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Abstract 
Transformation of Carbon Dioxide to Diethyl Carbonate over Ceria and Ceria-

supported Catalysts 

 

Ewelina Leino 

 

Doctoral thesis, Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin 

Process Chemistry Centre, Faculty of Science and Engineering, Åbo Akademi University, 

Åbo, 2015 

  

Keywords: diethyl carbonate, carbon dioxide utilisation, butylene oxide, ethanol, cerium 

oxide, ceria-supported materials 

 

Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas 

leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a 

possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 

transformations is the synthesis of organic carbonates. Since conventional production 

technologies of these compounds involve poisonous phosgene and carbon monoxide, there is 

a need to develop novel synthetic methods that would better match the principles of "Green 

Chemistry" towards protection of the environment and human health. 

Over the years, synthesis of dimethyl carbonate was under intensive investigation in the 

academia and industry. Therefore, this study was entirely directed towards equally important 

homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis 

method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria 

(CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is 

thermodynamic limitations. The calculated values revealed that the reaction is exothermic 

(ΔrH
Ø

298K = ─ 16.6  J/   )   d d e    t  cc    p  t  e       t      te pe  t  e (ΔrG
Ø

298K 

= 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards 

reactants excluding achievement of high yields of the carbonate. Therefore, in-situ 

dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold 

enhancement in the amount of DEC was observed upon introduction of butylene oxide to the 

reaction media in comparison to the synthetic method without any water removal. This result 

confirms that reaction equilibrium was shifted in favour of the desired product and 

thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a 

water scavenger.  
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In order to obtain insight into the reaction network, the kinetic experiments were performed 

over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be 

concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene 

oxide occurs via a consecutive route involving cyclic carbonate as an intermediate.  

Since commercial cerium oxide suffers from the deactivation problems already after first 

reaction cycle, in-house CeO2 was prepared applying room temperature precipitation 

technique. Variation of the synthesis parameters such as synthesis time, calcination 

temperature and pH of the reaction solution turned to have considerable influence on the 

physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted 

in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the 

highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded 

cerium oxide with the highest specific surface area, 139 m
2
/g, among all prepared catalysts. 

Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC 

was produced at 180 
o
C and 9 MPa of the final reaction pressure.  

In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and 

silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. 

Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase 

of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria 

exhibited the second highest basicity in the series of supported catalysts. Evaluation of the 

catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % 

CeO2-SBA-15 generated the highest amount of DEC.  
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Omvandling av koldioxid till dietylkarbonat på katalysatorer innehållande ceriumoxid 

samt ceriumoxid på bärarmaterial 
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Nyckelord: dietylkarbonat, utnyttjande av koldioxid, butylenoxid, etanol, ceriumoxid, 

bärarmaterial 

Koldioxid anses nuförtiden vara en primär, antropogen växthusgas som förorsakar 

global uppvärmning. Kemisk fixering av koldioxid (CO2) har väckt mycket uppmärksamhet 

som en potentiell väg att framställa användbara kemikalier. Ett av de mest intressanta 

förhållningssätten för CO2-omvandlingar är syntes av organiska karbonater. Eftersom de 

konventionella framställningsteknologierna av dessa komponenter innehåller giftiga 

kemikalier, ss. fosgen och kolmonoxid, finns det ett behov att utveckla nya syntetiska metoder 

vilka bättre följer  principerna för grön kemi för att skydda miljön och människornas hälsa.  

Under många års tid har syntes av dimetylkarbonat undersökts intensivt vid universiteten och 

i industrin. Denna undersökning ägnades totalt åt framställning av viktiga homologer av 

karbonestrar, nämligen dietylkarbonat (DEC). Den nya syntesmetoden för DEC utgående  

från etanol och CO2 på heterogena ceriumoxidbaserade katalysatorer undersöktes i en 

satsreaktor. Termodynamiska begränsningar bromsar reaktionen. Beräknade värden på 

termodynamiska storheter avslöjade att reaktionen är exotermisk (ΔrH
Ø

298K = ─ 16.6  J/   ) 

och icke-spontan vid rumstemperatur (ΔrG
Ø

298K = 35.85 kJ/mol). I reaktionen bildas vatten 

och det bildade vattnet förskjuter jämvikten mot reaktanter varvid höga utbyten av karbonater 

utesluts. Därför tillämpades in situ -avvattning tillämpats med hjälp av butylenoxid som en 

kemisk vattenfälla. DEC-mängden ökade nio gånger då butylenoxid användes jämfört med 

experiment utan avvattningssteget. Detta resultat bekräftade att reaktionsjämvikten förskjöts 

mot de önskade produkterna och inverkan av reaktionens termodynamiska gränser på utbytet 

minimerades genom att använda butylenoxid som vattenfälla.  

Reaktionsnätverket undersöktes genom att utföra kinetiska experiment med en kommersiell 

ceriumoxidkatalysator. På basis av selektivitet/omsättningsgradprofilen kan sammanfattas att 
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syntes av dietylkarbonat from etanol, CO2 och butylenoxid  i ett steg sker via en konsekutiv 

rutt innehållande en cyklisk karbonat som reaktionsintermediär. 

Kommersiell ceriumoxid (CeO2) lider av deaktiveringsproblem redan efter den första 

reaktionscykeln och därför framställdes en CeO2-katalysator genom att tillämpa 

utfällningsteknik vid rumstemperatur. Förändring av syntesparametrar, ss. syntestid, 

kalcineringstemperatur och pH av reaktionslösningen visade sig ha en stor inverkan på 

fysikalisk-kemiska och katalytiska egenskaper av CeO2. En ökning av syntestiden resulterade 

i en hög specifik ytarea av ceriumoxid och katalysatorn, som var framställd under 50 timmars 

tid innehöll den största mängden basiska säten på ytan. Ytterligare gav en syntes vid pH 11 

ceriumoxid med den högsta specifika ytarean, 139 m
2
/g bland alla framställda katalysatorer. 

Denna CeO2-katalysator hade den största katalytiska aktiviteten och 2 mmol av DEC 

framställdes vid 180°C och det slutliga reaktionstrycket 9 var MPa. 

Ytterligare syntetiserades och testades ceriumoxidkatalysatorer på bärarmaterial med höga 

specifika ytareor, ss. kisel-MCM-41, SBA-15 och kiseldioxid för första gången som 

katalysatorer i syntes av DEC. Deponering av ceriumoxid på MCM-41 och SiO2 bärarmaterial 

resulterade i en stor ökning av alkalinitet för bärarmaterialet. Hexagonal SBA-15 modifierad 

med 20 v% ceriumoxid hade den nästhögsta basiciteten i serien för de framställda 

katalysatorerna på bärarmaterial. Utvärdering av den katalytiska aktiviteten för 

ceriumoxidkatalysatorer på bärarmaterial visade att reaktionen genomförd med 20 v% CeO2-

SBA-15 bildade den högsta mängden DEC. 
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1. Introduction 

1.1. Carbon dioxide  
 

As early as in the 19
th

 century scientists realized that accumulation of gases in the 

E  th’   t   phe e     c   e “g ee -h   e effect” wh ch, consequently, might affect the 

planet’  temperature. Among several green-house gases such as water vapour, methane, 

nitrous oxide, chlorofluorocarbons and ozone, carbon dioxide (CO2) is the most prominent 

one. Its long life-time and ability to absorb and re-emit infrared energy makes it an effective 

heat-trapping gas.  The levels of carbon dioxide alone in the atmosphere have risen more than 

30 %    ce the I d  t     Rev   t       the 1700’ . Natural sources of CO2 include respiration 

processes of aerobic organisms, volcanic outgasing and/or wildfires and are nearly balanced 

by natural physical and biological processes as solubility in water forming carbonic acid and 

photosynthesis. As a matter of fact, the recent rise of carbon dioxide concentration in the 

atmosphere is known to be mainly due to human activity. Next to deforestation and 

worldwide cement production, combustion of fossil fuels is the leading cause of CO2 

emissions yielding 36 Gt of CO2 released in 2013, compared to 6.15 Gt in 1990.
1
 Recently, 

the idea that accumulation of carbon dioxide    the E  th’   t   phe e may result in global 

warming and irreversible climate change for hundreds of thousands of years has reached the 

public awareness and became a cause of primary concern. Therefore, numerous researches 

have been targeted at improving the current technologies or developing new approaches of 

waste carbon dioxide capture and storage (CCS).
2
 There are several methodologies for carbon 

dioxide capture and sequestration such as absorption in amine and ammonium solutions, 
3,4

 

adsorption via molecular sieves and activated carbon,
5
 membrane separation, application of 

solid imidazolium-based poly(ionic liquids) with variable molecular weights for CO2 capture,
6
 

sequestration in deep saline aquifers and coal beds,
7
  as well as relatively novel method of 

CO2 injection into cold geologic formations resulting in clathrate hydrates formation.
8,9

 

Another powerful tool to reduced carbon dioxide concentration and  mitigate global warming 

is its utilization to value-added chemicals. The application of CO2 in the synthesis of 

chemicals is known already since the second half of 1800’s when the process of the synthesis 

of salicylic acid from phenol salts and carbon dioxide was discovered in 1869 
10

 followed by 

conversion of ammonia and CO2 into urea and synthesis of methanol from syngas enriched 

with CO2.
11

 About 200 Mt of carbon dioxide yearly is, nowadays, converted to chemicals 

which make two orders of magnitude larger amount than carbon capture and sequestration. 
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Undoubtedly, conversion of CO2 to useful products will also allow it to be viewed as a 

valuable feedstock rather than a waste.  

CO2 is recognized as a non-toxic, inexpensive, renewable and widely abundant carbon source 

and attractive C1 building block for organic synthesis that can replace poisonous chemicals 

such as phosgene, isocyanates or carbon monoxide.
12,13

 Nevertheless, the problem of  CO2 

activation is a continuous challenge for synthetic chemists to "force" this molecule into 

selective reactions under mild enough conditions. CO2 is a thermodynamically stable and 

kinetically inert, therefore a substantial input of energy, appropriate reaction conditions and 

active catalysts are necessary for its chemical fixation.   

The conversion of CO2 into fuels and polymeric/construction materials is at present in 

significant demand 
14,15

 including the conversion of CO2 to formic acid,
16 methanol,

17 methyl 

formate
18

and higher hydrocarbons 
19

 which are all of great interest. From the energetic point 

of view, the most favourable process of carbon dioxide conversion is a transformation in 

which carbon atom maintains its +4 oxidation state. Based on this concept, synthesis of such 

compunds as carbamates, ureas, polycarbonates, polyurethanes and organic carbonates using 

CO2 as a raw material is of essential importance. 

