intensity would be a better choice if 
proactive traffic management is targeted.

Earlier, speed limits were lowered for high traffic volume. Increase volume at an 
average speed level was expected to reduce the amount of shockwaves. However, 
traffic operators stopped using variable speed limits for this, as studies showed that 
the effect was negative or non-significant. In slippery conditions, speed limits are still 
lowered, but it is doubtful whether this is effective.

Closing one lane to improve merging downstream can be very effective in resolving 
minor congestion. This must be done at the right time and reopened at the right time.

3.3 Incident data analysis

3.3.1 Method

A small-scale study was conducted to obtain insight into to what extent accidents are 
connected with practically observable circumstances on the road. The study was 
based on registered accidents (from the accident records of the Finnish police) that 
took place on Ring-road I of the Helsinki Metropolitan Area between January 2011 and 
October 2012, totalling 450 accidents. This gave an average of 0.67 accidents per day.

In addition to accident data, the following data were used:

i. Traffic data from eight automatic traffic measurement stations (inductive 
loops) on Ring I during the study period

ii. Road weather data from a station located on highway 3 in Pirkkola, close to 
Ring I, during the study period.
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The traffic data consisted of traffic volume and mean velocity measurements at 5- 
minute intervals. From volume Q (vehicles/5 min) and velocity V (km/h) an estimate 
of the traffic density was calculated as D = 12Q /V  vehicles/km. Passenger cars and 
heavy vehicles were counted separately, but in this study they were merged using the 
passenger car equivalent of 1.5 for heavy vehicles (HCM 1995).

The basic methodological idea was to compare the traffic and weather circumstances 
just before the accident with the Palm probability of the same circumstances. The 
notion of Palm probability comes from the theory of random point processes and 
means the probability distribution "seen" by a randomly selected point of the point 
process (in contrast to the stationary probability, which is the probability distribution 
seen at a random time point). In this case, Palm probability means the distribution of 
circumstances "seen by a randomly selected driver", and it was obtained by weighing 
the circumstance data items against the above-mentioned traffic density estimates.

If each car driver had a constant stochastic intensity of causing an accident, then the 
accident circumstances would follow the Palm distribution. Differences between the 
accident circumstance distribution and Palm distribution hint at effects of 
circumstances on accidents.

Both automatic traffic measurement and road weather station data had some gaps. 
The proportional share of missing records was about 2 % ,  which is not much but not 
entirely negligible for the purpose. To obtain a complete time series of 5-minute 
intervals, the data of the nearest functioning station were copied to empty records 
(except for two instances where all stations where down). When needed, the artificial 
traffic records were distinguished by a dummy value in the station number field. The 
latest available weather record was associated to each 5-minute period.

Attention was restricted to the following characteristics:

• Traffic data: direction, volume, speed

• Weather data: surface temperature, rain consistency (liquid/crystal) and 
intensity, visibility, road surface conditions, warning level.

The space of possible circumstance combinations was high dimensional, even when 
only the above selected characteristics were chosen, while the accident data 
consisted of only 450 points. To make the point mass probabilities reasonably high 
and to enable a more meaningful treatment of the data, the numerical quantities were 
discretized with the following granularities:

• Traffic volume granularity 10: values 5, 15, 25,..., highest value about 300

• Traffic velocity granularity 5: values 2.5, 7.5, 12.5,..., highest value about 90

• Road temperature granularity 3: values ..., -4.5, -1.5, +1.5, +4.5,....

In the Finnish national road registry, Ring I is divided into eight road sections, 
numbered from the west end, with the lengths shown in Table 22. The locations of 
loop detectors are given in Table 23.
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Table 22. Definition o f road sections on Ring I, metres

Road section

1 2 3 4 5 6 7 8

Length 900 3990 972 3175 1931 2399 5198 4252

Start 0 900 4890 5862 9037 10968 13367 18565

End 900 4890 5862 9037 10968 13367 18565 22817

Table 23. Location of loop detectors

Station num- Station Road Position in section Position on whole

ber name section road

118 Keila lahti 1 490 490

116 Leppävaara 3 490 5380

126 Konala 4 2080 7942

145 Kannelmäki 5 1000 10037

146 Länsi-Pakila 6 700 11668

147 Pakila 6 2600 13568

148 Pukinmäki 7 1800 15167

149 Malmi 7 4000 17367

Thus, the automatic traffic measurement stations covered the road somewhat 
unevenly. Further causes for inaccuracy were:

• The accident data did not reveal in which road direction an accident 
happened; the direction was not always clear from the traffic data either, 
depending on the location of nearest detectors and the timing •

• The weather data came from a single station that is not on Ring I itself 
(however, the accident records contain accurate descriptions of conditions).

3.3.2 Results

Annual and spatial distribution of accidents

First, a look was taken at the distribution of accidents during 1 year and spatially 
along Ring I. The following plot (Figure 11) shows density estimates of accidents for 
each year using a Gaussian kernel with height 1 and standard deviation parameter (in 
exponent only) of 1 day. The two annual pictures have striking similarities, which hint 
at more general patterns. There is a strong peak in mid-February, followed by a 
decrease until April, when it shoots up again. At the end of May it falls sharply and 
rises again only in September or October.
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Figure 11. Density estimates of accidents during each year using a Gaussian kernel
with height 1 and standard deviation parameter (in exponent only) of 1 
day. 20 11 is shown in blue and 20 12  in red.

Second, the location of accidents was investigated using a Gaussian kernel with 
height 1 and standard deviation parameter (in exponent only) of 100 metres. 
Interestingly (though not surprisingly), the spatial distribution of accidents is far from 
uniform. In particular, it shows a very strong peak near the east end of the road. To 
confirm that this was not an artefact, the two years were plotted separately (Figure 
12) and most of the peaks appeared in same places both years.

Figure 12. Location o f accidents (in metres from  the western end o f the road) using  
a Gaussian kernel with height 1 and standard deviation parameter (in 
exponent only) of 100 metres, 20 11 in blue and 20 12  in red.
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Time of day

It was then studied whether some times of day are more accident-prone than others. 
The following plot shows the relative density of the accident time distribution with 
respect to the Palm distribution. The time resolution was 15 minutes in Figure 13. 
Values above 1 indicate increased accident intensity per driver. Zero value means that 
no accident happened during the respective quarter hour. Since the quarter resolution 
was high compared with the size of accident data, the same quantities were also 
plotted at a resolution of 1 hour (Figure 14). The result shows that hours 15 -16  and 
16 -17  have a higher accident intensity than the rest of the day. Also late night (after 2 
a.m.) seems to have increased risk per driver.
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Figure 13. Relative density o f the accident time distribution with respect to the
Palm  distribution. Time resolution 15  minutes. Density is zero fo r classes 
without any observations.
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Figure 14. Relative density of the accident time distribution with respect to the
Palm  distribution. Time resolution 1 hour.

Traffic volume, velocity and density

Figure 15 compares the traffic volume measured by the nearest automatic traffic 
measurement station. The points are fairly evenly scattered around 1, except for 
extremely high and low volume levels, where the risk seems to be increased. The low 
densities appear at night.
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Figure 15. Relative density of the traffic volume measured by the nearest automatic
traffic measurement station. Density is zero for classes without any ob
servations.
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Next, a corresponding look was taken at the role of speed. Figure 16 shows the Palm 
distribution of traffic and accident distribution of traffic speed at the nearest 
automatic traffic measurement station just before the accident. The bulk of accidents 
that occurred in normal speed conditions can be seen, but the accident risk is higher 
when the speed is unusually low. The ratios of the same distributions are presented in 
Figure 16 and Figure 17.