1.2. Organic carbonates 
 

The carbon atom in carbon dioxide molecule is an electrophile, thus reactions of CO2 

are dominated by nucleophilic attacks on C-atom resulting in production of carboxyl groups. 

Further reactions of these species with electrophiles lead to the formation of organic 

carbonates. Organic carbonates can be categorized into cyclic and linear carbonates from 

which ethylene carbonate (EC), propylene carbonate (PC), diphenyl carbonate (DPC) and 

dimethyl carbonate (DMC) are industrially important compounds due to their excellent 

properties.
20

 They find commercial application as polar aprotic solvents, selective reagents, 

intermediates and substituents for phosgene in the manufacture of polycarbonates and 

polyurethanes.
21

 Since polycarbonates are durable materials, they are extensively used as 

electronic components, data storage (Compact Discs, DVDs, Blue-ray Discs) and construction 

materials. Polyurethanes, in turn, are applied in the manufacture of flexible, high-resilience 

foam seatings, insulation panels, print rollers, synthetic fibers, elastomeric wheels and tyres.  

Over the years, the need for safer and more selective processes applying biodegradable and 

non-toxic materials caused the growing interest for DMC production proven by substantial 

number of literature reports. In contrast, diethyl carbonate (DEC) the second homologue in 

short-chain dialkylcarbonate family played only a marginal role.  
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1.2.1. Properties and applications of diethyl carbonate 

Diethyl carbonate is one of the most important green chemicals of carbonate esters also 

called ethyl carbonate, carbonic acid diethyl ester or Eufin. It is a colourless, transparent 

liquid under the normal conditions and has a mild toxicology profile.
20

 The physical 

properties of DEC are summarized in Table 1.  

 
Table 1. Physical properties of diethyl carbonate. 

Molar mass (g/mol) 118.13 

Boiling point (
o
C) 126 - 128 

Melting point (
o
C) - 43 

Flash point (
o
C) 25 

Density (g/cm
3
) 0.975 

Toxicology Mildly toxic 

 

 

The fact that DEC can be prepared from bioethanol and its biodegradability when released to 

the environment proves eco-friendly character of diethyl carbonate and provides a “b  -

de  ved”   be  t      p  ce  e     wh ch  t      ed.  he presence of two ethyl groups and one 

carbonyl group in DEC structure represents a viable alternative to both ethyl halides and 

phosgene for ethylation and carbonylation processes. High oxygen content of DEC (40.6 wt 

%) when compared to methyl tert-butyl ether (MTBE) (18.2 wt %) and ready solubility in 

fuels without any phase separation allows considering it as a replacement for MTBE as an 

attractive oxygen containing gasoline additive. Additionally, the gasoline/water distribution 

coefficients are more favourable for DEC than for dimethyl carbonate and ethanol potentially 

opening a large market for DEC as a fuel component.
21

 It has been shown, that introduction of 

5 wt % of diethyl carbonate into diesel fuel could reduce the emissions of particulate matter 

by 50 %.
22

 DEC finds also an application as a raw material for manufacturing of 

polycarbonates, 
23

  as an excellent solvent and an intermediate for various pharmaceuticals 

such as antibiotics and phenobarbital.
24,25

 Furthermore, DEC is applied as a solvent of 

polyamide, polyacrylonitrile and diphenol resin in the synthetic fibre industry, as solvents of 

cellulose ether, synthetic and natural resin in the textile printing and dyeing industry, as a 

paint remover and it is widely used as an electrolyte in lithium ion batteries.  
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1.2.2. Production technologies of diethyl carbonate 

 

1.2.2.1. Phosgenation of ethanol 

 

The great majority of phosgene (COCl2) called also carbon dichloride oxide, carbon 

oxychloride and/or chloroformyl choride  is used in production of isocyanates such as toluene 

diisocyanate and methylene diphenyl diisocyanate being the precursors for polyurethanes. 

Another significant application of phosgene is the production of organic carbonates. 

Phosgenation of ethanol is the oldest known and currently applied method for manufacturing 

of diethyl carbonate proposed by Muskat already in 1941.
26

 It should be, however, noted that 

in 1970's, a non-phosgene technology for dimethyl carbonate synthesis was developed by 

EniChem (Italy) which is based on liquid-phase methanol oxidative carbonylation. Later on in 

1980's, a process based on the carbonylation of methyl nitrite was patented by UBE 

(Japan).
27,28

  

The majority of the production processes for dialkylcarbonates follow a similar route, 

according to equations (1) and (2)  

 

ROH  +  COCl2   →   R C( )C    +  HC                    (1) 

R C( )C   +  R H   →   (R )2CO  +  HCl                                   (2) 

 

COCl2 reacts with an alcohol to form chloroformates which react further with another 

molecule of alcohol to form carbonate. The process occurs in anhydrous solvents such as 

toluene, dichloromethane or benzene with excess of pyridine, which acts as a hydrochloric 

acid trap in order to shift the equilibrium of the reaction towards formation of 

dialkylcarbonates.
26

 The main drawback of this method is the employment of phosgene that 

has been identified as an extremely poisonous compound for human health and environment. 

Inhalation of COCl2 results in adverse respiratory effects such as pulmonary edema and 

pulmonary emphysema finally leading to the death. Additionally, it causes ocular irritation 

and dermal burns. Thus, the toxicity of this process and expensive post-synthesis purification 

as well as readiness to match the principles of "Green Chemistry" command industry to target 

for less restrictive and much more safe for human health and the environment technologies of 

diethyl carbonate synthesis.  
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1.2.2.2. Oxidative carbonylation of ethanol 

 

Nowadays, ethanol is attracting considerable attention for its potential in realizing the 

strategy of energy diversification and producing other valuable chemicals. Together with 

carbon monoxide ethanol is a reagent for synthesis of diethyl carbonate via oxidative 

carbonylation route (Eq. (3)).  

 

2C2H5OH  +  CO   +   ½ O2   →    =C( C2H5)2    +    H2O                                      (3) 

 

Similarly to DMC, high quantities of diethyl carbonate have been produced over homogenous 

copper chloride catalyst in excess of carbon monoxide.
29

 The disadvantage of this method is 

highly corrosive effect of CuCl or CuCl2 catalysts on metallic or alloy reactor due to existence 

of Cl
-
 and the redox reaction between Cu(II)/Cu(I) and Cu(0).  

The catalytic activities of various non-corrosive Co-Schiff base complexes were tested and 

salophen type cobalt complex (Fig. 1) displayed high DEC yield 15.8 % with selectivity equal 

to 97 % at 140 °C and 5 MPa.
30

 Phenyl ring of diimine bridge in the structure of salophen-

type ligand is conjugated with two phenyl rings of salicyl moieties which consequently 

improved the stability of the formed Co(salophen) complex and increased the electron density 

of the center Co(II) cation so that the complex catalyst favoured the formation of reaction 

intermediates. 

 

N N

Co

O O  

Figure 1. Co-Schiff base complex. 

 

Subsequently, a number of supported heterogeneous catalysts was investigated. A vapour-

phase reaction over copper/palladium chloride supported on activated carbon resulted in 100 

% selectivity to DEC at temperature below 120 °C.
31

  However, the catalyst was easily 

deactivated due to sintering of the cuprous chloride and the decomposition of palladium 

chloride. The effect of various potassium salts (potassium acetate, potassium citrate tribasic 

monohydrate, potassium sorbic, potassium chloride) in CuCl2/PdCl2/activated carbon catalyst 
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using a continuous reactor system was studied and it was shown that introduction of KCl 

improved catalyst activity and stability.
32

 A certain interest has been also devoted to the 

development of catalysts supported on other materials than activated carbon. Cu-substituted 

hexagonal mesoporous silica (HMS) for DEC formation via oxidative carbonylation of 

ethanol was reported for the first time in 2007.
33

 No conversion of ethanol to DEC was 

observed over pure Cu-HMS and PdCl2/HMS catalysts, while PdCl2/Cu-HMS exhibited 

excellent catalytic performance at 150 °C and 0.64 MPa. Further studies revealed that an 

optimized Si/Cu ratio about 50/1 had a remarkable effect on catalyst performance and 

simultaneously a favourable amount of Pd loading was found to be 0.25 wt %.
34

  

1.2.2.3. Carbonylation of ethyl nitrite 

 

Another promising method for manufacturing of diethyl carbonate is carbonylation of 

ethyl nitrite in which ethanol is first converted into ethyl nitrite (Eq.(4)) and, afterwards, into 

diethyl carbonate via a reaction with carbon monoxide (Eq.(5)).    

 

2C2H5OH  +  2NO  +  ½O2   →   2C2H5ONO  +  H2O                        (4) 

CO  +  2C2H5 N    →    =C( C2H5)2  +  2NO                     (5) 

 

Mesoporous alumosilicate MCM-41 due to its high specific surface area, thermal and 

hydrothermal stability as well as a possibility to control pore size and hydrophobicity  has 

been chosen as a support for palladium in carbonylation of ethyl nitrite.
35

 It was found that 

Pd, Pd-Cu and Pd-Ti deposited on Si-MCM-41 demonstrated higher catalytic activities than 

the catalysts supported on Ti-MCM-41. An interesting observation was that the 1.5 wt % Pd-

0.5 wt % Ti/Si-MCM-41 catalyst was favourable for DEC synthesis, while for the 1.5 wt % 

Pd-0.5 wt % Cu/Ti-MCM-41 catalyst diethyl oxalate (DEO) was the dominant product. 

Several other carrier materials such as activated carbon, silica, alumina and HMS were 

studied for Wacker-type catalysts and PdCl2-CuCl2 supported on activated carbon turned to be 

the most efficient catalyst for DEC synthesis from carbon monoxide and ethyl nitrite.
36

 The 

catalytic activity of the catalyst was still greatly enhanced by chemical pretreatment with 

hydrogen and optimum Pd/Cu mole ratio was found to be 1/2 considering both DEC yield and 

selectivity.  
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1.2.2.4. Catalytic ethanolysis of urea and ethyl carbamate 

 

Synthesis of urea has been a traditional industrial process for carbon dioxide utilization. 

As a CO2 carrier, urea is cheap and widely available and, therefore, it was thought that 

alcoholysis of urea could be a potential route for the synthesis of organic carbonates.  

Apparent advantages of this process, i.e. abundant resources, low cost of raw materials, no 

azeotrope formation between alcohol and water as well as an easy product separation and 

purification makes it an interesting approach. Diethyl carbonate is prepared by reacting 

ethanol with urea in the presence of the catalyst (Eq. (6)). In this process, urea plays a role as 

a carbonylation agent. Furthermore, the co-product ammonia can be recycled to urea (Eq. (7)).  