Speed (km/h)

Figure 16. Palm  distribution (blue) of traffic (over a ll stations) and accident 
distribution (red) o f traffic speed at the nearest automatic traffic 
measurement station ju st before the accident.
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Figure 17. Relative accident density of speed measured by the nearest automatic
traffic measurement station. Density is zero for classes without any
observations.
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Next, the accident density was studied as a function of the traffic density. The Palm 
and accident-time distributions are strikingly similar (Figure 18). Thus, somewhat 
surprisingly, the density alone seems to have no effect on accident intensity, except 
for the level 70-80 veh./km, where the risk seems to double (Figure 19). An 
overwhelming majority of accidents, however, occur independently of traffic density.

Traffic density (veh./km )

Figure 18. Palm  distribution (blue) o f traffic (over a ll stations) and accident 
distribution (red) of traffic density estimated based on the nearest 
automatic traffic measurement station data just before the accident.
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Figure 19. Relative accident density of traffic estimated based on the nearest
automatic traffic measurement station data. Density is zero for classes
without any observations.
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Road surface temperature

Next, weather characteristics were studied. As mentioned above, the weather data do 
not directly concern Ring I, although general conditions can be expected to be 
roughly similar since the road where the station is located and Ring I belong to the 
same (highest priority) winter maintenance class.

The next pair of plots relates the Palm and accident-time road temperature 
distributions similarly as above (Figure 20). Not very surprisingly, the risk is clearly 
higher below zero degrees, roughly doubling below -5 (Figure 21). However, it is 
interesting that also road temperatures higher than 25 seem to bring about 1.5 times 
heightened risk.

Figure 20. Palm  distribution (blue) and accident distribution (red) of road 
temperature
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Figure 21. Relative accident density of road temperature. Density is zero fo r classes
without any observations.

Rain consistency and intensity

The Palm distribution of rain consistency and intensity is presented in Table 24. The 
plot in Figure 22 shows the relative densities of accident conditions (the x-axis values 
correspond to those of the above table). It can be seen that all intensities of snowfall 
increase the risk, and already moderate snowfall makes it about six-fold in the present 
data. Since the overall probability of moderate or heavier snowfall is very low, the 
actual numbers should be treated with caution, but the result is qualitatively 
plausible. It is somewhat surprising that liquid rain does not increase accident risk at 
all.

Table 24. Palm  distribution of rain consistency and intensity

1 2 3 4 5 6 7 8

No

rain

Weak,

liquid

Weak,

crystal

Moderate,

liquid

Moderate,

crystal

Abundant,

liquid

Abundant,

crystal

Missing

84 .7% 7.5% 6 .6 % 0 .7% 0 .2 % 0 .2 % 0 .0 2 % 0 .0 8 %
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Figure 22. Relative accident density vs. rain consistency and intensity. X -axis val
ues correspond to Table 24. Density is zero fo r classes without observa
tions.

Visibility

The road weather station data includes visibility information; 9 7 %  of the time, 
visibility had a maximum value of “at least 2 km”. The plot in Figure 23 of relative 
densities indicates that the weakest visibility (0.5 km) increases the accident risk 
considerably (no observations with visibility weaker than that). However, it should be 
noted that fog may be very local, and here the availability of only one road weather 
station may compromise the results.
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Figure 23. Relative accident density vs. visibility. Density is zero fo r visibility clas
ses without observations.

Road surface conditions

The Palm distribution of road surface conditions is presented in Table 25. The relative 
density of their accident-time distribution shows that once again, snow and ice make 
a difference (Figure 24). Winter conditions are clearly a factor, as wet and salty 
conditions also result in elevated accident risk.

Table 25. Palm  distribution of road surface conditions

1 2 3 4 5 6 7 8 9

Dry Moist Wet Probably 

moist 

and salty

Wet

and

salty

Snow Ice Frost Missing

5 8 .5 % 11.3% 1 1 .0 % 1 1 .0 % 4 .2% 2.9% 1 . 1 % 10-6

%

10-3 %
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Figure 24. Relative accident density of road conditions. X -axis values correspond to 
Table 25. Density is zero fo r classes without observations.

Warning level

Finally, the weather data included a warning level indicator distributed (in the Palm 
sense) as shown in Table 26. A look at the relative densities indicates that the alarm 
conditions were well motivated (Figure 25). Frost does not appear here to be a factor 
increasing accident intensity.
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Table 26. Palm  distribution of warning level indicator

1 2 3 4 5 6

OK Rain Frost Warning Alarm Missing

8 5 .6 % 7.4 % 3 .5% 2 .8 % 0 .6 % 0 .1 %
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Figure 25. Relative accident density of road conditions. X -axis values correspond to 
Table 26. Density is zero fo r classes without observations.

3.3.3 Discussion

The methodical idea of comparing the Palm distribution of traffic and weather 
characteristics (defined as their distribution weighted by traffic density) with their 
distribution at accident times seems indeed to give insight into the predictability of 
accidents on the basis of general traffic and weather conditions.

The preliminary conclusions of this study are the following:

• The distribution of the spatial location of accidents is far from uniform and 
shows several strong peaks. This information should be borne in mind when 
considering means for preventing accidents.

• The distribution of accidents during 1 year also shows some clear patterns, 
but the reasons have not yet been analysed.

• The afternoon rush hour (15-17) has a higher accident risk than the morning 
rush hour.

• The accident risk is relatively high at night (with respect to the low traffic 
density).

The traffic density, taken alone, has no effect on accidents.
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• Conditions with unusually low traffic velocity have increased risk.

• Snowfall increases the risk clearly, but liquid rain has hardly any effect.

• Ice and snow on the road increase risk.

• Lowered visibility increases the risk.

The statistical significance of the results above has not been studied.

This work could be continued as follows:

• Make similar one-dimensional comparisons on the effect of traffic velocity 
and density changes, e.g. within the last 15 or 30 minutes before each 
accident

• Have a look at the accident types occurring at the identified risky locations 
and circumstances

• The studies of subsection 3.3.2 were one-dimensional. Could the data suggest 
something about the effects of combinations?

• Develop the method for assessing the statistical significance of observations 
like those discussed above.

3.4 Incident clusters

When studying traffic incident clusters, two types of incidents were included: regular 
congestion and traffic accidents.

3.4.1 Regular congestion

First, locations where traffic regularly becomes congested were identified. A link was 
considered to be regularly congested if travel time differed from the annual median by 
at least 2 0 %  during at least 150 hours per year, and severely congested if the 
difference was at least 5 0 % . Congested links were determined based on the 
Transport Agency’s travel time data collected during 2012. Road sections that fulfilled 
the set criteria, but where the traffic volume was <7,500 vehicles/day on one
carriageway roads and <15,000 vehicles/day on two-carriageway roads, were 
excluded. Reasons for longer travel times include road works etc. If there was a short 
road section that almost fulfilled the criteria and it was situated between two road 
sections that did fulfil the criteria, that road section was included. Road sections 
where the travel time measurement was not working sufficiently to produce the 
necessary data were excluded. The resulting road sections are presented for whole of 
Finland in Figure 26 and for the Uusimaa region in Figure 27. A detailed description of 
links is given in Annex B.
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Figure 26. Regularly congested road sections in Finland. Blue indicates an increase 
of at least 2 0 %  in travel time at least 150  h per year; red shows an in
crease of at least 5 0 %
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Figure 27. Regularly congested road sections in the Uusimaa region. Blue indicates
an increase o f at least 2 0 %  in travel time at least 150  h per year; red 
shows an increase of at least 5 0 %

3.4.2 Traffic accidents

The second type of incident studied was traffic accidents. A ll traffic accidents that 
were included in the police database and took place during 20 0 7-20 11 on roads 1
999 (main roads and secondary roads) were included. These accidents totalled 
56,400.