 

             (6) 

             (7) 

 

Zinc oxide (ZnO), calcium oxide (CaO), zirconium dioxide (ZrO2), titanium dioxide (TiO2), 

tin dioxide (SnO2), magnesium ox de (Mg )   d γ-          x de (γ-Al2O3) have been used 

as catalysts for DEC synthesis from urea.
37

 Among these catalysts, ZnO and ZrO2 exhibited 

the best catalytic performance wh  e γ-Al2O3 was the least active catalyst, probably due to 

stronger acidity compared to CaO or MgO. It was proposed that high activity of ZnO and 

ZrO2 is attributed to their acidic and basic properties. Additionally, reaction carried out in the 

absence of the catalyst resulted in 84 % yield of ethyl carbamate (EC) and no DEC 

generation, indicating that EC is the intermediate for DEC formation from urea and ethanol. 

Since the consecutive reaction of ethyl carbamate and ethanol to form DEC is the rate-

controlling step, an effort has been devoted to further investigation of this reaction. Lead 

oxide (PbO) showed a good catalytic activity yielding 16 % of DEC at 180 °C and 2 MPa.
38

 

The yield was even more enhanced to 21 % over ZnO-PbO mixed oxides.
39

 Interestingly, 

waste slag generated from steel production was found to be an excellent source for solid base 

catalyst applied in the reaction of ethylene carbamate and ethanol resulting in 33 % yield of 

DEC with over 74 % selectivity to the desired product.
40

  

1.2.2.5. Direct reaction starting from ethanol and carbon dioxide 

The development of innovative reaction methodologies based on carbon dioxide as a 

feedstock is of considerable importance in academia and industry boosted by Sustainable 

Chemistry and Engineering challenge. Among all synthesis methods of diethyl carbonate the 

NH2CONH2 + 2C2H5OH (C2H5O)2CO + 2NH3

2NH3 + CO2 NH2CONH2 + H2O



8 
 

straightforward synthesis starting from ethanol and CO2 (Eq. (8)) is the most promising and 

eco-friendly one producing only water as a by-product and is presently regarded as a green 

chemical process. 

 

2C2H5OH   +  CO2 (C2H5O)2CO  +  H2O                    (8) 

 

It has received much attention due to a number of reasons such as carbon recycling, high atom 

economy, phosgene-free technology and a possibility to replace multistep processes with a 

more direct synthetic procedure which consequently enable waste reduction. Although the 

utilization of CO2 to diethyl carbonate will not have, at least in the near future, a major impact 

on mitigation of greenhouse gases, undoubtedly, it is a potential pathway that could contribute 

to a complete (balance) global carbon dioxide cycle.  

As previously mentioned all the reactions aimed to use carbon dioxide need an applicable 

catalytic system. Hence, the catalyst development is next to the reaction thermodynamics and 

kinetics one of the key parameters in CO2 chemical fixation that could promote the 

accomplishment of the significant selective carbon dioxide utilization.  

Over the past few decades, rare-earth oxides have gained enormous attention and have been 

widely investigated as structural and electronic promoters to improve the activity, selectivity 

and thermal stability of catalysts. Assuredly, cerium oxide (CeO2) is the most feasible of the 

oxides of rare-earth elements in industrial catalysis owning to its unique structural, redox and 

acid-base properties.
41

 Due to a high oxygen storage capacity arising from the ability to be 

easily and reversibly reduced ceria became a crucial component of the three way catalysts 

(TWC),
42,43

 simultaneously, providing the most efficient method to reduce pollutants released 

from automotive exhaust gases. Moreover, cerium oxide finds a wide range of applications as 

UV absorbents and filters,
44 glass polishing material,

45
 oxygen ion conductor in solid oxide 

fuel cells (SOFCs),
46

 catalytic wet oxidation,
47

 NO removal catalyst,
48

 a catalyst support and 

promoter.
49-51

  

Catalytic activity of ceria-zirconia mixed oxides (Ce/(Ce + Zr) = 0.2) in the direct 

carboxylation of ethanol has been reported for the first time in year 2002.
52

 Diethyl carbonate 

was selectively formed under 110 °C and 6 MPa with the yield of 0.4 mmol irrespectively on 

the amount of the catalyst used in the reaction. Other studies on the same catalytic system 

with tuned Ce/Zr ratio showed that CexZr1-xO2 (x=1) exhibited the highest activity towards 

DEC followed by CexZr1-xO2 (x=0.7) which could be attributed to a strong dependence of 

catalytic properties of CexZr1-xO2 on the crystal structures and the acid-base sites on the 

 

NH2CONH2 + 2C2H5OH (C2H5O)2CO + 2NH3

2NH3 + CO2 NH2CONH2 + H2O
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surface with varied Ce/Zr ratios.
53

 In spite of high selectivities (90-100 %) of the process, the 

yield of dialkylcarbonates produced via the direct route remains far from satisfactory due to 

the unfavourable thermodynamics of the reaction. Additionally, rapid hydrolysis of 

dialkylcarbonate with co-produced water exclude formation of high amounts of the desired 

product.  Therefore, several physical and chemical means of improving the productivity of the 

reaction by water elimination such as the use of molecular sieves,
54

 2,2-dimethoxypropane,
52

 

trimethyl orthoformate and/or dimethoxymethane
55

 have been attempted at first in the 

synthesis of dimethyl carbonate staring from methanol and CO2. For diethyl carbonate, in 

turn, in situ dehydration with acetonitrile acting as a chemical water trap resulted in the 

enhanced yields of DEC over cerium oxide catalyst.
56

 A CO2-based yield of DEC equal to 42 

% was achieved after 24 h reaction time at 150 °C and 0.2 MPa of CO2 pressure. Furthermore, 

pervaporation membranes namely a polymeric organic membrane and inorganic ceramic 

membrane were used in order to decrease the water content in the direct synthesis of DEC.
57

 

The conversion of ethanol increased from 0.9 up to 2.3 % and relatively pure diethyl 

carbonate (> 90 %) has been isolated via distillation. It has been also found that Nb2O5-loaded 

ceria exhibited even 50 % higher catalytic activity than the corresponding Al2O3-loaded ceria 

at 135 °C and 5 MPa.  

Based on aforementioned findings it could be concluded that in situ dehydration in direct 

carboxlylation of ethanol is a powerful methodology to shift the reaction to the carbonate side. 

Moreover, the application of the catalyst possessing specific for the reaction properties and 

suitable reaction conditions combined with the efficient water removal may be conclusive to 

solve the drawbacks of the process.          
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1.3. Aims and scope of the thesis 

 

Since the 1970’s, the development of non-phosgene synthetic methodologies of 

dimethyl carbonate such as oxidative carbonylation and straightforward synthesis starting 

from methanol and CO2 has played a crucial role in the academic and industrial 

investigations. Therefore, this thesis has been entirely devoted to the synthesis of diethyl 

carbonate, an equally important homologue of carbonic esters family.  

Conventionally, hazardous carbon monoxide and phosgene are the preferred C1 feedstock for 

DEC production owning to their reactivity. Thus, this work was focused on the advancement 

of novel and eco-friendly technology of DEC synthesis applying a direct route that provides a 

possibility for the utilization of abundant and non-toxic CO2.  

Cerium oxide has been found to be an active catalyst in the direct synthesis of diethyl 

carbonate. Nevertheless, up to now, the research has been mainly concerned on the use of 

commercial cerium oxide which suffers from deactivation issues. Thus, in this study a special 

effort was devoted to the development of a more stable CeO2 via in-house synthesis involving 

different preparation techniques. Furthermore, a particular focus was put on better 

understanding of the influence of CeO2 synthesis method and synthesis parameters on 

physico-chemical and catalytic properties of the resulting material. Moreover, several ceria-

modified silica materials were prepared, characterized and for the first time used as catalysts 

in the synthesis of diethyl carbonate.    

In the thesis, a succinct report on the thermodynamic calculations of direct synthesis of 

diethyl carbonate starting from ethanol and CO2 is provided (II), the employment of a 

dehydrating agent to increase the yields of DEC is described (II), preparation of ceria and 

ceria-supported catalysts via different synthesis methods and variation of synthesis parameters 

including in-depth catalyst characterization and activity testing is addressed (III, IV, V).                
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2. Materials and Methods 

2.1. Materials 

Cerium (IV) oxide, cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O), aqueous ammonium 

hydroxide (28-30 %), ethanol (Etax, Aa, 99.5 %), butylene oxide (99 %), diethyl carbonate 

(99 %), diethyl ether (99.5 %), 1,2-butanediol (99 %) were purchased from Sigma Aldrich. 

Carbon dioxide (99.99 %) and gas mixture (ethane 1 %, propene 0.983 %, butene-1 0.961 %, 

butane –ISO 0.977 %, helium 96.1 %) were purchased from AGA. All chemicals were used as 

received.      

2.2. Catalyst preparation 

2.2.1. Room temperature precipitation method 

Synthesis of cerium (IV) oxide was carried out by slowly adding 1M aqueous solution of 

cerium (III) nitrate hexahydrate into a well-stirred precipitating solution of ammonium 

hydroxide. The pH of the solution was carefully controlled throughout the synthesis process at 

the desired value. The colour of the solution changed from light red indicating a precipitate of 

Ce(OH)3 to purple which characterized the oxidation of Ce(OH)3 to Ce(OH)4. Eventually, it 

became a light yellow suspension of CeO2. The resulting precipitate was filtrated, washed 

with deionized water, dried overnight at 100 ° C and calcined at specified temperature for 3 h 

in air.  

2.2.2. Supercritical water hydrothermal method 

The CeO2 powder has been synthesized with a continuous hydrothermal production process 

under supercritical conditions allowing a productivity of 10 g h
-1

. The key feature of this 

process is the tailor-made patented reactor.
58

 It is a counter-current flow reactor that allows 

the metallic salt precursor to be rapidly heated up to the desired temperature. 
59

 In the 

continuous hydrothermal experimental set-up reactive solution of Ce(NO3)3 0.05 M and 

demineralized water are fed to the reactor using high-pressure pumps. Pressure is regulated 

due to a back pressure regulator, located at the outlet and kept constant at 30 MPa in the 

whole apparatus. Demineralized water is preheated to a temperature higher than the expected 

temperature in the pre-heater keep up at 400 
o
C. Consequently, the three streams are then 

injected in the patented reactor made of Inconel 625. The residence time in the reactor 

depends on pump flow rates and has been fixed at 4 s. Once leaving the reactor, the 

suspension is rapidly quenched in a cold bath. Two filters made of 7 μ    d 2 μ  p      

stainless steel remove agglomerated nanoparticles. Then, the suspension is centrifuged and 
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washed with demineralized water under ultrasonication. The suspension is freeze-dried to 

keep well-dispersed nano-powder. Supercritical conditions lead to instantaneous formation of 

a large number of hydroxide nuclei, therefore short residence times are required to reduce the 

particle growth. Therefore, nano-powder is synthesized with a production rate of around 10 g 

h
-1

.  

2.2.3. Preparation of ceria-supported catalyst 

Preparation of ceria supported on SBA-15 mesoporous material 

 

CeO2 modified SBA-15 was prepared by the deposition-precipitation method. Calcined Si-

SBA-15 was dispersed in 150 ml of urea (0.372 M) aqueous solution. Under stirring 

conditions, an appropriate amount of cerium nitrate hexahydrate dissolved in deionized water 

was added to the above suspension. In the next step, the temperature of the suspension was 

raised to 70 
o
C and stirred for 5 h to enable slow decomposition of urea to ammonia giving 

rise to an increased pH and, consequently, a slow precipitation of metal precursors. In order to 

ensure complete precipitation, pH of the suspension was increased to 9 by adding aqueous 

ammonia with stirring continuing for an hour. Then, the solids were recovered by filtration 

and washed thoroughly with deionized water. Thereafter, the solids were dried overnight in an 

oven at 100 
o
C and calcined at 600 

o
C for 3 h in air. 

Preparation of ceria supported on MCM-41 and silica gel  

Ceria modification of MCM-41 and silica gel materials was carried out using evaporation 

impregnation method in a rotator evaporator. Cerium nitrate hexahydrate was used as a 

precursor. After modification, the catalysts were dried at 100 
o
C and calcined at 550 

o
C in a 

muffle oven. 

2.3. Catalyst characterisation 
 

2.3.1. Surface and structural analyses of catalysts (II, III, IV, V) 

The structural properties of ceria and ceria modified catalysts were investigated by X-ray 

powder d ff  ct    (XRD) ( h   p , X’ e t     M D)     g C Kα (40  V, 50  A)   d  t    

with 2Ө ranging from 23 ° to 83 ° at a scanning speed 0.04 °/3s.  

X-ray photoelectron spectroscopy (XPS) was used to determine the state of Ce. All XPS 

spectra were recorded with Kratos Axis Ultra DLD electron spectrometer. A monochromated 

A  Kα     ce  pe  ted  t 150 W, h b  d  e      te  w th   g et c  e  , p  v d  g    

analysis area of 0.3 x 0.7 mm
2
 and a charge neutralizer were used for the measurements. The 
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survey spectrum and high resolution spectra of Ce 3d, O 1s and C 1s photoelectron lines were 

collected at 160 eV and 20 eV pass energy, respectively. The binding energy (BE) scale was 

referenced to the C 1s component of aliphatic carbon, set at 285.0 eV. Processing of the 

spectra was accomplished with the Kratos software. Powder samples for XPS measurements 

were hand-pressed into a special powder holder (without any adhesive tape or other artificial 

binders). 

The electron microphotographs of the cerium oxide samples were taken by a LEO 912 

OMEGA energy-filtered transmission electron microscope by using 120 kV acceleration 

voltage. Scanning electron microscopy (SEM) analysis was conducted by Zeiss Leo 1530 

Gemini.  

2.3.2. Specific surface area of catalysts (II, III, IV, V) 

The specific surface area of the catalyst was determined by measuring the nitrogen 

adsorption-desorption isotherms (Sorptomatic 1900, Carlo Erba Instruments). Prior to the 

measurement, the samples were outgassed for 3 h at 150 
o
C to a residual pressure below 0.01 

Pa. The total surface area was calculated according to the B.E.T. (Brunauer-Emmett-Teller) 

equation.  

2.3.3. Basicity and acidity of catalysts (III, IV, V) 

Basicity of the catalysts was studied by performing temperature programme desorption of 

CO2 (CO2-TPD, Micromeritics Instrument AutoChem 290) using a conventional flow-through 

reactor with CO2 as a probe molecule. The catalyst was first dried under helium flow, 

followed by adsorption of CO2, flushing of physisorbed CO2 and temperature programmed 

desorption up to the temperature of 900 
o
C. The eluent from the reactor was analyzed by a 

thermal conductivity detector. Carbon dioxide calibration was performed by pulse injection of 

1 ml CO2 and compared with the actual amount of CO2 desorbed from the catalyst. 

The acidic properties of the catalysts were determined with infrared spectroscopy (ATI 

Mattson FTIR) using pyridine as a probe molecule. A thin, self supported wafer of the catalyst 

was pressed and then placed into the FTIR-cell. The cell was evacuated and the temperature 

was raised to 450 
o
C and kept constant for 1 h. Thereafter, the temperature was decreased to 

373 K and the background spectra of the sample were recorded. Pyridine was adsorbed on the 

sample for 30 min at 100 
o
C followed by desorption at 250, 350 and 450 

o
C for 1 h and the 

spectra of the sample were recorded in between every temperature ramp. The scanning was 

performed under vacuum at 100 
o
C. Spectral bands at 1545 cm

-1
 and at 1450 cm

-1
 were used 

to identify Brønsted (BAS) and Lewis (LAS) acid sites, respectively.  
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2.4. Activity testing 

 

All experiments were carried out in a laboratory scale stainless steel autoclave (Parr Inc) with 

an inner volume of 300 ml equipped with a stirrer and an electric heater. In a standard 

procedure a known amount of catalyst was introduced into the reactor followed by the 

addition of ethanol and butylene oxide. The reactor was purged and pressurized to 4.5 MPa 

with CO2 at room temperature. Subsequently, the reactor was heated and mechanically stirred 

constantly at the desired temperature during the reaction. After the reaction, the reactor was 

cooled to about 5 
o
C and depressurized.  

For the kinetic experiments, the autoclave setup was modified by addition of a sampling line 

made of stainless steel equipped with a system of valves at the inlet and outlet. The sample 

(ca. 100 µl) trapped in the sampling line was cooled and collected slowly in a glass tube. The 

products in the liquid phase were analyzed by gas chromatography (Agilent Technologies, 

6890N) using a capillary columns (HP-Wax 30 m x 250 µm x 0.25 µm and DB-Petro 100 m x 

250 μ  x 0.5 μ )   d the p  d ct     the g   ph  e     g   c p       c      (H -Plot Q + 

HP-Molsiv 5A 60 m x 530 µm x 33 µm) equipped with a flame ionization detector (FID). 

Reliability of the results has been confirmed by analysing each sample twice. The products 

were also indentified by means of GC-MS (Agilent Technologies, 6890N) using capillary 

column (DB-Petro 50 m x 200 µm x 0.5 µm). 
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3. Results and Discussion 

3.1. Thermodynamics of direct synthesis of diethyl carbonate (II) 

 

Thermodynamics constitutes a central branch of science that plays an important role in 

chemistry, physics, biology and engineering. It describes how the systems respond to the 

variation in their surroundings through the effects of heat, work and energy on the system. 

Thermodynamics allows to assess the spontaneity of each process by the Gibbs function (G) 

which combines enthalpy (H) and entropy (S) into a single value (Eq. (9)) and  determines if 

chemical reaction is thermodynamically possible.  

 

G (p,T) = H - TS                     (9) 

 

The understanding of the reaction thermodynamics of diethyl carbonate formation via direct 

route is, therefore, highly important in seeking of novel synthesis ideas both in academic 

investigations and practical applications.  

The thermodynamic data of various substances such as ethanol, carbon dioxide, DEC and 

water involved in the synthesis of DEC is tabulated in Table 2. 

 

Table 2. Thermodynamic data of various substances in the reaction (8).
60

 

Substance ∆f H
Ө 

(kJ/mol)  S
Ө 

(J/mol*K) Cp 
a
  (J/mol* K) 

DEC  -637.9 
b
 412.21 

b
152.1 

H2O  -241.8  188.8 33.6 

CO2  -393.5  213.8 37.1 

C2H5OH  -234.8  281.6 65.6 
a
 Cp is assumed independent of temperature at 273 - 473 K; 

b
 value as reported in [61] 

 

Hence, the enthalpy and the entropy of the reaction at 25 
o
C e t   ted f    the ∆Hf

Ө
 and S

Ө
 

values amounted to: 

 

∆rH
Ө

298 K = − 16.60  J/                         

ΔrS
Ө

298 K = − 175.99 J/   K 

 

Based on the obtained values free Gibbs energy can be calculated and is equal to ∆rG
Ө

298 K = 

+ 35.84 kJ/mol.  Thus, it can be concluded that the reaction is exothermic and does not occur 

spontaneously at room temperature, meaning that the reaction towards products formation is 
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not favoured likewise in the case of the synthesis of dimethyl carbonate from methanol and 

carbon dioxide. The relative pattern of the reaction heat with the temperature is expressed by 

the K  chh ff’    w (Eq. (10)), whereas Gibbs energy of the reaction, at different 

temperatures, can be given by Gibbs – Helmholtz equation (Eq. (12)). Integration of both 

sides of the equation (12) transforms it to equation (13)   d  eve    th t the v   e  f ∆Gf
Ө
 

increases with the reaction temperature. For instance, if the reaction temperature attains 100 

°C (373 K), ∆rG353 K
Ө
 amounts to 48.89 kJ/mol, clearly indicating that the increase in the 

temperature is disadvantageous to the formation of DEC.  

 

∆Hr
Ө
 = ∆rH298 K

Ө
 + ∆Cp(  − 298) = − 21.78 + 0.0174                                                          (10)                                             

f   ∆Cp:                                                   

    4.171.376.6526.331.152  xC p J/mol =  0.0174 kJ/mol               (11)    
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Considering carbon dioxide as an ideal gas, the Gibbs free energy can be also related to the 

pressure at constant temperature and written as follows: 

  

  dP
P

RT
dPVdPVVVdPGd ggr 








 1                  (14) 















P

P
RTGG rPr ln                   (15) 

 

Calculations on the basis of equation (15) indicate that the reaction transforms to a 

spontaneous one at 100 °C when the pressure of the reaction system exceeds 7.25 x 10
5
 MPa. 

However, such an enormous pressure is not technically feasible and synthesis cannot occur 

under conventional industrial conditions. Consequently, further engineering of the reaction 

employing chemical or physical means is needed in order to shift the equilibrium towards the 

formation of products. Moreover, as can be seen from Table 3, the thermodynamic limitations 

in the direct DEC synthesis exclude achieving a substantial amount of diethyl carbonate with 

increasing temperature. The equilibrium constant K was determined from the Gibbs energy 

according to Equation (16). 
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KRTG
o

Tr ln                    (16) 

where 
  

   2

2

52

2

COOHHC

OHDEC
K                                                                                                 (17) 

 

The formed amounts of DEC were calculated thereafter from Equation (17). 

 
Table 3. Thermodynamic properties of diethyl carbonate synthesis via direct route starting from 

ethanol and carbon dioxide. 
 