Accidents were clustered based on their location. Accidents were considered 
clustered if they were situated within a 100 m road stretch starting from every single 
accident. Different accident types were given different weights based on their impact 
on traffic flow: fatal accidents had weight 3, injury accidents 2 and other accidents 1. 
The sum of these weights was calculated for the next 100 m road stretch starting from 
every accident location. If the total was greater than or equal to 20, the location was 
considered an accident cluster. If a cluster overlapped with another cluster, they were 
combined. This procedure resulted in 162 accident clusters as shown in Figure 28 and 
detailed in Annex C.
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Figure 28. Accident clusters with weights 1 ,2  and 3  and minimum weighted total of
20  on a 100 m road section.
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3.5 Incident information in traffic management 
centres

3.5.1 Current incident information system messages

The Incident Information System is used as the Transport Agency’s centralised 
storage and tool for managing traffic-related incident information (Finnish Transport 
Agency, no date). The Incident Information System manages information about traffic 
incidents gathered from a variety of sources and collates it in such a way that the 
information can be used to create incident advisories (both for public consumption 
and for the use of maintenance contractors and operators).

The Incident Information System uses the XML-based DATEX II standard version 1.0 
as its data model, which means that all the system’s messages are formatted using 
the DATEX II vl.0  schema (European Commission 2009). Each DATEX II message is 
associated with a specific location that the message deals with. This location can be 
defined with several different location referencing systems, and it can correspond to 
the road network or to an area. (European Commission 2006)

The DATEX II standard offers hundreds of different traffic related messages, but only 
a selected subset of them is in use in traffic management centres. The number of 
different public messages currently in use at the Finnish Transport Agency is 197, and 
messages used to communicate with maintenance operators include 162 different 
options (Setälä 2013).

The public messages in use include messages for road surface conditions, general 
obstructions, frost damage, transit information, network management, abnormal 
traffic conditions, visibility, accidents, poor road infrastructure, road works, vehicle 
obstructions, and activities. (Setälä 2013)

‘Road surface condition’ messages can provide information on e.g. hazardous 
conditions, packed snow, risk of skidding, icy road, icy patches of road, and risk of 
aquaplaning. ‘General obstruction’ messages can be used to inform about animals, 
objects, obstructions or fallen trees or power cables on the road. ‘Frost damage’ 
messages can be used where roadways have been severely damaged by frost.

‘Transit information’ messages are used to provide information about ferry operations 
(e.g. service delays and resumptions). ‘Network management’ messages are used to 
inform about restrictions on the traffic network including road and lane closings, 
stoppages and temporary lane reorganisations. ‘Abnormal traffic’ messages are used 
when traffic conditions become congested or are returning back to normal.

‘V isibility’ messages can convey changes in visibility or environmental conditions in 
cases of fog, windstorms, sleet, and dense snow or rainfall, for example. ‘Accident’ 
messages provide information about the type of accident that has taken place (e.g. 
several vehicles, bus, truck, hazardous materials involved) and about the progress of 
recovery operations (‘in progress’ or ‘finished’).

‘Poor road infrastructure’ messages can be used to inform about problems with traffic 
lights or variable message signs. ‘Road works’ messages can provide a variety of
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different information about the type of road works taking place (e.g. cable, bridge, 
surface repair, temporary traffic lights).

‘Vehicle obstruction’ messages can inform about broken down or dangerous vehicles 
on the road. ‘Activity’ messages are used in cases of major public events that can 
cause disruption to traffic (e.g. running event, fair, demonstration, sports event).

3.5.2 Analysis of coverage of incident information system messages

In the literature review on incident risk assessment (Chapter 3.1 ), several factors 
were found to influence both the duration of an incident and the likelihood of 
secondary incidents. Studies have shown that debris, breakdowns and multiple- 
vehicle crashes are the major sources of incidents on freeways.

Factors contributing to the longer duration of an incident included longer response 
times, accidents, lane blockages, adverse weather conditions (especially rain 
precipitation), heavy vehicles involved in an incident, injuries or fatalities, occurrence 
during peak hours, incidents located farther away from a traffic operations centre, 
more vehicles responding from various agencies, and freeway facility damage.

Factors associated with the increased likelihood of occurrence of a secondary 
incident included peak hours, weekdays, rainfall intensity, clearance time of primary 
incidents, duration of primary incident, larger number of involved vehicles in primary 
incident, and rolling over of primary vehicle.

When examining how well the messages currently used by the Incident Information 
System in traffic management centres cover these contributing factors, the overall 
coverage seems quite good. Information about accidents that have been found to be 
major sources of incidents is all covered (debris on the road, broken down vehicles, 
and crashes involving multiple vehicles).

Factors contributing to longer incident duration are also quite well covered. The effect 
of rainfall intensity can be communicated using visibility messages, and location 
information can be used to convey distances. Information about whether a vehicle has 
rolled over in an accident can only be conveyed for heavy vehicles 
(overturnedHeavyLorry message), not for other types of vehicles. It could be useful to 
take into use the more general overturnedVehicle message from the same Accident 
class.

As precipitation intensity was found to be a contributing factor both to the duration of 
an incident and to the likelihood of a secondary incident, more detailed information 
about precipitation conditions should perhaps be provided. This could be 
accomplished by taking into use the PrecipitationInformation and PrecipitationDetail 
messages available as part of the DATEX II standard. They could be used to provide 
information about the depth of rain or snow on the ground and about the intensity of 
precipitation. This information could be acquired from the Finnish Road Weather 
Information System, for example using DigiTraffic interfaces. A summary of 
suggested additions is given in Table 27.
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Table 27. Factors found to contribute to longer duration o f an incident and to the
likelihood o f secondary incidents, and their coverage in the current In ci
dent Management System

Factor Status

Factors contributing to longer duration of an incident

Longer response times Ok

Accidents Ok

Lane blockages Ok

Adverse weather conditions (especially More detailed information on precipita-

rain precipitation) tion intensity suggested, i.e. use of Pre- 

cipitationInformation and Precipita- 

tionDetail messages in DATEX II

Heavy vehicles involved Ok

Injuries or fatalities Ok

Occurrence during peak hours Ok

Incidents located farther away from a 

traffic operations centre
Ok

More vehicles responding from various 

agencies
Ok

Freeway facility damage Ok

Factors influencing the likelihood o f secondary incidents

Peak hours Ok

Weekdays Ok

Rainfall intensity More detailed information on precipita

tion intensity suggested, i.e. use of Pre- 

cipitationInformation and Precipita- 

tionDetail messages in DATEX II

Clearance time of primary incidents Ok

Duration of primary incident Ok

Larger number of involved vehicles in 

primary incident

Ok

Rolling over of primary vehicle Conveyed for heavy vehicles (over- 

turnedHeavyLorry message), not for other 

types of vehicles; More general over- 

turnedVehicle message from the same 

Accident class suggested
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3.6 Use of road user made incident 
notifications

Road users report traffic incidents to the Transport Agency in addition to radio 
stations. So far these road user notifications have been only for information within the 
traffic centre and only official incident notifications have been published.

As traffic-monitoring systems do not cover all the roads and the detector network is 
not designed for fast detection of incidents, a road user notification can be the first 
indication of an incident. As reaction time is critical both in minimisation of 
consequences including secondary accidents, the asset of road user notifications 
should be exploited.

However, incident notifications made by road users are not always reliable. Some may 
involve misunderstanding of a situation, others intentional disruption. Therefore a 
protocol should be developed to confirm the notification before any incident 
management or information provision steps are taken. Alternative means of 
confirmation could include:

• Detection of incident consequences from the Transport Agency’s traffic 
monitoring systems or road surveillance cameras

• Sufficient number of sequential notifications of the same incident (e.g. by at 
least three persons)

• Notification made by a road user registered with a system for incident 
notification

• Visual proof sent by the road user (e.g. MMS from a mobile phone) together 
with GPS coordinates

If the Transport Agency decides to allow road user notifications as a basis for traffic 
announcements to the public, such announcements should specify the origin, and 
stress that the public authorities have yet to confirm the incident. Thus it would be up 
to service providers to decide whether or not to use announcements of this type in 
their system.
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4 Traffic monitoring system

4.1 Monitoring system overview

A travel time prediction model would require as input a stable indicator for travel time 
that would be measured with a sufficient number of observations in a ll conditions 
(except night time). Information about the traffic flow state (volume and speed) might 
indicate the risk of oversaturation better than travel time alone.

Travel time is  a reactive measure as it can be measured only with delay. Therefore it is 
recommended that in areas with regular congestion, the traffic flow should be 
monitored using sufficiently densely spaced cross-section specific detectors that are 
capable of monitoring reliably at least the traffic volume and speed. Travel time (or 
speed) remains at roughly same level as traffic volume increases, and finally when the 
volume reaches a critical value (capacity), travel time (or speed) suddenly drops. The 
vicinity of this critical point cannot be estimated by travel time information alone. 
With detectors capable of detecting traffic volume in addition to speed, the level of 
congestion (risk of oversaturation) could be monitored also before the travel time 
decreases. In addition, the delays in monitoring would be significantly shorter than 
with travel time information. With a dense cross-section based detector network, the 
development of the congested area (slowly travelling queues) could be defined.

The distance between consecutive cross-sections is  approximately 500 metres in 
countries like the Netherlands, which has much more traffic than the Helsinki 
Metropolitan area (or Finland in general). Dutch traffic operators seem satisfied with 
their detector density. Therefore it can be used as recommendation for Finnish 
conditions as well.

In the future, with widespread use of satellite-based tracking, vehicle trajectory 
information will partly fulfil the need for detailed traffic status information along the 
road. However, it cannot totally replace cross-section based monitoring for providing 
accurate traffic volume data.

In areas where congestion does not take place on a weekly basis, traffic monitoring 
serves incident management and traffic information (e.g. media). In such areas, 
cross-section specific monitoring would be too expensive if sufficient coverage were 
targeted. However, travel time monitoring indicates the consequences of incidents 
and the level of congestions on an overall level, and suits this kind of purpose where a 
delay in getting information is  not so critical. In addition to travel time monitoring, a 
system capable of measuring traffic volume should exist for statistical purposes and 
forecasting of holiday season traffic.

4.2 Flow status classification

In Finland, traffic flow status is  categorized in five classes (Table 28) based on 
drivers’ perception of the traffic situation (Kiljunen and Summala 1996).
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Table 28. Definition of flow  status classes used by the Finnish Transport Agency
(Kiljunen and Sum m ala 1996)

Flow status Travel speed /  free speed ( % )

Free-flowing traffic >90

Heavy traffic 75-90

Slow traffic 25-75

Queuing traffic 10 -25

Stopped traffic <10

All other Nordic countries use a three-step classification for traffic flow status: green, 
yellow and red. However, the definition of classes varies between countries. The 
Danish classification is based on a speed indicator and the Norwegian classification 
on a travel time indicator (Table 29). The green and yellow classes are larger in 
Denmark than in Norway, and correspondingly the red class is larger in Norway than 
in Denmark.

Table 29. Definition of flow  status classes in the Nordic countries (Bjerkeholt 20 13,
Egem alm  20 13  and Eskedal 2013).

Country Green Yellow Red

Denmark Speed is more than 

8 0 %  of the posted 

speed limit

Speed is less than 40

8 0 %  of the posted 

speed limit

Speed is less than 

4 0 %  of the posted 

speed limit

Norway Travel time is less 

than 1 5 %  longer than 

in free flow 

(corresponds to more 

than 8 7 %  of free flow 

speeds)

Travel time is 1 5 -5 0 %  

longer than in free 

flow

(corresponds to 67

8 7 %  of free flow 

speeds)

Travel time is more 

than 5 0 %  longer than 

in free flow 

(corresponds to less 

than 6 7 %  of free flow 

speeds)

Sweden Delay is less than 30 

sec/km

Delay is 30-60 sec/km Delay is more than 60 

sec/km

The Swedish classification with fixed delays (Table 29) provides very different 
percentage differences in travel time or speed depending on the speed level on the 
road. In areas with a speed limit of 120 km/h, the 30 sec/km delay corresponds to 
5 0 %  of the speed limit speed and 60 sec/km delay to 3 3 %  of the speed limit speed. 
In the 80 km/h speed limit area, the corresponding proportions are 6 0 %  and 4 3 %  
and in the 50 km/h speed limit area 7 1 %  and 5 5 % .

In the Rijkswaterstaat Traffic Management Centre’s traffic monitoring system, the 
flow status is also given in three classes: green (speed down to 7 0 %  of free flow 
speed), orange (a lot of traffic but still flowing) and red (congestion). However, they
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assess that a fourth class may be needed between green and orange to indicate where 
the risk of congestion is  elevated.

If the Finnish traffic flow status classification is  used mostly with travel time data, it 
would make sense to define classes based on the travel time indicator instead of 
speed. The lim its set in Norway seem suitable also for Finland, thus their use is 
recommended.
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5 Discussion

5.1 Overall discussion

The goal of the project was to find methods for creating an accurate overall 
understanding of the current status of the transport system and to predict changes in 
traffic conditions. The most important task in achieving this was travel time 
prediction. Another goal was to find methods for assessing incident risk. In addition, 
an overall assessment of the monitoring system was performed considering the needs 
of short-term prediction and incident risk assessment.

Best practices were sought and found among other road operators, in the literature 
and from sm all data pilots. Existing applications in use by the Finnish Transport 
Agency were evaluated based on theory and practice found in the literature and in the 
data pilot studies.

5.2 Conclusions related to the travel time 
prediction model

A slightly modified version of the dynRP travel time prediction model of the Danish 
Road Directorate was piloted on Ring I of the Helsinki Metropolitan Area. The piloted 
model was based on median values of direct travel time measurements. It included 
annual historic median values for a ll minutes of a ll weekdays separately. The forecast 
was interpolated or extrapolated based on the latest measurement and the historic 
median curve.