 

 

 

 

 

 

 

 

a
 at constant pressure (9.3 MPa) 

 

3.2. Effect of the dehydrating agent (II) 
 

DEC was not formed in the reaction carried out without the catalyst concluding that 

direct synthesis of diethyl carbonate requires a catalyst. The reactions performed over 

commercial cerium oxide in the absence of butylene oxide as a dehydrating agent resulted in 

low yields of DEC due to the establishment of the reaction equilibrium and thermodynamic 

limitations (Fig. 2). Selectivity of the process can be considered 100 % since no other by-

products were observed within the detection limits during the analysis of the liquid phase. 

T (K) 353 373 423 443 473 

ΔrGT
ο
 

(kJ/mol) 

45.44 48.90 57.47 60.84 65.89 

K 1.89 x 10
-7

 1.42 x 10
-7

 8.04 x 10
-8

 6.70 x 10
-8

 5.29 x 10
-8 

a
DEC 

(mmol) 

1.02 0.89 0.61 0.55 0.47 
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Figure 2. Product yields obtained over commercial cerium (IV) oxide catalyst. Conditions: 1g 

catalyst, 170 °C, 314 mmol of ethanol, 19 mmol of butylene oxide, 4.5 MPa initial CO2 pressure, 23 h.  

 

The performance of butylene oxide (1,2-epoxybutane) as a chemical water trap has been 

investigated.  The apparent advantages of this high molecular weight epoxide are lower 

toxicity and reactivity towards ethanol and carbon dioxide in comparison to ethylene and 

propylene oxides, respectively. The introduction of dehydrating agent to the reaction system 

led to 4-fold enhancement of DEC amount than that calculated under thermodynamic 

limitations (0.55 mmol) in the same reaction conditions and 9-fold enhancement in the 

comparison to DEC amount obtained without any water removal. This indicates that water 

produced during the reaction reacted in situ with butylene oxide, simultaneously, shifting the 

reaction equilibrium in favour of DEC formation and suppressing thermodynamic limitations.   

3.3. Kinetics and reaction network of DEC synthesis (II) 

 

Kinetic studies of diethyl carbonate synthesis starting from ethanol and CO2 have been 

carried out in the presence of butylene oxide over commercial CeO2 to facilitate better 

understanding of the reaction network. A typical concentration curve of DEC reaction 

synthesis is depicted in Fig 3a. 



19 
 

0 4 8 12 16 20 24

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 4 8 12 16 20 24

0.0215

0.0220

0.0225

0.0230

0.0235

0.0240

0.0245

0.0250

C
o

n
c
e

n
tr

a
ti
o

n
 o

f 
e

th
a

n
o

l 
(m

o
l/
l 
o

f 
d

il
u

e
n

t)

Time (h)

Concentration profile of ethanol

C
o

n
c
e

n
tr

a
ti
o

n
 (

m
o

l/
l)

Time (h)

 DEC

 1,2-butylene carbonate

 1,2-butanediol

 2-ethoxy-1-butanol

 1-ethoxy-2-butanol

(a)

 

7 8 9 10 11 12

1

2

3

4

5

6

S
e

le
c
ti
v
it
y
 t
o

 D
E

C
 (

%
)

Conversion of ethanol (%)

(b)

 

Figure 3:  a) Concentration profiles of various species obtained during the synthesis of DEC from 

ethanol and carbon dioxide using butylene oxide as a dehydrating agent. b) Selectivity to DEC based 

on ethanol plotted against conversion of ethanol. Conditions: 0.5 g catalyst, 170 °C, 4.5 MPa initial 

CO2 pressure, 314 mmol ethanol, 19 mmol butylene oxide. 

 

The conversions of butylene oxide and ethanol were 98.8 % and 12.2 %, respectively.  The 

yield of diethyl carbonate was 1 mmol after 24 h of reaction time at 170 °C and 4.5 MPa of 

initial CO2 pressure. While the yield of DEC and conversion of ethanol considerably 

increased due to the introduction of butylene oxide into the reaction system, the selectivity of 

ethanol towards DEC decreased compared to the reaction carried out without water scavenger.   

It can be seen that 1,2-butanediol generated from the reaction between butylene oxide and 

water is the most dominating product after 10 h of reaction. Moreover, butylene oxide reacts 

with ethanol and carbon dioxide resulting in the formation of ethoxy-species (1-ethoxy-2-
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butanol and 2-ethoxy-1-butanol) and cyclic butylene carbonate, respectively. Since the 

selectivity to DEC increases with increasing ethanol conversion (Fig. 3b) and the amount of 

butylene carbonate declines with time it can be concluded that diethyl carbonate synthesis 

proceeds via consecutive route including the cyclic butylene carbonate as an intermediate 

(pathway II, Fig. 4). First, butylene oxide reacts with CO2 to produce the intermediate 

butylene carbonate which subsequently undergoes trans-esterification with ethanol to yield 

diethyl carbonate accompanied with 1,2-butanediol. Most probably this is the primary 

reaction that leads to DEC formation and not the reaction between ethanol and CO2. It should 

also be mentioned that the high molecular weight compounds were noticeable during the 

analysis of the reaction mixture. It can be presumed that these compounds are formed 

simultaneously from dehydration of alcohols e.g. ethanol and 1,2-butanediol.  The kinetic 

results showed also that the amount of 1,2-butanediol decreases with time. Probably, the 

reason for that is the formation of dibutylene glycol which was detected during the analysis by 

means of GC-MS. The ether is formed via dehydration of two molecules of 1,2-butanediol 

accompanied with water release. 
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Figure 4. The reaction pathway in the synthesis of diethyl carbonate from ethanol and CO2 using 

butylene oxide as the dehydrating agent. Notation: 1, DEC; 2, butylene oxide; 3, butylene carbonate; 

4, 1,2-butanediol; 5, 1-ethoxy-2-butanol; 6, 2-ethoxy-1-butanol; 7, dibutylene glycol 
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3.4. In-house preparation and characterization of ceria and ceria-
supported catalysts  
 

3.4.1. Influence of the synthesis parameters and synthesis method on physico-
chemical properties of cerium oxide (IV, V) 

 

Loss of catalytic activity during the reaction is one of the major issues related to the 

operation of heterogeneous catalysis. A number of different mechanisms, both of chemical 

and physical nature can cause catalyst deactivation. The most common ones are catalyst 

poisoning, coking or fouling, sintering and phase transformation. It has been shown that 

commercial cerium oxide is not stable in the synthesis of DMC via direct methanol 

carboxylation and significantly losses catalytic activity already after the first reaction cycle.
49

 

The reasons for that was the reduction of specific surface area of CeO2 during the catalysis as 

well as involvement of surface of CeO2 in red-ox process with Ce
4+

 reduction to Ce
3+

 and 

concomitant methanol oxidation. Ceria synthesized applying the precipitation method, 

however, preserved its stability over a numerous reaction cycles yielding equal amounts of 

DMC.  

A scientific insight to the synthesis of the catalysts via precipitation route was provided 

by Marcilly in 1984.
62

 The method is of significant interest since it combines the advantages 

of generating very pure material in an inexpensive manner as well as possesses high 

flexibility of the process with respect to the final product quality. Nevertheless, up to now 

only minor attention has been paid to the influence of the synthesis parameters during the 

precipitation on the physico-chemical properties of obtained cerium oxide. It is known that 

even subtle variations in the preparative details may result in appreciable alteration in the 

properties of the final catalyst. Thus, the effect of synthesis time, calcination temperature and 

pH of the solution on characteristics and stability of CeO2 prepared via homogeneous 

precipitation was examined. It should also be noted that CeO2 samples were prepared by 

varying systematically one variable at a time while maintaining all the others constant. Table 

4 summarises all parameter values that have been varied during the preparation of ceria 

catalysts.  Finally, hydrothermal synthesis of CeO2 using supercritical water as a medium has 

also been applied to investigate influence of the synthesis method on resulting material.  
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Table 4. Parameter values used during the synthesis of CeO2 catalysts via room temperature 

precipitation technique. 

Catalyst Synthesis parameters 

 Synthesis time (h) Calcination temperature 

(
o
C) 

pH of the solution 

 0.5 24 50 90 144 400 600 800 9 10 11 

CeO2─0.5 h ×      ×   ×  

CeO2─24 h  ×     ×   ×  

CeO2─50 h   ×    ×   ×  

CeO2─90 h    ×   ×   ×  

CeO2─144 h     ×  ×   ×  

CeO2─400 
o
C   ×   ×    ×  

CeO2─600 
o
C   ×    ×   ×  

CeO2─800 
o
C   ×     ×  ×  

CeO2─pH 9   ×    ×  ×   

CeO2─pH 10   ×    ×   ×  

CeO2─pH 11   ×    ×    × 

 

3.4.1.1. Synthesis time 

 A series of CeO2 samples were synthesized at room temperature at pH of precipitation 

equal to 10 in a range of synthesis time between 0.5 h to 144 h and calcined at 600 
o
C in air 

for 3 h. The obtained XRD patterns and TEM images are presented in Fig. 5, where d denotes 

the average particle size. The XRD results show in all cases the phase pure product consisted 

of well-crystallized CeO2 exhibiting in accordance with the literature
63,64 

two characteristic 

XRD peaks for the cubic fluorite phase at 2 theta 28.6 and 33 degrees. The particle size 

distribution histograms exhibit maxima for all samples, however, increase of the synthesis 

time of CeO2 causes a slight decrease of the average particle size and the width of histograms 

become narrower in the range of 10 to 20 nm (Fig. 5e). 
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(a)  CeO2 ─ 0.5 h 
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(b) CeO2 ─ 24 h 
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(c) CeO2 ─ 50 h 
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(d) CeO2 ─ 90 h 
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(e) CeO2 ─ 144 h 
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Figure 5.  TEM images and XRD patterns of the CeO2 catalysts prepared within different synthesis 

time: (a) CeO2─0.5 h; (b) Ce 2─24 h; (c) Ce 2─50 h; (d) Ce 2─90 h; (e) Ce 2─144 h 

 

In heterogeneous catalysis high specific surface area of the produced catalyst is an essential 

requirement for the successful implementation in commercial applications. From Table 5 it 

can observed that prolonged synthesis time resulted in high specific surface area cerium oxide 

for samples prepared over 50 h, 90 h and 144 h, respectively. Pore size distribution of 

prepared powders revealed that the pore volume of CeO2 increased substantially with the 

increase of the synthesis time. Additionally, preliminary results of the cluster size distribution 

obtained for CeO2─0.5 h and CeO2─144 h c t    t   eve  ed 3-fold enhancement of the 

cluster size with the increase of the crystallization time. Thus, it can be speculated that high 

specific surface area of cerium oxide prepared at longer time is attributed to the increase of 

the specific pore volume of the catalysts rather than to the decrease of their particle size.  

 

Table 5. Specific surface area and basicity of cerium oxide prepared varying synthesis time. 

Catalyst Basic sites (mmol/g) Specific surface 

area (m
2
/g) 

 Weak 

(320 K−500 K) 

Medium 

(500 K−750 K) 

Strong 

(> 750 K) 

Total 

basicity 
 

CeO2 -0.5 h 0.6 0.9 1.9 3.4 14 

CeO2- 24 h 1.6 1.9 3.8 7.3 69 

CeO2- 50 h 2.1 2.2 4.8 9.1 113 

CeO2- 90 h 1.9 2.1 3.6 7.6 123 

CeO2- 144 h 1.6 1.9 2.6 6.1 126 

 

As already discussed above based on kinetic studies, the primary route of diethyl carbonate 

synthesis occurs via trans-esterification of butylene carbonate with ethanol (Fig. 4).  It has 

also been reported in the open literature
65-67

 that solid base catalysts are preferred over acid 
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catalysts owning to the high yields of linear carbonate produced and reduction of side 

reactions.  Therefore, during this work special consideration has been paid on the basicity of 

in-house synthesized cerium oxide. The amount of basic sites present on the surface of CeO2 

prepared varying synthesis time was determined by means of temperature programme 

desorption (TPD) using carbon dioxide as a probe molecule and results are tabulated in Table 

5. The amount of weak, medium and strong basic sites was estimated from the area under 

their TPD curves for the temperature range of 320 K – 500 K, 500 K – 750 K and > 750 K, 

respectively. The total amount of CO2 desorption from CeO2 with 0.5 h synthesis time is very 

low indicating a lack of basic sites on its surface. This can be ascribed to very low specific 

surface area of this material. As expected, increase of the specific surface area of cerium 

oxide prepared within prolonged synthesis time (24 h, 50 h, 90 h and 144 h) is accompanied 

with the enlargement of the basicity of the materials with respect to CeO2−0.5 h. It should be 

mentioned that pH of the precipitate was manually adjusted throughout the cerium oxide 

preparation and during the long-term synthesis a number of pH declines were observed which 

could, in turn, have an effect on the surface basicity of the cerium oxide catalysts prepared in 

90 h and 144 h synthesis time. Among all prepared samples, CeO2−50 h exhibited the highest 

amount of total basic sites, hence 50 h was chosen as an optimum synthesis time of cerium 

oxide in this group of the prepared materials.  

Another important characteristics of each catalyst is its surface chemistry. Therefore, in order 

to determine the surface chemical state of Ce in cerium oxide samples synthesized by varying 

the synthesis time, X-ray photoelectron spectroscopy (XPS) analysis was conducted. The Ce 

3d spectra collected for CeO2─0.5 h   d Ce 2─144 h    p e    e  h w     Fig. 6. Similar 

spectra have been observed for cerium oxide samples with 24 h, 50 h and 90 h of synthesis 

time as well as for CeO2 prepared at different pH of precipitation and calcined at various 

temperatures. 
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Figure 6. XPS analysis spectra Ce 3d of CeO2─0.5 h   d Ce 2─144 h    p e . 

 

The labels follow the convention established in ref. [68] where V and U indicate the spin-orbit 

coupling 3d5/2 and 3d3/2, respectively. The satellite peak U
’’’ 

associated to the Ce 3d3/2 is a 

characteristic of the presence of tetravalent Ce (Ce
4+

 ions) in ceria compounds which is in 

good agreement with other literature reports.
69-71

 The highest binding energy peaks, U
’’’

 and 

V
’’’

 located at about 915 eV and 895 eV, respectively, are the result of a Ce 3d
9
 4f

0
 O 2p

6
 final 

state. The peaks with the lowest binding energy U, V, U
’’
, V

’’
 located at about 898 eV, 878 

eV, 904 eV and 885 eV, respectively, can be ascribed to Ce 3d
9
4f

2 
O 2p

4
 and Ce 3d

9
4f

1
 O 2p

5
 

final states. 

3.4.1.2. Calcination temperature 

CeO2 powder with 50 h synthesis time was calcined at three different temperatures 400 

o
C, 600 

o
C and 800 

o
C for 3 h in air. Analogously to the literature

72,73
 increase of the 

calcination temperature enhanced the crystallinity which was evidenced by the substantial 

growth of the crystal size of cerium oxide calcined at 600 
o
C and 800 

o
C (Table 6). 

Furthermore, it can be noticed that the average crystal size obtained by XRD is in good 

agreement with TEM particle size which indicates that the presence of agglomerates in CeO2 

particles can be neglected. Cerium oxide calcined at 400 
o
C exhibited the highest total amount 

of basic sites on its surface, whereas for CeO2─600 
o
C and CeO2─800 

o
C  the total amount of 



27 
 

basic sites notably declined. It can be attributed to the decrease of the specific surface area of 

cerium oxide during the calcination at higher temperatures. 

 

Table 6. Specific surface area, crystal sizes and total amount of basic sites of cerium oxide calcined at 

various temperatures. 

Catalyst Specific surface 

area BET (m
2
/g) 

Particle size 

TEM (nm) 

Crystal size 

XRD (nm) 

Total basicity 

(mmol/g) 

CeO2─400 
o
C 143 10 14 12 

CeO2─600 
o
C 113 19 22 9 

CeO2─800 
o
C 103 33 36 4 

 

3.4.1.3. The pH of the reaction solution 

 

The synthesis of cerium oxide at different pH of alkaline solution such as pH 9, 10 and 

11 within 50 h of synthesis time was performed. Afterwards, the materials underwent 

calcination at 600 
o
C for 3 h. No significant difference in morphology of the prepared cerium 

oxide catalysts with varying solution pH was observed and spherical crystals of CeO2 were 

obtained. All cerium oxide materials prepared within this series exhibited high specific 

surface area (Table 7). Precipitation carried out at pH 11 resulted in cerium oxide possessing 

the highest specific surface area, 139 m
2
/g, among all CeO2 catalysts prepared within this 

work.   

 

Table 7. Specific surface area, total amount of Brønsted and Lewis acid sites and total amount of basic 

sites of cerium oxide powders prepared at different pH of the reaction solution.  

Catalyst Specific 

surface area 

(m
2
/g) 

Total Brønsted acid 

sites (µmol/g) 

Total Lewis acid 

sites (µmol/g) 

Total basicity 

(mmol/g) 

CeO2─pH 9 123 110 14 6 

CeO2─pH 10 113 n.d.
 

n.d. 9 

CeO2─pH 11 139 84 17 8 

n.d. - not determined 

 

It is well-recognized that both acid and basic sites are simultaneously present on the solid 

surfaces which consist of coordinatively unsaturated cations (M
n+

), oxide (O
2-

) ions and 

residual OH-groups that often remain even after the surface purification. The amount and 

nature of basic and acid sites of cerium oxide synthesized under different pH was 

investigated, respectively, by means of CO2-TPD and Fourier transform infrared spectroscopy 

(FTIR) using pyridine as a probe molecule. As previously, weak, medium and strong type of 
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basic sites were determined. The total amount of basic sites passes through a maximum at pH 

10 and slightly decreases for CeO2 prepared at pH 11 of the precipitate (Table 7). Concerning 

the analysis of surface acid sites, coordination of pyridine molecules to the surface and 

formation of Lewis acid sites is the indication of exposure of coordinatively unsaturated metal 

atoms of the surface. The protonation of pyridine into pyridinium ions results, in turn, in the 

creation of Brønsted acid sites which are indicative of the availability of the surface OH-

groups and coordinated H2O molecules. The comparison of two powders prepared under final 

pH 9 and pH 11 of the reaction solution shows a very weak acidic character of cerium oxide 

in agreement with other literature reports.
74,75 

The total amount of Brønsted acid sites 

decreased with an increase in the pH obviously due to a higher concentration of the hydroxyl 

groups present on the surface of the material synthesized at pH 11. The Lewis acidity, in turn, 

appeared to be weaker than the Brønsted as also reported elsewhere.
76

 

3.4.1.4. Effect of the synthesis method 

 

The continuous hydrothermal synthesis method using supercritical water as a medium 

was employed to prepare cerium oxide. Supercritical water allows controlling of the crystal 

phase, morphology and particle size by variation of solvent properties such as density of water 

and dielectric constant with a change of pressure and temperature. Lower density and 

dielectric constant of water promotes the nucleation and crystal growth of inorganic 

nanoparticles.
77,78

  It gives as well a beneficial reaction field for particle formation due to 

enhancement of the reaction rate and large super-saturation.  

Hydrothermal synthesis mechanism consists of two steps of metal oxide generation from 

metal nitrate solution. First hydrated metal ions are hydrolyzed to metal hydroxide (Eq. (18)) 

and afterwards through a dehydration step metal hydroxide proceeds to precipitate as metal 

oxide (Eq.(19)). 

 

                      (18) 

                                      (19)   

Thus, it was thought to be valuable to compare the morphology and surface properties of 

CeO2 catalysts produced via the hydrothermal method and the conventional precipitation 

technique. Among CeO2 powders synthesized by homogeneous precipitation the one with the 

highest specific surface area has been selected as a reference for the comparison. SEM and 
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TEM images as well as particle size distributions of cerium oxide materials are shown in

Figure 7.  
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Figure 7. Comparison of the morphology of cerium oxide prepared using various methods.(a) SEM 

image, (b) TEM image and particle size distribution of CeO2 prepared via hydrothermal method; (c) 

SEM image, (d) TEM image and particle size distribution of CeO2 prepared via precipitation method. 

 

A distinct difference in the morphology and shape of crystals can be observed from the 

comparison of two samples obtained applying various synthesis methods. Cerium oxide 

prepared by continuous hydrothermal method exhibits particles with well-developed crystal 

faces for non-spherical octahedral-like shapes (Fig. 7a) whereas CeO2 prepared by means of 

precipitation technique consists of uniform spherical particles (Fig. 7c). The particle size 

distribution histograms exhibit maxima in both cases (Fig. 7b and d). Nevertheless, it can be 

clearly seen that cerium oxide synthesized via precipitation represents a more homogeneous 

material than the corresponding one prepared on hydrothermal way since the width of the 

histogram is narrower and majority of the particles are in a range of 10 to 20 nm. Besides, 

crystallite sizes of CeO2 catalysts determined by X-ray broadening according to the Scherrer 

equation confirm the presence of larger crystals in hydrothermally obtained cerium oxide 

(Table 8). As expected, consequently this fact had a direct effect on the specific surface area 

of the catalyst, hence CeO2 prepared via hydrothermal synthesis shows a very low surface 

area. Analogously, basicity of the catalyst follows the same trend and subsequently a low 

amount of basic sites can be found on its surface. 

 

Table 8. Specific surface area, crystal size and basicity of cerium oxide catalysts prepared by various 

synthesis methods. 