The main results showed that the 15-m inute prediction model gave better travel time 
estimates than just using the latest measurement, especially in congested conditions. 
Specifically, the model predicted the travel time correctly 7 7 -8 2 %  of the time in 
congested conditions when the acceptable error was 2 0 % .  The corresponding 
proportion was 7 1 - 7 6 %  with the latest measurement. The model did not fulfil the 
threshold of keeping maximum errors between 1 0 %  and 2 5 %  that was prevalent in 
the literature. Therefore the use of this forecast may not be beneficial. Nevertheless, if 
decisions must be made proactively, although not perfect the forecast would lead to 
better decisions more often than just using the latest measurement. Therefore the use 
of model can be recommended. Recommendation: the Finnish Transport Agency starts 
the definition of functional requirements for the prediction model. The requirements of 
the Finnish Transport Agency (2013) can be used as the starting point.

Furthermore, shorter-than-15-m inute prediction models provided more accurate 
estimates than the 15-m inute model. However, with the shorter prediction period 
length also the latest measurement served better as an estimate, and the difference 
from the prediction model was sm all if  any, or even negative. Therefore, the use of 
these shorter-term models cannot be recommended. If shorter-term prediction is 
needed, it is recommended to use the latest measurement as the forecast.

The best models found in the literature had an average percentage error of 
approximately 1 0 % .  These models outperform the dynRP model in congested 
conditions with a 1 3 - 1 5 %  average error. However, a clear benefit of the dynRP model
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is  that its estimation and updating procedure can be fully automated without the need 
for neural network estimation or other special methods or for manual work. If  a more 
accurate model is  targeted, it is  recommended to implement a self-adapting model. 
Although it needs to be set up manually for each link, there is  no, or at least less, need 
for manual updating as the model adapts itself. Such a self-adapting traffic flow 
status prediction model was successfully piloted earlier on Ring I (Innamaa 2009). 
The model ran for years at the traffic management centre of the Finnish Transport 
Agency.

For setting up a travel time prediction model, the following principles are 
recommended: The model should be based on 1 year of data on links without lowered 
speed lim its in wintertime, and on 2 years of data on links with lowered winter speed 
limits. 5-minute medians are calculated with a 1-m inute update interval. Only those 
travel time medians are included that are based on at least five observations. Historic 
median curves are determined separately for each weekday. On links with lowered 
winter speed limits, the curves should be determined separately for the winter and 
summer speed lim it periods. At night, free flow speed is  forecast. Travel times should 
not be forecast as shorter than those corresponding to the speed limit. It is 
recommended that the model is  updated once a month (this can be automated) and 
that the performance of the model is  validated on a regular basis. To overcome 
smoothly the impact of changes in the physical infrastructure (e.g. large roadwork or 
opening of a new lane), the application should include a feature that allows the user 
to set a date after which, or a period during which the source data is  valid. The traffic 
operator should also always have the option to choose latest measurement instead of 
forecasts. In addition, the possibility to manually adjust the historic median curve 
used for making the forecast to correspond to the current situation facilitates use of 
the model also during the period when travel time data is  collected for updating the 
model. Recommendation: The Finnish Transport Agency sets up a process to get winter 
speed lim its and the dates of speed lim it change autom atically fed  into the DigiTraffic 
system.

A model made with the principles described above works better the closer the traffic 
situation is  to its median (or average) performance. When the traffic volume is  smaller 
than normal due to e.g. a vacation period, or when a traffic accident or other incident 
takes place or when the road weather condition is  hazardous, the model most likely 
performs more poorly, and operator expertise on the development of traffic situations 
overrides it. For days with unusually high traffic demand (e.g. holiday seasons), 
separate prediction models should be made and applied. The models should be based 
on previous years, and modified to take into account the weekday and week when e.g. 
a holiday occurred during the base year and current year, incidents (of the base year), 
road works (of the base year and current year), trends and weather.

5.3 Conclusions related to incident risk 
assessment

The Rijkswaterstaat Traffic Management Centre had several procedures that can be 
considered best practice in incident risk assessment and management. It is 
recommended that a procedure to system atically collect and use information on 
events (e.g. sports events, music festivals, road works) that affect traffic be set up. 
Once a month the annual traffic forecast should be updated indicating the timing and 
location of such events and their foreseen impact on local traffic. It is  recommended
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that these annual forecasts be studied in a meeting once a week to identify 
abnormalities of traffic during the coming week and to find solutions for (proactively) 
operating the traffic in such conditions. In the meetings, the success of the previous 
week’s operation should be evaluated in order to perform better next time. The annual 
traffic forecast can also be used in the planning of timing of road works. 
Recommendation: The Finnish Transport Agency sets up a process to collect 
information on events that affect traffic and provides it as open data.

If  a dense cross-section based traffic-monitoring network (e.g. loop detectors) is  set 
up, it is  recommended that a simple incident detection system like the one developed 
at the Rijkswaterstaat Traffic Management Centre be set up for fast detection of 
accidents and other traffic incidents.

When an incident takes place, it is  important to provide the right information at the 
right time. One of the assets of the Rijkswaterstaat Traffic Management Centre is  the 
use of road patrols e.g. proactively located in the vicinity of new road works prone to 
incidents. One common cause of delays also on the Finnish road network is  the 
presence of broken-down vehicles by the roadside, even when outside the 
carriageway. Towing these vehicles more promptly than at present would have 
societal advantages by reducing time spent on the road for a ll road users. 
Recommendation: The Finnish Transport Agency examines the possibility to draw up a 
framework agreement with towing com panies fo r prompt clearance of broken-down 
vehicles on a regularly congested road network (Figure 26).

When variable message signs are used to inform road users of an incident ahead, it is 
recommended that the travel time be given as normal travel time +  delay. This has 
been found to be successful in the Netherlands. Whenever possible, also the cause of 
the delay (e.g. accident or road work) should be indicated on the sign.

Ishak and Alecsandru (2005) concluded that pre-, post-, and non-incident traffic 
conditions may not be readily discernible from each other and that specific 
characteristics of precursory conditions to incidents may not be clearly identifiable. 
Such a conclusion, however, was driven by limited incident and traffic datasets and 
selected second-order traffic performance measures. Additionally, environmental 
factors such as inclement weather conditions were not accounted for in this study.

Incident data analysis of Ring I included the road weather conditions in addition to 
traffic flow status information. The results indicate that some circumstances do 
indeed have a higher incident risk than others, like the evening rush hour, reduced 
visib ility, and moderate or abundant snowfall. However, the statistical significance of 
the results could not be studied with the amount of data used and the resources 
available in this project. Nevertheless, this should be studied further with a larger 
dataset. The target could also be to determine an iMit type of prediction tool for 
incident duration and secondary incident occurrence on the basis of information 
provided by the incident information form.

An incident detection system could be supplemented by incident notifications made 
by road users, which could help minimise delays in incident management. However, to 
guarantee the reliability of these notifications, it is  recommended that a confirmation 
protocol be set up. Confirmation could be made based on e.g. traffic monitoring 
equipment in the area, number of notifications in sequence to each other, registering 
volunteers to give these notifications, or visual proof of the situation accompanied by 
a GPS position. If such notification(s) lead to an official traffic announcement, it
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should include the information that the incident has not yet confirmed by the public 
authorities. Recommendation: The Finnish Transport Agency sets up the organisation 
and resource allocation fo r a road user line.