Catalyst Total basicity 

(mmol/g) 

Crystal size 

determined by 

XRD (nm) 

Specific surface 

area (m
2
/g) 

CeO2 (hydrothermal 

method) 
1.5 130 6 

CeO2 (precipitation 

method) 
8 18 139 
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3.4.2. Physico-chemical properties of ceria-supported catalysts (III, V) 

 

Supported catalysts constitute a widespread type of heterogeneous catalysts wherein a 

highly dispersed component is located on the surface of a porous support. Particularly in 

terms of costly materials such as noble metals it is an important approach since small particles 

represent a larger surface-to-volume ratio and therefore better utilization of the metal in terms 

of catalytic performance can be achieved. Following this trail the interest has arisen in 

dispersing ceria onto high surface area support in order to combine its catalytic properties 

with high surface area and thermo-mechanical stability of a support. Furthermore, the aim was 

to establish the role of the base metal on the surface characteristics of a support. Mesoporous 

silicas MCM-41 and SBA-15 as well as silica gel powder (SiO2) were used as the supports.  

16 and 32 wt % ceria were deposited over MCM-41 and SiO2 whereas SBA-15 was modified 

with 20 wt % ceria. SEM images of as-prepared materials are shown in Figure 8. Relatively 

well-dispersed ceria can be observed on 16 wt % CeO2-MCM-41 material in contrast to its 32 

wt % counterpart where no clear ceria particles can be distinguished and certain destruction 

likely due to high loading of CeO2 is apparent. In turn, ceria supported on SiO2 in both cases 

exhibits uniform morphology. Long tube shaped particles of SBA-15 can be seen in Figure 

8e, however turned to be very challenging to differentiate separate cerium oxide particles 

although EDX analysis (Fig. 8f) results confirmed the presence of ceria in 20 wt % CeO2-

SBA-15. Most probably cerium oxide particles are very small and well dispersed or 

alternatively locating inside the SBA-15 matrix. It is n tew  th , Ce−  b  d  e gth       ge  

th   th t  f S −  wh ch may apply incorporation of cerium ions into silicate framework and 

creation of cerium oxide high-disparity species on the surface of SBA-15.
79

    

 

(a)                                                                             (b)  
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(c) (d) 

(e)         (f) 

Figure 8. SEM images of ceria-supported catalysts. (a) 16 wt % CeO2-MCM-41, (b) 32 wt % CeO2-

MCM-41, (c) 16 wt % CeO2-SiO2, (d) 32 wt % CeO2-SiO2, (e) 20 wt % CeO2-SBA-15, (f) EDX 

analysis of 20 wt % CeO2-SBA-15   

X-ray powder diffraction analysis conducted on ceria-supported catalysts provided

information on crystallinity of cerium oxide deposited on the porous supports (Fig. 9). The 

major peak of MCM-41 mesoporous material at 2 theta value of 0.2 to 11 degrees together 

with characteristic for ceria cubic structure peaks at 2 theta values of 28.6 and 33 degrees 
80

are observable for 16 wt % CeO2-MCM-41 catalyst. For 32 wt % CeO2-MCM-41 material, in 

turn, ceria was not observable most likely due to partial distortion of the MCM-41

mesoporous structure as already seen in the SEM image. 
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Figure 9. XRD patterns of ceria-supported catalysts. (a) 16 wt % CeO2-MCM-41 and 32 wt % CeO2-

MCM-41; (b) SiO2 pristine, 16 wt % CeO2-SiO2 and 32 wt % CeO2-SiO2; (c) SBA-15 pristine; (d) 20 

wt% CeO2-SBA-15 

Diffraction patterns specific to cubic CeO2 crystalline phase can be identified in both ceria-

SiO2 catalysts. The diffraction intensities of 16 wt % CeO2-SiO2 and 32 wt % CeO2-SiO2 are 

similar indicating comparable average crystal size and/or crystallinity of samples. In addition,

a broad peak of pure silica at around 2 theta value 23 degree confirms an amorphous character 

of SiO2 support. It can be noticed that silica peak intensity of as-synthesized composite 

particles is much weaker than that of the pure SiO2. In correspondence to the literature this is 

because SiO2 particles may be well coated with ceria and the outer CeO2 particles may 

prevent the diffraction of inner SiO2 to some degree.
81

  XRD pattern of pure SBA-15 (Fig. 9c)

shows the diffraction peaks characteristic for p6mm hexagonal lattice symmetry of SBA-15 at 

2 theta values 0.99, 1.63 and 1.86 degree confirming ordered mesoporous structure of SBA-

15.
80,82

  It can be seen from Figure 9d that mesoporous structure of SBA-15 is retained upon 

deposition of ceria, however, cerium oxide peaks are not visible in XRD pattern of 20 wt% 
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CeO2-SBA-15. Nonetheless, as mentioned above the presence of ceria  was confirmed by 

EDX analysis as well as indirectly shown by the decrease of the specific surface area of 

CeO2-SBA-15 compared to that of parent material, since the BET specific surface area of pure 

SBA-15 material was 845 m
2
/g  and it dropped after ceria loading to 598 m

2
/g.  

The temperature programmed desorption profiles of CO2 for the supported-ceria catalysts are 

depicted in Figure 10 and quantified in Table 9. As previously, three types of basic sites can 

be differentiated depending on the strength of carbon dioxide bonding to the surface of the 

catalysts.  
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Figure 10. CO2-TPD profiles of ceria-supported catalysts.  

 

It can be seen from Figure 10a that the total amount of CO2 desorption from H-MCM-41 is 

very low, indicating the lack of basic sites on its surface. Likewise SiO2 exhibited low total 

alkalinity. The reason for higher total amount of basic sites of pure H-MCM-41 comparing to 

SiO2 is undoubtedly notable variation in the specific surface area of these materials (Table 9). 
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Table 9. Specific surface area and total basicity of the ceria-supported catalysts. 

Catalyst Specific surface 

area (m
2
/g) 

Total basicity 

(mmol/g) 

H-MCM-41 904 1.3 

16 wt% CeO2-MCM-41 852 16 

32 wt% CeO2-MCM-41 384 2.5 

SiO2 389 0.7 

16 wt% CeO2-SiO2 325 2.9 

32 wt% CeO2-SiO2 211 2.2 

20 wt% CeO2-SBA-15 598 4.4 

 

Incorporation of ceria into MCM-41 and SiO2 supports resulted in the considerable increase 

of the total basicity of carrier materials. Noteworthy, 32 wt % CeO2-MCM-41 showed much 

lower amount of basic sites than 16 wt % CeO2-MCM-41 most probably, as discussed above, 

due to high ceria loading.  It has been reported that when La2O3 loading on mesoporous Si-

MCM-41 was above 10 wt % the specific surface area decreased followed by the decrease in 

the basicity of the material. 
83

 The same trend can be observed in the case of CeO2 supported 

on silica gel powder where 32 wt % loading of ceria resulted in lowering of the surface area 

and alkalinity of the catalyst. The second highest basicity among this serious of ceria based 

catalysts is represented by 20 wt % CeO2-SBA-15. From CO2-TPD profile (Fig. 10c) the 

occurrence of medium and strong basic sites with the lack of weak strength basicity is 

apparent. XPS analysis was performed in order to obtain additional information about the 

structural properties of cerium oxide deposited on silicate supports (Figure 11). The results 

confirmed presence of Ce
4+

 ions alone in 20 wt % CeO2-SBA-15 and concurrently the 

majority of tetravalent Ce ions (79 %) was observed in 16 wt % CeO2-SiO2. In ceria modified 

MCM-41 mesoporous materials, 66 % of trivalent Ce was determined in 32 wt % CeO2-

MCM-41 and 46 % in its 16 wt % counterpart. The presence of only Ce 
4+

 in SBA-15 

supported ceria may be attributed to the thicker pore walls and larger pore size of SBA-15 in 

comparison to MCM-41.
84
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Figure 11. XPS analysis spectra Ce 3d of ceria modified MCM-41 catalysts (a) and 16 wt % CeO2-

SiO2 and 20 wt % CeO2-SBA-15 (b) samples.  

 

3.5. Comparison of the catalytic activities of ceria and ceria-
supported catalysts  
 

Catalytic properties of in-house synthesized ceria and ceria-modified silica catalysts 

have been evaluated in the synthesis of diethyl carbonate starting from inexpensive and 

renewable resources CO2 and ethanol with the aid of butylene oxide as a water trap. It is 

worth to mention that no research on the influence of the synthesis method and preparation 

parameters during CeO2 synthesis on its catalytic properties in DEC formation has been found 

in the open literature. Moreover, ceria-supported on porous MCM-41, SBA-15 and silica gel 

catalysts with varied ceria loading were applied for the first time in CO2 transformation to 

diethyl carbonate.  

3.5.1. Influence of the synthesis parameters and synthesis method on catalytic 
activity of cerium oxide (IV, V) 

 

Appreciable variations of CeO2 catalytic properties were observed upon changes of the 

synthesis time, calcination temperature and pH of the media (Fig. 12). As already described 

above, the basicity of the catalyst seems to have a straightforward effect on the catalytic 
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activity of the material. Moreover, tuning the catalyst properties towards an enhancement of 

its basicity could be a key for the increase of diethyl carbonate yield and selectivity.  

Figure 12 shows the dependence of CeO2 catalytic activity and the amount of basic sites as a 

function of the selected synthesis parameter.  
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Figure 12.  Diethyl carbonate yield as a function of cerium oxide preparation variables (a) synthesis 

time, (b) calcination temperature, (c) pH of the reaction solution. Reaction conditions: 1 g CeO2 

catalyst, 4.5 MPa initial CO2 pressure, 314 mmol ethanol, 19 mmol butylene oxide, 25 h, 180 
o
C, ca. 

700 rpm. 

 

CeO2 prepared within 0.5 h demonstrated the lowest activity towards DEC among ceria 

catalysts prepared via homogeneous precipitation which can be attributed to the very low 

specific surface area (Table 5, Section 3.4.1.1.) of the material. Concurrently, as can be seen 

from Fig. 12a surface basicity of CeO2─0.5 h    the   we t c  pared to other powders 

synthesized within this series which subsequently had an impact on its low catalytic activity. 