Factors contributing to longer incident duration are also quite well covered in the 
current Incident Management System of the Finnish Transport Agency. Nevertheless, 
the inclusion of the general overturnedVehicle message and the 
PrecipitationInformation and PrecipitationDetail messages are suggested. As 
incident management involves also other authorities than the Finnish Transport 
Agency, the use of new measures should be commonly agreed. Recommendation: The 
Finnish Transport Agency starts the promotion of these new measures as part of 
incident m essage services.

5.4 Conclusions related to traffic monitoring

Travel time is  a reactive measure, as it can be measured only with delay. Therefore it 
is  recommended that in areas with regular congestion, the traffic flow should be 
monitored using sufficiently densely spaced cross-section specific detectors that are 
capable of monitoring reliably at least the traffic volume and speed. A distance of 500 
metres can be recommended based on experiences abroad. The Rijkswaterstaat 
Traffic Centre recommends the use of traffic intensity instead of speed (or travel 
time) if proactive traffic management is  intended. In addition, information on traffic 
volume and speed might indicate the risk of oversaturation better than travel time 
alone. The road network selected for intensive management should consist of a 
regularly congested road section (Figure 26). It is  assumed that the best cost-benefit 
ratio for an intensive monitoring system can be achieved there.

In the future, with widespread use of satellite-based tracking, vehicle trajectory 
information can partly fulfil the need for detailed traffic status information along the 
road. However, it cannot totally replace cross-section based monitoring, which 
provides accurate traffic volume data.

In areas where congestion does not take place on a weekly basis, traffic monitoring 
assists in incident management and information (e.g. media). In such areas, travel 
time monitoring would be sufficient to indicate the consequences of incidents and the 
levels of congestion. The system could be supplemented by road user notifications. In 
addition, a system capable of measuring traffic volume should exist for statistical 
purposes and forecasting of holiday season traffic.

Problems at accident cluster locations (Figure 28) outside normally congested areas 
(Figure 26) most likely will not be solved by monitoring or traffic management, but 
rather by enhancing the physical infrastructure and layout of the site.

A travel time prediction model would require as input a stable indicator for travel time 
that would be measured with a sufficient number of observations in a ll conditions. 
Thus the reliability of the travel time monitoring system is  fundamental for further 
use of the information.

A three-step classification is  recommended for traffic flow status. For travel time 
information, the classification should be as follows:
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• Green: Travel time less than 1 5 %  longer than in free flow (travel time 
corresponding to the speed limit)

• Yellow: Travel time 1 5 -5 0 %  longer than in free flow

• Red: Travel time more than 5 0 %  longer than in free flow

Recommendation: The Finnish Transport Agency promotes the use o f the three-step 
classification of the traffic flow  status and implements it fo r a ll systems.
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Annex A -  Correspondence of traffic flow status 
classes on Ring I pilot links

15-minute models
Basic model, 15 min forecast, Konala-Pakila link

Over free-flow travel 

time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 43  932 846 61 12 25

1 0 -2 5 % 933 1 129 500 6 6

25- 75% 298 543 714 80 120

75- 90% 5 31 94 30 118

Over 9 0 % 24 39 145 83 996

Correct class 97 .2% 4 3 .6 % 47 .2% 14.2% 78 .7%

False by more than 

one class 0 .7% 2 .7% 13.6 % 8 .5% 11.9 %

Basic model, 15 min forecast, Pukinmäki-Konala link

Measured output

1 2 3 4 5

Fo
re

ca
st

1 128 184 2 617 333 10 41

2 4 128 2 386 1 119 42 39

3 1 433 1 172 4 260 589 580

4 84 52 506 242 420

5 244 120 556 390 4 932

Correct class 95 .6% 37 .6 % 6 2 .9 % 19 .0 % 8 2 .0 %

False by more than 

one class 1.3% 2 .7% 13.1% 4 .1% 1 1 .0 %
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Last measurement, 15 min forecast, Konala-Pakila link

Over free-flow travel 

time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 43802 1065 215 13 22

1 0 -2 5 % 1080 1037 455 12 15

25- 75% 274 420 651 95 137

75- 90 % 11 25 66 19 114

Over 9 0 % 25 41 127 72 977

Correct class 9 6 .9 % 4 0 .1% 43 .0 % 9 .0 % 77 .2%

False by more than 

one class 0 .7% 2 .6 % 2 2 .6 % 1 1 .8 % 13.8 %

Last measurement, 15 min forecast, Pukinm äki-Konala link

Over free-flow travel 

time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 128680 3493 118 3 16 46

1 0 -2 5 % 3229 1627 1586 82 45

25- 75% 1597 951 2788 657 832

75- 90 % 146 73 382 186 500

Over 9 0 % 4 21 203 835 332 4589

Correct class 9 6 .0 % 2 5 .6 % 41 .2% 1 4 .6 % 76 .3%

False by more than 

one class 1 . 6 % 4 .3% 2 9 .8 % 7 .7% 15.4 %
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Seasonal model, 15  min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %
Fo

re
ca

st

0 - 1 0 % 43  957 886 79 12 25

1 0 -2 5 % 933 1 082 351 2 6

25- 75% 267 527 836 94 145

75- 90% 9 41 94 20 114

Over 9 0 % 26 52 154 83 975

Correct class 97 .3% 41 .8% 55 .2% 9 .5% 77 .1%

False by more than 

one class 0 .7% 3 .6 % 15.4 % 6 .6 % 13.9 %

Seasonal model, 15  min forecast, Pukinm aki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 127 731 2 505 349 5 45

1 0 -2 5 % 4 466 2 359 995 36 33

25- 75% 1 586 1 292 4152 554 581

75- 90% 80 57 527 217 336

Over 9 0 % 210 134 751 461 5 017

Correct class 95 .3% 37 .2% 6 1 .3 % 17.0 % 83 .4 %

False by more than 

one class 1.4 % 3 .0 % 1 6 .2 % 3 .2% 1 1 .0 %
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Model of exceptional conditions, 15 min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 44  214 1 383 259 13 22

1 0 -2 5 % 556 453 169 1 13

25- 75% 369 637 817 91 127

75- 90% 17 57 109 29 67

Over 9 0 % 36 58 160 77 1 036

Correct class 97 .8% 17.5% 54 .0 % 13.7% 8 1 .9 %

False by more than 

one class 0 .9 % 4 .4 % 27 .7% 6 .6 % 1 2 .8 %

Model of exceptional conditions, 15  min forecast, Pukinm aki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 129  726 3 795 1 249 19 52

1 0 -2 5 % 2 269 968 409 22 19

25- 75% 1 661 1 359 3 809 517 427

75- 90 % 132 75 522 260 315

Over 9 0 % 285 150 785 455 5 199

Correct class 9 6 .8 % 15.3% 5 6 .2 % 2 0 .4 % 8 6 .5 %

False by more than 

one class 1.5% 3 .5% 3 0 .0 % 3 .2% 8 .3%
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Basic models for shorter prediction periods
Basic model, 10 min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %
Fo

re
ca

st

0 - 1 0 % 44  741 936 67 6 18

1 0 -2 5 % 925 1 162 410 0 6

25- 75% 202 540 882 96 84

75- 90% 3 15 93 35 99

Over 9 0 % 15 11 96 97 1 073

Correct class 97 -5% 4 3 -6 % 57 -0 % 15.0 % 8 3 .8 %

False by more than 

one class 0 .5% 1 . 0 % 1 0 .5 % 2 .6 % 8 .4 %

Basic model, 10 min forecast, Pukinmäki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 130 302 2 533 197 5 31