Prolonged synthesis time of CeO2 yielded in the enhanced amount of DEC produced due to 

the enlargement of the catalyst basicity. The reaction performed over cerium oxide prepared 

within 50 h resulted in the highest yield of DEC formed. It can be noted that CeO2−50 h 
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exhibits the highest number of basic sites present on its surface that are the active sites of 

DEC synthesis. Thereafter, a slight decline can be observed for CeO2─90 h   d Ce 2─144 h, 

respectively. The reason of such behaviour can be explained by the decrease of the amount of 

basic sites in comparison to CeO2─50 h. In accordance to the literature,
49,85

 an increase in the 

calcination temperature (Fig. 12b) initially resulted in the increased amount of diethyl 

carbonate formed followed by a distinct decrease of DEC yield for the catalyst calcined at 800 

o
C. The obvious cause of catalytic activity loss for CeO2−800 

o
C was the decline in the 

number of basic sites with the increase of the calcination temperature. Similarly, noticeable 

differences in cerium oxide catalytic activity could be seen for the catalysts prepared under 

different pH of the reaction solution (Fig. 12c). The amount of DEC increased with the 

increase of the reaction pH, eventually resulting in the highest yield of DEC (2 mmol) 

obtained over CeO2─pH 11  t reaction temperature 180 
o
C, 9 MPa of total final pressure and 

25 h reaction time. The conversion of ethanol was 25 %. Despite a slightly lower amount of 

basic sites present on CeO2−pH 11 surface in comparison to CeO2−pH 10 catalyst, catalytic 

activity of CeO2─pH 11 was high which can be evidently attributed to the uncommon for 

cerium oxide high specific surface area (139 m
2
/g). No substantial change in the selectivity of 

ethanol was observed upon variation of ceria properties applying different synthesis 

parameters. It has been reported that modification of zirconium oxide with KCl and K2CO3 

improved selectivity of methanol conversion towards dimethyl carbonate in one-pot synthesis 

starting from menthol, CO2 and butylene oxide.
55,86

  Therefore, addition of promoters to 

cerium oxide could be considered as a subsequent approach in diethyl carbonate synthesis for 

achieving high DEC selectivity. 

Stability of each heterogeneous catalyst is a crucial characteristic that has a direct effect on its 

successful implementation. As discussed above, it has been proven that the catalytic 

performance of a commercial cerium oxide substantially declines already after the first 

reaction cycle. Hence, stability tests of the best performing CeO2─pH 11 we e c  d cted.  he 

catalyst was recovered by filtration, dried at room temperature and reused in a new reaction 

system fed with anhydrous ethanol. In two consecutive runs the amount of diethyl carbonate 

produced was the same as over fresh CeO2─pH 11 meaning that the catalyst can be efficiently 

recycled preserving its catalytic activity. Moreover, prolonged reaction time up to 94 h did not 

reveal any catalyst deactivation since the yield of DEC continuously increased throughout the 

experiment. 

Influence of the synthesis method on the catalytic activity of cerium oxide was evaluated 

based on CeO2 prepared applying continuous hydrothermal synthesis using supercritical 
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water. As expected, a low specific surface area and basicity of the catalyst (Table 8, Section 

3.4.1.4.) affected its catalytic performance and only 0.3 mmol of DEC was generated under 

180 
o
C, 25 h and 9 MPa of the total final pressure. The conversion of ethanol was 10 %.  This 

implies that hydrothermally prepared CeO2 yielded merely 15 % of DEC which was obtained 

using the precipitated catalyst. 

3.5.2. Catalytic activities of ceria-supported catalysts (V) 

 

Application of the parent mesoporous material MCM-41 and silica gel did not exhibit 

any catalytic activity towards DEC indicating a lack of active sites necessary for its 

generation and emphasising importance of these materials to be functionalized mostly as 

supports in the heterogeneous catalysis. Surface modification of mesoporous silicas and silica 

gel with cerium oxide resulted in creation of active sites for synthesis of the desired product 

and different catalytic properties of the catalysts could be observed (Fig. 13). Catalytic tests 

carried out over 32 wt % CeO2-MCM-41 and 32 wt % CeO2-SiO2 yielded the least amount of 

DEC 0.06 and 0.08 mmol per mmol of cerium oxide, respectively. Presumably, the reason for 

that is the high ceria loading which consequently led to the decrease of specific surface area 

and basicity of the catalysts and in the case of 32 wt % CeO2-MCM-41 to certain destruction 

of the structure of MCM-41 composite material. In turn, 16 wt % CeO2-MCM-41 and 16 wt 

% CeO2-SiO2 showed higher catalytic activity than their counterparts with 32 wt % CeO2 

loading and the latter one appeared to be the second most active after 20 wt % CeO2-SBA-15 

among all ceria-supported catalysts.  
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Figure 13. Comparison of catalytic activities of ceria-supported catalysts in diethyl carbonate 

synthesis. Reaction condition: 1 g CeO2 catalyst, 4.5 MPa initial CO2 pressure, 314 mmol ethanol, 

19 mmol butylene oxide, 25 h, 180 
o
C, ca. 700 rpm. 

*
For ceria-supported on MCM-41 catalysts 

reaction temperature 170 
o
C and reaction time 23 h. 
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Improved catalytic performance of 20 wt % ceria immobilized on mesoporous SBA-15 

comparing to 16 wt % ceria supported on silica gel is obviously due to higher ceria loading on 

SBA-15 as well as greater specific surface area and basicity of the catalyst (Table 9, Section 

3.4.2.). On the other hand, although 16 wt % CeO2-MCM-41 possesses 3.6 times higher 

amount of basic sites and over 1.4 times higher specific surface area than 20 wt % CeO2-

SBA-15 the amount of DEC produced is lower than over ceria-supported on SBA-15. This 

demonstrates that both basicity and dispersion of ceria on the support are very important 

factors applying this type of materials in one-pot synthesis of DEC starting from ethanol, CO2 

and butylene oxide. The average crystal size of 16 wt % ceria deposited onto MCM-41 

surface determined from the Scherrer's formula was 2.7 nm. Therefore, most probably 

particles of this size were unable to fit into the pores of MCM-41, which have average pore 

diameter 1.8-2 nm.
 87

 This implies that majority of cerium oxide must be located on the outer 

surface of the mesoporous silica support and as can be seen from Figure 8a agglomerating in a 

variable size aggregates. Instead, for 20 wt % CeO2-SBA-15 no indication for the presence of 

ceria in SEM and TEM images as well as no evidence of crystalline CeO2 in XRD analysis 

suggests that ceria is well dispersed over the support surface which accordingly might have an 

influence on high catalytic activity of the material. Furthermore, comparison of 20 wt % 

CeO2-SBA-15 and the best performing CeO2 catalyst prepared applying the precipitation 

technique shows that CeO2─pH 11 produces 0.34 mmol of diethyl carbonate per mmol of 

CeO2 which constitutes to 18 % more DEC formed than over 20 wt % CeO2-SBA-15 under 

the same reaction conditions.  This implies that SBA-15 modified with cerium oxide has a 

great potential to be implemented as a highly active catalyst in the one-pot synthesis of DEC, 

thus further studies on this material ceria material should be carried out. 
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4. Conclusions 

The subject of this study was carbon dioxide transformation to diethyl carbonate via 

novel synthesis method starting from inexpensive, renewable and non-toxic ethanol and CO2. 

Detailed thermodynamic calculations revealed that the reaction is exothermic and non-

spontaneous at room temperature. Further, the co-produced water easily shifts the reaction 

equilibrium towards reactants. Therefore, a new method of in-situ dehydration was proposed 

by introduction of butylene oxide to the reaction system as a chemical water trap. A 9-fold 

enhancement of DEC yield was achieved over butylene oxide when compared to the synthetic 

method without any water removal. This result showed that butylene oxide exhibits water-

capturing properties under employed reaction conditions which subsequently resulted in the 

suppression of the thermodynamic limitations, thereby shifting the reaction equilibrium 

towards the desired product. Cerium oxide exhibited catalytic activity in one-pot synthesis of 

DEC starting from ethanol, CO2 and butylene oxide.  

For the first time, kinetic studies were conducted for the synthesis of diethyl carbonate 

starting from CO2 and ethanol using butylene oxide as the water scavenger over commercial 

CeO2 in order to facilitate better understanding of the reaction network. It has been observed 

that the reaction proceeds via a consecutive route involving cyclic butylene carbonate as an 

intermediate that is formed from the reaction between carbon dioxide and butylene oxide. 

Subsequently butylene carbonate undergoes trans-esterification with ethanol to produce 

diethyl carbonate accompanied with 1,2-butanediol formation. 

Room temperature precipitation technique was applied for the in-house synthesis of CeO2. 

The emphasis was put on the determination of the influence of the synthesis parameters on the 

properties of the resulting materials, which up to date has not been intensively studied and 

reported in the open literature. In particular, the influence of the synthesis time, calcination 

temperature and pH of the solution on the physico-chemical and catalytic characteristics of 

CeO2 catalysts was carefully examined. X-ray powder diffraction results revealed that in all 

cases phase-pure catalysts were obtained, exhibiting characteristic peaks for cerium oxide 

fluorite cubic structure. In addition, Ce 3d spectra collected using X-ray photoelectron 

spectroscopy showed the occurrence of tetravalent Ce ions in all synthesized ceria 

compounds. Noticeably, synthesis time appeared to have a considerable effect on the specific 

surface area and basicity of the powders. An increase in the synthesis time resulted in high 

specific surface area catalysts demonstrating high basicity. Furthermore, the variation of the 
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pH of the precipitate yielded cerium oxide with uncommonly high specific surface area, 139 

m
2
/g, for the catalyst prepared under pH 11.  From the comparison of the catalytic activities of 

the synthesized cerium oxide catalysts, as expected, the one with the highest surface area 

yielded the highest amount of diethyl carbonate (2 mmol) at 180 
o
C and  9 MPa of total final 

pressure. The amount of DEC produced over CeO2─pH 11 represents the highest value of 

DEC yield ever reported in the open literature over synthesized cerium oxide applying this 

reaction system. In addition, stability tests revealed that in-house prepared cerium oxide 

preserved its catalytic activity in contrast to the commercial catalyst. 

Furthermore, in-house prepared ceria-supported materials were applied for the first time as 

catalysts in carbon dioxide transformation to diethyl carbonate. High specific surface area 

silicas such as MCM-41, SBA-15 and silica gel were used as supports for cerium oxide 

deposition. Phase pure cubic fluorite cerium oxide was observed for both 16 and 32 wt % 

ceria loaded on silica gel, whereas certain destruction of the composite material was 

noticeable for 32 wt % CeO2-MCM-41, respectively. In turn, modification of SBA-15 

material with 20 wt % ceria retained an ordered mesoporous structure of SBA-15. However, 

ceria could not be determined by means of XRD studies on SBA-15 surface although its 

presence was confirmed directly by EDX analysis and indirectly by a decrease of specific 

surface area of the parent material upon CeO2 dispersion.  Most probably, cerium oxide 

particles were very small and well dispersed or alternatively located inside the SBA-15 

matrix. This material among all ceria-supported catalysts showed the highest catalytic activity 

towards ceria resulting in 0.28 mmol of DEC formed per mmol of cerium oxide.   
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