1 0 -2 5 % 3 974 2 763 1 050 13 6

25- 75% 916 1 121 4 714 607 398

75- 90% 30 43 484 344 393

Over 9 0 % 90 72 473 382 5 341

Correct class 9 6 .3% 42 .3% 6 8 .1 % 25 .5% 8 6 .6 %

False by more than 

one class 0 .8 % 1 . 8 % 9 .7% 1.3% 7 .1%
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Basic model, 5 min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 45570 877 36 4 8

1 0 -2 5 % 1000 136 1 292 2 0

25- 75% 99 437 114 1 84 30

75- 90 % 1 2 81 65 83

Over 9 0 % 2 5 45 89 1170

Correct class 97 .6% 5 0 .7% 71.5% 2 6 .6 % 9 0 .6 %

False by more than 

one class 0 .2 % 0 .3% 5 .1% 2 .5% 2 . 9 %

Basic model, 5 min forecast, Pukinm äki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 13 4 15 1 2516 84 1 22

1 0 -2 5 % 3579 3 15 1 796 1 2

25- 75% 356 1056 5570 549 193

75- 90 % 5 11 460 465 376

Over 9 0 % 25 12 297 4 11 5953

Correct class 97 .1% 4 6 .7% 77 .3% 3 2 .6 % 9 0 .9 %

False by more than 

one class
0 .3% 0 .3% 5 .3% 0 . 1 % 3 .3%
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Basic model, 1 min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %
Fo

re
ca

st

0 - 1 0 % 52572 424 3 0 3

1 0 -2 5 % 549 2377 134 0 0

25- 75% 5 207 1642 33 3

75- 90% 0 0 34 174 26

Over 9 0 % 1 0 5 52 14 17

Correct class 9 9 .0 % 79 .0 % 9 0 .3% 6 7 .2 % 97 .8%

False by more than 

one class
0 .0 % 0 .0 % 0 .4 % 0 .0 % 0 .4 %

Basic model, 1 min forecast, Pukinmäki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 150 475 1 228 15 1 13

1 0 -2 5 % 1 718 5 683 349 0 1

25- 75% 21 468 7 147 321 26

75- 90% 1 0 279 982 219

Over 9 0 % 13 0 37 285 7 083

Correct class 9 8 .8 % 77 .0 % 91 .3% 6 1 .8 % 9 6 .5%

False by more than 

one class 0 .0 % 0 .0 % 0 .7% 0 . 1 % 0 .5%
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Last measurement, 10 min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 44  715 1027 102 6 18

1 0 -2 5 % 984 1184 461 6 7

25- 75% 167 431 818 100 82

75- 90 % 5 9 72 39 112

Over 9 0 % 15 13 95 83 10 6 1

Correct class 97 -4 % 44 .4 % 5 2 .8 % 1 6 .7 % 8 2 .9 %

False by more than 

one class 0 .4 % 0 .8 % 1 2 .7 % 5 .1% 8 .4 %

Last measurement, 10 min forecast, Pukinmaki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 130 898 3 343 598 6 33

1 0 -2 5 % 3 094 2 023 1 450 21 8

25- 75% 1 130 980 3 700 663 527

75- 90 % 70 59 475 281 482

Over 9 0 % 120 127 695 380 5 119

Correct class 9 6 .7% 31.0 % 53 .5% 2 0 .8 % 8 3 .0 %

False by more than 

one class 1 . 0 % 2 .8 % 1 8 .7 % 2 . 0 % 9 .2%
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Last measurement, 5 min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %
Fo

re
ca

st

0 - 1 0 % 45694 867 28 4 8

1 0 -2 5 % 9 11 1440 354 5 0

25- 75% 64 368 1104 85 22

75- 90% 1 2 65 70 90

Over 9 0 % 2 5 44 80 117 1

Correct class 97 -9 % 53 .7% 6 9 .2 % 2 8 .7 % 9 0 .7%

False by more than 

one class 0 . 1 % 0 .3% 4 .5% 3 .7% 2 .3%

Last measurement, 5 min forecast, Pukinmäki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90% Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 134759 2962 136 1 22

1 0 -2 5 % 2899 2803 1082 1 2

25- 75% 428 949 5 116 576 184

75- 90 % 5 15 487 459 445

Over 9 0 % 25 17 386 390 5893

Correct class 97 .6 % 4 1 .6 % 71.0 % 32 .2% 9 0 .0 %

False by more than 

one class 0 .3% 0 .5% 7 .2% 0 . 1 % 3 .2%
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Last measurement, 1 min forecast, Konala-Pakila link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 52746 346 3 0 3

1 0 -2 5 % 378 2544 105 0 0

25- 75% 2 118 1681 24 2

75- 90 % 0 0 24 209 23

Over 9 0 % 1 0 5 26 14 21

Correct class 9 9 -3% 8 4 .6 % 92 .5% 8 0 .7 % 9 8 .1%

False by more than 

one class 0 .0 % 0 .0 % 0 -4 % 0 .0 % 0 .3%

Last measurement, 1 min forecast, Pukinmäki-Konala link

Over free-flow travel 
time

Measured output

0 -1 0 % 1 0 -2 5 % 25- 75% 75- 90 % Over 9 0 %

Fo
re

ca
st

0 - 1 0 % 150951 119 0 16 1 13

1 0 -2 5 % 1240 5848 322 0 1

25- 75% 23 341 7229 215 14

75- 90 % 1 0 222 118 7 175

Over 9 0 % 13 0 38 186 7139

Correct class 9 9 .2% 79 .3% 92 .4 % 74 .7% 97 .2%

False by more than 

one class 0 .0 % 0 .0 % 0 .7% 0 . 1 % 0 .4 %
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Annex B -  Regularly congested road sections

Table 30. Regularly congested road sections, 2 0 %  increase from  median hour 
travel time at least 150  hours per year

Regularly congested 
road sections

Start point End point

Road
Road
section Distance Road

Road
section Distance Direction

Ring I -  Ring III 1 4 705 1 5 5993 1

Ämmässuo -  Veikkola 1 7 0 1 8 0 1

Veikkola -  Munkkiniemi 1 8 0 1 3 503 2

Kaivoksela -  Klaukkala 3 101 8744 3 104 0 1

Myllypuro -  Soppeenmäki 3 139 1823 3 139 5575 2

Sääksjärvi -  Iittala 3 134 5161 3 120 1059 2

Herajoki -  Kaivoksela 3 110 6240 3 101 8744 2

Järvenpää -  Ahtiala 4 108 3381 4 202 3045 1

Lusi -  Tattarisuo 4 210 1625 4 103 1312 2

Vehmasmäki -  Päiväranta 5 156 2980 5 201 3335 1

Päiväranta -  Vehmasmäki 5 201 3335 5 156 2980 2

Kesälahti -  Parikkala 6 332 5177 6 323 2085 2

Kotka -  Hamina 7 29 1486 7 33 1260 1

Östersundom - 
Länsimäentie 7 3 0 7 1 2689 2

Moisio -  Jäkärlä 9 103 10 9 103 2170 1

Jäkärlä -  Moisio 9 103 2170 9 103 10 2

Amuri -  Alasjärvi 12 127 2401 12 201 3202 1

Alasjärvi -  Amuri 12 201 3202 12 127 2401 2

Käpylä -  Riihikallio 45 1 3715 45 4 1412 1

Riihikallio -  Käpylä 45 4 1412 45 1 3715 2

Muurala -  Länsisalmi 50 2 4474 50 8 2490 1

Länsisalmi -  Muurala 50 8 2490 50 2 4474 2

Matinkylä -  Sundsberg 51 5 110 51 7 2972 1

Espoonlahti -  Katajaharju 51 6 2400 51 2 1378 2

Keilaniemi -  Pukinmäki 101 1 590 101 7 2103 1

Pukinmäki -  Keilaniemi 101 7 2103 101 1 590 2

Olari -  Kauniainen 102 1 970 102 3 2660 1

Pitäjänmäki -  Varisto 120 2 60 120 3 5260 1



Appendix 2 /  2 (2)

Regularly congested 
road sections

Start point End point

Road
Road
section Distance Road

Road
section Distance Direction

Varisto -  Pitäjänmäki 120 3 5260 120 2 60 2

Vartioharju -  Mellunmäki 170 3 1090 170 3 4165 1

Itäsalmi -  Vartioharju 170 5 2570 170 3 1090 2

Table 31. Regularly congested road sections, 5 0 %  increase from  median hour
travel time at least 150  hours per year

Regularly congested 
road sections

Start point End point

Road
Road
section Distance Road

Road
section Distance Direction

Ring I -  Munkkiniemi 1 4 705 1 3 503 2

Myllypuro -  Soppeenmäki 3 139 1823 3 139 5575 1

Kotka -  Hamina 7 29 1486 7 33 1260 1

Amuri -  Alasjärvi 12 127 2401 12 201 3202 1

Alasjärvi -  Amuri 12 201 3202 12 127 2401 2

Veromies -  Käpylä 45 3 430 45 1 3715 2

Muurala -  Länsisalmi 50 2 4474 50 8 2490 1

Länsisalmi -  Muurala 50 8 2490 50 2 4474 2

Westend -  Katajaharju 51 4 300 51 2 1378 2

Otaniemi -  Konala 101 2 741 101 6 1713 1

Pukinmäki -  Otaniemi 101 7 2103 101 2 741 2

Olari -  Kauniainen 102 1 970 102 3 2660 1

Pitäjänmäki -  Varisto 120 2 60 120 3 5260 1

Konala -  Pitäjänmäki 120 3 680 120 2 60 2

Vartioharju -  Mellunmäki 170 3 1090 170 3 4165 1

Mellunmäki -  Vartioharju 170 3 4165 170 3 1090 2
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Annex C -  Accident dusters

Road

Start point End point

Road section Distance Road section Distance

1 3 0 3 105

1 4 702 4 850

1 36 1720 36 1820

1 36 2520 36 2620

3 101 5476 101 5576

3 101 5693 101 5793

3 102 3499 103 100

3 126 4039 134 64

3 203 1310 203 1426

4 103 0 103 100

4 104 160 104 260

4 104 3732 105 18

4 232 1700 232 1847

4 232 2366 233 100

4 301 486 301 586

4 307 6049 308 100

4 362 6913 363 81

4 401 770 401 920

4 448 7831 449 83

4 449 1653 449 1769

4 449 2600 449 2789

5 201 0 201 100

6 349 4887 350 99

6 401 10 401 110

6 401 343 401 517

6 401 580 401 732

6 401 1486 401 1680

7 29 305 29 405

8 104 2300 104 2400

8 105 2907 105 3007
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Road

Start point End point

Road section Distance Road section Distance

8 239 321 239 421

8 302 3995 303 100

8 401 228 401 329

8 401 1185 401 1353

9 124 2151 124 2251

9 205 0 205 100

9 235 5165 235 5323

9 235 6280 235 6493

9 306 0 306 100

10 1 4294 1 4394

10 1 4624 1 4755

10 1 5000 1 5100

12 102 130 102 230

12 127 2837 127 3027

12 127 3236 127 3336

12 127 3395 127 3565

12 127 4572 127 4730

12 201 492 201 716

12 201 1200 201 1350

12 201 1697 201 1830

12 201 2293 201 2410

12 201 4080 202 100

12 221 4333 221 4461

12 222 0 222 100

12 222 2374 222 2477

12 222 3069 222 3169

12 222 5160 222 5322

12 222 5533 222 5656

12 222 5815 223 102

12 223 3525 223 3625

13 101 862 101 969

13 220 906 220 1006
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Road

Start point End point

Road section Distance Road section Distance

13 220 1682 220 1782

13 220 2486 221 95

13 239 194 239 294

15 1 2698 1 2915

15 7 7547 8 13

18 50 8140 50 8275

18 50 8377 50 8477

19 8 1098 9 20

20 1 2232 1 2339

20 1 2423 1 2528

20 1 2990 1 3090

20 1 3871 3 99

22 1 1603 1 1703

22 2 163 2 263

22 2 807 2 946

23 317 2224 317 2324

25 9 3682 11 100

40 1 1536 1 1636

40 2 2878 2 3000

40 2 4195 2 4313

40 2 4426 3 178

40 3 225 3 369

40 5 4524 5 4624

45 1 3689 1 3789

45 2 0 2 100

45 2 1695 2 1795

45 2 7000 3 100

45 4 994 4 1111

45 4 1149 4 1283

45 4 1706 4 1806

45 4 2274 4 2374

45 4 2855 4 2983
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Road

Start point End point

Road section Distance Road section Distance

45 5 145 5 300

50 5 2250 5 2350

50 5 3576 6 513

50 6 2614 6 2820

50 6 4090 6 4330

50 6 4860 6 5040

50 7 2797 7 2897

50 7 5868 7 6009

50 8 2446 8 2615

50 8 2626 8 2726

54 11 877 11 977

65 1 616 1 760

65 1 3983 1 4083

65 2 434 2 544

68 38 5490 38 5590

76 3 3799 3 3899

76 3 3990 3 4090

76 3 4158 3 4258

78 224 3400 224 3581

101 2 399 2 499

101 2 1452 2 1573

101 2 3028 2 3188

101 2 3703 2 3803

101 5 1480 5 1580

101 6 101 6 201

101 6 570 6 670

101 6 1615 6 1736

101 6 1958 6 2064

101 6 2306 6 2406

101 7 4060 7 4333

101 8 1080 8 1308

101 8 1748 8 1848
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Road

Start point End point

Road section Distance Road section Distance

101 8 2279 8 2379

101 8 2903 8 3064

101 8 3590 8 3690

101 8 3714 8 3814

101 8 3930 8 4252

103 1 178 1 278

110 1 4956 3 97

110 3 765 3 865

110 36 3207 36 3330

114 1 391 1 491

120 2 671 2 800

120 3 1326 3 1469

120 3 2988 3 3166

120 3 5153 3 5330

135 1 848 1 1003

140 4 2974 4 3095

140 12 1016 12 1116

143 1 1925 1 2047

148 1 2359 1 2482

148 2 482 2 620

152 1 5840 1 5970

167 1 2687 1 2800

167 1 4314 1 4414

167 2 0 2 100

170 3 0 3 114

170 3 2978 3 3078

180 1 429 1 530

190 4 1444 4 1544

312 1 810 1 910

371 1 2777 1 2877

390 2 548 2 648

553 3 4589 3 4689
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Road

Start point End point

Road section Distance Road section Distance

637 1 0 1 105

637 1 1576 1 1728

724 1 2053 1 2153

724 2 0 2 100
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